
Short Randomizable Signatures

David Pointcheval1 and Olivier Sanders1,2

1 École normale supérieure, CNRS & INRIA, Paris, France
2 Orange Labs, Applied Crypto Group, Caen, France

Abstract. Digital signature is a fundamental primitive with numerous
applications. Following the development of pairing-based cryptography,
several taking advantage of this setting have been proposed. Among
them, the Camenisch-Lysyanskaya (CL) signature scheme is one of the
most flexible and has been used as a building block for many other proto-
cols. Unfortunately, this scheme suffers from a linear size in the number
of messages to be signed which limits its use in many situations.
In this paper, we propose a new signature scheme with the same features
as CL-signatures but without the linear-size drawback: our signature
consists of only two elements, whatever the message length, and our
algorithms are more efficient. This construction takes advantage of using
type 3 pairings, that are already widely used for security and efficiency
reasons.
We prove the security of our scheme without random oracles but in the
generic group model. Finally, we show that protocols using CL-signatures
can easily be instantiated with ours, leading to much more efficient con-
structions.

1 Introduction

Digital signature is one of the main cryptographic primitives which can be used
in its own right, to provide the electronic version of handwritten signatures, but
also as a building block for more complex primitives. Whereas efficiency is the
main concern of the first case, the latter case usually requires a signature scheme
with additional features. Indeed, when used as a building block, signatures must
not just be efficient, they also have to be compatible with the goals and the
other building blocks of the protocol. For example, privacy-preserving primitives
usually require a signature scheme which allows signatures on committed secret
values and compatible with zero-knowledge proofs.

1.1 Related Works

Constructing a versatile signature scheme that is both efficient and secure is
not easy. One of the first construction specifically designed as a building block
for other applications was proposed by Camenisch and Lysyanskaya [18]. Their
construction, relying on the Strong RSA assumption [6], allows indeed signatures
on committed values and proofs of knowledge of a signature.

The emergence of pairing-based cryptography [34, 13] has created a need for
such signature schemes compatible with this new setting. Indeed, many crypto-
graphic protocols now use bilinear groups, i.e. a set of three groups G1, G2 and
GT along with a bilinear map e : G1×G2 → GT . In 2004, Camenisch and Lysyan-
skaya proposed a new pairing-based signature scheme [19] whose flexibility has
allowed it to be used in several applications, such as group signatures [10], direct
anonymous attestations [25, 9], aggregate signatures [35] or E-cash systems [21].
One of its most interesting features is probably the ability of its signatures to
be randomized: given a valid CL-signature σ = (a, b, c) on a message m, any-
one can generate another valid signature on the same message by selecting a
random scalar r and computing (ar, br, cr). The latter is indistinguishable from
a fresh signature on m. Let us consider a typical situation for anonymous cre-
dentials [17], direct anonymous attestations [15], or group signatures [24]: a user
first gets a signature σ on some secret value s and then has to prove, several
times, that s is certified still keeping the proofs unlinkable. If σ were issued using
a conventional signature scheme, it would have to be committed and the user
would have to prove that the commitment opens to a valid signature on a secret
value which is a rather complex statement to prove, even in the Random Oracle
Model (ROM) [7]. Now, if σ is a CL-signature, then the user can simply compute
a randomized version σ′ of σ, sends it and proves that it is valid on the secret
value. This idea underlies the efficiency of the constructions described in [25,
10, 9]. For these constructions, unlinkability relies on the DDH assumption in
G1, and so requires the use of asymmetric pairings. But this is not a strong
assumption, since they offer the best efficiency (see [28]).

One might have thought that the seminal work of Groth and Sahai [31],
providing the first practical non-interactive zero-knowledge proofs (NIZKs) in
the standard model, in conjunction with the recent structure-preserving signa-
tures [1–3, 23], has decreased interest for CL-signatures. However, that has not
happened due to the huge performance gap between constructions in the stan-
dard model and constructions in the ROM: for example, the most efficient group
signature in the standard model [30] consists of 50 group elements whereas [10],
in the ROM, consists of only 3 group elements and two scalars. And for real-life
applications, where time constraints are particularly challenging, constructions
with NIZK proofs in the ROM seem unavoidable.

As a consequence, signatures schemes, such as the CL-signatures, compatible
with NIZKs in the ROM still remain of huge practical interest.

Another primitive for which efficiency considerations are central is anony-
mous credentials. Unfortunately, even if they are one of the applications pro-
posed for CL-signatures, most of these schemes [4, 16, 20, 5] use other construc-
tions, such as the one proposed by Boneh, Boyen and Shacham (BBS) [12]. This
is due to a large extent to the size of CL-signatures, which is linear in the num-
ber of messages to be signed. Since a user of an anonymous credential system
may have several attributes to be certified, this cost quickly becomes prohibitive.
This is unfortunate because, here again, the randomizability of CL-signatures
could lead to more efficient protocols.

1.2 Our contribution

In this paper, we propose a new signature scheme, with the same features as
CL-signatures, but with a remarkable efficiency. Indeed, whereas the original
CL-signatures [19] on blocks of r messages consist of 1 + 2r elements of G1, ours
only require 2 elements of G1, whatever r is. Moreover, as illustrated in Figure 1
(see Section 7), our signature and verification algorithms are much more efficient.

Our work proceeds from the observation that most of the recent protocols [25,
10, 9] using CL-signatures require type 3 pairings for efficiency and security rea-
sons (see [28]). However, CL-signatures, as most of the constructions from the
beginnings of pairing-based cryptography, were designed for type 1 pairings.
Unfortunately, this setting usually leads to more complex protocols since they
cannot rely on assumptions which would have held with pairings of other types.
This has been illustrated by the recent results [2, 23] on structure-preserving
signatures, which shows that designing schemes specifically for type 3 pairings
results in more efficient constructions.

Following the same rationale, we propose a signature scheme suited to such
pairings: it can be seen as CL-signatures, but taking advantage of the full poten-
tial of type 3 pairings. The separation between the space of the signatures (G1)
and the one of the public key (G2) allows indeed more efficient constructions
since the elements of the latter can no longer be used to build forgeries in the
former. Unfortunately, the security of our scheme does not rely on any standard
assumption and so was proved in the generic group model, which does not pro-
vide the same guarantees. However, as illustrated by [19, 11, 2], relying on proofs
in the generic group model or on non-standard assumptions (themselves proved
in this model), allows more efficient constructions. For some applications with
challenging time constraints such as public transport [33, 27], where authentica-
tion must be performed in less than 300 ms, we argue that this trade-off, between
efficiency and the security assumption, is reasonable. By providing short signa-
tures with efficient algorithms, our solution may then contribute to make all
features of modern cryptography more accessible.

Improving the efficiency of primitives with practical applications was also
the concern of the authors of [22]. They proposed a MAC scheme, proven se-
cure in the generic group model, with useful properties allowing to construct
keyed-verification anonymous credentials (the secret-key analogue of standard
anonymous credentials). Although our signature shares similarities with their
scheme, it offers much more flexibility. Indeed, the construction from [22] does
not achieve public verifiability and so only fits the case where the verifier is
also the issuer. Moreover, the protocols for obtaining or proving knowledge of a
MAC on committed messages are more complex than the ones, for a signature,
we describe in this paper.

Besides efficiency, one of the main advantages of our scheme is that it acts
as a plug-in replacement for CL-signatures. Indeed, since they achieve the same
properties than the latter, our signatures can be used to instantiate most of the
protocols initially designed for CL ones. To illustrate this point, we convert our
signature scheme into a sequential aggregate signature scheme [37] using an idea

similar to the one of Lee, Lee and Yung [35]. The resulting aggregate signature
only consists of 2 elements in G1 and so is shorter than theirs. Similar gains can
be achieved for many other applications such as group signatures or anonymous
credentials.

1.3 Organization

We review some definitions and notations in Section 2 and present new computa-
tional assumptions in Section 3. Section 4 describes our signature scheme whose
conversion into a sequential aggregate signature scheme is described in Section
5. Section 6 describes a variant of our scheme allowing to sign committed values
along with a protocol for proving knowledge of a signature. Finally, Section 7
provides a comparison with related works.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order
p along with a bilinear map e : G1 ×G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g 6= 1G1

and g̃ 6= 1G2
, e(g, g̃) 6= 1GT ;

3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [28] defined three types of pairings: in type
1, G1 = G2; in type 2, G1 6= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 6= G2 and no efficiently computable homomorphism exist between G1 and
G2, in either direction.

Although type 1 pairings were mostly used in the early-age of pairing-based
cryptography, they have been gradually discarded in favor of type 3 pairings.
Indeed, the latter offer a better efficiency and are compatible with several com-
putational assumptions, such as the Decision Diffie-Hellman assumption in G1 or
G2, also known as the XDH assumption, which does not hold in type 1 pairings.

In this work, we only consider type 3 pairings. We stress that using type 1
or type 2 pairings would make our signature scheme totally insecure.

2.2 Digital Signature Scheme

Syntax. A digital signature scheme Σ is defined by four algorithms:

– the Setup algorithm which, on input a security parameter k, outputs p.p.,
a description of the public parameters;

– the key generation algorithm Keygen which, on input p.p, outputs a pair of
signing and verification keys (sk, pk) – we assume that sk contains pk, and
that pk contains p.p.;

– the signing algorithm Sign which, on input the signing key sk and a message
m, outputs a signature σ;

– the verification algorithm Verify which, on input m, σ and pk, outputs 1 if
σ is a valid signature on m under pk, and 0 otherwise.

Security Notion. The standard security notion for a signature scheme is ex-
istential unforgeability under chosen message attacks (EUF-CMA) [29] which
means that it is hard, even given access to a signing oracle, to output a valid
pair (m,σ) for a message m never asked to the signing oracle. It is defined using
the following game between a challenger C and an adversary A:

– Setup: C runs the Setup and the Keygen algorithms to obtain sk and pk.
The adversary is given the public key pk;

– Queries:A adaptively requests signatures on at most q messages m1,. . . ,mq.
C answers each query by returning σi ← Sign(sk,mi);

– Output: A eventually outputs a message-signature pair (m∗, σ∗) and wins
the game if Verify(pk,m∗, σ∗) = 1 and if m∗ 6= mi ∀i ∈ [1, q].

A signature scheme is EUF-CMA secure if no probabilistic polynomial-time ad-
versary A can win this game with non-negligible probability.

2.3 Sequential Aggregate Signature

Syntax. Sequential aggregate signature [37] is a special type of aggregate sig-
nature (introduced by Boneh et al. [14]) where the final signature on the list of
messages is computed sequentially by each signer, who adds his signature on his
message. It is defined by the four algorithms described below:

– the AS.Setup algorithm which, on input a security parameter k, outputs p.p.,
a description of the public parameters;

– the key generation algorithm AS.Keygen which, on input p.p, outputs a pair
of signing and verification keys (sk, pk) – we assume that sk contains pk, and
that pk contains p.p.;

– the signing algorithm AS.Sign which, on input an aggregate signature σ on
messages (m1, . . . ,mr) under public keys (pk1, . . . , pkr), a signing key sk and
a message m, outputs a new aggregate signature σ′ on (m1, . . . ,mr,m);

– the verification algorithm AS.Verify which, on input (m1, . . . ,mr), σ and
distinct public keys (pk1, . . . , pkr), outputs 1 if σ is a valid aggregate signa-
ture on (m1, . . . ,mr) under (pk1, . . . , pkr), and 0 otherwise.

Security Model. The security property for a sequential aggregate signature
scheme is existential unforgeability under chosen message attacks which requires
that no adversary is able to forge an aggregate signature, on a set of messages
of its choice, by a set of users whose secret keys are not all known to it. It is
defined using the following game between a challenger C and an adversary A:

– Setup: C first initializes a key list KeyList as empty. Next it runs the
AS.Setup algorithm to get p.p. and the AS.Keygen algorithm to get the sign-
ing and verification keys (sk∗, pk∗). The verification key pk∗ is given to A;

– Join Queries: A adaptively asks to add the public keys pki to KeyList;
– Signature Query: A adaptively requests aggregate signatures on at most
q messages m1, . . . ,mq under the challenge public key pk∗. For each query,
it provides an aggregate signature σi on the messages (mi,1, . . . ,mi,ri) un-
der the public keys (pki,1, . . . , pki,ri), all in KeyList. Then C returns the
aggregation AS.Sign(sk∗, σi, (mi,1, . . . ,mi,ri), (pki,1, . . . , pki,ri),mi);

– Output: A eventually outputs an aggregate signature σ on the messages
(m∗1, . . . ,m

∗
r) under the public keys (pk1, . . . , pkr) and wins the game if the

following conditions are all satisfied:
• AS.Verify((pk1, . . . , pkr), (m

∗
1, . . . ,m

∗
r), σ) = 1;

• For all pkj 6= pk∗, pkj ∈ KeyList ;
• For some j∗ ∈ [1, r], pk∗ = pkj∗ and m∗j∗ has not been queried to the

signing oracle, i.e. m∗j∗ 6= mi, for i = 1, . . . , q.

A sequential aggregate signature scheme is EUF-CMA secure if no probabilistic
polynomial-time adversary A can win this game with non-negligible probability.

Certified Keys. As in [35], we consider the setting proposed by Lu et al. [36]
where users must prove knowledge of their signing key sk when they want to add
a public key pk in KeyList. In the security proof, this enables the simulator to
answer every signature query made by the adversary A. As a consequence, in
the Join Query, when A asks to add pk to KeyList, it additionally proves its
knowledge of the corresponding secret key sk.

3 Assumption

A by-now classical assumption is the so-called LRSW [38], applied to many
privacy-preserving protocols, such as the CL-signatures [19], that admit two
protocols: an issuing protocol that allows a user to get a signature σ on a message
x, just by sending a commitment of x to the signer, and a proving protocol that
allows the user to prove, in a zero-knowledge way, his knowledge of a signature
on a commitment of x. They lead to efficient anonymous credentials.

Definition 1 (LRSW Assumption). Let G be a cyclic group of prime order
p, with a generator g. For X = gx and Y = gy, where x and y are random scalars
in Zp, we define the oracle O(m) on input m ∈ Zp that chooses a random h ∈ G
and outputs the triple T = (h, hy, hx+mxy). Given (X,Y) and unlimited access
to this oracle, no adversary can efficiently generate such a triple for a new scalar
m∗, not asked to O.

This assumption has been introduced in [38] and proven in the generic group
model, as modeled by Shoup [41].

We now propose two similar assumptions in bilinear groups of type 3 that
will provide even more efficient protocols. We then prove them to hold in the
bilinear generic group model.

Definition 2 (Assumption 1). Let (p,G1,G2,GT , e) a bilinear group setting
of type 3, with g (resp. g̃) a generator of G1 (resp. G2). For (X = gx, Y = gy)

and (X̃ = g̃x, Ỹ = g̃y), where x and y are random scalars in Zp, we define the
oracle O(m) on input m ∈ Zp that chooses a random h ∈ G1 and outputs the

pair P = (h, hx+my). Given (g, Y, g̃, X̃, Ỹ) and unlimited access to this oracle,
no adversary can efficiently generate such a pair, with h 6= 1G1

, for a new scalar
m∗, not asked to O.

One can note that using pairings, an output of the adversary can be checked
since the pair P = (P1, P2) should satisfy e(P1, X̃ · Ỹ m) = e(P2, g̃). In addition,
(X,Y) are enough to answer oracle queries: on a scalar m ∈ Zp, one computes
(gr, (X · Y m)r). This requires 3 exponentiations per query, while knowing (x, y)
this just requires a random sampling in G1 and one exponentiation.

In some situations, a weaker assumption will be enough, where Y is not given
to the adversary:

Definition 3 (Assumption 2). Let (p,G1,G2,GT , e) a bilinear group setting

of type 3, with g (resp. g̃) a generator of G1 (resp. G2). For (X̃ = g̃x, Ỹ = g̃y)
where x and y are random scalars in Zp, we define the oracle O(m) on input
m ∈ Zp that chooses a random h ∈ G and outputs the pair P = (h, hx+my).

Given (g̃, X̃, Ỹ) and unlimited access to this oracle, no adversary can efficiently
generate such a pair, with h 6= 1G1 , for a new scalar m∗, not asked to O.

Theorem 4. The above Assumption 1 (and thus the Assumption 2) holds in the
generic bilinear group model: after q oracle queries and qG group-oracle queries,
no adversary can generate a valid pair for a new scalar with probability greater
than 6(q + qG)2/p.

Proof. Let g and g̃ be the generators of G1 and G2, respectively, x and y be
the secret scalars that define (X,Y) and (X̃, Ỹ), and ri ∈ Z∗p be the scalar such

that the ith oracle answer on scalar mi is answered by (hi, ti = h
(x+y·mi)
i) with

hi = gri .
In the following, we associate group elements with polynomials whose formal

variables are the above unknown scalars: x, y, r1, . . . , rq, with first all the inputs

available to the adversary: X̃ = x and Ỹ = y in G2, Y = y and hi = ri,
ti = ri(x+y ·mi), for i = 1, . . . , q, in G1. We must first prove that an adversary A
is unable to symbolically produce a new valid tuple, and then that an accidental
validity is quite unlikely.

For the output tuple (h∗, t∗) on a scalar m∗, since h∗ and t∗ are elements in
G1, they can just be combinations of previous tuples (hi, ti), g, and Y (without
any help from elements in G2): they have been built with queries to the oracle
of internal law in G1, and so we know ((ui,1, vi,1, ui,2, vi,2)i, (w1, w2), (w′1, w

′
2)) ∈

Z4q+4
p such that:

gr
∗

= h∗ = gw1 · Y w
′
1 ·

q∏
i=1

h
ui,1
i · tvi,1i and gz

∗
= t∗ = gw2 · Y w

′
2 ·

q∏
i=1

h
ui,2
i · tvi,2i ,

and thus

r∗ = w1 + w′1 · y +

q∑
i=1

(ui,1 · ri + vi,1(x+ y ·mi) · ri)

and z∗ = w2 + w′2 · y +

q∑
i=1

(ui,2 · ri + vi,2(x+ y ·mi) · ri).

The validity of the new tuple implies that z∗ = r∗(x+ y ·m∗), which leads to:

w2 + w′2 · y +

q∑
i=1

(ui,2 · ri + vi,2(xri +mi · yri))

= w1 · x+ w′1 · xy +

q∑
i=1

(ui,1 · xri + vi,1(x2ri +mi · xyri))

+m∗ · (w1 · y + w′1 · y2 +

q∑
i=1

(ui,1 · yri + vi,1(xyri +mi · y2ri))).

For the two multivariable polynomials to be equal, the same monomials should
appear on both sides:

– no monomials of degree 3 on the left, so vi,1 = 0 for all i;
– no term in ri on the right, so ui,2 = 0 for all i;
– no constant term on the right, so w2 = 0;
– no term in x nor xy on the left, so w1 = 0 and w′1=0:

w′2 · y +

q∑
i=1

vi,2(xri +mi · yri) =

q∑
i=1

ui,1 · xri +m∗ ·
q∑
i=1

ui,1 · yri.

– no more term in y on the right, so w′2=0:

q∑
i=1

vi,2(xri +mi · yri) =

q∑
i=1

ui,1 · xri +m∗ ·
q∑
i=1

ui,1 · yri.

The monomials xri imply vi,2 = ui,1 for all i, while the monomials yri imply
ui,1 ·mi = ui,1 ·m∗ for all i. Since r∗ 6= 0 (otherwise h∗ = 1G1

), there is at least
one ui,1 = vi,2 6= 0, and then m∗ = mi: the pair is not for a new scalar! An
adversary is then unable to symbolically produce a valid tuple for a new scalar.

Now, it remains to evaluate the probability for an accidental validity: when
two different polynomials involved in the answers to the oracles evaluate to the
same value. Since the elements provided by the oracle are associated with poly-
nomials of degree at most 2 and since the public elements are associated with
polynomials of degree at most 1, the polynomials resulting from queries to the
different group oracles are of degree at most 3 (because of pairing queries). Let
qG be the maximum number of group-oracle queries, there are thus at most
3 + 2q + qG polynomials, and thus at most (3 + 2q + qG)2/2 pairs of distinct
polynomials that could evaluate to the same value. By the Schwartz-Zippel
lemma, the probability that such an event occurs is then upper-bounded by
3(3 + 2q + qG)2/2p ≤ 6(q + qG)2/p which is negligible. ut

4 Our Randomizable Digital Signature Scheme

For the sake of clarity, for our signature scheme, we first describe the specific
case where only one message is signed. We then present an extension allowing
to sign several messages and show that the security of the latter scheme holds
under the security of the former (which holds under the weak Assumption 2).

4.1 A Single-Message Signature Scheme

Description. Our signature scheme consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs p.p. ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G∗1 = G1\{1G1};

– Keygen(p.p.): This algorithm selects g̃
$← G2 and (x, y)

$← Z2
p, computes

(X̃, Ỹ)← (g̃x, g̃y) and sets sk as (x, y) and pk as (g̃, X̃, Ỹ);

– Sign(sk,m): This algorithm selects a random h
$← G∗1 and outputs σ ←

(h, h(x+y·m));
– Verify(pk,m, σ): This algorithm parses σ as (σ1, σ2) and checks whether

σ1 6= 1G1 and e(σ1, X̃ · Ỹ m) = e(σ2, g̃) are both satisfied. In the positive
case, it outputs 1, and 0 otherwise.

Correctness: If σ = (σ1 = h, σ2 = h(x+y·m)), then

e(σ1, X̃ · Ỹ m) = e(h, X̃ · Ỹ m) = e(h, g̃)(x+y·m) = e(h(x+y·m), g̃) = e(σ2, g̃).

Remark 5. As already remarked above, the signature could be generated with
the secret key being either (x, y) or (X = gx, Y = gy). But the former leads a
more efficient signature scheme.

Randomizability. As the CL-signatures, a signature σ = (σ1, σ2) on a message

m can be randomized by selecting a random r
$← Z∗p and computing σ′ ← (σr1, σ

r
2)

which is still a valid signature on m: it corresponds to replace h ∈ G∗1 by h′ =
hr ∈ G∗1.

Security Analysis. EUF-CMA is exactly the above Assumption 2, since a
signing oracle is perfectly equivalent to the oracle O.

4.2 A Multi-Message Signature Scheme

Description. We now present a variant of the previous scheme to sign r-message
vectors (m1, . . . ,mr) ∈ Zrp at once. Our signature scheme consists of the following
algorithms, where all the sums and products are on j between 1 and r:

– Setup(1k): Given a security parameter k, this algorithm outputs p.p. ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G∗1 = G1\{1G1

};
– Keygen(p.p.): This algorithm selects g̃

$← G2 and (x, y1, . . . , yr)
$← Zr+1

p ,

computes (X̃, Ỹ1, . . . , Ỹr) ← (g̃x, g̃y1 , . . . , g̃yr) and sets sk as (x, y1, . . . , yr)

and pk as (g̃, X̃, Ỹ1, . . . , Ỹr).

– Sign(sk,m1, . . . ,mr): This algorithm selects a random h
$← G∗1 and outputs

σ ← (h, h(x+
∑
yj ·mj)).

– Verify(pk, (m1, . . . ,mr), σ): This algorithm parses σ as (σ1, σ2) and checks

whether σ1 6= 1G1
and e(σ1, X̃ ·

∏
Ỹ
mj
j) = e(σ2, g̃) are both satisfied. In the

positive case, it outputs 1, and 0 otherwise.

Correctness: If σ = (σ1 = h, σ2 = h(x+
∑
yj ·mj)), then

e(σ1, X̃ ·
∏

Ỹ
mj
j) = e(h, X̃ ·

∏
Ỹ
mj
j) = e(h, g̃)x+

∑
yj ·mj

= e(hx+
∑
yj ·mj , g̃) = e(σ2, g̃).

Security Analysis. We now rely the security of this multiple-message signa-
ture scheme to the security of the single-message signature scheme, and so on
Assumption 2.

Theorem 6. The multiple-message signature scheme achieves the EUF-CMA
security level under the above Assumption 2. More precisely, if an adversary can
break the EUF-CMA of the multiple-message signature scheme with probability
ε, then there exists an adversary against the EUF-CMA security of the single-
message signature scheme, within the same running time and the same number
of signing queries, succeeding with probability greater than ε− q/p.

Proof. Let A be an adversary against the EUF-CMA security of this scheme.
We construct a reduction R using A against the EUF-CMA security of the
previous single-message signature scheme. The challenger of the latter game will
be denoted by C.

– Setup: R receives from C a public key pk∗ which contains the public pa-
rameters of the signature scheme p.p. along with (g̃, X̃, Ỹ). Next, it se-

lects αj , βj
$← Zp, for j = 1, . . . , r, and sets Ỹj ← Ỹ αj g̃βj . It outputs

pk← (g̃, X̃, Ỹ1, . . . , Ỹr).

– Queries: When A queries a signature on a vector Mi = (mi,1, . . . ,mi,r),
R first requests from C a signature on mi =

∑
αjmi,j and so receives σ =

(σ1, σ2) such that e(σ1, X̃ · Ỹ
∑
αjmi,j) = e(σ2, g̃). Next, it computes σ′2 ←

σ2 · σ
∑
βj ·mi,j

1 and returns (σ1, σ
′
2) to A:

e(σ′2, g̃) = e(σ2 · σ
∑
βj ·mi,j

1 , g̃) = e(σ2, g̃) · e(σ
∑
βj ·mi,j

1 , g̃)

= e(σ1, X̃ · Ỹ
∑
αjmi,j) · e(σ1, g̃

∑
βj ·mi,j)

= e(σ1, X̃ ·
∏

Ỹ αjmi,j g̃βj ·mi,j)

= e(σ1, X̃ ·
∏

(Ỹ αj g̃βj)mi,j) = e(σ1, X̃ ·
∏

Ỹ
mi,j
j),

which is a valid signature on Mi.

– Output: Eventually, A outputs a signature σ = (σ1, σ2) on a vector M∗ =
(m∗1, . . . ,m

∗
r). The signature σ is a valid forgery if

• e(σ1, X̃ ·
∏
Ỹ
m∗j
j) = e(σ2, g̃);

• for i = 1, . . . , q, M∗ 6= Mi.

If
∑
αjm

∗
j =

∑
αjmi,j , for some i ∈ {1, . . . , q}, then R aborts. Otherwise,

it outputs σ∗ = (σ∗1 , σ
∗
2), with σ∗1 ← σ1 and σ∗2 ← σ2 · σ

−
∑
βj ·m∗j

1 , together
with m∗ ←

∑
αjm

∗
j :

e(σ∗2 , g̃) = e(σ2 · σ
−

∑
βj ·m∗j

1 , g̃) = e(σ2, g̃) · e(σ−
∑
βj ·m∗j

1 , g̃)

= e(σ1, X̃ ·
∏

Ỹ
m∗j
j) · e(σ1, g̃−

∑
βj ·m∗j)

= e(σ1, X̃ ·
∏

(Ỹ αj g̃βj)m
∗
j) · e(σ1,

∏
g̃−βj ·m

∗
j)

= e(σ1, X̃ ·
∏

Ỹ αjm
∗
j) = e(σ1, X̃ · Ỹ

∑
αjm

∗
j) = e(σ1, X̃ · Ỹ m

∗
).

Since m∗ has never been asked to the signing oracle, this is a valid forgery
under the public key pk∗.

We remark that, unless that adversary outputs a vector M∗ = (m∗1, . . . ,m
∗
r)

such that
∑
αjm

∗
j =

∑
αjmi,j for some vector Mi = (mi,1, . . . ,mi,r), a valid

forgery makes R outputs a valid forgery against the single-message signature
scheme. We thus have to prove that such linear relations are quite unlikely.

Let us denote y the scalar such that Ỹ = g̃y, and let us select γj
$← Zp, for

j = 1, . . . , r. We now set α′j ← αj − γj and β′j ← βj + yγj , for j = 1, . . . , r. One
can remark that

Ỹ α
′
j g̃β

′
j = Ỹ αj−γj g̃βj+yγj = Ỹ αj Ỹ −γj g̃βj Ỹ γj = Ỹ αj g̃βj = Ỹj .

Hence, the public key is independent of the actual γj ’s, and thus reveals no
information about the αj ’s, and this is the same for the signatures that just
depends on σ1 chosen by the oracle and the public key.

As a consequence, the complete view of the adversary is totally independent
of the αj ’s. Hence, the probability that R aborts is upper-bounded by q/p. ut

5 A Sequential Aggregate Signature

5.1 Our Construction

It is possible to slightly modify the scheme from section 4.2 to convert it into
a sequential aggregate signature scheme. The signer’s secret key of the original
scheme to sign r-message vector was (x, y1, . . . , yr). But now, let us assume
one publishes a signature on the r-vector (0, . . . , 0): (g,X) = (g, gx) ∈ G2

1 for
some g ∈ G1. This additional knowledge does not help an adversary to produce
forgeries on non-zero vectors, but the scalar value x is no longer useful in the
secret key since one can sign a vector (m1, . . . ,mr) by selecting a random t

$← Zp
and computing (gt, (X)t · (gt)

∑
yj ·mj). The correctness follows from the one of

the original scheme.
On the other hand, we can use the public key sharing technique from [35]

to construct an efficient sequential aggregate signature scheme in the standard
model: Each signer j (from 1 to r) generates his own signing and verification

keys (yj , Ỹj) but uses the same element X from the public parameters. To sign

a message m1 ∈ Z∗p, the first selects a random t1
$← Zp and outputs (σ1, σ2) ←

(gt1 , (X)t1 ·(gt1)y1·m1). A subsequent signer 2 can generate an aggregate signature
on m2 by selecting a random t2 and computing (σ′1, σ

′
2)← (σt21 , (σ2 · σ

y2·m2

1)t2).
Therefore, (σ′1, σ

′
2) = (gt1·t2 , gt1·t2(x+m1·y1+m2·y2)) = (gt, gt(x+m1·y1+m2·y2)), for

t = t1t2, and so its validity can be verified using the Verify algorithm described
in section 4.2.

More formally, our sequential aggregate signature scheme is defined by the
following algorithms.

– AS.Setup(1k): Given a security parameter k, this algorithm selects a random

x ∈ Zp and outputs p.p. ← (p,G1,G2,GT , e, g,X, g̃, X̃), where X = gx and

X̃ = g̃x for some generators (g, g̃) ∈ G1 ×G2.

– AS.Keygen(p.p.): This algorithm selects a random y
$← Zp, computes Ỹ ← g̃y

and sets sk as y and pk as Ỹ .
– AS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m) proceeds as follows:
• If r = 0, then σ ← (g,X);
• If r > 0 but AS.Verify((pk1, . . . , pkr), σ, (m1, . . . ,mr)) = 0, then it halts;
• If m = 0, then it halts;
• If for some j ∈ {1, . . . , r} pkj = pk, then it halts.

If the algorithm did not halt, then it parses sk as y and σ as (σ1, σ2), selects

t
$← Zp and computes σ′ = (σ′1, σ

′
2)← (σt1, (σ2 ·σ

y·m
1)t). It eventually outputs

σ′.
– AS.Verify((pk1, . . . , pkr), (m1, . . . ,mr), σ) parses σ as (σ1, σ2) and pkj as Ỹj ,

for j = 1, . . . , r, and checks whether σ1 6= 1G1
and e(σ1, X̃ ·

∏
Ỹ
mj
j) = e(σ2, g̃)

are both satisfied. In the positive case, it outputs 1, and 0 otherwise.

Correctness. If r = 0, then the algorithm AS.Sign outputs (gt, (X · gy·m)t) =
(gt, gt(x+y·m)). By induction, let us now assume that σ = (gs, gs(x+

∑
yj ·mj)),

then an aggregate signature σ′ on m is equal to (gt·s, gt·s(x+m·y+
∑
yj ·mj)), which

is equal to (h, hx+
∑
yj ·mj+y·m) for some h ∈ G1. The correctness of our sequential

aggregate signature scheme follows then from the signature scheme described in
Section 4.2.

5.2 Security Analysis

We now rely the security of this aggregate signature scheme, in the certified
public key setting, to the security of the single-message signature scheme, and
so on Assumption 2:

Theorem 7. The aggregate signature scheme achieves the EUF-CMA security
level, in the certified public-key setting, under the above Assumption 2. More
precisely, if an adversary can break the EUF-CMA of the aggregate signature
scheme, then there exists an adversary against the EUF-CMA security of the
single-message signature scheme, within the same running time and the same
number of signing queries, succeeding with the same probability.

Proof. Let A be an adversary against the existential unforgeability of our ag-
gregate signature scheme, in the certified public key setting. We construct a
reduction R using A against the existential unforgeability of the single-message
signature scheme described in Section 4.1. The challenger of the latter game will
be denoted by C.

– Setup: R first initializes a key list KeyList as empty. Next, it gets from
C a public key pk which contains the public parameters of the signature
scheme p.p. along with (g̃, X̃, Ỹ). It then requests a signature on 0 from C
which returns τ = (τ1, τ2) such that e(τ1, X̃) = e(τ2, g̃). One can set g ← τ1
and X ← τ2. R then sets the public parameters of the aggregate signature
scheme as (p.p., g,X, g̃, X̃) and sends pk∗ ← Ỹ to A. In the following, x∗

and y∗ will denote the (unknown) scalars such that X̃ = g̃x
∗

(as well as

X = gx
∗
) and Ỹ = g̃y

∗
. The scalar y∗ is thus the unknown secret key sk∗

associated to pk∗.

– Join Query: When A asks for adding a public key pki, the certification
process that includes a proof of knowledge of the associated secret keys ski
allows R to extracts it: it thus stores pki in KeyList, and stores (ski, pki) in
its own list of signing/verification keys for future simulations.

– Signature Query: When A requests for an aggregation of a message mi to
the aggregate signature σi on messages (mi,1, . . . ,mi,ri) under public keys
(pki,1, . . . , pki,ri), if ri > 0, R first checks the validity of σi, and aborts
in the negative case. Then, it requests a signature on mi from C, which
returns σ = (σ1, σ2). All the public keys involved in aggregate signatures
must have been previously certified, then R knows the associated secret keys
(ski,1, . . . , ski,ri) = (yi,1, . . . , yi,ri): it selects a random t

$← Zp and returns

σ′ ← (σt1, (σ2 · σ
∑ri
j=1 yi,j ·mi,j

1)t). This signature satisfies

e(σ′2, g̃) = e((σ2 · σ
∑ri
j=1 yi,j ·mi,j

1)t, g̃) = e(σt2, g̃) · e(σt1, g̃)
∑ri
j=1 yi,j ·mi,j

= e(σ2, g̃)t ·
ri∏
j=1

e(σt1, g̃
yi,j ·mi,j) = e(σ1, X̃ · Ỹ mi)t ·

ri∏
j=1

e(σt1, pk
mi,j
i,j)

= e(σt1, X̃ · pk
mi ·

ri∏
j=1

pk
mi,j
i,j) = e(σ′1, X̃ ·

ri∏
j=1

pk
mi,j
i,j · pk

mi)

which is thus a valid signature on the vector ((mi,j)i,mi) under the public
keys ((pki,j)i, pk

∗).
– Output: A eventually outputs an aggregate signature σ = (σ1, σ2) on mes-

sages (m∗1, . . . ,m
∗
r) under the public keys (pk1, . . . , pkr). The aggregate sig-

nature σ is a valid forgery if the following conditions are satisfied:

1. AS.Verify((pk1, . . . , pkr), σ, (m
∗
1, . . . ,m

∗
r)) = 1;

2. For all pkj 6= pk∗, pkj ∈ KeyList;
3. For some j∗ ∈ [1, r], pk∗ = pkj∗ and m∗j∗ has not been queried to the

signing oracle, i.e. m∗j∗ 6= mi, for i = 1, . . . , q.

The first condition implies that e(σ1, X̃
∏

pk
m∗j
j) = e(σ2, g̃), while the second

implies that R knows yj such that pkj = g̃yj , for j = 1, . . . , r, when pkj 6=
pk∗. The third one implies that there exists (a unique, since the public keys
are distinct) j∗ ∈ [1, r] such that pk∗ = pkj∗ : R can compute σ∗ = (σ∗1 ←
σ1, σ

∗
2 ← σ2 ·

∏
j 6=j∗ σ

−yj ·m∗j
1) which satisfies

e(σ∗2 , g̃) = e(σ2 ·
∏
j 6=j∗

σ
−yj ·m∗j
1 , g̃) = e(σ2, g̃) ·

∏
j 6=j∗

e(σ
−yj ·m∗j
1 , g̃)

= e(σ1, X̃ ·
∏

pk
m∗j
j) ·

∏
j 6=j∗

e(σ1, g̃
−yj ·m∗j)

= e(σ1, X̃ ·
∏

pk
m∗j
j) ·

∏
j 6=j∗

e(σ1, Ỹ
−m∗j
j)

= e(σ1, X̃ · pk
m∗j∗
j∗) = e(σ∗1 , X̃ · pk

m∗j∗
j∗)

Since pkj∗ = pk∗ and m∗ = m∗j∗ was not query to C, this last equation shows
that (m∗, σ∗) is a valid forgery (for the single-message signature scheme
described in Section 4.1) under pk∗.

But one has to additionally show that signature queries are correctly simulated

with σ′ ← (σt1, (σ2 · σ
∑ri
j=1 yi,j ·mi,j

1)t), with σ = (σ1, σ2) a signature of m1 under
pk∗, and t a random scalar, whereas the real signature should be σ′ = (σti1, (σi2 ·
σy·mi1)t), where σi = (σi1, σi2) was a valid signature on messages (mi,1, . . . ,mi,ri)
under public keys (pki,1, . . . , pki,ri) (or σi = (g,X) when r = 0), and t a random
scalar.

But one can note that in both cases σ′1 is a random element in G∗1, while

σ′2 is the unique element that satisfies e(σ′2, g̃) = e(σ′1, X̃ ·
∏ri
j=1 pk

mi,j
i,j · pk

mi).
Hence, the perfect simulation. ut

6 Useful features

6.1 Signing Committed Messages

Many cryptographic primitives require efficient protocols to obtain signatures
on committed (or transformed) values. For example, in some group signature
schemes [12, 26, 10], users must get a certificate on their secret key m ∈ Zp to
join the group. The non-frameability property [8] expected from such a primitive
prevents the users to directly send the value m to the group manager. Instead,
they rather send a public value gm, for some public g ∈ G1, and start a protocol
with the latter to get a signature on the secret value m.

Our signature scheme can be slightly modified to handle such a protocol: one
can submit gm to the signer and prove knowledge of m. If the proof is valid, the
signer can return σ = (σ1, σ2)← (gu, (gx · (gm)y)u, for some u

$← Zp, which is a
valid signature on m.

However, gm is not hiding enough in some applications, and namely if inform-
ation-theoretical security is required. For example, in anonymous credentials [17],
the elements gm1 , . . . , gmr may provide too much information on the attributes
(m1, . . . ,mr), if they belong to small sets.

The modified BBS signature scheme [12] described in [4] enables the signer to
sign messages (m1, . . . ,mr) from a Pedersen commitment [39] C = gt0·g

m1
1 · · · gmrr

(where t is a random scalar). We need to slightly modify the scheme described
in Section 4.2 to add such a feature. Indeed, the latter does not provide any
element of G1 in the public key. The resulting protocol is described below, in
the multi-message setting. But we first start with the single-message protocol.

A Single-Message Protocol. The signature scheme for signing one information-
theoretically hidden message consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs p.p. ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G∗1 = G1\{1G1} and G∗2 = G2\{1G2}, which are the sets of the
generators.

– Keygen(p.p.): This algorithm selects g
$← G∗1, g̃

$← G∗2 and (x, y)
$← Z2

p,

computes (X,Y) ← (gx, gy) and (X̃, Ỹ) ← (g̃x, g̃y), and sets sk ← X and

pk← (g, Y, g̃, X̃, Ỹ).
– Protocol: A user who wishes to obtain a signature on the message m ∈ Zp

first selects a random t
$← Zp and computes C ← gtY m. He then sends

C to the signer. They both run a proof of knowledge of the opening of
the commitment. If the signer is convinced, he selects a random u

$← Zp
and returns σ′ ← (gu, (XC)u). The user can now unblind the signature by
computing σ ← (σ′1, σ

′
2/σ
′
1
t
).

The element σ then satisfies σ1 = gu and σ2 = (XC)u/gut = (XgtY m/gt)u =
(XY m)u, which is a valid signature on m for the single-message signature scheme
described in Section 4.1. However, because of the additional elements in the
public key, the EUF-CMA security of this single-message signature scheme relies
on the Assumption 1.

A Multi-Message Protocol. The signature scheme for signing information-
theoretically hidden messages consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs p.p. ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G∗1 = G1\{1G1

} and G∗2 = G2\{1G2
}, which are the sets of the

generators.
– Keygen(p.p.): This algorithm selects g

$← G∗1, g̃
$← G∗2 and (x, y1, . . . , yr)

$←
Zr+1
p , computes (X,Y1, . . . , Yr) ← (gx, gy1 , . . . , gyr) and (X̃, Ỹ1, . . . , Ỹr) ←

(g̃x, g̃y1 , . . . , g̃yr), and sets sk← X and pk← (g, Y1, . . . , Yr, g̃, X̃, Ỹ1, . . . , Ỹr).
– Protocol: A user who wishes to obtain a signature on (m1, . . . ,mr) first

selects a random t
$← Zp and computes C ← gt

∏r
i=1 Y

mi
i . He then sends

C to the signer. They both run a proof of knowkedge of the opening of
the commitment. If the signer is convinced, he selects a random u

$← Zp
and returns σ′ ← (gu, (XC)u). The user can now unblind the signature by
computing σ ← (σ′1, σ

′
2/σ
′
1
t
).

Again, the element σ satisfies σ1 = gu and σ2 = (XC)u/gut. If one devel-
ops, σ2 = (Xgt

∏r
i=1 Y

mi
i /gt)u = (X

∏r
i=1 Y

mi
i)u, which is a valid signature on

(m1, . . . ,mr) for the multi-message signature scheme described in Section 4.2,
but with additional elements in the public key: the EUF-CMA security of this
multi-message signature scheme can also be shown equivalent to the one of the
single-message signature scheme, with a similar proof as the one for Theorem 6,
and thus relies on the Assumption 1.

6.2 Proving Knowledge of a Signature

If we still consider the example of anonymous credentials, the previous protocols
have addressed the problem of their issuance. However, once a user has obtained
his credential, he must also be able to use it to prove that its attributes are
certified, while remaining anonymous. To do so, the protocols usually follow the
framework described in [19] and so need an efficient way to prove knowledge of
a signature.

Our scheme offers such functionality thanks to the ability of our signatures
to be sequentially aggregated. Informally, to prove knowledge of a signature
σ = (σ1, σ2) on a message m, the user will aggregate a signature on some random
message t under a dummy public key g̃ (which is part of the public parameters).
The resulting signature σ′ is then valid on the block (m, t) and does not reveal
any information on m.

More formally, let pk ← (g̃, X̃, Ỹ1, . . . , Ỹr) be a public key for the signa-
ture scheme of Section 4.2 and σ = (σ1, σ2) be a valid signature on a block
(m1, . . . ,mr) under it. To prove knowledge of σ, the prover does the following:

1. He selects random r, t
$← Zp and computes σ′ ← (σr1, (σ2 · σt1)r).

2. He sends σ′ = (σ′1, σ
′
2) to the verifier and carries out a zero-knowledge

proof of knowledge π (such as the Schnorr’s interactive protocol [40]) of
(m1, . . . ,mr) and t such that:

e(σ′1, X̃) ·
∏

e(σ′1, Ỹj)
mj · e(σ′1, g̃)t = e(σ′2, g̃)

The verifier accepts if π is valid.

Theorem 8. The protocol above is a zero-knowledge proof of knowledge of a
signature σ on the block (m1, . . . ,mr).

Proof. The completeness follows from the one of π and from the fact that σ′ is a
valid signature on the block (m1, . . . ,mr, t) under the public key (g̃, X̃, Ỹ1, . . . ,

Ỹr+1), where Ỹr+1 = g̃.
To prove the zero-knowledge property we construct a valid simulator S. First,

S generates two random elements σ′1 and σ′2 of G1 and sets σ′ ← (σ′1, σ
′
2). The

pair σ′ is then correctly distributed because r and t were randomly generated
in Step 1. Next, S runs the simulator of the proof π to simulate Step 2. The
zero-knowledge property of π implies then the one of our protocol.

Finally, let us consider a prover P such that the verifier’s acceptance is non-
negligible. We construct an extractor E using P to output a valid signature σ
on a block of message. Since π is a proof of knowledge, E can run the associated
extractor to get a block (m1, . . . ,mr) along with t such that:

e(σ′1, X̃) ·
∏

e(σ′1, Ỹj)
mj · e(σ′1, g̃)t = e(σ′2, g̃)

E can then compute σ = (σ1, σ2) ← (σ′1, σ
′
2 · (σ′1)−t) which is a valid signature

on the block (m1, . . . ,mr) since:

e(σ1, X̃) ·
∏

e(σ1, Ỹj)
mj = e(σ′1, X̃) ·

∏
e(σ′1, Ỹj)

mj · e(σ′1, g̃)t · e(σ′1, g̃)−t

= e(σ′2, g̃) · e(σ′1, g̃)−t

= e(σ2, g̃)

For any prover P accepted by a verifier with non-negligible probability, we can
construct E that outputs a valid signature by interacting with P. Our protocol
is therefore a valid proof of knowledge.

7 Efficiency and Applications

We compare in Figure 1 the efficiency of our scheme with the ones of CL-
signatures [19] and BBS-signatures [12, 4] since they are the most popular schemes

used as building blocks for pairing-based protocols. As described in [4], to com-
pute a BBS signature on a block of r messages (m1, . . . ,mr), a signer whose
secret key is γ ∈ Zp first selects two random scalars e and s and then com-

putes A ← (g0g
s
1g
m1
2 . . . gmrr+1)

1
e+γ for some public parameters g0,. . . ,gr+1. The

signature is defined as (A, e, s). For proper comparison, we consider a vari-
ant of this scheme where the signer has generated the elements gi ← gyi0 for
i ∈ [1, r + 1]. Therefore, he can compute the element A more efficiently since

A = g
1+

∑r+1
i=1

yi·mi
γ+e

0 .

Size of Sig. Sig. Cost Verif. Cost Rand. Pairings

Sign. Schemes

BBS [12, 4] 1G1 + 2Zp 2 RZp + 1 EG1 2 P + 1 EG2 + (r + 1) EG1 No All

CL [19] (1 + 2r)G1 1 RG1 + 2r EG1 4r P + r EG2 Yes All

Ours [sect. 4.2] 2G1 1 RG1 + 1 EG1 2 P + r EG2 Yes type 3

Seq. Aggregate
Sign. Schemes

LLY [35] 3G1 1 Ver. + 5 EG1 5 P + r EG2 Yes All

Ours [sec. 5] 2G1 1Ver. + 3 EG1 2 P + r EG2 Yes type 3

Fig. 1. Efficiency comparison between related works. Here, r refers to the number of
messages, RG1 (resp. RZp) to the cost of generating a random element of G1 (resp.
Zp), EGi to the cost of an exponentiation in Gi (i ∈ {1, 2}), P to the cost of a pairing
computation and Ver to the cost of verifying an aggregate signature.

As illustrated in Figure 1, our signature scheme (resp. sequential aggregate
signature scheme) compares favourably with the one from [19] (resp. [35]). How-
ever, our scheme is only compatible with type 3 pairings but we argue that this is
not a strong restriction since most of the recent cryptographic protocols already
use them for efficiency and security reasons.

Although the efficiency of our scheme is similar to the one of BBS, we stress
that the ability of our signatures to be randomized improves the efficiency of
protocols using them. Indeed, as explained in Section 1.1, one cannot show sev-
eral times a BBS signature while being unlinkable. One must then commit to
the signature and then prove in a zero-knowledge way that the resulting com-
mitment opens to a valid signature. This is not the case with our scheme since
one can simply randomize the signature between each show.

In section 6, we have shown that our signatures share the same features than
CL-signatures and so can replace them in many applications. We provide below
some examples and describe the performance gains in Figures 2 and 3.

7.1 Group Signature

Let us consider the shortest group signature (in the ROM) proposed in [10]. A
user of this system first gets a CL-signature σ on a secret value sk and then
uses it to prove membership in the group. The main point for anonymity is
that he can provide randomized versions of σ when generating group signatures.
They are unlinkable. Indeed, linking (a, b, c) with (at, bt, ct) for some t ∈ Zp is
equivalent to breaking the DDH assumption in G1.

Therefore, the construction of [10] does not specifically requires CL-signatures
but simply a signature scheme which allows (1) to sign a committed message and
(2) to randomize the signatures. Both properties are achieved by our scheme
which can thus be used to instantiate this group signature. For completeness we
describe below the resulting algorithms (we borrow the notations of [10]).

– GSetup(1k) : The Group Manager runs the Setup and the Keygen algorithms
of the single-message signature scheme described in Section 4.1 to get sk =
(x, y) and pk = (g̃, X̃, Ỹ). He then sets the group public key gpk as pk along
with some generator g ∈ G1, and sets his secret key gmsk as sk.

– PKIJoin(i, 1k) : The user i generates (usk[i], upk[i]) ← Σ.Keygen(1k) for
some digital signature scheme Σ and sends upk[i] to a Certification Author-
ity. We assume then that upk[i] is publicly available such that anyone can
get an authentic copy of it.

– GJoin : To join the group, a user i starts an interactive protocol with the
group manager. He first generates a secret ski

$← Zp and sends the pair

(τ, τ̃) ← (gski , Ỹ ski) along with a signature η ← Σ.Sign(usk[i], τ) to the
group manager. The latter then checks the validity of η and the one of the
pair (τ, τ̃) by testing whether e(τ, Ỹ) = e(g, τ̃) or not. Next, the user starts
an interactive proof of knowledge of ski, such as the Schnorr’s protocol [40].

If everything is correct, the group manager generates a random u
$← Zp and

computes σ ← (σ1, σ2) ← (gu, (gx · (τ)y)u) which is a valid signature on
ski, as explained in Section 6. Finally, the group manager stores (i, τ, η, τ̃)

in a secret register and sends σ to the user who sets gski as (ski, σ, e(σ1, Ỹ)).

Actually, the user does not need to store e(σ1, Ỹ) but this will allow him to
avoid pairing computations during the GSign algorithm.

– GSign(gski,m) : To sign a message m the user first randomizes σ by gener-
ating a random t and computing (σ′1, σ

′
2) ← (σt1, σ

t
2) and then computes a

signature of knowledge of ski. To do so, he selects a random k
$← Zp and

computes e(σ′1, Ỹ)k ← e(σ1, Ỹ)k·t and c← H(σ′1, σ
′
2, e(σ1, Ỹ)k·t,m) for some

hash function H which will be modelled as a random oracle in the security
proof. Finally, he computes s← k+c ·ski and outputs (σ′1, σ

′
2, c, s) ∈ G2

1×Z2
p

as the group signature µ on m.

– GVerify(gpki,m) : To verify a signature µ = (σ1, σ2, c, s) on m the verifier

computes R ← (e(σ−11 , X̃) · e(σ2, g̃))−c · e(σs1, Ỹ) and then checks whether
c = H(σ1, σ2, R,m). This actually corresponds to the verification of the
signature of knowledge. If it is valid then he outputs 1. Otherwise, he outputs

0. Correctness follows from the fact that, if (σ1, σ2) is a valid signature on
ski, then:

(e(σ−11 , X̃) · e(σ2, g̃))−c · e(σs1, Ỹ)

= e(σ1, Ỹ)k · [e(σ1, Ỹ)ski · e(σ1, X̃) · e(σ−12 , g̃)]c

= e(σ1, Ỹ)k · [e(σ1, X̃ · Ỹ ski) · e(σ2, g̃)−1]c

= e(σ1, Ỹ)k

– GOpen(gmsk,m, µ): To open a signature µ, the group manager tests, for all

entries (i, τi, ηi, τ̃i), whether e(σ2, g̃)·e(σ1, X̃)−1 = e(σ1, τ̃) holds until he gets
a match. He then outputs the corresponding (i, τi, ηi) along with a proof of
knowledge of a valid τ̃i. This proof can then be checked by anyone to verify
the validity of the opening.

This example shows that rewriting the algorithms of existing constructions
in this new context is quite obvious and so that our signature allows efficiency
gains without the need for designing a new scheme. In particular, the security
analysis can be directly derived from the original one. The only change is that the
security properties will now rely on the unforgeability of our scheme instead of
the CL one. Here, the use of type 3 pairings is not even a restriction since it was
already required by the original construction. Figure 2 shows the performance
improvements we achieve compared to the latter.

Group Signature Size of Sig. Sig. Cost Verif. Cost

Bichsel et al [10] 3 G1 + 2 Zp 3 EG1 + 1 EGT + 1 H 5 P + 1 EG1 + 1 EGT
Section 7.1 2 G1 + 2 Zp 2 EG1 + 1 EGT + 1 H 3 P + 1 EG1 + 1 EGT

Fig. 2. Efficiency comparison between the original version of the group signature
scheme described in [10] and the one instantiated with our signature scheme, as de-
scribed in Section 7.1. Here, EG1 (resp. EGT) refers to the cost of an exponentiation
in G1 (resp. GT), P to the cost of a pairing computation and H to the cost of hash-
ing elements to Zp. We do not consider operations in Zp since their cost is negligible
compared to the other ones.

7.2 Anonymous Credentials

Anonymous credentials allow users to prove possession of credentials without
revealing any other information about themselves. Ideally, different uses of the
same credential should be unlinkable. Moreover, users should be able to pri-
vately obtain credentials and then prove various statements about them without
revealing them. In the bilinear setting, the Camenisch-Lysyanskaya scheme [19]
and the ones from [12, 4] fulfill all these requirements. Some other schemes (such

as the one of [32]) achieve a remarkable efficiency but at the cost of loosing at
least one of these properties.

The constructions of [19, 4] follow the same framework. Issuance of a creden-
tial consists in a protocol where the user sends a commitment of its attributes
(which may be information-theoretically hidden) and then proves knowledge of
them to the issuer. If the latter is convinced, he returns a signature σ on the
block of committed valued. Once the user has received σ, he can prove posses-
sion of the credential by providing a proof of knowledge of this signature on its
attributes.

This framework can therefore be instantiated with our signature scheme. The
issuance protocol is then the one for signing committed messages we described
in section 6.1 while presentation of a credential consists in producing a proof of
knowledge of a signature, as in section 6.2.

Anonymous
Credentials

Issuing Showing
User Issuer User Verifier Data Sent

CL [19]
(r + 1) EG1 +

PK{EG1 [r+1]}
(2r+4) EG1+
Ver(PK)

(2r + 4) EG1 +
PK{P[r + 2]}

(4r + 2) P +
Ver(PK)

(2r+3)G1+
|PK|

BBS+ [4]
(r + 1) EG1 +

PK{EG1 [r+1]}
2 EG1 +
Ver(PK)

3 EG1 +
PK{P[r + 4] +
EG1 [2]+EG1 [3]}

Ver(PK) 2G1 + |PK|

Section 7.2
(r + 1) EG1 +

PK{EG1 [r+1]}
2 EG1 +
Ver(PK)

2 EG1 +
PK{P[r + 1]} Ver(PK) 2G1 + |PK|

Fig. 3. Efficiency comparison between related works. Here, r refers to the number of
attributes to be certified, EG1 to the cost of an exponentiation in G1 and P to the cost
of a pairing computation. PK{EG1 [n]} (resp. PK{P[n]}) denotes the cost of proving
knowledge of n secret scalars involved in a multi-exponentiation (resp. pairing-product)
equation, Ver(PK) the cost of verifying this proof and |PK| the size of the proof
transcript.

Figure 3 shows that the anonymous credentials from [19] suffer from the lin-
ear size of the CL-signatures but profits from the randomizability of the latter.
On the contrary, those from [4] profits from the constant size of BBS-signatures
but require to prove more complex statements since these signatures cannot be
revealed. Using our signatures for anonymous credentials combines the advan-
tages of both solutions since they offer both constant-size and randomizability.

8 Conclusion

In this work we have proposed a new signature scheme, suited for type 3 pairings,
which achieves a remarkable efficiency. As CL-signatures, our signatures can be
randomized and can be used as building blocks for many cryptographic primi-
tives. In particular, they support efficient protocols for obtaining a signature on

committed elements and can be efficiently combined with zero-knowledge proofs
in the ROM. As illustrated in this paper, instantiating cryptographic construc-
tions with our solution improves their efficiency and may therefore contribute to
make them more accessible for real-life applications.

References

1. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In
Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 209–236. Springer, August 2010.

2. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal
structure-preserving signatures in asymmetric bilinear groups. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 649–666. Springer, August 2011.

3. Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Structure-
preserving signatures from type II pairings. In Juan A. Garay and Rosario Gen-
naro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
volume 8616 of Lecture Notes in Computer Science, pages 390–407. Springer, 2014.

4. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In
Roberto De Prisco and Moti Yung, editors, SCN 06: 5th International Confer-
ence on Security in Communication Networks, volume 4116 of Lecture Notes in
Computer Science, pages 111–125. Springer, September 2006.

5. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Con-
ference on Computer and Communications Security, pages 1087–1098. ACM Press,
November 2013.

6. Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Walter Fumy, editor, Advances in Cryptology – EURO-
CRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 480–494.
Springer, May 1997.

7. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

8. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. In Alfred Menezes, editor, Topics in Cryptology –
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 136–153.
Springer, February 2005.

9. David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan
Warinschi. Anonymous attestation with user-controlled linkability. Int. J. Inf.
Sec., 12(3):219–249, 2013.

10. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warin-
schi. Get shorty via group signatures without encryption. In Juan A. Garay and
Roberto De Prisco, editors, SCN 10: 7th International Conference on Security in
Communication Networks, volume 6280 of Lecture Notes in Computer Science,
pages 381–398. Springer, September 2010.

11. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

12. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152
of Lecture Notes in Computer Science, pages 41–55. Springer, August 2004.

13. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213–229. Springer, August 2001.

14. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and ver-
ifiably encrypted signatures from bilinear maps. In Eli Biham, editor, Advances
in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 416–432. Springer, May 2003.

15. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 04: 11th Conference on Computer and Communications Security, pages 132–
145. ACM Press, October 2004.

16. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials.
ACM Trans. Inf. Syst. Secur., 15(1):4, 2012.

17. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 93–118. Springer, May 2001.

18. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd
International Conference on Security in Communication Networks, volume 2576 of
Lecture Notes in Computer Science, pages 268–289. Springer, September 2002.

19. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Matthew Franklin, editor, Advances in Cryptology –
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 56–72.
Springer, August 2004.

20. Sébastien Canard and Roch Lescuyer. Protecting privacy by sanitizing personal
data: a new approach to anonymous credentials. In Kefei Chen, Qi Xie, Weidong
Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13: 8th Conference on
Computer and Communications Security, pages 381–392. ACM Press, May 2013.

21. Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. Di-
visible e-cash made practical. In Jonathan Katz, editor, Public-Key Cryptogra-
phy - PKC 2015 - 18th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,
Proceedings, volume 9020 of Lecture Notes in Computer Science, pages 77–100.
Springer, 2015.

22. Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and keyed-
verification anonymous credentials. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 14: 21st Conference on Computer and Communications
Security, pages 1205–1216. ACM Press, November 2014.

23. Sanjit Chatterjee and Alfred Menezes. Type 2 structure-preserving signature
schemes revisited. IACR Cryptology ePrint Archive, 2014:635, 2014.

24. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,
editor, Advances in Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes
in Computer Science, pages 257–265. Springer, April 1991.

25. Liqun Chen, Dan Page, and Nigel P. Smart. On the design and implementation of
an efficient DAA scheme. In Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi-
Cartigny, editors, Smart Card Research and Advanced Application, 9th IFIP WG
8.8/11.2 International Conference, CARDIS 2010, Passau, Germany, April 14-
16, 2010. Proceedings, volume 6035 of Lecture Notes in Computer Science, pages
223–237. Springer, 2010.

26. Cécile Delerablée and David Pointcheval. Dynamic fully anonymous short group
signatures. In Phong Q. Nguyen, editor, Progress in Cryptology - VIETCRYPT
06: 1st International Conference on Cryptology in Vietnam, volume 4341 of Lecture
Notes in Computer Science, pages 193–210. Springer, September 2006.

27. Nicolas Desmoulins, Roch Lescuyer, Olivier Sanders, and Jacques Traoré. Direct
anonymous attestations with dependent basename opening. In Dimitris Gritza-
lis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, Cryptology and Network
Security - 13th International Conference, CANS 2014, Heraklion, Crete, Greece,
October 22-24, 2014. Proceedings, volume 8813 of Lecture Notes in Computer Sci-
ence, pages 206–221. Springer, 2014.

28. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryp-
tographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

29. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

30. Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru
Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007, volume 4833 of
Lecture Notes in Computer Science, pages 164–180. Springer, December 2007.

31. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer, April
2008.

32. Christian Hanser and Daniel Slamanig. Structure-preserving signatures on equiva-
lence classes and their application to anonymous credentials. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part I, volume
8873 of Lecture Notes in Computer Science, pages 491–511. Springer, December
2014.

33. Gesine Hinterwälder, Christian T. Zenger, Foteini Baldimtsi, Anna Lysyanskaya,
Christof Paar, and Wayne P. Burleson. Efficient e-cash in practice: Nfc-based pay-
ments for public transportation systems. In Emiliano De Cristofaro and Matthew
Wright, editors, Privacy Enhancing Technologies - 13th International Symposium,
PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings, volume 7981
of Lecture Notes in Computer Science, pages 40–59. Springer, 2013.

34. Antoine Joux. A one round protocol for tripartite diffie-hellman. In Wieb Bosma,
editor, ANTS, volume 1838 of Lecture Notes in Computer Science, pages 385–394.
Springer, 2000.

35. Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Aggregating CL-signatures revis-
ited: Extended functionality and better efficiency. In Ahmad-Reza Sadeghi, editor,
FC 2013: 17th International Conference on Financial Cryptography and Data Secu-
rity, volume 7859 of Lecture Notes in Computer Science, pages 171–188. Springer,
April 2013.

36. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Se-
quential aggregate signatures and multisignatures without random oracles. In Serge
Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 465–485. Springer, May / June 2006.

37. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential
aggregate signatures from trapdoor permutations. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027
of Lecture Notes in Computer Science, pages 74–90. Springer, May 2004.

38. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard M. Heys and Carlisle M. Adams, editors, SAC 1999: 6th
Annual International Workshop on Selected Areas in Cryptography, volume 1758
of Lecture Notes in Computer Science, pages 184–199. Springer, August 1999.

39. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer, August
1991.

40. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252. Springer, August 1989.

41. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of
Lecture Notes in Computer Science, pages 256–266. Springer, May 1997.

