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Abstract. In this paper, we study the Learning With Errors problem and its binary variant, where
secrets and errors are binary or taken in a small interval. We introduce a new variant of the Blum,
Kalai and Wasserman algorithm, relying on a quantization step that generalizes and fine-tunes modulus
switching. In general this new technique yields a significant gain in the constant in front of the exponent
in the overall complexity. We illustrate this by solving within half a day a LWE instance with dimension
n = 128, modulus q = n2, Gaussian noise α = 1/(

√
n/π log2 n) and binary secret, using 228 samples,

while the previous best result based on BKW claims a time complexity of 274 with 260 samples for the
same parameters.
We then introduce variants of BDD, GapSVP and UniqueSVP, where the target point is required to lie
in the fundamental parallelepiped, and show how the previous algorithm is able to solve these variants
in subexponential time. Moreover, we also show how the previous algorithm can be used to solve the
BinaryLWE problem with n samples in subexponential time 2(ln 2/2+o(1))n/ log log n. This analysis does
not require any heuristic assumption, contrary to other algebraic approaches; instead, it uses a variant
of an idea by Lyubashevsky to generate many samples from a small number of samples. This makes
it possible to asymptotically and heuristically break the NTRU cryptosystem in subexponential time
(without contradicting its security assumption). We are also able to solve subset sum problems in
subexponential time for density o(1), which is of independent interest: for such density, the previous
best algorithm requires exponential time. As a direct application, we can solve in subexponential time
the parameters of a cryptosystem based on this problem proposed at TCC 2010.

1 Introduction

The Learning With Errors (LWE) problem has been an important problem in cryptography since its in-
troduction by Regev in [46]. Many cryptosystems have been proven secure assuming the hardness of this
problem, including Fully Homomorphic Encryption schemes [21,14]. The decision version of the problem can
be described as follows: given m samples of the form (a, b) ∈ (Zq)n ×Zq, where a are uniformy distributed in
(Zq)n, distinguish whether b is uniformly chosen in Zq or is equal to ⟨a, s⟩+e for a fixed secret s ∈ (Zq)n and
e a noise value in Zq chosen according to some probability distribution. Typically, the noise is sampled from
some distribution concentrated on small numbers, such as a discrete Gaussian distribution with standard
deviation αq for α = o(1). In the search version of the problem, the goal is to recover s given the promise that
the sample instances come from the latter distribution. Initially, Regev showed that if αq ≥ 2

√
n, solving

LWE on average is at least as hard as approximating lattice problems in the worst case to within Õ(n/α)
factors with a quantum algorithm. Peikert shows a classical reduction when the modulus is large q ≥ 2n

in [44]. Finally, in [13], Brakerski et al. prove that solving LWE instances with polynomial-size modulus in
polynomial time implies an efficient solution to GapSVP.

There are basically three approaches to solving LWE: the first relies on lattice reduction techniques such
as the LLL [32] algorithm and further improvements [15] as exposed in [34,35]; the second uses combinatorial
techniques [12,47]; and the third uses algebraic techniques [9]. According to Regev in [1], the best known
algorithm to solve LWE is the algorithm by Blum, Kalai and Wasserman in [12], originally proposed to solve
the Learning Parities with Noise (LPN) problem, which can be viewed as a special case of LWE where q = 2.
The time and memory requirements of this algorithm are both exponential for LWE and subexponential for



LPN in 2O(n/ log n). During the first stage of the algorithm, the dimension of a is reduced, at the cost of a
(controlled) decrease of the bias of b. During the second stage, the algorithm distinguishes between LWE and
uniform by evaluating the bias.

Since the introduction of LWE, some variants of the problem have been proposed in order to build more
efficient cryptosystems. Some of the most interesting variants are Ring-LWE by Lyubashevsky, Peikert and
Regev in [38], which aims to reduce the space of the public key using cyclic samples; and the cryptosystem
by Döttling and Müller-Quade [18], which uses short secret and error. In 2013, Micciancio and Peikert [40]
as well as Brakerski et al. [13] proposed a binary version of the LWE problem and obtained a hardness result.

Related Work. Albrecht et al. have presented an analysis of the BKW algorithm as applied to LWE
in [4,5]. It has been recently revisited by Duc et al., who use a multi-dimensional FFT in the second stage of
the algorithm [19]. However, the main bottleneck is the first BKW step and since the proposed algorithms
do not improve this stage, the overall asymptotic complexity is unchanged.

In the case of the BinaryLWE variant, where the error and secret are binary (or sufficiently small),
Micciancio and Peikert show that solving this problem using m = n(1 + Ω(1/ log(n))) samples is at least
as hard as approximating lattice problems in the worst case in dimension Θ(n/ log(n)) with approximation
factor Õ(

√
nq). We show in section B that existing lattice reduction techniques require exponential time.

Arora and Ge describe a 2Õ(αq)2 -time algorithm when q > n to solve the LWE problem [9]. This leads to a
subexponential time algorithm when the error magnitude αq is less than

√
n. The idea is to transform this

system into a noise-free polynomial system and then use root finding algorithms for multivariate polynomials
to solve it, using either relinearization in [9] or Gröbner basis in [3]. In this last work, Albrecht et al. present an
algorithm whose time complexity is 2

(ω+o(1))n log log log n
8 log log n when the number of samples m = (1 + o(1))n log log n

is super-linear, where ω < 2.3728 is the linear algebra constant, under some assumption on the regularity of
the polynomial system of equations; and when m = O(n), the complexity becomes exponential.

Contribution. Our first contribution is to present in a unified framework the BKW algorithm and all
its previous improvements in the binary case [33,28,11,25] and in the general case [5]. We introduce a new
quantization step, which generalizes modulus switching [5]. This yields a significant decrease in the constant
of the exponential of the complexity for LWE. Moreover our proof does not require Gaussian noise, and does
not rely on unproven independence assumptions. Our algorithm is also able to tackle problems with larger
noise.

We then introduce generalizations of the BDD, GapSVP and UniqueSVP problems, and prove a reduction
from these variants to LWE. When particular parameters are set, these variants impose that the lattice point
of interest (the point of the lattice that the problem essentially asks to locate: for instance, in the case of
BDD, the point of the lattice closest to the target point) lie in the fundamental parallelepiped; or more
generally, we ask that the coordinates of this point relative to the basis defined by the input matrix A has
small infinity norm, bounded by some value B. For small B, our main algorithm yields a subexponential-time
algorithm for these variants of BDD, GapSVP and UniqueSVP.

Through a reduction to our variant of BDD, we are then able to solve the subset-sum problem in subexpo-
nential time when the density is o(1), and in time 2(ln 2/2+o(1))n/ log log n if the density is O(1/ log n). This is of
independent interest, as existing techniques for density o(1), based on lattice reduction, require exponential
time. As a consequence, the cryptosystems of Lyubashevsky, Palacio and Segev at TCC 2010 [37] can be
solved in subexponential time.

As another application of our main algorithm, we show that BinaryLWE with reasonable noise can be
solved in time 2(ln 2/2+o(1))n/ log log n instead of 2Ω(n); and the same complexity holds for secret of size up to
2logo(1) n. As a consequence, we can heuristically recover the secret polynomials f , g of the NTRU problem
in subexponential time 2(ln 2/2+o(1))n/ log log n (without contradicting its security assumption). The heuristic
assumption comes from the fact that NTRU samples are not random, since they are rotations of each other:
the heuristic assumption is that this does not significantly hinder BKW-type algorithms. Note that there is a
large value hidden in the o(1) term, so that our algorithm does not yield practical attacks for recommended
NTRU parameters.
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2 Preliminaries

We identify any element of Z/qZ to the smallest of its equivalence class, the positive one in case of tie.
Any vector x ∈

(
Z/qZ

)n has an Euclidean norm ||x|| =
√∑n−1

i=0 x2
i and ||x||∞ = maxi|xi|. A matrix B can

be Gram-Schmidt orthogonalized in B̃, and its norm ||B|| is the maximum of the norm of its columns. We
denote by (x|y) the vector obtained as the concatenation of vectors x, y. Let I be the identity matrix and
we denote by ln the neperian logarithm and log the binary logarithm. A lattice is the set of all integer linear
combinations Λ(b1, . . . , bn) =

∑
i bi · xi (where xi ∈ Z) of a set of linearly independent vectors b1, . . . , bn

called the basis of the lattice. If B = [b1, . . . , bn] is the matrix basis, lattice vectors can be written as Bx for
x ∈ Zn. Its dual Λ∗ is the set of x ∈ Rn such that ⟨x, Λ⟩ ⊂ Zn. We have Λ∗∗ = Λ. We borrow Bleichenbacher’s
definition of bias [42].

Definition 1. The bias of a probability distribution ϕ over Z/qZ is

Ex∼ϕ[exp(2iπx/q)].

This definition extends the usual definition of the bias of a coin in Z/2Z: it preserves the fact that any
distribution with bias b can be distinguished from uniform with constant probability using Ω(1/b2) samples,
as a consequence of Hoeffding’s inequality; moreover the bias of the sum of two independent variable is still
the product of their biases. We also have the following simple lemma:

Lemma 1. The bias of the Gaussian distribution of mean 0 and standard deviation qα is exp(−2π2α2).

Proof. The bias is the value of the Fourier transform at −1/q.

We introduce a non standard definition for the LWE problem. However as a consequence of Lemma 1,
this new definition naturally extends the usual Gaussian case (as well as its standard extensions such as the
bounded noise variant [13, Definition 2.14]), and it will prove easier to work with. The reader can consider
the distorsion parameter ϵ = 0 as it is the case in other papers and a gaussian of standard deviation αq.

Definition 2. Let n ≥ 0 and q ≥ 2 be integers. Given parameters α and ϵ, the LWE distribution is, for
s ∈ (Z/qZ)n, a distribution on pairs (a, b) ∈ (Z/qZ)n × (R/qZ) such that a is sampled uniformly, and for
all a,

|E[exp(2iπ(⟨a, s⟩ − b)/q)|a] exp(α′2) − 1| ≤ ϵ

for some universal α′ ≤ α.
For convenience, we define β =

√
n/2/α. In the remainder, α is called the noise parameter3, and ϵ the

distortion parameter. Also, we say that a LWE distribution has a noise distribution ϕ if b is distributed as
⟨a, s⟩ + ϕ.

Definition 3. The Decision-LWE problem is to distinguish a LWE distribution from the uniform distribution
over (a, b). The Search-LWE problem is, given samples from a LWE distribution, to find s.

Definition 4. The real λi is the radius of the smallest ball, centered in 0, such that it contains i vectors of
the lattice Λ which are linearly independent.

We define ρs(x) = exp(−π||x||2/s2) and ρs(S) =
∑

x∈S ρs(x) (and similarly for other functions). The
discrete Gaussian distribution DE,s over a set E and of parameter s is such that the probability of DE,s(x)
of drawing x ∈ E is equal to ρs(x)/ρs(E). To simplify notation, we will denote by DE the distribution DE,1.

Definition 5. The smoothing parameter ηϵ of the lattice Λ is the smallest s such that ρ1/s(Λ∗) = 1 + ϵ.

Now, we will generalize the BDD, UniqueSVP and GapSVP problems by using another parameter B that
bounds the target lattice vector. For B = 2n, we recover the usual definitions if the input matrix is reduced.

3 Remark that it differs by a constant factor from other authors’ definition of α.
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Definition 6. The BDD||.||∞
B,β (resp. BDD||.||

B,β) problem is, given a basis A of the lattice Λ, and a point x
such that ||As − x|| ≤ λ1/β < λ1/2 and ||s||∞ ≤ B (resp. ||s|| ≤ B), to find s.

Definition 7. The UniqueSVP||.||∞
B,β (resp. UniqueSVP||.||

B,β) problem is, given a basis A of the lattice Λ, such
that λ2/λ1 ≥ β and there exists s such that ||As|| = λ1 with ||s||∞ ≤ B (resp. ||s|| ≤ B), to find s.

Definition 8. The GapSVP||.||∞
B,β (resp. GapSVP||.||

B,β) problem is, given a basis A of the lattice Λ to distinguish
between λ1(Λ) ≥ β and if there exists s ̸= 0 such that ||s||∞ ≤ B (resp. ||s|| ≤ B) and ||As|| ≤ 1.

Definition 9. Given two probability distributions P and Q on a finite set S, the Kullback-Leibler (or KL)
divergence between P and Q is

DKL(P ||Q) =
∑
x∈S

ln
(

P (x)
Q(x)

)
P (x) with ln(x/0) = +∞ if x > 0.

The following two lemmata are proven in [45] :

Lemma 2. Let P and Q be two distributions over S, such that for all x, |P (x) − Q(x)| ≤ δ(x)P (x) with
δ(x) ≤ 1/4. Then :

DKL(P ||Q) ≤ 2
∑
x∈S

δ(x)2P (x).

Lemma 3. Let A be an algorithm which takes as input m samples of S and outputs a bit. Let x (resp. y)
be the probability that it returns 1 when the input is sampled from P (resp. Q). Then :

|x − y| ≤
√

mDKL(P ||Q)/2.

Finally, we say that an algorithm has a negligible probability of failure if its probability of failure is
2−Ω(n). 4

2.1 Secret-Error Switching

At a small cost in samples, it is possible to reduce any LWE distribution with noise distribution ϕ to an
instance where the secret follows the rounded distribution, defined as ⌊ϕ⌉ [7,13].

Theorem 1. Given an oracle that solves LWE with m samples in time t with the secret coming from the
rounded error distribution, it is possible to solve LWE with m + O(n log log q) samples with the same error
distribution (and any distribution on the secret) in time t+O(mn2 +(n log log q)3), with negligible probability
of failure.

Furthermore, if q is prime, we lose n + k samples with probability of failure bounded by q−1−k.

Proof. First, select an invertible matrix A from the vectorial part of O(n log log q) samples in time O((n log log q)3)
[13, Claim 2.13].

Let b be the corresponding rounded noisy dot products. Let s be the LWE secret and e such that
As + e = b. Then the subsequent m samples are transformed in the following way. For each new sample
(a′, b′) with b′ = ⟨a′, s⟩ + e′, we give the sample (−tA−1a′, b′ − ⟨tA−1a′, b⟩) to our LWE oracle.

Clearly, the vectorial part of the new samples remains uniform and since

b′ − ⟨tA−1a′, b⟩ = ⟨−tA−1a′, b − As⟩ + b′ − ⟨a′, s⟩ = ⟨−tA−1a′, e⟩ + e′

the new errors follow the same distribution as the original, and the new secret is e. Hence the oracle outputs
e in time t, and we can recover s as s = A−1(b − e).

If q is prime, the probability that the n + k first samples are in some hyperplane is bounded by
qn−1q−n−k = q−1−k.
4 Some authors use another definition.
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2.2 Low dimension algorithms

Our main algorithm will return samples from a LWE distribution, while the bias decreases. We describe two
fast algorithms when the dimension is small enough.

Theorem 2. If n = 0 and m = k/b2, with b smaller than the real part of the bias, the Decision-LWE problem
can be solved with advantage 1 − 2−Ω(k) in time O(m).

Proof. The algorithm Distinguish computes x = 1
m

∑m−1
i=0 cos(2iπbi/q) and returns the boolean x ≥ b/2. If

we have a uniform distribution then the average of x is 0, else it is larger than b/2. The Hoeffding inequality
shows that the probability of |x − E[x]| ≥ b/2 is 2−k/8, which gives the result.

Algorithm 1 FindSecret
function FindSecret(L)

for all (a, b) ∈ L do
f [a]← f [a] + exp(2iπb/q)

end for
t← FastFourierTransform(f)
return arg maxs∈(Z/qZ)n ℜ(t[s])

end function

Lemma 4. For all s ̸= 0, if a is sampled uniformly, E[exp(2iπ⟨a, s⟩/q)] = 0.

Proof. Multiplication by s0 in Zq is gcd(s0, q)-to-one because it is a group morphism, therefore a0s0 is
uniform over gcd(s0, q)Zq. Thus, by using k = gcd(q, s0, . . . , sn−1) < q, ⟨a, s⟩ is distributed uniformly over
kZq so

E[exp(2iπ⟨a, s⟩/q)] = q

k

q/k−1∑
j=0

exp(2iπjk/q) = 0.

Theorem 3. The algorithm FindSecret, when given m > (8n log q + k)/b2 samples from a LWE problem
with bias whose real part is superior to b returns the correct secret in time O(m + n log2(q)qn) except with
probability 2−Ω(k).

Proof. The fast Fourier transform needs O(nqn) operations on numbers of bit size O(log(q)). The Hoeffding
inequality shows that the difference between t[s′] and E[exp(2iπ(b − ⟨a, s′⟩)/q)] is at most b/2 except with
probability at most 2 exp(−mb2/2). It holds for all s′ except with probability at most 2qn exp(−mb2/2) =
2−Ω(k) using the union bound. Then t[s] ≥ b − b/2 = b/2 and for all s′ ̸= s, t[s′] < b/2 so the algorithm
returns s.

3 Main algorithm

In this section, we present our main algorithm, prove its asymptotical complexity, and present practical
results in dimension n = 128.
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3.1 Rationale

A natural idea in order to distinguish between an instance of LWE (or LPN) and a uniform distribution is
to select some k samples that add up to zero, yielding a new sample of the form (0, e). It is then enough to
distinguish between e and a uniform variable. However, if δ is the bias of the error in the original samples,
the new error e has bias δk, hence roughly δ−2k samples are necessary to distinguish it from uniform. Thus
it is crucial that k be as small a possible.

The idea of the algorithm by Blum, Kalai and Wasserman BKW is to perform “blockwise” Gaussian
elimination. The n coordinates are divided into k blocks of length b = n/k. Then, samples that are equal
on the first b coordinates are substracted together to produce new samples that are zero on the first block.
This process is iterated over each consecutive block. Eventually samples of the form (0, e) are obtained.

Each of these samples ultimately results from the addition of 2k starting samples, so k should be at most
O(log(n)) for the algorithm to make sense. On the other hand Ω(qb) data are clearly required at each step
in order to generate enough collisions on b consecutive coordinates of a block. This naturally results in a
complexity roughly 2(1+o(1))n/ log(n) in the original algorithm for LPN. This algorithm was later adapted to
LWE in [4], and then improved in [5].

The idea of the latter improvement is to use so-called “lazy modulus switching”. Instead of finding two
vectors that are equal on a given block in order to generate a new vector that is zero on the block, one
uses vectors that are merely close to each other. This may be seen as performing addition modulo p instead
of q for some p < q, by rounding every value x ∈ Zq to the value nearest xp/q in Zp. Thus at each step
of the algorithm, instead of generating vectors that are zero on each block, small vectors are produced.
This introduces a new “rounding” error term, but essentially reduces the complexity from roughly qb to pb.
Balancing the new error term with this decrease in complexity results in a significant improvement.

However it may be observed that this rounding error is much more costly for the first few blocks than
the last ones. Indeed samples produced after, say, one iteration step are bound to be added together 2a−1

times to yield the final samples, resulting in a corresponding blowup of the rounding error. By contrast, later
terms will undergo less additions. Thus it makes sense to allow for progressively coarser approximations (i.e.
decreasing the modulus) at each step. On the other hand, to maintain comparable data requirements to find
collisions on each block, the decrease in modulus is compensated by progressively longer blocks.

What we propose here is a more general view of the BKW algorithm that allows for this improvement,
while giving a clear view of the different complexity costs incurred by various choice of parameters. Balancing
these terms is the key to finding an optimal complexity. We forego the “modulus switching” point of view
entirely, while retaining its core ideas. The resulting algorithm generalizes several variants of BKW, and will
be later applied in a variety of settings.

Also, each time we combine two samples, we never use again these two samples so that the combined
samples are independent. Previous works used repeatedly one of the two samples, so that independency can
only be attained by repeating the entire algorithm for each sample needed by the distinguisher, as was done
in [12].

3.2 Quantization

The goal of quantization is to associate to each point of Rk a center from a small set, such that the expectancy
of the distance between a point and its center is small. We will then be able to produce small vectors by
substracting vectors associated to the same center.

Modulus switching amounts to a simple quantizer which rounds every coordinate to the nearest multiple
of some constant. Our proven algorithm uses a similar quantizer, except the constant depends on the index
of the coordinate.

It is possible to decrease the average distance from a point to its center by a constant factor for large
moduli [24], but doing so would complicate our proof without improving the leading term of the complexity.
When the modulus is small, it might be worthwhile to use error-correcting codes as in [25].
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3.3 Main Algorithm

Let us denote by L0 the set of starting samples, and Li the sample list after i reduction steps. The numbers
d0 = 0 ≤ d1 ≤ · · · ≤ dk = n partition the n coordinates of sample vectors into k buckets. Let D =
(D0, . . . , Dk−1) be the vector of quantization coefficients associated to each bucket.

Algorithm 2 Main resolution
1: function Reduce(Lin,Di,di,di+1)
2: Lout ← ∅
3: t[]← ∅
4: for all (a, b) ∈ Lin do
5: r = ⌊

(adi
,...,adi+1−1)

D
⌉

6: if t[r] = ∅ then
7: t[r]← (a, b)
8: else
9: Lout ← Lout :: {(a, b)− t[r]}

10: t[r]← ∅
11: end if
12: end for
13: return Lout

14: end function
15: function Solve(L0,D,(di))
16: for 0 ≤ i < k do
17: Li+1 ← Reduce(Li, Di, di, di+1)
18: end for
19: return Distinguish({b|(a, b) ∈ Lk})
20: end function

In order to allow for a uniform presentation of the BKW algorithm, applicable to different settings,
we do not assume a specific distribution on the secret. Instead, we assume there exists some known B =
(B0, . . . , Bn−1) such that

∑
i(si/Bi)2 ≤ n. Note that this is in particular true if |si| ≤ Bi. We shall see how

to adapt this to the standard Gaussian case later on. Without loss of generality, B is non increasing.
There are a phases in our reduction : in the i-th phase, the coordinates from di to di+1 are reduced. We

define m = |L0|.

Lemma 5. Solve terminates in time O(mn log q).

Proof. The Reduce algorithm clearly runs in time O(|L|n log q). Moreover, |Li+1| ≤ |Li|/2 so that the total
running time of Solve is O(n log q

∑k
i=0 m/2i) = O(mn log q).

Lemma 6. Write L′
i for the samples of Li where the first di coordinates of each sample vector have been

truncated. Assume |sj |Di < 0.23q for all di ≤ j < di+1. If L′
i is sampled according to the LWE distribution

of secret s and noise parameters α and ϵ ≤ 1, then L′
i+1 is sampled according to the LWE distribution of the

truncated secret with parameters:

α′2 = 2α2 + 4π2
di+1−1∑

j=di

(sjDi/q)2 and ϵ′ = 3ϵ.

On the other hand, if Di = 1, then α′2 = 2α2.

Proof. The independence of the outputted samples and the uniformity of their vectorial part are clear. Let
(a, b) be a sample obtained by substracting two samples from Li. For a′ the vectorial part of a sample, define
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ϵ(a′) such that E[exp(2iπ(⟨a′, s⟩ − b′)/q)|a′] = (1 + ϵ(a′)) exp(−α2). By definition of LWE, |ϵ(a′)| ≤ ϵ, and
by independence:

E[exp(2iπ(⟨a, s⟩ − b)/q)|a] = exp(−2α2)Ea′−a′′=a[(1 + ϵ(a′))(1 + ϵ(a′′))],

with |Ea′−a′′=a[(1 + ϵ(a′))(1 + ϵ(a′′))] − 1| ≤ 3ϵ.
Thus we computed the noise corresponding to adding two samples of Li. To get the noise for a sample from
Li+1, it remains to truncate coordinates from di to di+1. A straightforward induction on the coordinates
shows that this noise is :

exp(−2α2)Ea′−a′′=a[(1 + ϵ(a′))(1 + ϵ(a′′))]
di+1−1∏

j=di

E[exp(2iπajsj/q)].

Indeed, if we denote by a(j) the vector a where the first j coordinates are truncated and αj the noise
parameter of a(j), we have:

|E[exp(2iπ(⟨a(j+1), s(j+1)⟩ − b)/q)|a(j+1)] − exp(−α2
n)E[exp(2iπajsj/q)]|

= |E[exp(−2iπajsj/q)(exp(2iπ(⟨a(j), s(j)⟩ − b)/q) − exp(−α2
j ))]|

≤ ϵ′ exp(−α2
j )E[exp(2iπajsj/q)].

It remains to compute E[exp(2iπajsj/q)] for di ≤ j < di+1. Let D = Di. The probability mass function of
aj is even, so E[exp(2iπajsj/q)] is real. Furthermore, since |aj | ≤ D,

E[exp(2iπajsj/q)] ≥ cos(2πsjD/q).

Simple function analysis shows that ln(cos(2πx)) ≥ −4π2x2 for |x| ≤ 0.23, and since |sj |D < 0.23q, we get :

E[exp(2iπajsj/q)] ≥ exp(−4π2s2
jD2/q2).

On the other hand, if Di = 1 then aj = 0 and E[exp(2iπajsj/q)] = 1.

Finding optimal parameters for BKW amounts to balancing various costs: the baseline number of samples
required so that the final list Lk is non-empty, and the additional factor due to the need to distinguish the
final error bias. This final bias itself comes both from the blowup of the original error bias by the BKW
additions, and the “rounding errors” due to quantization. Balancing these costs essentially means solving a
system.

For this purpose, it is convenient to set the overall target complexity as 2n(x+o(1)) for some x to be
determined. The following auxiliary lemma essentially gives optimal values for the parameters of Solve
assuming a suitable value of x. The actual value of x will be decided later on.

Lemma 7. Pick some value x (dependent on LWE parameters). Choose:

k ≤
⌊

log
(

nx

6α2

)⌋
m = n2k2nx

Di ≤
q
√

x/6
πBdi

2(a−i+1)/2 di+1 = min
(

di +
⌊

nx

log(1 + q/Di)

⌋
, n

)
.

Assume dk = n and ϵ ≤ 1/(β2x)log 3, and for all i and di ≤ j < di+1, |sj |Di < 0.23q. Solve runs in time
O(mn) with negligible failure probability.

Proof. Remark that for all i,

|Li+1| ≥ (|Li| − (1 + q/Di)di+1−di)/2 ≥ (|Li| − 2nx)/2.
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Using induction, we then have |Li| ≥ (|L0| + 2nx)/2i − 2nx so that |Lk| ≥ n2nx.
By induction and using the previous lemma, the input of Distinguish is sampled from a LWE distribution

with noise parameter:

α′2 = 2kα2 + 4π2
k−1∑
i=0

2k−i−1
di+1−1∑

j=di

(sjDi/q)2.

By choice of k the first term is smaller than nx/6. As for the second term, since B is non increasing and by
choice of Di, it is smaller than:

4π2
k−1∑
i=0

2k−i−1 x/6
π22k−i+1

di+1−1∑
j=di

( sj

Bj

)2
≤ (x/6)

n−1∑
j=0

( sj

Bj

)2
≤ nx/6.

Thus the real part of the bias is superior to exp(−nx/3)(1 − 3aϵ) ≥ 2−nx/2, and hence by Theorem 2.2,
Distinguish fails with negligible probability.
Theorem 4. Assume that for all i, |si| ≤ B, B ≥ 2, max(β, log(q)) = 2o(n/ log n), β = ω(1), and ϵ ≤ 1/β4.
Then Solve takes time 2(n/2+o(n))/ ln(1+log β/ log B)).
Proof. We apply Lemma 7, choosing

k = ⌊log(β2/(12 ln(1 + log β)))⌋ = (2 − o(1)) log β ∈ ω(1)

and we set Di = q/(Bk2(k−i)/2). It now remains to show that this choice of parameters satisfies the conditions
of the lemma.

First, observe that BDi/q ≤ 1/k = o(1) so the condition |sj |Di < 0.23q is fulfilled. Then, dk ≥ n, which
amounts to:

k−1∑
i=0

x

(k − i)/2 + log O(kB) ≥ 2x ln(1 + k/2/ log O(kB)) ≥ 1 + k/n = 1 + o(1)

If we have log k = ω(log log B) (so in particular k = ω(log B)), we get ln(1 + k/2/ log O(kB)) = (1 +
o(1)) ln(k) = (1 + o(1)) ln(1 + log β/ log B).

Else, log k = O(log log B) = o(log B) (since necessarily B = ω(1) in this case), so we get ln(1 +
k/2/ log O(kB)) = (1 + o(1)) ln(1 + log β/ log B).

Thus our choice of x fits both cases and we have 1/x ≤ 2 ln(1 + log β). Second, we have 1/k = o(
√

x) so
Di, ϵ and k are also sufficiently small and the lemma applies. Finally, note that the algorithm has complexity
2Ω(n/ log n), so a factor n2k log(q) is negligible.

This theorem can be improved when the use of the given parameters yields D < 1, since D = 1 already
gives a lossless quantization.
Theorem 5. Assume that for all i, |si| ≤ B = nb+o(1). Let β = nc and q = nd with d ≥ b and c + b ≥ d.
Assume ϵ ≤ 1/β4. Then Solve takes time 2n/(2(c−d+b)/d+2 ln(d/b)−o(1)).
Proof. Once again we aim to apply Lemma 7, and choose k as above:

k = log(β2/(12 ln(1 + log β))) = (2c − o(1)) log n

If i < ⌈2(c−d+b) log n⌉, we take Di = 1, else we choose q/Di = Θ(B2(a−i)/2). Satisfying da ≥ n−1 amounts
to:

2x(c − d + b) log n/ log q +
a−1∑

i=⌈2(c−d+b) log n⌉

x

(a − i)/2 + log O(B)

≥ 2x(c − d + b)/d + 2x ln((a − 2(c − d + b) log n + 2 log B)/2/ log O(B))
≥ 1 + a/n = 1 + o(1)

So that we can choose 1/x = 2(c − d + b)/d + 2 ln(d/b) − o(1).
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Corollary 1. Given a LWE problem with q = nd, Gaussian errors with β = nc, c > 1/2 and ϵ ≤ n−4c, we
can find a solution in 2n/(1/d+2 ln(d/(1/2+d−c))−o(1)) time.

Proof. Apply Theorem 1 : with probability 2/3, the secret is now bounded by B = O(q
√

n/β
√

log n). The
previous theorem gives the complexity of an algorithm discovering the secret, using b = 1/2 − c + d, and
which works with probability 2/3 − 2−Ω(n). Repeating n times with different samples, the correct secret will
be outputted at least n/2+1 times, except with negligible probability. By returning the most frequent secret,
the probability of failure is negligible.

In particular, if c ≤ d, it is possible to quantumly approximate lattice problems within factor O(nc+1/2) [46].
Setting c = d, the complexity is 2n/(1/c+2 ln(2c)−o(1)), so that the constant slowly converges to 0 when c goes
to infinity.

A simple BKW using the bias would have a complexity of 2d/cn+o(n), the analysis of [5] or [4] only
conjectures 2dn/(c−1/2)+o(n) for c > 1/2. In [5], the authors incorrectly claim a complexity of 2cn+o(n) when
c = d, because the blowup in the error is not explicitely computed 5.

Though the upper bound on ϵ is small, provably solving the learning with rounding problem where
b = q

p ⌊ p
q ⟨a, s⟩⌉ for some p seems out of reach6.

Finally, if we want to solve the LWE problem for different secrets but with the same vectorial part of the
samples, it is possible to be much faster if we work with a bigger final bias, since the Reduce part needs to
be called only once.

3.4 Some Practical Improvements

In this section we propose a few heuristic improvements for our main algorithm, which speed it up in practice,
although they do not change the factor in the exponent of the overall complexity. In our main algorithm,
after a few iterations of Reduce, each sample is a sum of a few original samples, and these sums are disjoint.
It follows that samples are independent. This may no longer be true below, and sample independence is lost,
hence the heuristic aspect. However this has negligible impact in practice.

First, in the non-binary case, when quantizing a sample to associate it to a center, we can freely quantize
its opposite as well (i.e. quantize the sample made up of opposite values on each coordinate) as in [4].

Second, at each Reduce step, instead of substracting any two samples that are quantized to the same
center, we could choose samples whose difference is as small as possible, among the list of samples that are
quantized to the same center. The simplest way to achieve this is to generate the list of all differences, and
pick the smallest elements (using the L2 norm). We can thus form a new sample list, and we are free to make
it as long as the original. Thus we get smaller samples overall with no additional data requirement, at the
cost of losing sample independence.7

Analyzing the gain obtained using this tactic is somewhat tricky, but quite important for practical
optimization. One approach is to model reduced sample coordinates as independent and following the
same Gaussian distribution. When adding vectors, the coordinates of the sum then also follows a Gaus-
sian distribution. The (squared) norm of a vector with Gaussian coordinates follows the χ2 distribution.
Its cumulative distribution for a k-dimensional vector is the regularized gamma function, which amounts to
1 − exp(−x/2)

∑k/2
i=0(x/2)i/i! for even k (assuming standard deviation 1 for sample coordinates).

Now suppose we want to keep a fixed proportion of all possible sums. Then using the previous formula
we can compute the radius R such that the expected number of sample sums falling within the ball of radius
R is equal to the desired proportion. Thus using this Gaussian distribution model, we are able to predict
how much our selection technique is able to decrease the norm of the samples.
5 They claim it is possible to have ≈ log n reduction steps while the optimal number is ≈ 2c log(n) so that is loose

for c > 1/2 and wrong for c < 1/2.
6 [19] claims to do so, but it actually assumes the indepedency of the errors from the vectorial part of the samples.
7 A similar approach was taken in [5] where the L1 norm was used, and where each new sample is reduced with the

shortest element ever quantized on the same center.
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Practical experiments show that for a reasonable choice of parameters (namely keeping a proportion
1/1000 of samples for instance), the standard deviation of sample norms is about twice as high as predicted
by the Gaussian model for the first few iterations of Reduce, then falls down to around 15% larger. This is
due to a variety of factors; it is clear that for the first few iterations, sample coordinates do not quite follow
a Gaussian distribution. Another notable observation is that newly reduced coordinates are typically much
larger than others.

While the previous Gaussian model is not completely accurate, the ability to predict the expected norms
for the optimized algorithm is quite useful to optimize parameters. In fact we could recursively compute
using dynamic programming what minimal norm is attainable for a given dimension n and iteration count
a within some fixed data and time complexities. In the end we will gain a constant factor in the final bias.

In the binary case, we can proceed along a similar line by assuming that coordinates are independent
and follow a Bernoulli distribution.

Regarding secret recovery, in practice, it is worthwhile to compute the Fourier transform on a high
dimension, such that its cost approximately matches that of Solve. On the other hand, for a low enough
dimension, computing the experimental bias for each possible high probability secret may be faster.

Another significant improvement in practice can be to apply a linear quantization step just before secret
recovery. The quantization steps we have considered are linear, in the sense that centers are a lattice. If
A is a basis of this lattice, in the end we are replacing a sample (a, b) by (Ax, b). We get ⟨x, Ats⟩ + e =
⟨Ax, s⟩ + e = b − ⟨(a − Ax), s⟩. Thus the dimension of the Fourier transform is decreased as remarked by
[25], at the cost of a lower bias. Besides, we no longer recover s but y = Ats. Of course we are free to change
A and quantize anew to recover more information on s. In some cases, if the secret is small, it may be worth
simply looking for the small solutions of Atx = y (which may in general cost an exponential time) and test
them against available samples.

In general, the fact that the secret is small can help its recovery through a maximum likelihood test [43].
If the secret has been quantized as above however, A will need to be chosen such that As is small (by being
sparse or having small entries). The probability to get a given secret can then be evaluated by a Monte-Carlo
approach with reasonable accuracy within negligible time compared to the Fourier transform.

If the secret has a coordinate with non-zero mean, it should be translated.
Finally, in the binary case, it can be worthwhile to combine both of the previous algorithms: after

having reduced vectors, we can assume some coordinates of the secret are zero, and quantize the remainder.
Depending on the number of available samples, a large number of secret-error switches may be possible.
Under the assumption that the success probability is independent for each try, this could be another way to
essentially proceed as if we had a larger amount of data than is actually available. We could thus hope to
operate on a very limited amount of data (possibly linear in n) for a constant success probability.

The optimizations above are not believed to change the asymptotic complexity of the algorithm, but have
a significant impact in practice.

3.5 Experimentation

We have implemented our algorithm, in order to test its efficiency in practice, as well as that of the practical
improvements in subsection 3.4. We have chosen dimension n = 128, modulus q = n2, binary secret, and
Gaussian errors with noise parameter α = 1/(

√
n/π log2 n). The previous best result for these parameters,

using a BKW algorithm with lazy modulus switching, claims a time complexity of 274 with 260 samples [5].
Using our improved algorithm, we were able to recover the secret using m = 228 samples within 13 hours

on a single PC equipped with a 16-core Intel Xeon. The computation time proved to be devoted mostly to
the computation of 9 · 1013 norms, computed in fixed point over 16 bits in SIMD. The implementation used
a naive quantizer.

In section B, we compare the different techniques to solve the LWE problem when the number of samples
is large or small. We were able to solve the same problem using BKZ with block size 40 followed by an
enumeration in two minutes.
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Table 1. Complexity of solving LWE with the Regev parameters [46], i.e. the error distribution is a continuous gaus-
sian of standard deviation q√

2πn log2(n) and with modulus q ≈ n2. The reasonable column corresponds to multiplying
the predicted reduction factor at each step by 1.1, and assuming that the quantizers used reduce the variance by
a factor of 1.3. The corresponding parameters of the algorithm are shown in column k (the number of reduction
steps), log(m) (m is the list size), and log(N) (one vector is kept for the next iteration for each N vectors tested).
The complexities are expressed as logarithm of the number of bit operations of each reduction step. Pessimistic uses
a multiplier of 2 and a naive quantifier (factor 1). Optimistic uses a multiplier of 1 and an asymptotical quantifier
(factor 2πe/12 ≈ 1.42). The asymptotical complexity is 20.93n+o(n) instead of 2n+o(n).

n q k log(m) log(N) Reasonable Optimistic Pessimistic Previous [19]
64 4099 16 30 0 39.6 39.6 40.6 56.2
80 6421 17 38 0 47.9 46.0 48.0 66.9
96 9221 18 45 0 55.3 54.3 56.3 77.4
112 12547 18 54 0 64.6 60.6 65.6 89.6
128 16411 19 60 0 70.8 67.8 72.8 98.8
160 25601 20 75 0 86.2 82.2 88.2 119.7
224 50177 21 93 13 117.8 111.8 121.8 164.3
256 65537 22 106 15 133.0 125.0 137.0 182.7
384 147457 24 164 18 194.7 183.7 201.7 273.3
512 262147 25 219 25 257.2 242.2 266.2 361.6

Table 2. Complexity of solving LWE with the Lindner-Peikert parameters [34]. The error distribution is DZ,s. The
security of the second parameter set was said to be better than AES-128. We assume that we have access to as many
samples as we want, while it is not the case in the proposed cryptosystem.

n q s k log(m) log(N) Reasonable Optimistic Pessimistic
192 4099 8.87 19 68 5 84.2 79.2 84.2
256 6421 8.35 20 82 8 101.7 95.7 103.7
320 9221 8.00 22 98 9 119.0 112.0 122.0

Table 3. Complexity of solving LWE with binary ({0, 1}) secret with the Regev parameters [46].

n q k log(m) log(N) Reasonable Optimistic Pessimistic Previous [5]
128 16411 16 28 0 38.8 38.8 39.8 74.2
256 65537 19 52 0 64.0 62.0 67.0 132.5
512 262147 22 99 0 112.2 104.2 117.2 241.8
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3.6 Extension to the norm L2
One can think that in Lemma 6, the condition |sj |Di < 0.23q is artificial. In this section, we show how to
remove it, so that the only condition on the secret is ||s|| ≤

√
nB which is always better. The basic idea is to

use rejection sampling to transform the coordinates of the vectorial part of the samples into small discrete
gaussians. The following randomized algorithm works only for some moduli, and is expected to take more
time, though the asymptotical complexity is the same.

1: function Accept(a,u,σ,k) ▷ For all i, ai ∈ [0; k[
2: return true with probability exp(−π(

∑
i
min(u2

i , (ui + 1)2)− (ui + ai/k)2)/σ2)
3: end function
4: function ReduceL2(Lin,Di,di,di+1,σi)
5: t[]← ∅
6: for all (a, b) ∈ Lin do
7: r = ⌊

(adi
,...,adi+1−1)

D
⌉

8: Push(t[r], (a, b))
9: end for

10: Lout ← ∅
11: while |{r ∈ (Z/(q/Di)Z)di+1−di ; t[r] ̸= ∅}| ≥ (q/Di)di+1−di /3 do
12: Sample x and y according to DZdi+1−di ,σi

13: repeat
14: Sample u and v uniformly in (Z/(q/Di)Z)di+1−di

15: until t[u + x] ̸= ∅ and t[v + y] ̸= ∅
16: (a0, b0)← Pop(t[u + x])
17: (a1, b1)← Pop(t[v + y])
18: if Accept(a0 mod q/Di, u, σi, q/Di) and Accept(a1 mod q/Di, v, σi, q/Di) then
19: Lout ← (a0 − a1, b0 − b1) :: Lout

20: end if
21: end while
22: return Lout

23: end function

Lemma 8. Assume that Di|q, σi is larger than some constant and

|Li| ≥ 2n max(n log(q/Di)(q/Di)di+1−di , exp(5(di+1 − di)/σi)).

Write L′
i for the samples of Li where the first di coordinates of each sample vector have been truncated. If

L′
i is sampled according to the LWE distribution with secret s and noise parameters α and ϵ, then L′

i+1 is
sampled according to the LWE distribution of the truncated secret with parameters:

α′2 = 2α2 + 2π

di+1−1∑
j=di

(sjσiDi/q)2 and ϵ′ = 3ϵ.

On the other hand, if Di = 1, then α′2 = 2α2. Furthermore, ReduceL2 runs in time O(n log q|Li|) and
|Li+1| ≥ |Li| exp(−5(di+1 − di)/σi)/6 except with probability 2−Ω(n).
Proof. On lines 16 and 17, a0 mod q/Di and a1 mod q/Di are uniform and independent. On line 19, because
of the rejection sampling theorem, we have (q/Di)u+(a0 mod q/Di) and (q/Di)v+(a1 mod q/Di) sampled
according to DZdi+1−di ,σiq/Di

. Also, the unconditional acceptance probability is, for sufficiently large σi,

(ρσiq/Di
(Z)/(q/Di(1 + ρσi

(Z))))2(di+1−di) ≥
(σiq/Di/(q/Di(2 + σi)))2(di+1−di) ≥

exp(−5(di+1 − di)/σi)
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where the first inequality comes from Poisson summation on both ρ. Next, the bias added by truncating the
samples is the bias of the scalar product of (q/Di)u + (a0 mod q/Di) − (q/Di)v − (a1 mod q/Di) with the
corresponding secret coordinates. Therefore, using a Poisson summation, we can prove that α′ is correct.

The loop on line 15 is terminated with probability at least 2/3 each time so that the Hoeffding inequality
proves the complexity.

On line 10, the Hoeffding inequality proves that minr t[r] ≥ |Li|/(2(q/Di)di+1−di) holds except with
probability 2−Ω(n). Under this assumption, the loop on lines 11-21 is executed at least |Li|/6 times. Then,
the Hoeffding inequality combined with the bound on the unconditional acceptance probability proves the
lower bound on |Li+1|.

Theorem 6. Assume that ||s|| ≤
√

nB, B ≥ 2, max(β, log(q)) = 2o(n/ log n), β = ω(1), and ϵ ≤ 1/β4.
Then, there exists an integer Q smaller than Bn22n2 such that if q is divisible by this integer, we can solve
Decision-LWE time

2(n/2+o(n))/ ln(1+log β/ log B).

Proof. We use σi =
√

log β, m = 2n26k exp(5n/σi)2nx,

k = ⌊log(β2/(12 ln(1 + log β)))⌋ = (2 − o(1)) log β ∈ ω(1)

and we set Di = q/(Bk2(k−i)/2), di+1 = min(di + ⌊ nx
log(q/Di) ⌋, n) and Q =

∏
i Bk2(k−i)/2. We can then see as

in Theorem 4 that these choices lead to some x = 1/(2 − o(1))/ ln(1 + log β/ log B). Finally, note that the
algorithm has complexity 2Ω(n/ log log β), so a factor 2n26k log(q) exp(5n/

√
log(β)) is negligible.

The condition on q can be removed using modulus switching [13], unless q is tiny.

Theorem 7. If Bβ ≤ q, then the previous theorem holds without the divisibility condition.

Proof. Let p ≥ q be the smallest modulus such that the previous theorem applies and ς =
√

np/q. For
each sample (a, b), sample x from DZn−a/q,ς and use the sample (p/qa + px, p/qb) with the algorithm of
the previous theorem. Clearly, the vectorial part has independent coordinates, and the probability that one
coordinate is equal to y is proportional to ρς(p/qZ − y). Therefore, the Kullback-Leibler distance with the
uniform distribution is 2−Ω(n). If the original error distribution has a noise parameter α, then the new error
distribution has noise parameter α′ with

α′2 ≤ α2 +
∑

i

πς2s2
i /p2 ≤ α2 + πB2ς2/p2 ≤ n/2/β2 + πnB2/q2

so that β is only reduced by a constant.

4 Applications to Lattice Problems

We first show that BDDB,β is easier than LWE for some large enough modulus and then that UniqueSVPB,β

and GapSVPB,β are easier than BDDB,β .

4.1 Variant of Bounding Distance Decoding

The main result of this subsection is close to the classic reduction of [46]. However, our definition of LWE
allows to simplify the proof, and gain a constant factor in the decoding radius. The use of the KL divergence
instead of the statistical distance also allows to gain a constant factor, when we need an exponential number
of samples, or when λ∗

n is really small.
The core of the reduction lies in Lemma 9, assuming access to a Gaussian sampling oracle. This hypothesis

will be taken care of in Lemma 10.
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Lemma 9. Let A be a basis of the lattice Λ of full rank n. Assume we are given access to an oracle outputting
a vector sampled under the law DΛ∗,σ and σ ≥ qηϵ(Λ∗), and to an oracle solving the LWE problem in
dimension n, modulus q ≥ 2, noise parameter α, and distortion parameter ξ which fails with negligible
probability and use m vectors if the secret s verifies |si| ≤ Bi.

Then, if we are given a point x such that there exists s with v = As−x, ||v|| ≤
√

1/παq/σ, |si| ≤ Bi and
ρσ/q(Λ\{0}+v) ≤ ξ exp(−α2)/2, we are able to find s in at most mn calls to the Gaussian sampling oracle,
n calls to the LWE solving oracle, with a probability of failure n

√
mϵ + 2−Ω(n) and complexity O(mn3 + nc)

for some c.

Proof. Let y be sampled according to DΛ∗,σ, v = As − x. Then

⟨y, x⟩ = ⟨y, As⟩ + ⟨y, v⟩ = ⟨Aty, s⟩ − ⟨y, v⟩

and since y ∈ Λ∗, Aty ∈ Zn. We can thus provide the sample (Aty, ⟨y, x⟩) to the LWE solving oracle.
The probability of obtaining the sample Aty ∈ (Z/qZ)n is proportional to ρσ(qΛ∗ +y). Using the Poisson

summation formula,
ρσ(qΛ∗ + y) = sn det(Λ/q)

∑
z∈Λ/q

exp(2iπ⟨z, y⟩)ρ1/σ(z).

Since σ ≥ qηϵ(Λ∗) = ηϵ(qΛ∗), we have

1 − ϵ ≤
∑

z∈Λ/q

cos(2π⟨z, y⟩)ρ1/σ(z) ≤ 1 + ϵ.

Therefore, with Lemma 2, the KL-divergence between the distribution of Aty mod q and the uniform distri-
bution is less than 2ϵ2.

Also, with c ∈ y + qΛ∗,

E[exp(2iπ(⟨Aty, s⟩ − ⟨y, x⟩)/q)|Aty mod q] = EDqΛ∗+c,σ
[exp(2iπ⟨y, v/q⟩)].

Let f(y) = exp(2iπ⟨y, v/q⟩)ρσ(y) so that the bias is f(qΛ∗ + c)/ρσ(qΛ∗ + c). Using the Poisson summation
formula on both terms, this is equal to( ∑

y∈Λ/q

ρ1/σ(y − v/q) exp(−2iπ⟨y, c⟩)
)/( ∑

y∈Λ/q

ρ1/σ(y) cos(2π⟨y, c⟩
)

.

In this fraction, the numerator is at distance at most ξ exp(−α2)/(1 + ϵ) to exp(−πσ2/q2||v||2) ≥ exp(−α2)
and the denominator is in [1 − ϵ; 1 + ϵ].

Using Lemma 3 with an algorithm which tests if the returned secret is equal to the real one, the failure
probability is bounded by

√
mϵ. Thus, the LWE solving oracle works and gives s mod q.

Let x′ = (x−A(s mod q))/q so that s′ = (s−(s mod q))/q and ||v′|| ≤ ||v||/q. Therefore, the reduction also
works. If we repeat this process n times, we can solve the last closest vector problem with Babai’s algorithm,
which reveals s.

In the previous lemma, we required access to a DΛ∗,σ oracle. However, for large enough σ, this hypothesis
comes for free, as shown by the following lemma, which we borrow from [13].

Lemma 10. If we have a basis A of the lattice Λ, then for σ ≥ O(
√

log n||Ã||), it is possible to sample in
polynomial time from DΛ,σ.

We will also need the following lemma, due to Banaszczyk [10].

Lemma 11. For a lattice Λ, c ∈ Rn, and t ≥ 1,

ρ
(
(Λ + c) \ B

(
0, t

√
n

2π

))
ρ(Λ) ≤ exp

(
− n(t2 − 2 ln t − 1)/2

)
≤ exp

(
− n(t − 1)2/2

)
.
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Proof. For any s ≥ 1, using Poisson summation :

ρs(Λ + c)
ρ(Λ) =sn

∑
x∈Λ∗ ρ1/s(x) exp(2iπ⟨x, c⟩)

ρ(Λ∗)

≤ sn

∑
x∈Λ∗ ρ1/s(x)∑

x∈Λ∗ ρ(x)
≤ sn

Then,

snρ(Λ) ≥ρs

(
(Λ + c) \ B

(
0, t

√
n

2π

))
≥ exp(t2(1 − 1/s2)n/2)ρ

(
(Λ + c) \ B

(
0, t

√
n

2π

))
.

And therefore, using s = t :

ρ((Λ + c) \ B(0, t
√

n
2π ))

ρ(Λ) ≤ exp(−n(t2(1 − 1/s2) − 2 ln s)/2)

= exp(−n(t2 − 2 ln t − 1)/2)
≤ exp(−n(t − 1)2/2),

where the last inequality stems from ln t ≤ t − 1.

Theorem 8. Assume we have a LWE solving oracle of modulus q ≥ 2n, parameters β and ξ which needs m
samples.

If we have a basis A of the lattice Λ, and a point x such that As − x = v with ||v|| ≤ (1 − 1/n)λ1/β/t <
λ1/2 and 4 exp(−n(t − 1/β − 1)2/2) ≤ ξ exp(−n/2/β2), then with n2 calls to the LWE solving oracle with
secret s, we can find s with probability of failure 2

√
m exp(−n(t2 − 2 ln t − 1)/2) for any t ≥ 1 + 1/β.

Proof. Using Lemma 11, we can prove that σ = t
√

n/2/π/λ1 ≤ ηϵ(Λ∗) for ϵ = 2 exp(−n(t2 − 2 ln t − 1)/2)
and

ρ1/σ

(
Λ \ {0} + v

)
≤ 2 exp

(
− n(t(1 − 1/β/t) − 1)2/2

)
.

Using LLL, we can find a basis B of Λ so that ||B̃∗|| ≤ 2n/2/λ1, and therefore, it is possible to sample in
polynomial time from DΛ,qσ since q ≥ 2n for sufficiently large n.

The LLL algorithm also gives a non zero lattice vector of norm ℓ ≤ 2nλ1. For i from 0 to n2, we let
λ = ℓ(1 − 1/n)i, we use the algorithm of Lemma 9 with standard deviation tq

√
n/2/π/λ, which uses only

one call to the LWE solving oracle, and return the closest lattice vector of x in all calls.
Since ℓ(1 − 1/n)n2 ≤ 2n exp(−n)λ1 ≤ λ1, with 0 ≤ i ≤ n2 be the smallest integer such that λ =

ℓ(1 − 1/n)i ≤ λ1, we have λ ≥ (1 − 1/n)λ1. Then the lemma applies since

||v|| ≤ (1 − 1/n)λ1/β/t ≤
√

1/π
√

n/2/βq/(tq
√

n/2/π/λ) = λ/t/β.

Finally, the distance bound makes As the unique closest lattice point of x.

Using self-reduction, it is possible to remove the 1 − 1/n factor [36].

Corollary 2. It is possible to solve BDD||.||∞
B,β in time 2(n/2+o(n))/ ln(1+log β/ log B) if β = ω(1), β = 2o(n/ log n)

and log B = O(log β).

Proof. Apply the previous theorem and Theorem 4 with some sufficiently large constant for t, and remark
that dividing β by some constant does not change the complexity.

Note that since we can solve LWE for many secrets in essentially the same time than for one, we have the
same property for BDD.
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4.2 UniqueSVP

The following reduction was given in [36] and works without modification.

Theorem 9. Given a BDD||.||∞
B,β oracle, it is possible to solve UniqueSVP||.||∞

B,β in polynomial time of n and
β.

Proof. Let 2β ≥ p ≥ β be a prime number, A and s such that ||As|| = λ1. If s = 0 mod p then A(s/p) is a
non zero lattice vector, shorter than ||As||, which is impossible. Let i such that si ̸= 0 mod p, and

A′
i = [a0, . . . , ai−1, pai, ai+1, . . . , an−1],

which generates a sublattice Λ′ of Λ. If k ̸= 0 mod p, then kAs ̸∈ Λ′ so that λ1(Λ′) ≥ λ2(Λ).
If s′

i = (s0, . . . , ⌊si/p⌉, . . . , sn−1), then A′
is′

i + (si mod p)ai = As and ||s′
i||∞ ≤ B. Therefore, calling

BDD to find the point of Λ′ closest to (si mod p)ai yields s′. By trying every value of i and (si mod p), np

calls to BDD||.||∞
B,β are enough to solve UniqueSVP||.||∞

B,β .

The reductions for both BDD||.|| and UniqueSVP||.|| work the same way.

4.3 GapSVP

The following reduction is a modification of the reduction given in [44], which comes from [23], but doesn’t
fit to our context.

First, we need a lemma proven in [23] :

Lemma 12. The volume of the intersection of two balls of radius 1 divided by the volume of one ball is at
least

d

3(1 − d2)(n−1)/2√
n ≥ d

3(1 − d2)n/2

where d ≤ 1 is the distance between the centers.

Lemma 13. Given access to an oracle solving BDD||.||∞
B,β and let D be an efficiently samplable distribution

over points of Zn whose infinity norm is smaller than b and for ξ ≤ 1 and let

ϵ = min
||s||∞≤R

Pr
x∼D

[
ξ ≤ D(x + s)

D(x) ≤ 1/ξ

]
.

Then, we can solve GapSVP||.||∞
R,β/d with negligible probability of failure using O(dn/ϵ/ξ(1 − d2)−n/2) calls

to the BDD oracle.

Proof. Let K = Θ(dn/ϵ/ξ(1−d2)−n/2), A a basis of the lattice Λ. The algorithm consists in testing K times
the oracle : sample x with law D and check if BDD(Ax + e) = x for e sampled uniformly within a ball
centered at the origin and of radius 1/d. If any check is wrong, return that λ1 ≤ 1, else return λ1 ≥ β/d.

Clearly, the algorithm runs in the given complexity, and if λ1 ≥ β/d, it is correct.
So, let s ̸= 0 such that ||As|| ≤ 1. Let x and e be sampled as in the algorithm. With probability over e

greater than (1 − d2)n/2d/3, ||Ax + e − A(x + s)|| ≤ 1/d. We condition on this event.
Then, with probability at least ϵ, 1/ξ ≥ k = D(x+s)

D(x) ≥ ξ and we also condition on this event. Let p be
the probability that BDD(Ax + e) = x. The probability of failure is at least

(1 − p)/(1 + k) + pk/(1 + k) ≥ min(k, 1)/(1 + k) ≥ ξ.

Therefore, the probability of failure of the algorithm is 2−Ω(n).

We could have used the uniform distribution for D, but a discrete gaussian is more efficient.

17



Lemma 14. Let Λ be a one dimensional lattice. Then,

Ex∼DΛ [||x||2] ≤ 1
2π

.

Proof. Let f(x) = ||x||2ρ(x). Then, using a Poisson summation :

f(Λ)
ρ(Λ) =

∑
x∈Λ∗

( 1
2π − ||x||2

)
ρ(x)

ρ(Λ∗) ≤ 1
2π

.

Lemma 15. Let D be such that D(x) ∝ exp(−||x||2/(2σ2)) for all x with ||x||∞ ≤ B. Then D is polynomially
samplable for B − R ≥ 2σ, and using the definitions of Lemma 13, we have for ξ = exp(−nR2/(2σ2) −
2
√

nR/σ), ϵ ≥ exp(−2n exp(−((B − R)/σ − 1)2/2))/2.

Proof. Using the Banaszczyk lemma , we have :∑B−R
x=R−B exp(−x2/(2σ2))∑B
x=−B exp(−x2/(2σ2))

≥
∑B−R

x=R−B exp(−x2/(2σ2))∑
x∈Z exp(−x2/(2σ2)) ≥ 1 − exp(−((B − R)/σ − 1)2/2).

So that :
Pr

x∼D
[||x||∞ ≤ B − R] ≥ exp(−2n exp(−((B − R)/σ − 1)2/2)).

Since the discrete Gaussian distribution over Z is polynomially samplable, this is also the case for D since
B − R ≥ 2σ.

We now condition the distribution over ||x||∞ ≤ B − R. For some s such that ||s||∞ ≤ R and N = ||s||,
we study the variable

ℓ = 2σ2 ln(exp(−||x + s||2/(2σ2))/ exp(−||x||2/(2σ2))) = N2 − 2⟨x, s⟩.

By symmetry :
E[ℓ] = E[N2 − 2⟨x, s⟩] = N2.

Let D′ be the distribution over the first coordinate and v = s0. Then, using the previous lemma :

Var[v2 − xv] = Ex∼D′ [(v2 − xv − v2)2] ≤ Ex∼DZ,σ/
√

2π
[x2]v2 ≤ σ2v2.

Summing over all coordinates, we have :
Var[ℓ] ≤ 4σ2N2.

By the Chebyshev inequality, we get :

Pr[|ℓ + N2| ≥ 4Nσ] ≤ 1
2 .

And the claim follows.

Theorem 10. One can solve any GapSVP||.||∞

o(B
√

log log log β/ log log β),β
in time

2(n/2+o(n))/ ln(1+log β/ log B)

for β = 2o(n/ log n), β = ω(1), B ≥ 2.

Proof. Use the previous lemma with σ = B/
√

3 ln log log β and Corollary 2 with β′ = β/ log(β), so that it is
sufficient to decode 2o(n/ log log β) points.
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Theorem 11. If it is possible to solve BDD||.||∞
B,β in polynomial time, then it is possible to solve in randomized

polynomial time GapSVP||.||∞

B/
√

n,β
√

n/ log n
.

Proof. Use σ = B/
√

3 ln n.

We now proves the corresponding theorem in norm L2.

Theorem 12. Let D be the uniform distribution over the points x of Zn with ||x|| ≤ B. Then, D is samplable
in time O(n2B2 log B) and for any s with ||s|| ≤ R and x sampled according to D, we have for n sufficiently
large

Pr[||x + s|| ≤ B] ≥ (
√

B2 − R2 −
√

n/2)n−1(R −
√

n/2)/(B +
√

n/2)n.

Proof. It is easy to see that a dynamic programming algorithm using O(nB2) operations on integers smaller
than Bn can determine the i-th lattice point of the ball, ordered lexicographically. Therefore, D is samplable.

Let E be the right circular cylinder of center s/2, with generating segments parallel to s, of length R and
radius r =

√
B2 − R2, and H the same cylinder with length R −

√
n/2 and radius r −

√
n/2. For the lattice

point x ∈ Zn, let Fx be the axis-aligned cube of length 1 centered on x. Let F be the union of all Fx such
that Fx ⊂ E. We have |E ∩Zn| = vol(F ) and H ⊂ F . Therefore, |E ∩Zn| ≥ Vn−1(r −

√
n/2)n−1(R −

√
n/2).

Also, E is a subset of the intersection of the balls of radius B and centers 0 and s. Using Lemma 16 and
Vn−1 ≥ Vn for n sufficiently large, the result follows.

Corollary 3. One can solve GapSVP||.||
√

no(B/
√

log log β),β
, β = ω(1) and β = 2o(n/ log n) in time

2(n/2+o(n))/ ln(1+log β/ log B).

Proof. Apply Theorem 6 with a reduction to BDD with parameter β′ = β/ log(β) and B′ = max(B, log β).
Then, apply the previous theorem with Lemma 13.

Corollary 4. It is possible to solve any GapSVP||.||
√

n2
√

log n,nc
with c > 0 in time 2(n+o(n))/ ln ln n.

Proof. Use the previous corollary with B = 2
√

log n log log n and β = nc.

Theorem 13. If it is possible to solve BDD||.||∞
B,β in polynomial time, then it is possible to solve in randomized

polynomial time GapSVP||.||∞

B/
√

n,β
√

n/ log n
.

5 Other applications

5.1 Low density subset-sum problem

Definition 10. We are given a vector a ∈ Zn whose coordinates are sampled independently and uniformly
in [0; M), and ⟨a, s⟩ where the coordinates of s are sampled independently and uniformly in {0, 1}. The goal
is to find s. The density is defined as d = n

log M .

Note that this problem is trivially equivalent to the modular subset-sum problem, where we are given
⟨a, s⟩ mod M by trying all possible ⌊⟨a, s⟩/M⌋ .

In [31,16], Lagarias et al. reduce the subset sum problem to UniqueSVP, even though this problem was
not defined at that time. We will show a reduction to BDD||.||∞

1,Ω(2d), which is essentially the same. First, we
need two geometric lemmata.

Lemma 16. Let Bn(r), the number of points of Zn of norm smaller than r, and Vn the volume of the unit
ball. Then,

Bn(r) ≤ Vn

(
r +

√
n

2

)n

.
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Proof. For each x ∈ Zn, let Ex be a cube of length 1 centered on x. Let E be the union of all the Ex which
have a non empty intersection with the ball of center 0 and radius r. Therefore vol(E) ≥ Bn(r) and since E

is included in the ball of center 0 and radius r +
√

n
2 , the claim is proven.

Lemma 17. For n ≥ 4 we have

Vn = πn/2

(n/2)! ≤ (
√

πe/n)n

Theorem 14. Using one call to a BDD||.||∞
1,c21/d oracle with any c <

√
2/π/e and d = o(1), and polynomial

time, it is possible to solve a subset-sum problem of density d, with negligible probability of failure.
Proof. With the matrix :

A =
(

I
Ca

)
for some C > c21/d

√
n/2 and b = (1/2, . . . , 1/2, C⟨a, s⟩), return BDD(A, b). It is clear that ||As − b|| =√

n/2. Now, let x such that ||Ax|| = λ1. If ⟨a, x⟩ ̸= 0, then λ1 = ||Ax|| ≥ C therefore β ≥ c21/d. Else,
⟨a, x⟩ = 0. Without loss of generality, x0 ̸= 0, we let y = −(

∑
i>0 aixi)/x0 and the probability over a that

⟨a, x⟩ = 0 is :

Pr[⟨a, x⟩ = 0] = Pr[a0 = y] =
M−1∑
z=0

Pr[y = z] Pr[a0 = z] ≤ 1
M

.

Therefore, the probability of failure is at most, for sufficiently large n,

Bn(β
√

n/2)/M ≤(
√

πe/n)n(c21/d
√

n/2 +
√

n/2)n/2n/d

=
(√

πe/2(c + 2−1/d)
)n = 2−Ω(n).

Corollary 5. For any d = o(1) and d = ω(log n/n), we can solve the subset-sum problem of density d with
negligible probability of failure in time 2(n/2+o(n))/ ln(1/d).

The cryptosystem of Lyubashevsky et al. [37] uses 21/d > 10n log2 n and is therefore broken in time
2(ln 2/2+o(1))n/ log log n. Current lattice reduction algorithms are slower than this one when d = ω(1/(log n log log n)).

5.2 Sample Expander and application to LWE with binary errors
Definition 11. Let q be a prime number. The problem Small-DecisionLWE is to distinguish (A, b) with A
sampled uniformly with n columns and m rows, b = As + e such that ||s||2 + ||e||2 ≤ nk2 and ||s|| ≤

√
nB

from (A, b) sampled uniformly. Also, the distribution (s, e) is efficiently samplable.
The problem Small-SearchLWE is to find s given (A, b) with A sampled uniformly and b = As + e with

the same conditions on s and e.
These problems are generalizations of BinaryLWE where s and e have coordinates sampled uniformly in

{0, 1}. In this case, remark that each sample is a root of a known quadratic polynomial in the coordinates of
s. Therefore, it is easy to solve this problem when m ≥ n2. For m = O(n), a Gröbner basis algorithm applied
on this system will (heuristically) have a complexity of 2Ω(n) [3]. For m = O(n/ log n) and q = nO(1), it has
been shown to be harder than a lattice problem in dimension Θ(n/ log n) [40].

We will first prove the following theorem 8, with the coordinates of x and y distributed according to a
samplable D :
Theorem 15. Assume there is an efficient distinguisher which uses k samples for Decision-LWE (respectively
a solver for Search-LWE) with error distribution ⟨s, y⟩ + ⟨e, x⟩ of advantage (resp. success probability) ϵ.

Then, either there is an efficient distinguisher for Decision-LWE with samples and secret taken uniformly,
and error distribution D in dimension m−1 and with n+m samples of advantage ξ

4qk − q−n − q−m; or there
is an efficient distinguisher of advantage ϵ−ξ for Small-Decision-LWE (resp. solver of success probability ϵ−ξ
for Small-Search-LWE).
8 In [19], the authors gave a short justification of a similar claim which is far from proven.
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Sample Expander The reduction is a generalization and impovement of Döttling’s reduction [17], which
was made for LPN.

Lemma 18 (Hybrid lemma [22]). We are given a distinguisher between the distributions D0 and D1 of
advantage ϵ which needs m samples. Then, there exists a distinguisher between the distributions D0 and D1
of advantage ϵ/m which needs one sample, m samples of distribution D0 and m samples of distribution D1.

Proof. The distinguisher samples an integer i uniformly between 0 and m − 1. It then returns the output of
the oracle, whose input is i samples of D0, the given sample, and m − i − 1 samples of D1.

Let pi the probability that the oracle outputs 1 if its input is given by i samples of D0 followed by m − i
samples of D1. Then, if the sample comes from D0, the probability of outputting 1 is 1

m

∑m
i=1 pi. Else, it is

1
m

∑m−1
i=0 pi. Therefore, the advantage of our algorithm is 1

m |pm − p0| = ϵ
m .

In the following, we will let, for D some samplable distribution over Z/qZ, x be sampled according to
Dm, y be sampled according to Dn, z according to (e|s), u be sampled uniformly in (Z/qZ)m, v be sampled
uniformly in Z/qZ, w in (Z/qZ)n.

Definition 12. The problem Knapsack-LWE is to distinguish between (G, c) where G is always sampled
uniformly in (Z/qZ)m×(m+n), and c is either uniform, or sampled according to GDm+n.

The problem Extended-LWE is to distinguish between (A,t xA + y, z, ⟨(x|y), z⟩) and (A, w, z, ⟨(x|y), z⟩).
The problem First-is-errorless-LWE is to distinguish between (A,t xA + y, u, ⟨x, u⟩) and (A, w, u, ⟨x, u⟩).

The following lemma comes from [39], we give a sketch of their proof.

Lemma 19. The problems Knapsack-LWE and Decision-LWE in dimension m with n + m samples where are
equivalent: there are reductions in both ways which reduce the advantage by q−n−1.

Proof. Given the Decision-LWE problem (A, b), we sample a uniform basis G of the left kernel of A and
outputs (G, Gb). If b = As + e, we have therefore Gb distributed as Ge.

Given the Knapsack-LWE problem (G, c), we sample a uniform basis A of the right kernel of A, and a
uniform b such that Gb = c and outputs (A, b). If c = Ge, then b is distributed as As + e where s is
uniform.

Both reductions map the distributions to their counterparts, except when A or G are not full rank, which
happens with probability at most q−n−1, hence the result.

The lemma is a slight modification of the lemma given in [6].

Lemma 20. Given a distinguisher of advantage ϵ for ExtendedLWE, there is a distinguisher of advantage
ϵ(1−1/q)−2q−n

q for Decision-LWE in dimension m, uniform secret, with n + m uniform samples of error dis-
tribution D.

Proof. Using the previous lemma, we can assume that we want to solve a KnapsackLWE problem. Let (G, c)
be its input, with c = Ge. We start by sampling z, t uniformly over (Z/qZ)m and e′ according to Dn+m.

We then compute G′ = G−ttz and c′ = c−⟨z, e′⟩t. Remark that G′ is uniform and c′ = Ge−⟨z, e′⟩t =
G′e + ⟨z, e − e′⟩t. Therefore, if ⟨z, e′⟩ = ⟨z, e⟩, which happens with probability at least 1

q , (G′, c′) comes
from the same distribution as (G, c). Also, ⟨z, e⟩ is known. Else, since t is uniform, (G′, c′) is uniform.

We then perform the previous reduction to a Decision-LWE problem, where ⟨z, e⟩ is known. Finally, we
use Theorem 1 to reduce to Extended-LWE. If it doesn’t output n samples, which happens with probability at
most 1/q, our distinguisher returns a uniform boolean. Else, remark that we have (x|y) = e so that ⟨(x|y), z⟩
is known and we use the given distinguisher.

Lemma 21. Assume there is a distinguisher of advantage ϵ for First-is-errorless-LWE. Then, there is a dis-
tinguisher of advantage at least ϵ(1 − 1/q) − q−m and Decision-LWE in dimension m − 1 with uniform secret
and n + m uniform samples of error distribution D.
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Proof. We take a Decision-LWE problem in dimension m − 1 with n + m samples, and extend it of one
coordinate, the corresponding secret coordinate being sampled uniformly. We then switch the error and the
secret, as in Theorem 1, and return a random boolean if the reduction do not output n samples.

We have the errorless sample (em−1, sm−1) with em−1 = (0, . . . , 0, 1). If we feed this sample to our
reduction, it outputs an errorless sample (u, ⟨x, u⟩), and the vectorial part is distributed as a column of a
uniform invertible matrix. Therefore, the statistical distance between the distribution of u and the uniform
distribution is at most q−m.

Theorem 16. Assume there is an efficient distinguisher which uses k samples for Decision-LWE (respectively
a solver for Search-LWE) with error distribution ⟨s, y⟩ + ⟨e, x⟩ of advantage (resp. success probability) ϵ.

Then, either there is an efficient distinguisher for Decision-LWE with samples and secret taken uniformly,
and error distribution D in dimension m−1 and with n+m samples of advantage ξ

4qk − q−n − q−m; or there
is an efficient distinguisher of advantage ϵ−ξ for Small-Decision-LWE (resp. solver of success probability ϵ−ξ
for Small-Search-LWE).

Proof. Let

– D0 be the distribution given by (w, ⟨w, s⟩ + ⟨s, y⟩ + ⟨e, x⟩)
– D1 be the distribution given by (txA + y, ⟨x, b⟩)
– D2 be the distribution given by (txA + y, ⟨x, u⟩)
– D3 be the distribution given by (w, v).

Let ϵi be the advantage of D between Di and Di+1.
Let (A, c, (e|s), ⟨(x|y), (e|s)⟩) be an instance of the Extended-LWE problem. We compute b = As−e, and

use the hybrid lemma with distributions D0 and D1, and sample (c, ⟨c, s⟩ + ⟨(x|y), (e|s)⟩). If c =t xA + y,
we have ⟨c, s⟩ = ⟨x, b⟩ + ⟨x, e⟩ + ⟨y, s⟩ so that the sample is distributed according to D1. Therefore, we have
a distinguisher for Extended-LWE of advantage ϵ0

k .
Clearly, there is a distinguisher of advantage ϵ1 against Small-Decision-LWE.
Let (A, c, u, r) be an instance of the First-is-errorless-LWE problem. The hybrid lemma with distributions

D2 and D3, and sample (c, r) shows that there exist an efficient distinguisher for First-is-errorless-LWE with
advantage ϵ3/k.

Since ϵ0 + ϵ1 + ϵ2 ≥ ϵ, using the previous lemmata, and the fact that Decision-LWE is harder in dimension
m than m − 1, the theorem follows.

For the search version, the indistinguishability of D0 and D1 is sufficient.

Döttling’s reduction has a uniform secret, so that a problem solvable in time 2O(
√

n) is transformed into
a problem where the best algorithm takes time 2(1+o(1))n/ log n. We do not have such dramatic loss here.

Applications

Lemma 22. Let D = DZ,σ for σ ≥ 1.
Then, the advantage of a distinguisher for Decision-LWE of dimension m with m + n samples of noise

distribution D is at most
√

qn/σn+m. Furthermore, the bias of ⟨(s|e), (x|y)⟩, for fixed s and e, is at least
exp(−π(||s||2 + ||e||2)σ2/q2).

Proof. We have Dm+n(a) ≤ D(0)m+n = 1/ρσ(Z)m+n and ρσ(Z) = σρ1/σ(Z) ≥ σ using a Poisson summation.
The first property is then a direct application of the leftover hash lemma, since q is prime.

The bias of λD can be computed using a Poisson summation as :∑
a∈Z

ρσ(a) cos(2πλa/q) = ρ1/σ(Z + λ/q) ≥ exp(−πλ2σ2/q2).

Therefore, the second property follows from the independency of the coordinates of x and y.
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Corollary 6. Let q, n and m such that (m−3) log q/(n+m)−log k = ω(1) and m log q/(n+m) = o(n/logn).
Then, we can solve Small-Decision-LWE in time

2(n/2+o(n))/ ln(1+((m−3) log q/(n+m)−log k)/ log B)

with negligible probability of failure.

Proof. We use the previous lemma with σ = 2q(n+2)/(n+m−1), so that we have β = Ω(q(m−3)/(n+m)/k).
The algorithm from Theorem 6 needs 2o(n) samples, so that the advantage of the potential distinguisher for
Decision-LWE is 2−n/4+o(n)/q for ξ = 2−n/4 ; while the previous lemma proves it is less than 2−n/2/q.

The NTRU cryptosystem [27] is based on the hardness of finding two polynomials f and g whose coeffi-
cients are bounded by 1 given h = f/g mod (Xn − 1, q). Since hg = 0 with an error bounded by 1, we can
apply previous algorithms in this section to heuristically recover f and g in time 2(n/2+o(1))/ ln ln q. This is
the first subexponential time algorithm for this problem since it was introduced back in 1998.

Corollary 7. Assume we have a Search-LWE problem with at least n log q + r samples and Gaussian noise
with α = n−c and q = nd. Then, we can solve it in time 2n/(2 ln(d/(d−c))−o(1)) for any failure probability in
2−no(1) + q−r.

Proof. First, apply a secret-error switching (Theorem 1) and assume we lose at most r samples. Apply the
previous corollary with B = nd−c+o(1) which is a correct bound for the secret, except with probability 2−no(1) .
Lemma 11 shows that k2 ≤ log qσ2, except with probability 2−Ω(n), so that β = nc+o(1). We can then use
σ = Θ(1) and apply Theorem 4.

Note that this corollary can in fact be applied to a very large class of distributions, and in particular
to the learning with rounding problem, while the distortion parameter is too large for a direct application
of Theorem 4.

Also, if the reduction gives a fast (subexponential) algorithm, one may use σ = 2
√

n and assume that
there is no quantum algorithm solving the corresponding lattice problem in dimension m.

Even more heuristically, one can choose σ to be the lowest such that if the reduction does not work, we
have an algorithm faster than the best known algorithm for the same problem.
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A LWE in Small Dimension

If the dimension n is small (n = O(log(β))), and in particular if n is one 9, we can use the same kind of
algorithm. Such algorithms have been described in [42,8] and an unpublished paper of Bleichenbacher.
9 This is an interesting case in cryptography for analyzing the security of DSA[42] or proving the hardness of

recovering the most significant bits of a Diffie-Hellman.
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The principle is to reduce at each step some coordinates and partially reduce another one. If q is too
large, then the reduction of the last coordinate has to be changed: we want to have this coordinate uniformly
distributed in the ball of dimension 1 and radius R (i.e. [−R; R]). To this end, for each sample, if the ball of
radius R′ centered at the sample is included in the ball of radius R and if it contains at least another sample,
we will choose uniformly a sample in the ball 10 and then remove it and add the difference in the output
list. In the other case, we add the element to our structure. The last coordinate of the outputted samples is
clearly uniform over a ball of radius R′.

Finally, we apply a Fourier transform to the samples : for various potential secrets x, if we denote by
(a, b) the samples where a is the last coordinate of the vectorial part and b the scalar part, we compute the
experimental bias ℜ(E[exp(2iπ(ax − b)/q)]) and output the s which maximizes them.

We can analyze the Fourier stage of the algorithm with a uniformly distributed in a ball of radius R, an
odd integer. The bias for x is E[exp(2iπ(e + (s − x)a)/q)] where e = as − b is the error, which is equal to the
bias of the error times E[exp(2iπ(s − x)a/q)]. We take x regularly distributed so that the interval between
two x is smaller than q/R/2, and we can compute all bias in one Fourier transform.

Let us consider an x such that |s − x| ≤ q/R/4. The introduced bias is the bias of the error times
sin π(s−x)R/q
R sin π(s−x)/q , which is lower bounded by a universal constant. However, for |s − x| ≥ q/R, the introduced
bias is upper bounded by a constant, strictly smaller than the previous one. Therefore, the Fourier stage
determines a x such that |s − x| < q/R.

We will in a first time determine the secret up to an approximation factor q/R using a fast Fourier
transform on ≈ 2R points. We are therefore reduced to a smaller instance where the secret is bounded by
q/R and we can choose R′ = R2 for instance. Using one more time a Fourier Transform on 2R′/R = 2R
points, we can recover the secret up to an approximation factor of q/R′ = q/R2. We can continue so on, and
we get the final coordinate of the secret and repeating this process n − 1 times, we have the whole secret.

We define β =
√

log q/α and express all variables as functions of q.

Theorem 17. We can solve Search-LWE with n = 1, β = ω(1), β = qo(1/ log q) and distortion parameter
ϵ ≤ β−4 in time

q(1/2+o(1))/ log β

with failure probability q−Ω(1).

Proof. We analyze here the first iteration of the algorithm.
We set k = ⌊log(β2/ log β/3)⌋ the number of iterations, m = Θ(log q2kqx) the number of input samples

and Ri = q/Ri such that the vectorial part of the input of the ith reduction is sampled uniformly in a
ball of the largest odd radius smaller than Ri. If we have N samples, the Hoeffding inequality shows that
one reduction step outputs at least N(1/2 − 1/R − log q/R2) − R samples, except with probability q−Ω(1).
Therefore, we can use R = qx. For simplicity, we then set Rk = 3 so that R ≤ q1/a. The bias of the error is
at least exp(−2kα2)(1 − ϵ3k) ≥ exp(− log q/ log β/3)/2 so that taking x = 1/k works.

The overall complexity is O(log3 qβ2q1/k) which is q(1/2+o(1))/ log β .

B Solving LWE with Lattice Reduction

Lattice reduction consists in finding a basis of a lattice with short vectors. The best algorithm[20] uses a
polynomial number of times an oracle which returns the shortest non-zero vector of a lattice of dimension
d, and finds a vector whose norm is inferior to (γd + o(1))(n−1)/(d−1)V 1/n for a lattice of volume V and
dimension n, with γd ≤ 2B

1/d
d the square of the Hermite constant.

Heuristically, we use the BKZ algorithm which is stopped after a polynomial number of calls to the
same oracle. The i-th vector of the orthonormalized basis has a length proportional to roughly γi and the
Gaussian heuristic gives Bd = γd(d+1)/2 so that γ ≈ B

2/d2

d and the first vector has a norm ≈ γ−n/2V 1/n ≈
B

n/d2

d V 1/n ≈ dn/2/dV 1/n.
10 We can do it in logarithmic time using a binary balanced tree which contains in each node the size of the subtree.
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The oracle takes time 2(c+o(1))d with c = 2 for a deterministic algorithm[41], c = 1 for a randomized
algorithm[2], c = 0.2972 heuristically[29] and c = 0.286 heuristically and quantumly[30].

B.1 Primal algorithm

Given A and b = As + e + qy, with the coordinates of s and e being Gaussians of standard deviation
qα = o(q), we use the lattice generated by

B =
(

qI A
0 I

)
Now,

B
(

y
s

)
=

(
b
0

)
+

(
−e
s

)
.

We then heuristically assume that the i-th vector of the orthonormalized basis has a length at least
d−(n+m)/2/dV 1/(n+m). In the orthogonalized basis, the error vector has also independent gaussian coordinates
of standard deviation αq. Therefore, Babai algorithm will work with high probability if d−(n+m)/2/dV 1/(n+m) ≥
αq

√
log n.

Thus, we need to maximize d−(n+m)2/2/dqm/(n+m). So we use m+n =
√

2dn log q/ log d and the maximum
is

2−
√

n log q log d/2/d2log q(1−
√

n log d/2/d/ log q) = q2−
√

2n log q log d/d.

If α = n−a and q = nb, we need a log n =
√

2bn log n log d/d and we deduce d/n = 2b/a2 + o(1), so that the
running time is 2(2cb/a2+o(1))n.

When we have a binary secret and error, since only the size of the vectors counts, it is as if qα = O(1) and
the complexity is therefore 2(2c/b+o(1))n. When the secret is binary and the error is a Gaussian, the problem
is clearly even more difficult11.

In dimension 1, this gives log 1/α =
√

2 log q log d/d so that d = (2 + o(1)) log q log(log q/ log2 α)/ log2 α,
which gives a polynomial time algorithm for log2 α = Ω(log q log log log q/ log log q) and a subexponential
one for log2 α = ω(log log q).

We can use the same algorithm for subset-sum with density d with the lattice defined in subsection 5.1 :
applying the same heuristics gives a complexity of 2(c+o(1))nd log(nd)nO(1).

B.2 Dual algorithm

The attack consists in using lattice reduction to find sums of samples which are equal to zero on most
coordinates, and then use FindSecret to find the secret on the remaining coordinates. It has been described
for instance in [42].

More precisely, we select n truncated samples which form an invertible matrix A of size n; and m others
which form the matrix B with m columns. We then search for a short vector v ̸= 0 of the lattice generated

by
(

qI A−1B
0 I

)
.

We have v =
(

x
y

)
and A(−x) + By = A(−x + A−1By) = A0 = 0 mod q so we deduce from v a small

sum of samples which is equal to zero on n coordinates. We can then deduce a sample of low dimension with
bias e−||v||2α2 . As ||v|| is inferior to ≈ qn/(n+m)2(n+m) log d/d/2, so we select n + m =

√
2nd log q/ log d and

||v||2 ≈ 2
√

8n log q log d/d.
Finally, using α = n−a, q = nb and d = Θ(n), we search d so that 2

√
8n log q log d/d = O(d/α2) so that

d/n = 8b/(1 + 2a)2 + o(1).
11 In this case, a standard technique is to scale the coordinates of the lattice corresponding to e, in order to have

each coordinate of the distance to the lattice of the same average size.
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When the errors are binary, we can apply the same formula with α = Θ(1/q) and the complexity is
therefore 2(2cb/(1/2+b)2+o(1))n.

Observe that this algorithm is always asymptotically faster than the previous one, but requires an expo-
nential number of samples. This disadvantage can be mitigated by finding many short vectors in the same
lattice, which hopefully will not affect the behaviour of FindSecret. Another solution is to use a sample
preserving search-to-decision reduction [39] so that the product of the time and the square of the success
probability is the same.

In dimension 1, this gives log(d/α2) =
√

8 log q log d/d and we deduce

d = (8 + o(1)) log q log
(

log q/ log2(d/α2)
)
/ log2(d/α2)

and this is a polynomial time algorithm for log2 α = Ω(log q log log log q/ log log q), but a subexponential one
for any log(q)/α2 = ω(2

√
log log q).

B.3 Graphical Comparison between lattice algorithms and BKW

The horizontal axis represents the standard deviation of the noise, with x such that α = nx. The vertical
axis represents the modulus, with y such that q = ny.

In the upper right quadrant delimited by the black line, parameters are such that the dual attack with
heuristic classical SVP is more efficient than BKW. Below the black lines, Gröbner basis algorithms are
sub-exponential. Above the red line, there is a quantum reduction with hard lattice problems [46].

The rainbow-colored lines are contour lines for the complexity of the best algorithm among BKW and
the dual attack. Each curve follows the choice of parameters such that the overall complexity is 2(k+o(1))n,
where k varies from 0 to 5 by increments of 0.3.
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C LPN

Definition 13. A LPN distribution is defined as a LWE distribution with q = 2. The error follows a Bernoulli
distribution of parameter p.

Theorem 18. If we have p = 1/2 − 2−o(n) and p ≥ 1/n, then we solve Decision-LPN in time

2(n+o(n))/ log(n/ log(1−2p))

with negligible probability of failure.

Proof. We use di = min(i⌊nx⌋, n), m = n2k+nx and select k = ⌊log(β2/ log β/3)⌋ where β2 = n/2/ log(1 −
2p) = ω(1). The algorithm works if dk = n, so we chose x = 1/k +1/n = (1+o(1))/ log(β2). Finally, the bias
of the samples given to Distinguish is 2kα2 ≤ β2/ log β/3n/2/β2 = n/6/ log β ≤ nx/3 so that Distinguish
works with negligible probability of failure.

In particular, for p = 1/2 − 2−no(1) , we have a complexity of 2(n+o(n))/ log n.

Theorem 19. If we have p ≤ 1/4, then we solve Search-LPN in time O(n4(1 − p)−n) with negligible proba-
bility of failure.

Proof. We repeat n(1 − p)−n times the following algorithm : apply the secret-error switching algorithm
(Theorem 1) over 34n new samples, and run Distinguish over the scalar part of the 33n samples. If the
distinguisher outputs that it is a LPN distribution, then the secret is the zero vector with failure probability
2−33/32n, and we can recover the original secret from this data. If the new secret is not zero, then the
distinguisher outputs that the distribution is uniform, except with probability 2−33/32n. The probability
that no new secret is equal to zero is(

1 − (1 − p)n
)n(1−p)−n

≤ exp(−(1 − p)nn(1 − p)−n) = 2−Ω(n).

Using the union bound, the overall probability of failure is at most n42n2−33/32n = 2−Ω(n).
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In particular, for p = 1√
n

, the complexity is O(n4 exp(
√

n)). In fact, for p = (1 + o(1))/ ln(n) ≤ 1/4, we
have a complexity which is O(n4 exp(n(p + p2))) = 2(1+o(1))n/ log n, so that the threshold for p between the
two algorithms is in (1 + o(1))/ ln n.
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