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Abstract. Khudra is a block cipher proposed in the SPACE’2014 conference, whose
main design goal is to achieve suitability for the increasingly popular Field Pro-
grammable Gate Array (FPGA) implementation. It is an 18-round lightweight cipher
based on recursive Feistel structure, with a 64-bit block size and 80-bit key size. In
this paper, we compute the minimum number of active F -functions in differential
characteristics in the related-key setting, and give a more accurate measurement of
the resistance of Khudra against related-key differential cryptanalysis. We construct a
related-key boomerang quartet with probability 2−48 for the 14-round Khudra, which
is better than the highest probability related-key boomerang quartet of the 14-round
Khudra of probability at most 2−72 claimed by the designers. Then we propose a
related-key rectangle attack on the 16-round Khudra without whitening key by con-
structing a related-key rectangle distinguisher for 12-round Khudra with a probability
of 2−23.82. The attack has time complexity of 278.68 memory accesses and data com-
plexity of 257.82 chosen plaintexts, and requires only four related keys. This is the
best known attack on the round-reduced Khudra.
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1 Introduction

Differential cryptanalysis was first proposed by Biham and Shamir in [5] and is one of
the most powerful attacks on block ciphers. Differential cryptanalysis analyzes differential
propagation patterns of a cipher to discover its non-random behaviors, and uses these be-
haviors to build a distinguisher or recover the key. Under the model of related-key attack
[1], which considers the information extracted from the two encryptions under two related
keys, related-key differential attack [11] allows the attacker to operate differences not only
in the plaintexts, but also in keys, though the key values are initially unknown.

For differential attacks, finding out differential characteristics with high probabilities is
of great importance, and there are several ways to try a good searching for such differential
characteristics. After the Mixed-Integer Linear Programming (MILP) technique was used to
analyze ciphers [6], Mouha et al. [15] and Wu et al. [21] proposed MILP based techniques
to find automatically a lower bound of the number of differentially active S-boxes of word-
oriented symmetric ciphers. Later, Sun et al. [17, 19] and Qiao et al. [16] improved Mouha
et al.’s method to make it capable of searching for the actual differential characteristics.
In this paper, we will apply the methods in [16, 17, 19] and some other techniques to find
related-key differential characteristics of the new cipher Khudra.
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The rectangle-boomerang style attacks [2, 10, 20] are clever extensions of differential
cryptanalysis. In a rectangle-boomerang style attack, the cipher is treated as a cascade
of two sub-ciphers, where differential with high probability is used in each of these sub-
ciphers. The aim of the attack is to benefit from the slow mixing in reduced round versions
of the cipher attacked. The rectangle attack [2] is transited from the boomerang attack [20],
and the amplified boomerang attack [10] considers all possible intermediate differences and
significantly increases the probability of a right quartet, easing the requirements to a chosen
plaintext attack instead of adaptive chosen plaintext and ciphertext attack.

To improve the results of the rectangle attack, Biham et al. [3] proposed a new algorithm
and a generic way for launching key recovery attacks and calculating the time and data
complexity with boomerang or rectangle distinguishers. In this paper, we will combine the
rectangle attack with related-key differentials we found to give an analysis on the 16-round
Khudra block cipher.

The Khudra block cipher [13] was proposed by Kolay et al. in the SPACE’2014 con-
ference. It is a lightweight cipher suitable for Field Programmable Gate Array (FPGA)
implementation. Khudra is an 18-round block cipher based on the recursive generalized
Feistel structure, and has a 64-bit block size and 80-bit key size. In this paper, we will firstly
compute the minimum number of active F -functions in the related-key differential character-
istics of Khudra, and give a more accurate measurement of the resistance of Khudra against
differential cryptanalysis. We will construct a related-key boomerang quartet of probability
of 2−48 for the 14-round Khudra, while the designers of Khudra claimed that the highest
probability related-key boomerang quartets of 14-round Khudra have the probability at most
2−72. Then we will propose a related-key rectangle attack on the 16-round Khudra without
whitening key by constructing a related-key rectangle distinguisher for 12-round Khudra
with a probability of 2−23.82. The attack has time complexity of 278.68 memory accesses,
259.77 encryptions,and 257.72 decryptions, and data complexity of 257.82 chosen plaintexts.It
requires only four related keys. This is the best known attack on the round-reduced Khudra.

Organization of the paper. We give a brief introduction of Khudra in Section 2, and
present our analysis result on Khudra against related-key differencial attack in Section 3.
In Section 4, we firstly describe the construction of the related-key rectangle distinguishers,
and then introduce our related-key rectangle attack on round-reduced Khudra. Finally we
conclude the paper in Section 5.

2 Description of Khudra

In this section, we briefly recall the design of the block cipher Khudra and we refer the
readers to [13] for more details.

Khudra is a lightweight block cipher suitable for resource-constrained devices. The de-
signers of Khudra have shown that the strategies for designing lightweight block cipher on
Application Specific Integrated Circuits (ASICs) are not suitable for Field Programmable
Gate Arrays (FPGAs). They have identified new methods and design criteria for designing
lightweight block ciphers on FPGAs. Khudra is an actual practice of these guidelines.

Khudra is an 18-round block cipher based on the recursive Feistel structure, which has a
64-bit block size and 80-bit key size. To encrypt a 64-bit plaintext block using a 80-bit key,
Khudra employs a generalized type-2 transformation (GFS) [7] of a classical Feistel structure,
with four branches in one round. The output of the F -function then XORs with the next
branch and the round key, then passes through the Feistel permutation. The structure of
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the encryption algorithm is demonstrated in the left part of Fig. 1, which is called the Outer
Structure of the cipher.

Fig. 1: The Structure of Khudra [13]

The Inner Structure. The outer structure of 4-branch type-2 generalized Feistel structure
of Khudra is also used for the construction for the F -function, see the right part of Fig. 1.
The structure of the F -function is called the Inner Structure of the cipher. It is implemented
with a two-level recursive structure. In the inner structure, half of the state is updated by
4× 4 S-boxes to achieve nonlinear operations.

Let the input block of the i-th round be (P0(i − 1), P1(i − 1), P2(i − 1), P3(i − 1)) ∈
{0, 1}16 ×{0, 1}16 ×{0, 1}16 ×{0, 1}16, and RKi denote the round key. The data processing
procedure can be described as follows:

P0(i) = P1(i− 1)⊕ F (P0(i− 1))⊕RK2(i−1),

P1(i) = P2(i− 1),

P2(i) = P3(i− 1)⊕ F (P2(i− 1))⊕RK2(i−1)+1,

P3(i) = P0(i− 1)

(1)

for i = 1, · · · , 18.
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The S-box. Khudra uses the S-box in the PRESENT block cipher as its substitution box.
The S-box is shown in Table 1. The difference distribution table of the S-box is given in
Appendix A. Note that throughout this paper we write bit-strings in their hexadecimal
format, e.g., the binary string 1100 is written as a hexadecimal symbol C.

Table 1: The S-box of Khudra
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The Key Schedule. The key schedule algorithm of the cipher generates 36 round keys
RKi (0 ≤ i < 36) and 4 whitening keys WKi (0 ≤ i < 4), all of 16 bits. Represent the 80-bit
master key as (K0,K1,K2,K3,K4), each Ki is of 16 bits. The whitening keys WKi and the
round keys RKi are generated as follows:

WK0 = K0,WK1 = K1,WK2 = K3,WK3 = K4,

RCi = {0||i(6)||00||i(6)||0},
RKi = Kimod5 ⊕RCi

(2)

for i = 0, · · · , 35.

3 Security Analysis of Khudra against Related-key Differential
Attack

In this section, we apply the MILP based methods presented in [14, 16, 17, 19] to Khudra in
the related-key model.

We develop a Python program to generate the MILP instances for Khudra in the “lp”
format [9]. In order to find the characteristic with the maximal probability, we implement the
technique proposed by Sun et al. [19] in our Python framework for automatic cryptanalysis.
We have computed the minimum number of active F -functions in differential characteristics
for related-key model, which gives a more accurate measurement of the resistance of Khudra
against related-key differential cryptanalysis.

Table 2: Minimum number of active F -functions in related-key model
No. of Rounds 1 2 3 4 5 6 7 8 9

Min. # Act. Related-key ([13]) 0 0 0 1 2 3 3 3 4
F -functions Related-key (this paper) 0 0 0 0 1 1 2 3 -

In Table 2 we list our results and that of the designers. Clearly, we can see that we found
related-key differential characteristics with fewer active F -functions compared with that of
the designers. Particularly, we give in Table 3 a related-key differential characteristic for the
4-round Khudra, which is a characteristic with no active F -function.

Table 2 shows that Khudra is not as secure as the designers claimed in [13]. We can
construct a boomerang quartet of probablity of 2−48 for the 14-round Khudra as a cascade
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Table 3: A related-key differential characteristic for 4-round Khudra
r ∆I ∆RK2(r−1) ∆RK2(r−1)+1 NAS Prob.

2 0000000000000004 0000 0004 0 1
3 0000000000000000 0000 0000 0 1
4 0000000000000000 0000 0000 0 1
5 0000000000000000 0004 0000 0 1
6 0004000000000000

of two 7-round sub-ciphers, while the designers [13] claimed that the highest probability
boomerang quartet of 14-round Khudra have a probability at most 2−72.

4 Related-Key Rectangle Attacks on Khudra

In this section, we firstly give a brief introduction to the construction of the related-key
rectangle distinguisher for block ciphers. Then we introduce an analysis on the 16-round
Khudra without whitening key. The related-key differential characteristics presented here
are derived from an application of the MILP based method of Sun et al. [18].

4.1 Related-Key Rectangle Distinguisher

The related-key rectangle attack [4, 8, 12] is a combination of the related-key and rectangle
attack. Let E denote the encryption function of a block cipher. The related-key differential
is a quadruple of a plaintext difference ∆P , a ciphertext difference ∆C, a key difference
∆K, and the corresponding probability Pr[EK(P )⊕ EK⊕∆K(P ⊕∆P ) = ∆C].

The rectangle attack treats E as a cascade of four sub-ciphers as E = Ef ◦E1 ◦E0 ◦Eb,
where E is composed of a core E′ = E1◦E0 covered by additional rounds Eb and Ef . Assume
that for E0 we have a differential α → β under a key difference ∆K0 with probability p,
and for E1 there exists a differential γ → δ under key difference ∆K1 with probability q,
where (α, β) and (γ, δ) stand for the input-output differences for E0 and E1 respectively.
The rectangle attack can be mounted for all possible differences β at the end of E0 and γ
at the beginning of E1. Thus we define p̂α and q̂δ as the probabilities related to α and δ
respectively as follows:

p̂α =

√∑
β

Pr2[α → β], q̂δ =

√∑
γ

Pr2[γ → δ]. (3)

The related-key rectangle attack involves four different unknown but related keys –
Ka,Kb = Ka ⊕∆K0,Kc = Ka ⊕∆K1,Kd = Ka ⊕∆K0 ⊕∆K1, where the key differences
∆K0 and ∆K1 are the respective key differences for sub-ciphers E0 and E1. The basic
related-key rectangle distinguisher is constructed as follows:

Step 1. Choose N0 plaintext pairs (P a, P b) satisfying P a ⊕ P b = α at random and ask
for the encryption of P a under Ka and of P b under Kb, i.e., Ca = EKa(P a) and
Cb = EKb(P b).

Step 2. Choose N1 palintext pairs (P c, P d) satisfying P c ⊕ P d = α at random and ask
for the encryption of P c under Kc and of P d under Kd, i.e., Cc = EKc(P c) and Cd =
EKd(P d).



6 X. Ma K. Qiao

Step 3. Search for quartets of cipertexts (Ca, Cb, Cc, Cd) satisfying Ca⊕Cc = Cb⊕Cd = δ.

The probability of the rectangle distinguisher is given by Pr = 2−np̂2αq̂
2
δ where n is the

block size. The related-key differentials should satisfy the condition p̂2α ·q̂2δ > 2−n to make the
distinguisher make sense. As we expect the number of right quartets is taken to be 4 to get at
least one right quartet in the data set with probability 0.982, we set the number of plaintext
pairs needed as 2n/2+1/p̂αq̂δ. As in general differential attacks, after the distinguisher has
been detected, one or more rounds are attached before and after the distinguisher for key
recovery.

4.2 The First Differential (E0) and Second Differential (E1)

Our methods apply the methods in [3] in related-key model with improvement on reducing
time complexity by exploiting the properties of a right quartet depending on the GFS feature.
We treat the 16-round Khudra encryption function E as a cascade of four sub-ciphers as
E = Ef ◦ E1 ◦ E0 ◦ Eb, where E is composed of a core E′ = E1 ◦ E0 covered by additional
rounds Eb and Ef . E0 is composed of rounds 3− 8, E1 commences with round 9 and stops
at the end of round 14. Rounds 1 − 2 and rounds 15 − 16 serve as the rounds before and
after the distinguisher respectively (Eb and Ef ).

Table 4: The number of characteristics for E0 of different probability
Prob. Num. Prob. Num. Prob. Num. Prob. Num.

2−12 1 2−22 4 2−24 54 2−26 130

2−14 2 2−23 21 2−25 88 2−27 65

All the related-key differential characteristics used in sub-cipher E0 have the same input
difference α = 0000000000005C00 and they all work with the master key difference ∆K0 =
5C00000000005C000000. We found many such characteristics with varying differences at the
end of 8th round by the MILP method [18]. The numbers of characteristics with different
probabilities are shown in Table 4. Therefore the overall probability for E0 is

p̂α =
√

1 · (2−12)2 + 2 · (2−14)2 + 4 · (2−22)2 + · · ·+ 65 · (2−27)2 ≈ 2−11.91

according to Equation (3). Table 5 shows one of the characteristics used for E0. The prob-
ability of the differential characteristic is 2−12.

All the related-key differential characteristics used in sub-cipher E1 have the same output
difference δ = 000000005C000000 and they work with the master key difference ∆K1 =
5C0000005C0000000000. Due to the symmetry of GFS that Khudra applied, we can also
find the same number of characteristics of different probability in E1 as in E0. As it can be
seen in Table 4, the overall probability for E1 is also q̂δ ≈ 2−11.91. Thus, the probability of
the related-key rectangle distinguisher is given by Pr = 2−64p̂2αq̂

2
δ ≈ 2−111.64.

4.3 The Construction of Differential in Eb and Differential in Ef

Since Khudra applies the generalized Feistel structure, we can deduce the relation among
the differences. Given the α difference, Fig. 2 shows the differential propagation pattern of
Eb.
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Table 5: The related-key differential characteristic for sub-cipher E0 of Khudra
r ∆I ∆RK2(r−1) ∆RK2(r−1)+1 NAS Prob.

3 0000000000005C00 0000 5C00 0 1
4 0000000000000000 0000 0000 0 1
5 0000000000000000 5C00 0000 0 1
6 5C00000000000000 5C00 0000 6 2−12

7 0000000000005C00 0000 5C00 0 1
8 0000000000000000 0000 5C00 0 1
9 000000005C000000

Fig. 2: The differential propagation pattern of Eb

As is seen in Fig. 2, X1 and X2 are the output differences of the F -function when the
input difference is 5C00, and X3 is the output difference of the F -function with respect to
X1 as the input difference. It turns out that there are 214.52 kind of reasonable X1. When
the input pair of the F -function is fixed with a difference of 5C00(X1), the corresponding
output pair of the F -function will have a fixed output difference. The sub-keys used in Eb

that can affect α difference is K0 (16-bit), and the corresponding related-key difference is
∆K0

0 = 5C00. The way it influence the difference before round 3 is also shown in Fig. 2 with
the circle. Thus we find out the pattern of plaintext differences that can possibly lead to α
difference in Eb.

Given the δ difference, we can deduce the relation between the differences after δ. Fig.
3 shows the differential propagation pattern of Ef , where Y1 is the output difference of
the F -function when the input difference is 5C00, and Y2 is the output difference of the
F -function with respect to Y1 as the input difference. It turns out that there are 214.52 kind
of reasonable Y1. When the input pair of the F -function is fixed with a difference of 5C00
(Y1), the corresponding output pair of the F -function will have a fixed output difference.
Thus we find out the pattern of ciphertext differences that δ can possibly lead to in Ef .



8 X. Ma K. Qiao

Fig. 3: The differential propagation pattern of Ef

As is seen in Fig. 3, the subkeys used for decryption in Ef that affect δ difference is K0

(16-bit), and the corresponding related-key difference is ∆K1
0 = 5C00. The way it influence

the difference after round 14 is also shown in Fig. 3 with the circle.

4.4 The Attack

The basic idea of the attack is to try all subkeys which affect the differences before and after
the distinguisher (i.e., in Eb and Ef ). The selection criterion of right subkeys is whether it
can lead to an α difference at the beginning of E0, and the δ difference at the end of E1 can
lead to the ciphertext difference.

To attack the 16-round Khudra, we request 224.82 structures of 232 plaintexts each.
The attack works as follows:

1. Data Generation:

a) Generate Y = 224.82 structures Sa
1 , · · · , Sa

Y , each of 232 plaintexts. In each structure,
fix the left most 32 bits of the plaintexts and enumerate the right most 32 bits. Ask
for the encryption of the structures under Ka.

b) For any i (i = 1, · · · , Y ), describe any plaintext in structure Sa
i with Pa = (P a

0 , P
a
1 , ∗, ∗)

(P a
0 and P a

1 represent 16 fix bits respectively, and ∗ represents 16 arbitrary bits).
According to Fig. 2, the plaintexts in structure Si

b are generated as follows:

P b
0 = P a

0 ⊕ 5C00,

P b
1 = P a

1 ⊕ F (P a
0 )⊕ F (P b

0 ).

Ask for the encryption of the resulting plaintext Pb = (P b
0 , P

b
1 , ∗, ∗) under Kb =

Ka ⊕∆K0 for obtaining Sb
1, · · · , Sb

Y .
c) Ask for the encryption of plaintexts generated in Step1(a) under Kc = Ka ⊕∆K1

(to obtain Sc
1, · · · , Sc

Y ).
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d) Ask for the encryption of plaintexts generated in Step1(b) under Kd = Ka⊕∆K0⊕
∆K1 (to obtain Sd

1 , · · · , Sd
Y ).

– This step requires data complexity of 257.82 chosen plaintexts. We keep all the 216

input values of the F -function and the corresponding output values in a table
and each structure in Sb

1, · · · , Sb
Y can be generated by 2 memory accesses. So

the time complexity of this step is 258.82 encryptions, and 2Y = 225.82 memory
accesses. In each structure we get 264 plaintext pairs, which lead to 232 kinds of
differences after Eb, where 232 of them satisfy α difference before E0. Thus, the
total number of pairs with α difference before the core function is 256.82 that
produce 2113.64 quartets of which 2113.64 · 2−111.64 = 4 are expected to be right.

2. Initializing Counters:
Initialize an array of 216 counters. Each counter corresponds to a different guess of
Ka

0[15:0].

– Time complexity of this step is 216 memory accesses.

3. Data Analysis:
a) According to Fig. 3, insert the N = 258.82 ciphertexts of Sa, Sb, Sc and Sd into four

hash tables T a, T b, T c and T d respectively indexed by the left most 16 bits and
the right most 16 bits. If a collision occurs in the same bins of (T a, T c), denote
the ciphertexts as Ca = (Ca

0 , C
a
1 , C

a
2 , C

a
3 ) and Cc = (Cc

0, C
c
1, C

c
2, C

c
3). For each Ca

in each bin of T a, build a hash table indexed by 216 values of Cc
1, and insert the

corresponding value of Cc
2 by the equation Cc

2⊕Ca
2 = F (Ca

1 )⊕F (Cc
1). Check whether

the corresponding 2m+32+16 = 2m+48 = 272.82 values of candidate Cc in T c. If this
is the case, check whether ∆ = Ca

1 ⊕ Cc
1 ⊕ 5C00 is one of the 214.52 possible output

differences may be caused by an input difference 5C00 to the F -function. Do the
same for Tb and Td.

– This step has time complexity of 258.82 memory accesses from inserting all the
ciphertexts in hash tables. In the hash tables there exist 232 bins and in each
bin we expect to have 224.82 ciphertexts. Therefore, we need 272.82 memory
accesses to build the hash table for Ca, and 272.82 memory accesses to check if
the candidate Cc is in T c. There are 265.64 pairs of Ca and Cc to be checked in the
next situation. Out of the 216 possible differences for a pair, only 214.52 differences
can be caused by the δ difference from the distinguisher and thus about 264.16

pairs remain in T a (T b) and T c (T d). We keep all the 214.52 differences that can
be caused by δ in a hash table, and thus the check requires one memory access
for each colliding pair. The time complexity of this step is 274.82+265.16 memory
accesses.

b) For each surviving pairs (Ca, Cc) ((Cb, Cd)) from the previous step, denote Ci’s

structure by SCi

and attach to Ca (Cb) the index of SCc

(SCd

). After all the
remaining pairs are processed, keep a hash table HSa

i for each structure Sa
i (i =

1, 2, · · · , Y ) and insert the ciphertexts in Sa
i into HSa

i
according to the indexes of

the structures that the ciphertext is related to. Similarly, keep the hash tables HSb
i

for Sb
i (i = 1, 2, · · · , Y ).

– This step requires one memory access for each remaining pair of the previous
step and thus needs 265.16 memory accesses.

c) For a right quartet (P a, P b, P c, P d) and the corresponding ciphertexts (Ca, Cb, Cc, Cd),
it must be combined by some P a ∈ Sa

i , P
b ∈ Sb

i and P c ∈ Sc
j , P

d ∈ Sd
j where Sc

j

is related to Ca and Sd
j is related to Cb and i, j ∈ 1, 2, · · · , Y (not necessarily
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distinct). In each pair of structures (Sa
i , S

b
i ) (i = 1, · · · , Y ), we search for two ci-

phertexts Ca and Cb from Si
a and Si

b respectively which are attach to some other
pair of structures (Sc

j , S
d
j ). When we found such a pair, check whether the differ-

ences of (P a, P b) and (P c, P d) can cause α. Denote the corresponding plaintexts
as P a = (P a

0 , P
a
1 , P

a
2 , P

a
3 ) and P b = (P b

0 , P
b
1 , P

b
2 , P

b
3 ). First we check whether the

equation P a
3 ⊕ P b

3 = F (P a
2 )⊕ F (P b

2 ) to be true. With this move, we can reduce the
candidate quartets by 2−16. Then check the same for the plaintexts to which Ca

and Cb are related. For the quartets remained after this move, check whether the
difference of P a

2 and P b
2 is one of the 214.52 possible output differences may be caused

by an input difference 5C00 to the F -function, and the same for P c
2 and P d

2 .

– There are 264.16 attachments (colliding pairs) distributed over 224.82 structures,
The first filter here can reduce the candidate quartets to 221.86 in each structure.
Out of the 216 possible differences for a pair of plaintexts, only 214.52 differences
can cause the α difference into the distinguisher. Therefore, out of the 246.68

possible quartets only 243.72 quartets remain. Since this filtering requires one
memory access for each candidate quartet, thus the algorithm requires 278.68 +
262.68 + 246.68 + 245.20 memory accesses.

4. Subkey Bits Guess: For each remaining quartet ((P a, P b), (P c, P d)), ((Ca, Cb), (Cc, Cd))
perform:
(a) For each guess of the 16 bits of Ka

0 , we have

Kb
0 = Ka

0 ⊕∆K0
0 ,

Kc
0 = Ka

0 ⊕∆K1
0 ,

Kd
0 = Ka

0 ⊕∆K0
0 ⊕∆K1

0 .

(4)

(b) Increment the counter that correspond to Ka
0 if

EbKa
0
(P a)⊕ Eb

Kb
0

(P b) = EbKc
0
(P c)⊕ Eb

Kd
0

(P d) = α (5)

and
E−1

fKa
0

(Ca)⊕ E−1
fKc

0

(Cc) = E−1
f
Kb

0

(Cb)⊕ E−1
f
Kd

0

(Cd) = δ. (6)

– There are 214.52 possible input differences that lead to α difference after Eb and
totally 216 guesses of subkey bits of Ka, therefore, 2

1.48 subkeys on average take one
of these differences to α. As each pair suggests 21.48 subkeys, a quartet agrees on
(21.48)2/216 = 2−13.04 subkeys for Eb. Similarly, a quartet agrees on 2−13.04 subkeys
for Ef . In total, we get a candidate list of 2−42.08 subkeys from each quartet. Thus,
for the 243.72 remaining quartets, there are total 216 possible subkeys and 21.64 hits.
Averagely, the number of hits for a wrong subkey is 2−14.36, while the number of
expected hits for the right one is 4. Thus, the attack can almost always succeed
in recovering subkey bits. This step requires about 257.72 encryptions and 257,72

decryptions and 259.72 memory accesses.

5. Output the subkey with maximal counter.
– This step requires 216 memory accesses.

Thus, the overall attack has data complexity of 257.82 chosen plaintexts, time complexity
of 278.68 memory accesses, 259.77 encryptions, and 257.72 decryptions. The expected number
of right quartets is taken to be 4.
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5 Conclusion

In this paper, we have launched an related-key rectangle attack on 16-round Khudra, with
time complexity of 278.68 memory accesses, 259.77 encryptions and 257.72 decryptions, and
data complexity of 257.82 chosen plaintexts. The attack is a generic related-key rectangle
attack with a differential distinguisher deduced from an MILP based search. This is the best
known cryptanalysis presented on round-reduced Khudra.
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A The Difference Distribution Table (DDT) of the S-box of
Khudra

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4


