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Abstract

An Attribute-Based Signcryption (ABSC) is a natural extension of Attribute-Based Encryption
(ABE) and Attribute-Based Signature (ABS), where we have the message confidentiality and authentic-
ity together. Since the signer privacy is captured in security of ABS, it is quite natural to expect that the
signer privacy will also be preserved in ABSC. In this paper, first we propose an ABSC scheme which is
weak existential unforgeable, IND-CCA2 secure in adaptive-predicates attack and achieves signer privacy.
Secondly, by applying strongly unforgeable one-time signature (OTS), the above scheme is lifted to an
ABSC scheme to attain strong existential unforgeability in adaptive-predicates model. Both the ABSC
schemes are constructed on common setup, i.e the public parameters and key are same for both the en-
cryption and signature modules. Our first construction is in the flavor of CtE&S paradigm, except one
extra component that will be computed using both signature components and ciphertext components.
The second proposed construction follows a new paradigm (extension of CtE&S), we call it “Commit
then Encrypt and Sign then Sign” (CtE&StS). The last signature is done using a strong OTS scheme.
Since the non-repudiation is achieved by CtE&S paradigm, our systems also achieve the same.

Keywords: Attribute-based encryption, Attribute-based signature, Attribute-based signcryption, Com-
mitment scheme.

1 Introduction

In the last couple of years, attribute-based encryption (ABE) has become a privilege way for encrypting a
message for many users. In this encryption, a message is encoded with a policy and a key is labeled with a set
of attributes. This form of ABE is known as ciphertext-policy attribute-based encryption (CP-ABE) and in
its dual form, key-policy attribute-based encryption (KP-ABE), the role of policy and the set of attributes
are interchanged. Since its introduction (Fuzzy Identity-Based Encryption) [SW05] till to date many
schemes have been proposed, some of them are CP-ABE [BSW07, LOS+10, OT10, Wat11, LW12], some
of them are KP-ABE [GPSW06, OSW07, LOS+10, OT10, ALdP11], most of them are selectively secure
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under chosen plaintext attack (CPA) [GPSW06, Wat11, OSW07, ALdP11], few of them are adaptively
secure under CPA [OT10, LOS+10, OT12] and very few of them are secure under chosen ciphertext attack
(CCA) [OT10] for general policies. But, there are techniques [CHK04, BK05, YAHK11, NP15] to convert
a CPA secure scheme to CCA secure scheme. However, the schemes that are adaptively secure under CCA
in the standard model seem to be more powerful.

Side by side with ABE, attribute-based signature (ABS) also draws much attention due to its versatility.
Unlike the traditional signature scheme, it captures unforgeability for a policy (group of users) and signer
privacy. Similar to ABE, in attribute-based signature a message is signed under a policy and a key is
associated with a set of attributes. We call this form of ABS as CP-ABS [OT11, MPR08, LAS+10, MPR10]
and its dual form, where the role of the policy and the set of attributes are reversed, is called KP-ABS
[SSN09]. Similar to the traditional signature, ABS can be weak existential unforgeable1 [OT11, MPR08,
MPR10, LAS+10] or strong existential unforgeable under chosen message attack (CMA). Most of the
ABS [SSN09] proposed so far are weak existential unforgeable. But, by a simple technique [HWZ07]
one can obtain strongly unforgeable signature scheme from weak unforgeable scheme. Since here the
message is signed under a policy, similar to ABE there are two types of unforgeability, selective-predicate
[SSN09, LAS+10] and adaptive-predicate [OT11, MPR08, MPR10].

Zheng [Zhe97] introduced the concept of signcryption that provides an efficient way of achieving the
message confidentiality and an authenticity together as compared to “Sign then Encrypt” approach. But
they have not given any formal security proof as no formal security model was known to them. Then J.Baek
et al. [BSZ02] first formalized the security notion for signcryption. Later An et al. [ADR02] proposed the
generic constructions of signcryption in three paradigm, “Sign then Encrypt (StE)”, “Encrypt then Sign
(EtS)” and “Commit then Encrypt and Sign (CtE&S)”. As compared to StE and EtS paradigms, CtE&S
has an advantage that in Signcrypt (resp. Unsigncrypt) both the routines, Encrypt and Sign (resp. Decrypt
and Ver) can be executed in parallel, i.e., in CtE&S paradigm both Signcrypt and Unsigncrypt run faster as
compared to other two paradigms. The generic constructions in [ADR02] were proven in two users model
in PKI setting, but using some minor modification one can have the same security in multi user setting.
Since it’s debut several signcryption schemes [MMS09, MLM03, LQ04a, LQ04b, DFMS10, CML05, Boy03]
have been proposed either in PKI setting or in IBE setting.

Meanwhile S.Haber et al. [HP01] first proposed the idea of combining public-key schemes, where an
encryption scheme and a signature scheme are combined to have the common public parameters and the
key. But the Encrypt and Decrypt (resp. Sign and Ver) of the encryption (resp. signature) scheme were kept
unchanged in the combined scheme. The security model is called joint security of the combined public-key
schemes, where in message confidentiality the adversary is given only the encryption component of the
challenge message but not the signature and in authenticity the adversary is has to forge a signature. In
both cases, the adversary will get access to some oracles. Later, Vasco et al. showed in [VHS08] that
the IBE scheme [BF01] and the IBS scheme [Hes02] can be combined in the joint security model. Then,
Paterson et al. showed in [PSST11] how to combine an IBE, a short signature and the data encapsulation
mechanism (DEM) to have a combined public-key schemes. However, in this joint security model semantic
security of the message is not possible if the signature of the challenge message is additionally given with
the challenge ciphertext.

It is natural to ask whether signcryption can be extended to the context of attribute-based cryptogra-
phy. It was Gagné et. al. [GNSN10] who first answered the question but the policy considered in their
construction (called attribute-based signcryption) was a threshold policy. Basically in their construction,
the structure of Fuzzy IBE in [SW05] and a new efficient threshold ABS were used as encryption primitive
and signature primitive respectively. Subsequently, Emura et al. [EMR12] proposed a dynamic attribute-

1Unless stated, existential unforgeable means weak existential unforgeable throughout this paper
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based signcryption (ABSC), where access structures of encryptor can be changed without re-issuing the
secret keys of the users. Both the signcryption scheme were shown to be secure (confidentiality and au-
thenticity) under selective-predicate attack. Since ABSC is a natural extension of both ABE and ABS,
and the signer privacy is preserved in ABS, so the signer privacy property is supposed to be inherited in
ABSC as well. But the later ABSC scheme lacks the property of signer privacy.

Chen et al. [CCL+12] proposed a scheme in combined public-key framework but in attribute-based
flavor. In their scheme the ABE and ABS modules have the same public parameters and the key distribu-
tion. Their scheme is based on the construction of Waters [Wat11] and was shown to be secure (selectively)
in the joint security model. Then they extended it to have a combined attribute-based signcryption (StE
paradigm).

Recently, Rao et al. [RD14] proposed a ABSC scheme with the constant size signcryption using the
technique of KP-ABE [RD13] and a new KP-ABS [RD14]. Moreover, the number of pairings involved
in unsigncryption is 6, but the key size is O(|Us|`s + |Ue|`e), where |Us| (resp. |Ue|) is size of the signer
(resp. receiver) attribute universe Us (resp. Ue) and `s (resp. `e) is size of the signer (resp. receiver)
policy. Both the confidentiality and unforgeability of their proposed scheme were shown to be secure in
selective-predicate model. The signer-privacy considered in their paper is a weaker version as compared to
the signer-privacy given in this full version. The unsigncryption time for [RD14] shown in the Table 1 is
basically the number of exponentiations.

Table 1: Performance of our CP-ABSC scheme. CS and |A| stand for the common setup and cardinality of
the set A respectively. The schemes supporting the common setup have the single key extraction algorithm
and in this case, we use A to indicate the user set of attributes. Otherwise two set of attributes, As and
Ae are used respectively for signcryption and unsigncryption. In later case, the individual key sizes are
separated by comma (,). Let `s and `e respectively denote the size of the signer policy Γs and receiver policy
Γe. M stands for maximum # repetition of an attribute in an access policy. Let ωs, ωe and d respectively
represent the signing set of attributes, encryption set of attributes and threshold value in [GNSN10]. Ue
and = respectively denote the attribute universe involved in encryption and length of verification key for
OTS. θe = 2|Ae| + 2= + 1. The sizes of the commitment and the one-time signature are described by ℘.
Let |IB| (resp. |IA|) be the minimum # row in the policy Γe (resp. Γs) labeled by the attribute set B
(resp. A) to compute the target vector ~1. Let ` be the length of bit string in the range of a hash function
H2 involved in the scheme [RD14]. The key size and signcryption size are measured by # group elements
involved in the key and signcryption respectively. The time for signcrypt is # exponentiations to construct
a signcryption, whereas the time for unsigncrypt is both # exponentiations and # pairings.

Scheme CS Key size Signcryption size Signcrypt time Unsigncrypt time

[GNSN10] No 2|As|, 3|Ae| O(|ωs| + |ωe|) O(|ωs| + |ωe|) O(|ωs| + d)
[EMR12] No 2|As|, θe O(`s + |Ue| + =) O(`s + |Ue| + =) O(`s + |Ue| + =)
[CCL+12] Yes M|A| + 2 2`s + `e + 4 O(`s) + O(`e) O(`s) + O(|IB |)
[RD14] No |Us|`s, |Ue|`e 6 O(IA) + O(`) O(IB) + O(`)
Our Yes M|A| + 2 2`s + 2`e + 5 + ℘ Max{O(`s),O(`e)} Max{O(`s),O(|IB |)}

1.1 Our Approach and Contribution

Our constructions are almost in the flavor of CtE&S paradigm. In CtE&S paradigm, a message m is first
committed to (c̆, d̆), then the commitment part c̆ and decommitment part d̆ are respectively signed to
σ and encrypted to % in parallel to produce the signcryption Υ := (c̆, σ, %). Similarly, in unsigncryption
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Table 2: Security features of our CP-ABSC scheme. the abbreviations SAS, EAS, Auth., Conf., NR, SP,
APM, NK, MAT, MSP, AGW, KP and CP stand for signing access structure, encryption access structure,
signcryption unforgeability, confidentiality of message, non-repudiation, signer-privacy, adaptive-predicates
model, not known, monotone access tree, monotone span program, AND-gate with wildcard respectively,
key-policy and ciphertext-policy.

Scheme Type SAS EAS Auth. Conf. NR SP APM

[GNSN10] KP Threshold Threshold wUF-CMA IND-CCA2 No NK No
[EMR12] CP MAT AGW sUF-CMA IND-CCA2 Yes No No
[CCL+12] CP MSP MSP sUF-CMA IND-CCA2 Yes Yes No
[RD14] KP MSP MSP sUF-CMA IND-CCA2 Yes Yes No
Our CP MSP MSP sUF-CMA IND-CCA2 Yes Yes Yes

the verification (to verify σ) and the decryption (to get the d̆) run in parallel to extract the message as
m := Open(c̆, d̆). But this generalized construction [ADR02] never achieves strong unforgeability (resp.
CCA2 security) in the insider security model as long as the primitive encryption algorithm (resp. the
primitive sign algorithm) is probabilistic.

Our first CP-ABSC construction achieves signer privacy, adaptive-predicates weak unforgeability, and
adaptive-predicates IND-CCA2 security in the standard model. Moreover, our constructions support the
combined public-key environment of “Combined Public-Key scheme”, viz, both the primitives, encryption
and signature have a common setup, i.e., the public parameters and key are identical. Suppose we want a
signcryption for a message m under the policies2 (Γs,Γe). Let σ := (~S0, . . . , ~S`s) be the signature for (c̆,Γs),
generated by a primitive CP-ABS, where (c̆, d̆)←− Commit(m). Let %0 := (~C0, . . . , ~C`e) be the ciphertext
generated by a primitive CP-ABE that conceals d̆ under a policy Γe. To achieve the CCA2 security, we first
bind all the components ~Si’s and ~Ci’s through a collision resistant hash function He : {0, 1}∗ −→ ZN to
he := He(Γe,Γs, c̆, %0, σ). Then we encode he using a secret se involved in the encryption of the primitive
CP-ABE and Boneh-Boyen hash technique [BB04] to an additional ciphertext component C`e+1. This
basically prevents the adversary A from changing the challenge signcryption except the component C`e+1,
but if it gets changed then it will be recognized via a verification process. If the primitive CP-ABS scheme
is weak unforgeable and the commitment scheme has relaxed-binding property, then proposed CP-ABSC
scheme is shown to be weak unforgeable.

Our second CP-ABSC scheme additionally achieves strong unforgeability in adaptive-predicates attack3.
First notice that in the former scheme the adversary can modify the replied signcryption for a message
(m,Γs,Γe) : since A has access to key SKA with Γe(A) = True, so it can extract d̆ from % and then
re-encrypts it to get modified (new) signcryption for the same message (m,Γs,Γe). Therefore, the former
scheme does not achieve the strong unforgeability. The later scheme is obtained by combining the former
scheme and a strong one-time signature (OTS) scheme. Essentially, we sign he||C`e+1 using strong OTS
scheme to guarantee that the signcryption for a message can not be altered even if the adversary knows
the unsigncryption key. Surprisingly, the strong unforgeability of this CP-ABSC scheme relies only on the
weak unforgeability of the primitive CP-ABS scheme and the strong unforgeability of the primitive strong
OTS scheme, i.e., no more relaxed-binding property of the primitive commitment scheme is required.

2Γs and Γe are respectively signer policy (i.e., on whom behalf, signer signs m) and receiver policy (i.e., who will be eligible
for this plaintext m)

3We remark that adaptive-predicates IND-CCA2 security (resp. existential unforgeability) and IND-CCA2 security (resp.
existential unforgeability) in adaptive-predicates attack both carry the same meaning
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The primitive CP-ABE scheme considered here is a (CCA2) variant4 of CP-ABE scheme of Lewko
et al. in [LOS+10]. Our primitive CP-ABS scheme (in section 3) has the similar structure as of ABS
scheme in the combined public-key framework [CCL+12] except - (a) the encoding from hash of message to
group element, and (b) the bilinear pairing groups. The ABS scheme of [CCL+12] was proven in selective-
predicate model, whereas ours is shown to be secure in adaptive-predicate model. Since the adaptive
security (confidentiality and authenticity) is one of the main motivations of our work, we must require
the adaptive-unforgeability of the primitive CP-ABS scheme. Therefore, the ABS of [CCL+12] can not be
applied directly to our CP-ABSC schemes. Another reason for moving prime to composite order pairing
groups is to fit the ABS scheme to CP-ABE scheme of [LOS+10]. There are many commitment schemes
[DF02, HM96, Ped91] suitable for our systems, but we use them as a black box in our constructions.

Summary of our contribution. To the best of our knowledge, this is the first scheme having strong
unforgeability and IND-CCA2 security in adaptive-predicates model. Since our solution supports CtE&S
paradigm, Signcrypt and Unsigncrypt run faster as compared to other paradigms, viz, EtS and StE . Our
system is based on the common setup, i.e the public parameters and key are same for both the encryption
and signature module. In addition it supports non-repudiation, dynamic property and signer privacy. A
details comparisons of performance and the security features between our scheme and others are given
in Table 1 and Table 2. The proofs of confidentiality and unforgeability are based on the dual system
methodology of [Wat09]. The unforgeability of the CP-ABSC scheme appeared in ProvSec, 2014 was proven
without giving unsigncryption oracle access to the adversary A . However, in Appendix E we provide the
proof of unforgeability of CP-ABSC scheme (in section 7), where A is given access to unsigncryption
oracle.

Discussion First of all note that our proposed solution is not generic. One may think that using the
generic construction of An et al. [ADR02] such constructions are possible, but this is not possible for the
following reasons : We first emphasize that CtE&S paradigm preserves only weak unforgeability and IND-
gCCA2 (see footnote 5). But here our proposed scheme attains both strong unforgeability and IND-CCA2
security in adaptive-predicates attack. Secondly, our solution supports the common setup for encryption
and signature in combined public-key environment and so the security proof can not carry through in
CtE&S paradigm. Therefore, we would say our first construction is almost in CtE&S paradigm, but
unlike to CtE&S, an extra component is computed using signature and ciphertext components. And our
construction is in the flavor of CtE&StS paradigm, where the last sign is done using a strong one time
signature.

1.2 Organization

This paper is organized as follows. For better readable, we provide notations, composite order pairing and
hardness assumptions in section 2. An adaptive-predicate existential unforgeable CP-ABS scheme and its
security are provided respectively in section 3 and 4. An adaptive-predicates weak existential unforgeable
and adaptive-predicates IND-CCA2 secure CP-ABSC scheme and its security are given respectively in
section 5 and 6. In section 7, our adaptive-predicates strong existential unforgeable and adaptive-predicates
IND-CCA2 secure CP-ABSC scheme and its security are demonstrated.

4This is not explicitly given but the signcryption scheme implicitly contains it
5IND-gCCA2 is a weaker security notion than IND-CCA2. For details refer to [ADR02]

5



2 Preliminaries

Basic notation, definitions and hardness assumptions are provided in this section. For definition and
security model of Strongly Unforgeable One-Time Signature, CP-ABS and CP-ABSC, refer to Appendix
A, B and C respectively.

Notation The notations [`] and gT respectively stand for {i ∈ N : 1 ≤ i ≤ `} and the set e(g, g), where
e is a bilinear pairing. Let the vectors ~1 and ~0 respectively denote (1, 0, . . . , 0) and (0, 0, . . . , 0), where the
length of the vectors will be understood from the context. Let ~Y := (y1, . . . , yn) and ~W := (w1, . . . , wn)
be two vectors, then ~Y . ~W denotes the dot product of ~Y and ~W , i.e., ~Y . ~W :=

∑n
i=1 yiwi. For S ⊂ Z`sN and

~α ∈ Z`sN , we define ~α+S := {~α+ ~β | ~β ∈ S}. For a set X, x
R←− X denotes that x is randomly picked from

X according to the distribution R. Likewise, x
U←− X indicates x is uniformly selected from X. To better

understand the schemes, we use two subscripts, s and e respectively for encryption and signature. Through
out this paper, we will use the symbol Γ := (M,ρ) for the monotone span programs, where ` × n stands
for the order of the matrix M . For an access structure Γ and a set attributes A, Γ(A) stands for boolean

variable, i.e, Γ(A) = True if A satisfies Γ, else Γ(A) = False. For a matrix Me (resp. Ms), the symbol ~M
(i)
e

(resp. ~M
(i)
s ) represents the ith row of the matrix Me (resp. Ms). The subscripts i and superscript (i) will

be used for indexing. Let str1|| . . . ||strn denote the concatenation of the strings, str1, . . . , strn ∈ {0, 1}∗.
Alg1 ‖ . . . ‖ Algn stands for the parallel execution of the algorithms, Alg1, . . . , Algn.

Definition 2.1 (Access Structure). Let P = {P1, P2, ..., Pn} be a set of attributes. A collection Γ ⊂ 2P

is said to be monotone if Γ is closed under superset, i.e, if ∀ B,C: if B ∈ Γ and B ⊂ C, then C ∈ Γ.
An access structure (respectively, MAS) is a collection (respectively, monotone collection) Γ of non-empty
subsets of P, i.e., Γ ⊂ 2P \ {∅}.

Definition 2.2 (Linear Secret Sharing Scheme). [Bei96] A secret sharing scheme Π for an access structure
Γ over a set of parties P = {P1, P2, ..., Pn} is called linear (over Zp) if

– The shares for each party form a vector over Zp.

– There exists a matrix, A called the share generating matrix for Π. The matrix A has l rows and n
columns. For all i = 1, 2, .., l, the ith row of A is labeled by a party ρ(i) (ρ is the function from
{1, 2, ..., l} to P). When we consider the column vector ~v = (s, r2, ..., rn), where s ∈ Zp is the secret
to be shared and r2, ..., rn ∈R k are chosen, then A~v is the vector of l shares of the secret s according
to Π. The share (A~v)i belongs to party ρ(i).

Every Linear Secret Sharing Scheme (LSSS) enjoys the linear reconstruction property by [Bei96]:
Suppose that Π is an LSSS for an access structure Γ. Let S ∈ Γ be an authorized set. Let
I = {i ∈ [l] : ρ(i) ∈ S}. Then there exists constants {αi ∈ Zp}i∈I such that if {si} are valid shares
of any secret s according to Π, then

∑
i∈I αisi = s. These constants {αi} can be found in time polynomial

in the size of the share-generating matrix A. This LSSS will be used in our constructions, both ABS and
CP-ABSC.

2.1 Commitment scheme

A non-interactive commitment scheme consists of three PPT algorithms - Setup, Commit and Open.

• Setup: It takes a security parameter κ and outputs a public commitment key CK.
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• Commit: It takes as input a message m, the public commitment key CK and returns a pair
(com, decom), where com is a commitment of the message m and decom is the decommitment.

• Open: takes a pair (com, decom), the public commitment key CK as input and outputs m or ⊥.

For correctness, it is required that6 Open(Commit(m)) = m for all message m ∈ M, where M is the
message space.

2.2 Security of Commitment

A commitment scheme is said to have Hiding, Binding and Relaxed-Binding properties if it satisfies the
following respectively:

Hiding: For all PPT A the following is negligible:∣∣∣∣∣Pr

[
CK ←− C.Setup(1κ), (m0,m1, st)←− A (CK),

b
U←− {0, 1}, (comb, decomb)←− Commit(CK,mb),

: A (CK, st, comb) = b

]
− 1

2

∣∣∣∣∣ .
Binding: For all PPT A the following is negligible:

Pr

[
CK ←− C.Setup(1κ), (com, decom, decom′)←− A (CK),
m←− Open(com, decom), m′ ←− Open(com, decom′),

: (m 6= m′) ∧ (m,m′ 6=⊥)

]
.

Relaxed-Binding: For all PPT A the following is negligible:

Pr

[
CK ←− C.Setup(1κ), (m, st)←− A (CK), (com, decom)←− Commit(m),

decom′ ←− A (CK, st, com, decom), m′ ←− Open(com, decom′),
: (m 6= m′) ∧ (m′ 6=⊥)

]
.

Remark 2.1. The relaxed-binding property is weaker than the binding property.

2.3 Composite Order Bilinear Groups

Let G be an algorithm which takes 1κ as a security parameter and returns a description of a composite
order bilinear groups, J := (N := p1p2p3,G,GT , e), where p1, p2, p3 are three distinct primes and G and
GT are cyclic groups of order N and e : G×G→ GT is a map such that

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT

Let Gp1 ,Gp2 and Gp3 respectively denote the subgroups of G of order p1, p2 and p3. Let hi ∈ Gpi and
hj ∈ Gpj be arbitrary elements with i 6= j, then e(hi, hj) = 1. This property is called orthogonal property
of Gp1 ,Gp2 ,Gp3 .

2.4 Hardness Assumptions

We describe here three Decisional SubGroup (DSG) assumptions for 3 primes, DSG1, DSG2 and DSS3
in composite order bilinear groups. These assumptions were used by Lewko et al. in [LOS+10, LW10] to
prove the adaptive security of their schemes in the standard model.

6For brevity, we just omit CK in Open and Commit algorithm throughout this paper
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DSG1 Assumption
Define the following distribution :

J := (N = p1p2p3,G,GT , e)
U←− G(1λ), g

U←− Gp1 , X3
U←− Gp3

D := (J , g,X3), T0
U←− Gp1 , T1

U←− Gp1p2

Now, the advantage of an algorithm A in breaking DSG1 Assumption is defined by

AdvDSG1
A (κ) = |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|

We say that the DSG1 assumption holds if for every PPT algorithm A , the advantage AdvDSG1
A (κ) is a

negligible function of the security parameter κ.

DSG2 Assumption
Define the following distribution :

J := (N = p1p2p3,G,GT , e)
U←− G(1λ), g,X1

U←− Gp1 , X2, Y2
U←− Gp2 , X3, Y3

U←− Gp3

D := (J , g,X1X2, Y2Y3, X3), T0
U←− Gp1p3 , T1

U←− G

Now, the advantage of an algorithm A in breaking DSG2 Assumption is defined by

AdvDSG2
A (κ) = |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|

We say that the DSG2 assumption holds if for every PPT algorithm A , the advantage AdvDSG2
A (κ) is a

negligible function of the security parameter κ.

DSG3 Assumption
Define the following distribution :

J := (N = p1p2p3,G,GT , e)
U←− G(1λ), α, s

U←− ZN , g
U←− Gp1 , X2, Y2, Z2

U←− Gp2 , X3
U←− Gp3

D := (J , g, gαX2, g
sY2, Z2, X3), T0 := e(g, g)αs, T1

U←− GT

Now, the advantage of an algorithm A in breaking DSG3 Assumption is defined by

AdvDSG3
A (κ) = |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|

We say that the DSG3 assumption holds if for every PPT algorithm A , the advantage AdvDSG3
A (κ) is a

negligible function of the security parameter κ.

3 Basic Ciphertext-Policy Attribute-Based Signature

Illustrated here is a basic ciphertext-policy attribute-based signature (CP-ABS) scheme for monotone span
program (MSP) in the composite order pairing groups (N := p1p2p3,G := Gp1 × Gp2 × Gp2 ,GT , e), for
3 distinct primes p1, p2 and p3. The subgroup Gp2 has no role in this scheme but it will be used to
prove the security. As we mentioned earlier that the proposed CP-ABS scheme has the similar structure
to that of [CCL+12] except some minor modifications, viz., the encoding function from hash of messages
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to group elements and pairing groups. To guarantee the unforgeability of the ABS scheme in adaptive-
predicate model, we allow such modifications. In this basic CP-ABS construction, the policies, i.e., MSPs
are restricted to have each entry of row labeling function ρs to be distinct. In other word, the row
labeling functions ρs of the monotone span programs Γs := (Ms, ρs) are injective. From this basic CP-ABS
construction one can easily lift to full CP-ABS construction by a mechanism described in appendix D.

Setup(1κ,U): It executes G(1κ) to have composite order bilinear groups descriptor, J := (N :=

p1p2p3,G,GT , e) with known factorization p1, p2 and p3 of N . It chooses g
U←− Gp1 , X3

U←−
Gp3 , a, as, bs, α

U←− ZN and ti
U←− ZN for each attribute i ∈ U . It then sets us := gas , vs := gbs , Ti := gti

for i ∈ U . Let Hs : {0, 1}∗ −→ ZN be a hash function. The public parameters and master secret are given
by

PP := (J , g, ga, us, vs, gαT , {Ti}i∈U , X3, Hs)
MSK:= (α).

KeyGen(PP,MSK, A): It picks t
U←− ZN , R,R′0

U←− Gp3 . For each attribute i ∈ A, the algorithm chooses

Ri
U←− Gp3 and outputs the secret key

SKA := [A, K := gα+atR, L := gtR′0, Ki := Ti
tRi, ∀i ∈ A].

Sign(PP,m,SKA,Γs := (Ms, ρs)): Let Ms be an `s × ns matrix. Suppose Γs(A) = True, then there

exist IA ⊂ [`s] and {α(i)
s }i∈IA such that

∑
i∈IA α

(i)
s
~M

(i)
s = ~1. It selects ~β

U←− {~β = (~β1, . . . , ~β`s) ∈
Z`sN |

∑
i∈[`s] βi

~M
(i)
s = ~0}. Suppose SKA := [A, K := gα+atR, L := gtR′0, Ki := Ti

tRi, ∀i ∈ A], then it
re-randomizes the key SKA as follows:

S̃KA := [A, K̃ := K.gat̂, L̃ := L.gt̂, K̃i := Ki.Ti
t̂, ∀i ∈ A], where t̂

U←− ZN
:= [A, K̃ := gα+at̃R, L̃ := gt̃R′0, K̃i := Ti

t̃Ri, ∀i ∈ A], where t̃ := t+ t̂

It picks rs, τ
U←− ZN , R̄, R̄0

U←− Gp3 and for each i ∈ [`s], it chooses R̄i
U←− Gp3 . Then it computes

hs := Hs(m||Γs). The components of signature are given by

~S0 :=
(
K̃(uhss vs)

rsR̄, grsR̄0

)
~Si :=

(
L̃α

(i)
s (gτ )βiR̄i, (K̃ρs(i))

α
(i)
s (Tρs(i))

τβiR̄′i
)

for i ∈ [`s]. For i 6∈ IA, α
(i)
s := 0

After simplification, it gives

~S0 :=
(
gα+at̃(uhss vs)

rsR̃, grsR̃0

)
, where R̃ := RR̄, R̃0 := R̄0

~Si :=
(

(gt̃)α
(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)
, where R̃i := (R′0)

α
(i)
s R̄i, R̃′i := Rα

(i)
s +τβi
ρs(i)

R̄′i

The final output (signature) is σ := (~S0, {~Si}i∈[`s])
Ver(PP,m, σ,Γs): It first computes a verification text, then using this verification text it will verify the

signature. The following is the construction of verification text: It picks ~us := (s, u2, . . . , uns)
U←− ZnsN and

r
(i)
s

U←− ZN for i ∈ [`s]. It computes hs := Hs(m||Γs). Let M
(i)
s denote the ith row of the matrix, Ms and

let λ
(i)
s := ~M

(i)
s .~us. The components of verification text are given by

~V0 :=
(
gs, (uhss vs)

s, gαsT
)

~Vi :=
(
gaλ

(i)
s T−r

(i)
s

ρs(i)
, gr

(i)
s
)
, for i ∈ [`s]

The final verification text is V := (~V0, {~Vi}i∈[`s])

Now, it computes ∆s := e(S01,V01)

e(S02,V02)
∏`s
i=1(e(Si1,Vi1)e(Si2,Vi2))

and checks ∆s
?
= V03. It returns 1 if ∆s = V03,

else returns 0.
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Correctness.

∆s =
e(S01, V01)

e(S02, V02)
∏`s
i=1(e(Si1, Vi1)e(Si2, Vi2))

=
gαs+at̃sT .e(uhss vs, g)srs

e(uhss vs, g)srs .
∏`s
i=1(e(g

t̃α
(i)
s +τβi , gaλ

(i)
s −r

(i)
s tρs(i)).e(gt̃αitρs(i)+τβitρs(i) , gr

(i)
s ))

=
gαs+at̃sT∏`s

i=1 g
at̃λ

(i)
s α

(i)
s +aτλ

(i)
s βi

T

=
gαs+at̃sT

g
at̃

∑`s
i=1 λ

(i)
s α

(i)
s +aτ

∑`s
i=1 λ

(i)
s βi

T

= gαsT

4 Security Proof of CP-ABS

Theorem 4.1. The proposed attribute-based signature scheme in section 3 is perfectly private.

Proof. Let A1 and A2 be two sets of attributes and Γs := (Ms, ρs) be an access policy such that

Γs(A1) = Γs(A2) = True. Then, there exist sets IA1 ⊂ [`s], IA2 ⊂ [`s] and {α(i)
s1 }i∈[`s], {α

(i)
s2 }i∈[`s] such that∑

i∈IA1
α
(i)
s1
~M

(i)
s = ~1 and

∑
i∈IA2

α
(i)
s2
~M

(i)
s = ~1. In other word, there exist vectors ~αs1 and ~αs2 such that∑`s

i=1 α
(i)
s1
~M

(i)
s =

∑`s
i=1 α

(i)
s2
~M

(i)
s = ~1, where α

(i)
s1 = 0 if i 6∈ IA1 and α

(i)
s2 = 0 if i 6∈ IA2. We will show that

the signatures σ1 and σ2 generated respectively by the keys SKA1 and SKA2 on behalf of access policy
Γs are identical. First of all note that the Gp3 components in the signature do not carry any information
about the attributes used to sign a message. An unbounded adversary can compute the values rs, t̃ using
the public parameter and ~S0, but since these values are chosen uniformly and independently random from
ZN , these values also do not carry any information regarding the attribute set used to sign the message.
So, ~S0 of any two signatures are identical. The only parts of the signature carrying the information of
attributes are ~Si for i ∈ [`s]. Now consider two system of equations, homogeneous and non-homogeneous
given below

`s∑
i=1

βi ~M
(i)
s = ~0 (1)

`s∑
i=1

α(i)
s
~M (i)
s = ~1 (2)

Let Y0 := {~β
∣∣∣∑`s

i=1 βi
~M

(i)
s = ~0} and Y1 := {~αs

∣∣∣∑`s
i=1 α

(i)
s
~M

(i)
s = ~1} respectively denote the solution

set of equation 1 and 2. Let ~αs1 and ~αs2 be any two solutions of system 2, then we can write Y1 =

~αs1 + Y0 = ~αs2 + Y0. So, the distribution of ~αs1 + ~β and ~αs2 + ~β are identical for ~β
U←− Y0. Therefore,

the distribution of (t̃1α
(i)
s1 + τ1βi)i∈[`s] and (t̃2α

(i)
s2 + τ2βi)i∈[`s] are identical. Since the distribution of ~Si is

(gt̃α
(i)
s +τβi , g(t̃α

(i)
s +τβi)tρs(i)), the distribution of the signatures σ1 and σ2 are identical.

Theorem 4.2. The proposed basic CP-ABS scheme is adaptive-predicate existential unforgeable if DSG1,
DSG2 and DSG3 assumptions hold and Hs is a collision resistant hash function.

Due to the space limitation, the proof is provided in the Appendix B.3
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5 Basic Ciphertext-Policy Attribute-Based Signcryption

In this section, we present our basic ciphertext-policy attribute-based signcryption (CP-ABSC) supporting
monotone span programs. The scheme is based on the composite order bilinear pairing groups. Here we
consider two policies, sender policy Γs := (Ms, ρs) and receiver policy Γe := (Me, ρe). Similar to section 3,
in our basic CP-ABSC scheme, both the row labeling functions ρs and ρe are assumed to be injective. By
applying the mechanism illustrated in appendix D, a full CP-ABSC construction is easily obtained.

This construction is almost in the flavor of CtE&S paradigm. To construct our scheme, we
use a commitment scheme with hiding and relaxed-binding properties, CCA2 version (implicit)
encryption scheme of [LOS+10] and the ABS scheme described in section 3. Let ΠABS :=
(ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Ver) and ΠCommit := (C.Setup,Commit,Open) be respectively the
ABS scheme described in section 3 and commitment scheme.

Setup(1κ,U): C.Setup(1κ) −→ CK, ABS.Setup(1κ,U) −→ (ABS.PP,ABS.MSK). It chooses ae, be
U←− ZN

and sets ue := gae , ve := gbe . Let He : {0, 1}∗ −→ ZN be a hash functions. The public parameters
(combining ABS.PP, CK and ue, ve, He) and master secret are given by

PP := (I, g, ga, us, ue, vs, ve, gαT , {Ti}i∈U , X3, Hs, He, CK)
MSK:= ABS.MSK = (α)

KeyGen(PP,MSK, A): SKA ←− ABS.KeyGen(ABS.PP,MSK, A)

Signcrypt(PP,m,SKA,Γs := (Ms, ρs),Γe := (Me, ρe)): Let Ms (resp. Me) be an `s × ns (resp. `e × ne)
matrix. It runs (c̆, d̆)←− Commit(m). The Signcrypt algorithm has two part, Sign and Encrypt, both run
in parallel except one component of the ciphertext part, viz, C`e+1.

Sign: σ := (~S0, {~Si}i∈[`s]) ←− ABS.Sign(ABS.PP, (c̆||Γe),SKA,Γs := (Ms, ρs)), where the components
are given by

~S0 :=
(
gα+at̃(uhss vs)

rsR̃, grsR̃0

)
, where hs := Hs((c̆||Γe)||Γs)

~Si :=
(

(gt̃)α
(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

Encrypt : It picks ~ue := (se, u2, . . . , une)
U←− ZneN and r

(i)
e

U←− ZN for i ∈ [`e]. Let M
(i)
e denote the ith row

of the matrix, Me and let λ
(i)
e := ~M

(i)
e .~ue. The ciphertext components of the signcryption are given

by

~C0 :=
(
gse , d̆.gαseT

)
~Ci :=

(
gaλ

(i)
e T−r

(i)
e

ρe(i)
, gr

(i)
e
)
, for i ∈ [`e]

Now, it sets %0 := (~C0, {~Ci}i∈[`e]) and computes he := He(c̆, %0, σ). Then, it computes the last
component

C`e+1 := (uhee ve)
se

So, the ciphertext part of the signcryption is % := (%0, C`e+1).

It outputs the signcryption Υ := (c̆, σ, %)

Unsigncrypt(PP,Υ,SKB,Γs := (Ms, ρs)): Let Γe := (Me, ρe) be the policy for receiver implicitly contained
in Υ. Ms (resp. Me) be an `s×ns (resp. `e×ne) matrix. This algorithm consists of two routines, Ver and
Decrypt run in parallel.

Ver : flag←− ABS.Ver(PP, (c̆||Γe), σ,Γs). If flag = 0, it returns ⊥
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Decrypt : It computes he := He(c̆, %0, σ). Then it checks e(g, C`e+1)
?
= e(uhee ve, C01) and if the equality

does not hold, it returns ⊥. If Γe(B) 6= True, it returns ⊥, else there exist IB ⊂ [`e] and {α(i)
e }i∈IB

such that
∑

i∈IB α
(i)
e
~M

(i)
e = ~1. Then, it picks r

U←− ZN , R0
U←− Gp3 and computes

∆e :=
e(K.(uhee ve)

r, C01)

e(grR0, C`e+1)
∏
i∈IB (e(L,Ci1).e(Kρe(i), Ci2))

α
(i)
e

and m := Open(c̆, C02/∆e)

Finally it returns the message m

Correctness. It follows from the correctness of Ver and Decrypt routines. Since, the correctness of Ver
is immediate from that of ABS in section 3, we illustrate here only the correctness of Decrypt.

∆e =
e(K.(uhee ve)

r, C01)

e(grR0, C`e+1)
∏
i∈IB (e(L,Ci1).e(Kρe(i), Ci2))

α
(i)
e

=
gαse+atseT .e(uhee ve, g)rse

e(uhee ve, g)rse
∏
i∈IB ((g

atλ
(i)
e −tρe(i)r

(i)
e

T )(g
tρe(i)r

(i)
e

T ))α
(i)
e

=
gαse+atseT∏

i∈IB g
atα

(i)
e λ

(i)
e

T

=
gαse+atseT

g
at

∑
i∈IB

α(i)
eλ

(i)
e

T

= gαseT

Open(c̆, C02/∆e) = Open(c̆, d̆) = m

A high level description of our scheme. In the construction above, we implicitly employ a variant of
CP-ABE scheme of [LOS+10] which has the same public parameters and key as the primitive ABS scheme
ΠABS. Let ΠABE := (ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) be the CP-ABE scheme involved
in above construction. The descriptions of Signcrypt and Unsigncrypt are given below.

Signcrypt(PP,m,SKA,Γs,Γe): It runs (c̆, d̆) ←− Commit(m). Then, it executes in parallel %0 ←−
ABE.Encrypt(PP, d̆,Γe) and σ ←− ABS.Sign(PP, c̆||Γe,Γs). Then, it computes he := He(c̆, %0, σ) and
C`e+1 ←− fun(PP, he, se), for some function fun (see footnote 7 ). It sets % := (%0, C`e+1) and outputs
Υ := (c̆, σ, %)

Unsigncrypt(PP,Υ,SKB,Γs,Γe): It runs in parallel flag ←− ABS.Ver(PP, c̆||Γe, σ,Γs) and d̆ ←−
ABE.Decrypt(PP, %,SKB,Γe). If flag = 1, it returns Open(c̆, d̆) else ⊥.

Non-Repudiation (Publicly Verifiability). Receiver gives a signcryption Υ := (c̆, σ, %) for (m,Γs,Γe)
and the decommitment part d̆ extracted from % to a third party. Since, the primitive commitment scheme
ΠCommit has relaxed-binding property, for given a valid pair (c̆, d̆) for m, the receiver can not fool the third
party by giving d̆′ such that (c̆, d̆′) is also a valid pair for m′ with m′ 6= m. The objective of the receiver is
to convince the third party that the signcryption is actually produced by the sender. Now, the third party
can verify the signature part σ of Υ against c̆ by the verification algorithm of ABS. If it fails, it means that

the receiver fails to convince the third party. Otherwise, the third part checks m
?
= Open(c̆, d̆) and if it is

True then, the third is convinced that the signcryption Υ is actually sent by the claim sender else receiver
fails.

7fun(PP, he, se) = (uhe
e ve)

se , where se is the secret involved in ABE.Encrypt.
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Dynamic property. In Dynamic attribute-based system, a new attribute can be added dynamically
to the system without re-issuing the whole secret key of the user. Here a user sends it’s one secret key
component, viz, L := gtR′0 to the PKG and then PKG will send the secret key component corresponding
to the new attribute : Suppose att is a new attribute, then PKG computes Tatt := gtatt by choosing

tatt
U←− ZN , keeps tatt to itself and adds Tatt to PP. Then, it sets Katt := LtattRatt by picking Ratt

U←− Gp3

and returns it to the user.

6 Security Proof of CP-ABSC

6.1 Perfect Privacy of CP-ABSC

Theorem 6.1. The proposed attribute-based signcryption scheme in section 5 is perfectly private.

Proof. It is immediate from Theorem 4.1.

6.2 Adaptive-Predicates IND-CCA2 security of CP-ABSC

Since, the CP-ABSC has perfect privacy, we replace through out the proofs the actual Signcrypt algorithm
by an alternative algorithm, AltSigncrypt defined in section C. For notational simplicity, we do not use
the term “AltSigncrypt” in the proofs. We note that all the Signcrypt oracles appeared in the proofs are
basically AltSigncrypt oracles. We prove the adaptive-predicates IND-CCA2 security of our basic ABSC
scheme using dual system methodology of Brent Waters [Wat09]. To utilize this methodology we define
a new form of key, unsigncryption-query key. This key will be used to answer the unsigncryption-query
in the security proof. In this methodology, we also define semi-functional signcryptions, semi-functional
unsigncryption-query keys and semi-functional keys. Considered here are six types of semi-functional
signcryptions, viz., type I, type II, type 1, type 2, type 3 and type 4. Two forms of keys are defined here –
type 1 and type 2. Our semi-functional unsigncryption-query keys consist of two forms, viz., type 1 and type
2. In the sequence of games, the challenge signcryption is first changed from normal to semi-functional type
1. Then, each queried key is changed from normal to semi-functional type 1, then semi-functional type 1 to
type 2. Then, each each queried signcryption is changed from normal to semi-functional type II via semi-
functional type I. Similarly, each unsigncryption-query key is changed from normal to semi-functional type
1, then from type 1 to type 2. Again, the challenge signcryption is changed from semi-functional type 1 to
type 2 and then from type 2 to type 3. In the final game, the semi-functional type 3 challenge signcryption
is changed to semi-functional type 4, where the decommitment part d̆b is masked with a random element
from GT to compute the C02 part of the challenge signcryption. Therefore, in the final game the challenge
message mb is completely hidden unless the commitment part c̆b of mb leaks any information.

In the following material, the part framed by a box indicates that either it will be changed in next
description or it has been changed from previous description. Also, we use the abbreviation ‘sf’ and ‘uq’
for ‘semi-functional’ and ‘unsigncryption-query’ respectively.

Semi-functional Type I Signcryption. This is same as normal signcryption except the signature
component ~S0 described below

~S0 :=
(
gα+at̃(uhss vs)

rsR̃ gd̃2 , g
rsR̃0 g

b̃
2

)
, where b̃, d̃

U←− ZN
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Semi-functional Type II Signcryption. This is same as sf-type I signcryption except b̃ = 0, i.e.,

~S0 :=
(
gα+at̃(uhss vs)

rsR̃gd̃2 , g
rsR̃0

)
Semi-functional Type 1 Signcryption. Pick c, ι

U←− ZN , ~ve
U←− ZnsN . For each i ∈ [`e], pick γ

(i)
e

U←−
ZN . For each i ∈ U , choose zi

U←− ZN . The sf-type 1 signcryption is obtained by modifying normal
signcryption, viz, the ciphertext part but the signature part will be same as in normal signcryption.
Let Υ := (c̆, σ, %) be a normal signcryption, where the ciphertext part is % = (%0, C`e+1) and %0 :=
(~C0, {~Ci}i∈[`e]). So, the sf-type 1 signcryption is obtained by modifying the ciphertext part of the normal
signcryption. (See footnote 8)

~C0 :=
(
gse gc2 , d̆.g

αse
T

)
~Ci :=

(
gaλ

(i)
e T−r

(i)
e

ρe(i)
g
~M

(i)
e .~ve+γ

(i)
e zρe(i)

2 , gr
(i)
e g−γ

(i)
e

2

)
, for i ∈ [`e]

C`e+1 := (uhee ve)
se gι2

Semi-functional Type 2 Signcryption. This is same as sf-type 1 signcryption except the signature

part, i.e., σ := (~S0, {~Si}i∈[`s]) gets change from normal to the following form : Choose b̃, d̃
U←− ZN .

~S0 :=
(
gα+at̃(uhss vs)

rsR̃ gd̃2 , g
rsR̃0 g

b̃
2

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

Semi-functional Type 3 Signcryption. This is same as sf-type 2 signcryption except b̃ = 0, i.e.,

~S0 :=
(
gα+at̃(uhss vs)

rsR̃gd̃2 , g
rsR̃0

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

Semi-functional Type 4 Signcryption. This is same as sf-type 3 signcryption except the following

~C0 :=
(
gsegc2, d̆.ĝt

)
, where ĝt

U←− GT

Semi-functional Type 1 Key. Choose b, d
U←− ZN . First create a normal key

SKA := [A, K := gα+atR, L := gtR′0, Ki := Ti
tRi, ∀i ∈ A]

and then modify it to sf-type 1 key as shown below:

SKA := [A, K := gα+atR gd2 , L := gtR′0 g
b
2 , Ki := Ti

tRi g
bzi
2 , ∀i ∈ A]

Semi-functional Type 2 Key. This is same as sf-type 1 key except b = 0, i.e.,

SKA := [A, K := gα+atRgd2 , L := gtR′0, Ki := Ti
tRi, ∀i ∈ A]

8sf-type I (resp. II) signcryption and sf-type 1 (resp. 2) signcryption are different
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Normal Unsigncryption Query Key. Let Υ := (c̆, σ, %) be a unsigncryption query for (Γe,Γs), where

the ciphertext part is % := (%0, C`e+1) and σ := (~S0, {~Si}i∈[`s]). Let he := He(c̆, %0, σ). Choose r
U←−

ZN , R0
U←− Gp3 . First create a normal key

SKA := [A, K := gα+atR, L := gtR′0, Ki := Ti
tRi, ∀i ∈ A]

and then modify it to normal unsigncryption query key as shown below:

USKA := [A, K := gα+atR (uhee ve)
r , K0 := grR0 , L := gtR′0, Ki := Ti

tRi, ∀i ∈ A]

This USKA will be used to unsigncrypt the queried signcryption.

Semi-functional Type 1 Unsigncryption Query Key. Choose b, d
U←− ZN . First create a normal

unsigncryption query key as below

USKA := [A, K := gα+atR(uhee ve)
r, K0 := grR0, L := gtR′0, Ki := Ti

tRi, ∀i ∈ A]

and then modify it to sf-type 1 unsigncryption query key as shown below:

USKA := [A, K := gα+atR(uhee ve)
r gd2 , K0 := grR0 g

b
2 , L := gtR′0, Ki := Ti

tRi ∀i ∈ A]

Semi-functional Type 2 Unsigncryption Query Key. This is same as sf-type 1 unsigncryption
query key except b = 0, i.e.,

USKA := [A, K := gα+atR(uhee ve)
rgd2 , K0 := grR0, L := gtR′0, Ki := Ti

tRi ∀i ∈ A]

6.3 Answering Unsigncryption Query Using uq-key.

Let Υ := (c̆, σ, %) be a queried signcryption for (Γe,Γs). Choose a set of attribute A such that Γe(A) = True.
First, create a uq-key USKA := [A,K,K0, L,Ki ∀i ∈ A] of desired type. Then, the query will be handled
in a similar manner as in Unsigncrypt algorithm, except the Decrypt routine, viz., the computation ∆e.
Below is the required computation for ∆e to answer unsigncryption query.

∆e :=
e(K,C01)

e(K0, C`e+1)
∏
i∈IA(e(L,Ci1).e(Kρe(i), Ci2))

α
(i)
e

Finally it returns the message m if Υ is a valid signcryption else returns ⊥ (to indicate invalidity of Υ).

A normal key can extract the message from a legitimate normal signcryption as well as sf-type 1
signcryption. But, if a sf-type 1 (resp. sf-type 2) key unsigncrypts a legitimate sf-type 1 signcryption, we
have an additional factor e(g2, g2)

cd−bv1 (resp. e(g2, g2)
cd) in ∆e, where v1 is the first component of ~ve.

A sf-type 1 key is said to be nominally semi-functional if cd − bv1 = 0. In this case, a sf-type 1 key can
extract the message from a legitimate sf-type 1 signcryption.

Theorem 6.2. If DSG1, DSG2 and DSG3 assumptions hold, He is a collision resistant hash function and
ΠCommit has hiding property, then our proposed basic CP-ABSC scheme in section 5 is adaptively secure.

The proof is described in Appendix C.4.

Proof Sketch of Theorem 6.2
Suppose there are at most ν1 key queries, ν2 unsigncryption queries and ν3 signcryption queries made
by an adversary A , then by applying hybrid arguments over the sequence of games GameReal,Game0,
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{Game1−k−1,Game1−k−2}k∈[ν1], {Game2−k−1,Game2−k−2}k∈[ν2], {Game3−k−1,Game3−k−2}k∈[ν3], Game4,
Game5 and GameFinal, the game GameReal is changed to GameFinal.

In Game0, the challenge signcryption is changed from normal to sf-type 1. In Game1−k−1 (for 1 ≤
k ≤ ν1), the challenge signcryption is of sf-type 1, the unsigncryption queries are answered by normal
uq-keys, the replied signcryptions are normal, the first (k − 1) keys are sf-type 2, kth key is sf-type 1 and
the rest are normal. Game1−k−2 (for 1 ≤ k ≤ ν1) is same as Game1−k−1 except that kth key is sf-type 2.
In Game2−k−1 (for 1 ≤ k ≤ ν2), the challenge signcryption is of sf-type 1, the replied signcryptions are
normal, the keys are sf-type 2, the first (k − 1) unsigncryption queries are handled by sf-type 2 uq-keys,
kth unsigncryption query is answered by sf-type 1 uq-key and the rest are handled by normal uq-keys.
Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except that kth unsigncryption query is answered by
sf-type 2 uq-key. In Game3−k−1 (for 1 ≤ k ≤ ν3), the challenge signcryption is of sf-type 1, the keys are sf-
type 2, the unsigncryption queries are handled by sf-type 2 uq-keys, the first (k − 1) replied signcryptions
are of sf-type II, kth replied signcryption is of sf-type I and the rest replied signcryptions are normal.
Game3−k−2 (for 1 ≤ k ≤ ν3) is same as Game3−k−1 except that kth replied signcryption is of sf-type II.
Game4 is similar to Game3−ν2−2 except, that the challenge signcryption is of sf-type 2. Game5 is similar to
Game4 except, that the challenge signcryption is of sf-type 3. GameFinal is similar to Game5 except, that
the challenge signcryption is of sf-type 4. We prove that the gap advantage between any two consecutive
games is at most negligible.

In lemma C.2, we show that the advantage gap between GameReal and Game0 is equivalent to that
of DSG1: we establish a PPT simulator B for GameReal and Game0 against a PPT adversary A . The

simulator B takes an instance of DSG1 (with β
U←− {0, 1}) and simulates either GameReal or Game0 for

adversary A . We show that the distribution of challenge signcryption, keys and uq-keys computed by B
is equivalent to GameReal (resp. Game0) if β = 0 (resp. β = 1). Seemingly, this shows that the normal
challenge signcryption and sf-type 1 challenge signcryption are indistinguishable under DSG1 assumption.

Similarly, in lemma C.3, we show that the advantage gap between Game1−(k−1)−2 and Game1−k−1 (for

1 ≤ k ≤ ν1) is bounded by the advantage of DSG2 adversary. In other words, it shows that the kth normal
key and kth sf-type 1 key are indistinguishable if DSG2 assumption holds.

In a similar manner, we show that the advantage gap between Game1−k−1 and Game1−k−2 (for 1 ≤
k ≤ ν1) is bounded by the advantage of DSG2 adversary (lemma C.4). Seemingly, it shows that the kth

sf-type 1 key and kth sf-type 2 key are indistinguishable if DSG2 assumption holds.

Similarly, in lemma C.5, we show that the advantage gap between Game2−(k−1)−2 and Game2−k−1 (for

1 ≤ k ≤ ν2) is bounded by the advantage of DSG2 adversary. In other words, it shows that the kth normal
uq-key and kth sf-type 1 uq-key are indistinguishable if DSG2 assumption holds.

In a similar manner, we show that the advantage gap between Game2−k−1 and Game2−k−2 (for 1 ≤
k ≤ ν2) is bounded by the advantage of DSG2 adversary (lemma C.7). Seemingly, it shows that the kth

sf-type 1 uq-key and kth sf-type 2 uq-key are indistinguishable if DSG2 assumption holds.

Similarly, in lemma C.8, we show that the advantage gap between Game3−(k−1)−2 and Game3−k−1 (for

1 ≤ k ≤ ν3) is bounded by the advantage of DSG2 adversary. In other words, it shows that the kth normal
signcryption and kth sf-type I signcryption are indistinguishable if DSG2 assumption holds.

In a similar manner, we show that the advantage gap between Game3−k−1 and Game3−k−2 (for 1 ≤
k ≤ ν3) is bounded by the advantage of DSG2 adversary (lemma C.9). Seemingly, it shows that the kth

sf-type I signcryption and kth sf-type II signcryption are indistinguishable if DSG2 assumption holds.

In lemma C.10, we show that the advantage gap between Game3−ν2−2 and Game4 is bounded by the
advantage of DSG2 adversary. In other words, it shows that the sf-type 1 challenge signcryption and the
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sf-type 2 challenge signcryption are indistinguishable if DSG2 assumption holds.

Similar, in lemma C.11, we show that the advantage gap between Game4 and Game5 is bounded by
the advantage of DSG2 adversary. In other words, it shows that the sf-type 2 challenge signcryption and
the sf-type 3 challenge signcryption are indistinguishable if DSG2 assumption holds.

In lemma C.12, we show that the advantage gap between Game5 and GameFinal is bounded by the
advantage of DSG3 adversary. In other words, it shows that the sf-type 3 challenge signcryption and the
sf-type 4 challenge signcryption are indistinguishable if DSG3 assumption holds.

Finally in lemma C.13, we show that the adversary has no advantage in GameFinal if the primitive
commitment scheme has the hiding property.

6.4 Adaptive-Predicates Existential Unforgeability of CP-ABSC

Theorem 6.3. If DSG1, DSG2 and DSG3 assumptions hold for J , the primitive commitment scheme
ΠCommit has relaxed-binding property and Hs is a collision resistant hash function, then the proposed basic
CP-ABSC scheme in section 5 is adaptive-predicates existential unforgeable.

Proof. It follows from Theorem 6.4 and Theorem 4.2.

Theorem 6.4. The proposed basic CP-ABSC scheme in section 5 is adaptive-predicates existential un-
forgeable if primitive ABS scheme ΠABS is adaptive-predicate existential unforgeable and the primitive
commitment scheme ΠCommit has relaxed-binding property.

The proof is given in Appendix C.5.

7 Strongly Unforgeable and IND-CCA2 Secure CP-ABSC

Here in this section, we describe our strongly unforgeable and IND-CCA2 secure CP-ABSC scheme for ac-
cess policies represented by the monotone span programs. This scheme follows almost the same structure
of weak unforgeable and IND-CCA2 secure CP-ABSC described in section 5. But to protect the sign-
cryption from forging, we bind all the components by a strongly unforgeable OTS scheme which we call
“Commit then Encrypt and Sign then Sign” (CtE&StS) paradigm. Although the similar type of generic
constructions using strongly unforgeable OTS scheme are available in the literature [CHK04, HWZ07] in
the context of ABE and ABS, here we do not apply the OTS scheme in straightforward way because of
the following reasons: (a) we no more assume the relaxed-binding property of the commitment scheme for
strong unforgeability, and (b) to reuse the part of IND-CCA2 security proof of the construction described
in section 5 for the current CP-ABSC construction.

We just give a short description of our strongly unforgeable and IND-CCA2 secure CP-ABSC construc-
tion, since it follows from the CP-ABSC in section 5 and the idea of strongly unforgeable CP-ABS stated
above. Let ΠCommit := (C.Setup,Commit,Open) be a commitment scheme with hiding property (relaxed-
binding property is not required). Let ΠwABS := (wABS.Setup,wABS.KeyGen,wABS.Sign,wABS.Ver)
and ΠABE := (ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) be the CP-ABS scheme and CP-ABE
scheme respectively used in section 5. Let ΠOTS := (Gen,OTS.Sign,OTS.Ver) be a strong unforgeable
one-time signature scheme. Demonstrated below are only two routines, Signcrypt and Unsigncrypt as rest
are same as in section 5.
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– Signcrypt(m,SKA,Γs,Γe) :=



(c̆, d̆) := Commit(m) ‖ (verk, signk) := Gen(1κ),

σw := wABS.Sign(verk,SKA,Γs) ‖ %0 := ABE.Encrypt(d̆,Γe),

where σw := (~S0, . . . , ~S`s) and %0 := (~C0, . . . , ~C`e),
let he := He(c̆, %0, σw), C`e+1 ←− fun(PP, he, se),

σo := OTS.Sign(he||C`e+1||Γe||Γs, signk),
returns Υ := (c̆, σs := (σw, σo, verk), % := (%0, C`e+1))



– Unsigncrypt(Υ,SKB,Γs) :=


Open(c̆, d̆) if


OTS.Ver(he||C`e+1||Γe||Γs, σo, verk) = 1 ‖

wABS.Ver(verk, σw,Γs) = 1 ‖
let d̆ := ABE.Decrypt(%,SKB,Γe), where

Υ := (c̆, σs := (σw, σo, verk), % := (%0, C`e+1))


⊥ otherwise.

Correctness. It follows from that of section 5.

Remark 7.1. Similar to CP-ABSC scheme in section 5, this construction achieves the dynamic property
and non-repudiation.

Theorem 7.1. The proposed CP-ABSC scheme in section 7 is perfectly private.

Proof. It is similar to Theorem 6.1.

Theorem 7.2. If DSG1, DSG2 and DSG3 assumptions hold, He is a collision resistant hash function,
ΠCommit has hiding property and ΠOTS is a strong unforgeable one-time signature scheme, then our proposed
CP-ABSC scheme in section 7 is adaptively secure.

Proof. The proof can be obtained by the similar approach as in proof of Theorem 6.2 and the argument
used for proving CCA2 security in [CHK04].

Theorem 7.3. If DSG1, DSG2 and DSG3 assumptions hold for J , ΠOTS is a strong unforgeable one-
time signature scheme and Hs, He are collision resistant hash functions, then the proposed basic CP-ABSC
scheme in section 7 is strong existential unforgeable.

Proof. It is straightforward from Theorem 7.4 and Theorem 4.2.

Theorem 7.4. The proposed basic CP-ABSC scheme in section 7 is adaptive-predicates strong existential
unforgeable if primitive ABS scheme ΠwABS is adaptive-predicate weak existential unforgeable, ΠOTS is a
strong unforgeable one-time signature scheme and He are collision resistant hash function.

The proof is given in Appendix C.6.

8 Conclusion and Future Work

We have presented an ABSC scheme in CtE&StS paradigm using our proposed adaptive-predicate unforge-
able ABS and an adaptive-predicate IND-CCA secure ABE from the literature. The scheme is supported
with the combined setup to reduce the size of the public parameter and key. Since the subroutines of ABS
and ABE run in parallel in Signcrypt and Unsigncrypt, the execution of the scheme seems to be faster.
To best of our knowledge, this is the first ABSC scheme that has been shown secure in strong sense in
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Adaptive-predicates model. The scheme also has other features, signer-privacy, non-repudiation etc. In
future, we would be interesting to construct the generic ABSC scheme from any ABS and ABE in combined
setup.
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A Strongly Unforgeable One-Time Signature

A.1 Definition (Signature)

A signature scheme consists of three PPT algorithms - Gen, Sign and Ver

• Gen: It takes a security parameter κ. It outputs a verification key verk and a signing key signk.

• Sign: It takes a message m and a signing key signk as input. It returns a signature σ.

• Ver: It receives a message m, a signature σ and a verification key verk as input. It returns a boolean
value 1 for accept or 0 for reject.

A.2 Strong Unforgeability of One-Time Signature

Strongly unforgeability one-Time signature model is defined as a game between a challenger B and an
adversary A , where A has to forge a signature for a message. It consists of the following phases:

Gen: The challenger B runs Gen(1κ) −→ (verk, signk). Then verk is given to the adversary A .

Query: The adversary A is given access to the oracle Sign(., signk) at most once. Let (m,σ) be the
corresponding query message and relied signature.

Forgery: The adversary outputs a signature (m∗, σ∗).

We say the adversary succeeds in this game if Ver(m∗, σ∗, verk) = 1 and (m,σ) 6= (m∗, σ∗).

Let AdvOTS
A (κ) denote the success probability for any adversary A in the above experiment. A signature

scheme is said to be Strongly unforgeable one-time signature if AdvOTS
A (κ) is at most negligible function in

κ
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B Ciphertext-Policy Attribute-Base Signature

B.1 Definition

A ciphertext-policy attribute-base Signature scheme consists of four PPT algorithms - Setup, KeyGen, Sign
and Ver.

• Setup: It takes a security parameter κ and a universe of attributes U as input, outputs the public
parameters PP and the master secret MSK.

• KeyGen: It takes as input a set of attributes A, public parameters PP and master secret MSK and
outputs a secret key SKA corresponding to A.

• Sign: takes a message m, a secret key SKA, a predicate Γ with Γ(A) = True and public parameters
PP and returns a signature σ which implicitly contains Γ.

• Ver: It receives a message m, a signature σ, a claim predicate Γ and public parameters PP as input.
It returns a boolean value 1 for accept or 0 for reject.

Correctness. For all (PP,MSK) ←− Setup, all messages m ∈ M, all attribute sets A, all
keys SKA ←− KeyGen(PP,MSK, A) and all policies Γ with Γ(A) = True, it is required that
Ver(PP,m,Sign(PP,m,SKA,Γ),Γ) = 1.

Definition B.1 (Signer Privacy). An ABS scheme is said to be perfectly private if for all
(PP,MSK) ←− Setup, all attribute sets A1, A2, all keys SKA1 ←− KeyGen(PP,MSK, A1), SKA2 ←−
KeyGen(PP,MSK, A2), all messages m ∈ M, and all claim-predicates Γs := (Ms, ρs) such that
Γs(A1) = Γs(A2) = True, the distributions of Sign(PP,m,SKA1 ,Γs) and Sign(PP,m,SKA2 ,Γs) are iden-
tical.

We define an alternative signature oracle, AltSign(PP,m,MSK,Γ): it first produces a secret key
SKA ←− KeyGen(PP,MSK, A) for a set of attributes A such that Γ(A) = True and then, runs
σ ←− Sign(PP,m,SKA,Γ). For an ABS scheme with signer-privacy, AltSign(PP,m,MSK,Γ) and
Sign(PP,m,SKA,Γ) are identical for all A with Γ(A) = True. Therefore, we may replace the Sign or-
acle by AltSign oracle for an ABS with signer-privacy whenever it requires.

B.2 Adaptive-Predicate Existential Unforgeability of CP-ABS

The adaptive-predicate existential unforgeable security model is defined as a game between a challenger
B and an adversary A , where the adversary has to forge a signature for a message (consist of plaintext
and predicate). It consists of the following phases:

Setup: The challenger B runs the Setup algorithm to produce the master secret key MSK and the
public parameter PP. Then, B gives PP to the adversary A and keeps MSK to itself.

Query: The adversary A is given access to the oracles KeyGen(PP,MSK, .) and Sign(PP, ., .)
Forgery: The adversary outputs a signature σ∗ for (m∗,Γ∗).

We say the adversary succeeds in this game if (m∗,Γ∗) was never queried to Sign oracle, Γ∗ does not
accept any set of attributes queried to KeyGen oracle and Ver(PP,m∗,Γ∗, σ∗) = 1.
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Let AdvABS−EUF
A (κ) denote the success probability for any adversary A in the above experiment. An ABS

scheme is said to be adaptive-predicate existential unforgeable (AP-UF-CMA) if AdvABS−EUF
A (κ) is at most

negligible function in κ

Remark B.1. The above unforgeability is also called weak unforgeability in the sense that in forgery A is
not allowed to forge for the queried messages. In strong unforgeability (AP-sUF-CMA), the adversary A
may forge σ∗ for a queried message pair (m∗,Γ∗) but the replied signature σ on (m∗,Γ∗) must be different
from the forge signature σ∗.

Remark B.2. There is an another variant of unforgeability, called selective-predicate unforgeability in both
weak and strong sense, where A submits a challenge policy Γ (later on which it will forge) before obtaining
the PP of ABS.

B.3 Adaptive-Predicate Existential Unforgeability of CP-ABS

Since, the CP-ABS has perfect privacy, we replace through out the proofs the actual Sign algorithm by
an alternative algorithm, AltSign defined in section B. For notational simplicity, we do not use the term
“AltSignt” in the proofs. We note that all the Sign oracles appeared in the proofs are basically AltSign
oracles. We prove the adaptive-predicate unforgeability of our basic ABS scheme by the proof technique of
Okamoto–Takashima [OT11] and the dual system methodology of Brent Waters [Wat09]. This methodology
requires to define semi-functional verification texts, signatures and keys. Here, we define two types of semi-
functional verification texts, viz., type 1 and type 2. Two forms of semi-functional keys are considered
here – type 1 and type 2. Our semi-functional signatures consist of two forms, viz., type 1 and type 2.
In the sequence of games, the verification text is first changed from normal to semi-functional type 1.
Then, each queried key is changed from normal to semi-functional type 1, then semi-functional type 1 to
type 2. Consequently, each queried signature is changed from normal to semi-functional type 2 through
semi-functional type 1 signature. In the final game, the semi-functional type 1 verification text is changed
to semi-functional type 2 verification text.

In the following material, the part framed by a box indicates that either it will be changed in next
description or it has been changed from previous description. Also, we use the abbreviation ‘sf’ and ‘vText’
for ‘semi-functional’ and ‘verification text’ respectively.

Semi-functional Type 1 Verification text. Pick c, ι
U←− ZN , ~vs

U←− ZnsN . For each i ∈ [`s], pick

γ
(i)
s

U←− ZN . For each i ∈ U , choose zi
U←− ZN . The sf-type 1 vText is obtained by modifying normal

vText V = (~V0, {~Vi}i∈[`s]) as given below:

~V0 :=
(
gs gc2 , (u

hs
s vs)

s gι2 , g
αs
T

)
~Vi :=

(
gaλ

(i)
s T−r

(i)
s

ρs(i)
g
~M

(i)
s .~vs+γ

(i)
s zρs(i)

2 , gr
(i)
s g−γ

(i)
s

2

)
, for i ∈ [`s]

Semi-functional Type 2 Verification text. This is same as sf-type 1 vText except the following

~V0 :=
(
gsgc2, (u

hs
s vs)

sgι2, ĝt
)
, where ĝt

U←− GT

Semi-functional Type 1 Key. Choose b, d
U←− ZN . First create a normal key

SKA := [A, K := gα+atR, L := gtR′0, Ki := Ti
tRi, ∀i ∈ A]

and then modify it to sf-type 1 key as shown below:
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SKA := [A, K := gα+atR gd2 , L := gtR′0 g
b
2 , Ki := Ti

tRi g
bzi
2 , ∀i ∈ A]

Semi-functional Type 2 Key. This is same as sf-type 1 key except b = 0, i.e.,

SKA := [A, K := gα+atRgd2 , L := gtR′0, Ki := Ti
tRi, ∀i ∈ A]

Semi-functional Type 1 Signature. Choose b̃, d̃
U←− ZN . First, a normal signature is created, then

this is changed to sf-type 1 signature by adding Gp2 part as shown below in the boxes.

~S0 :=
(
gα+at̃(uhss vs)

rsR̃ gd̃2 , g
rsR̃0 g

b̃
2

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

Semi-functional Type 2 Signature. This is same as sf-type 1 signature except b̃ = 0, i.e.,

~S0 :=
(
gα+at̃(uhss vs)

rsR̃gd̃2 , g
rsR̃0

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

A normal signature can be verified by a normal vText as well as a sf-type 1 vText. But, if a valid sf-type
1 (resp. sf-type 2) signature is verified by a sf-type 1 vText, we will have an additional term e(g2, g2)

d̃c−b̃ι

(resp. e(g2, g2)
d̃c) in ∆s, i.e., the verification process fails. In sf-type 2 vText, the V03 part are made

completely random by setting V03 := ĝt, where ĝt
U←− GT . Therefore, any form of signatures even

including normal will be invalid with respect to sf-type 2 vText.

Theorem B.1. The proposed basic CP-ABS scheme is adaptive-predicate existential unforgeable if DSG1,
DSG2 and DSG3 assumptions hold and Hs is a collision resistant hash function.

Proof. Suppose there are at most ν1 (resp. ν2) key (resp. signature) queries made by an adversary A ,
then the security proof consists of hybrid argument over a sequence of 2(ν1 + ν2) + 3 games. The games
are defined below:

– GameReal := The original AP-UF-CMA security game of CP-ABS.

– Game0 (= Game1−0−2) is just like GameReal except that the vText is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ ν1), vText is sf-type 1, all the queried signatures are normal, the first (k−1)
keys returned to the adversary are sf-type 2, kth key is sf-type 1 and the rest keys are normal.

– Game1−k−2 (for 1 ≤ k ≤ ν1) is same as Game1−k−1 except the kth key is sf-type 2.

– In Game2−k−1 (for 1 ≤ k ≤ ν2), vText is sf-type 1, all the queried keys are sf-type 2, the first (k − 1)
signatures returned to the adversary are sf-type 2, kth signature is sf-type 1 and the rest signatures
are normal. (So, in this sequel Game2−0−2 = Game1−ν1−2)

– Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except the kth signature is of sf-type 2.

– GameFinal is similar to Game2−ν2−2 except that the vText is of sf-type 2.
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Let AdvReal
A ,ABS(κ), Adv0A ,ABS(κ), Adv1−k−1A ,ABS(κ), Adv1−k−2A ,ABS(κ), Adv2−i−1A ,ABS(κ), Adv2−i−2A ,ABS(κ) and

AdvFinalA ,ABS(κ) denote the advantages of an adversary A in GameReal, Game0, Game1−k−1, Game1−k−2,

Game2−i−1, Game2−i−2 and GameFinal for 1 ≤ k ≤ ν1, 1 ≤ i ≤ ν2 respectively. Let AdvCR−HsB (κ) be the

advantage of B in breaking collision resistant property of Hs. In GameFinal, the part, V03 in ~V0 is chosen
independently and uniformly random from GT implying that the forgery will be invalid with respect to
the vText. Therefore, the adversary A has no advantage in GameFinal.

Using lemmas B.2, B.3, B.5, B.6, B.7 and B.8, we have the following inequalities

AdvABS−EUF
A (κ) = AdvReal

A ,ABS(κ)

≤ |AdvReal
A ,ABS(κ)− Adv0A ,ABS(κ)|

+

ν1∑
k=1

(|Adv
1−(k−1)−2
A ,ABS (κ)− Adv1−k−1A ,ABS(κ)|+ |Adv1−k−1A ,ABS(κ)− Adv1−k−2A ,ABS(κ)|)

+

ν2∑
i=1

(|Adv
2−(i−1)−2
A ,ABS (κ)− Adv2−i−1A ,ABS(κ)|+ |Adv2−i−1A ,ABS(κ)− Adv2−i−2A ,ABS(κ)|)

+ |Adv2−ν2−2A ,ABS (κ)− AdvFinalA ,ABS(κ)|+ AdvFinalA ,ABS(κ)

≤ AdvDSG1
B0

(κ) +

ν1∑
i=1

(AdvDSG2
B1−i−1

(κ) + AdvDSG2
B1−i−2

(κ))

+

ν2∑
i=1

(AdvDSG2
B2−i−1

(κ) + AdvCR−HsH2−i−1
(κ) + AdvDSG2

B2−i−2
(κ)) + AdvDSG3

B3
(κ)

where B0,B1−i−1,B1−i−2,B2−i−1,H2−i−1,B2−i−2 and B3 are PPT algorithms whose running times are
same as that of A . This concludes the theorem.

Lemma B.2. GameReal and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that |AdvReal

A ,ABS(κ)− Adv0A ,ABS(κ)| ≤ AdvDSG1
B (κ).

Proof. We establish a PPT simulator B who receives an instance of DSG1, (J , g,X3, Tβ) with β
U←− {0, 1}

and depending on the distribution of β, it either simulates GameReal or Game0.

Setup: B chooses α, a, as, bs
U←− ZN and ti

U←− ZN for i ∈ U . Then, it sets us := gas , vs := gbs

and Ti := gti for i ∈ U . B selects a hash function Hs : {0, 1}∗ −→ ZN . It provides PP :=
(J , g, ga, us, vs, gαT , {Ti}i∈U , X3, Hs) to A and keeps MSK := (α) to itself.

Key Query Answering: It is normal key. B can handle the key queries of A , since theMSK is known
to him.

Signature Query Answering: It is normal signature. B can answer the queries of A , since he can
construct any key using the MSK known to him.

Forgery: A outputs a signature σ∗ for (m∗,Γ∗s := (M∗s , ρ
∗
s)), where M∗s is a matrix of order `∗s × n∗s. Then,

B prepares a vText for (m∗,Γ∗s) as follows: It computes h∗s := Hs(m
∗||Γ∗). It selects ~v′s := (1, v′2, . . . , v

′
n∗s

),

where v′2, . . . , v
′
n∗s

U←− ZN . It chooses r′i
U←− ZN for i ∈ [`∗s]. B implicitly sets gs part to be the Gp1

component of Tβ.

~V0 :=
(
Tβ, T

h∗sas+bs
β , e(gα, Tβ)

)
~Vi :=

(
T
a( ~M

∗(i)
s .~v′s)

β T
−r′itρ∗s(i)
β , T

r′i
β

)
, for i ∈ [`∗s]
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The final vText is V := (~V0, {~Vi}i∈[`∗s ])
B verifies the signature σ∗ using the vText V and returns 1 if it passes the verification test else returns 0.

Analysis: B implicitly sets ~us := s~v′s = (s, sv′2, . . . , sv
′
n∗s

) and r
(i)
s := sr′i for i ∈ [`∗s]. Since, v′2, . . . , v

′
n∗s

are
chosen uniformly and independently from ZN , so the vector ~us is a random vector over Zp1 . Similarly, since

r′1, . . . , r
′
`∗s

are uniformly and independently distributed over ZN , so are r
(1)
s , . . . , r

(`∗s)
s over Zp1 . Therefore,

if β = 0, i.e., Tβ = gs, V is a properly distributed normal verification text.

Suppose β = 1, i.e., Tβ = gsgc2 for some c ∈ ZN . It implicitly sets ~vs := ca~v′s = (ca, cav′2, . . . , cav
′
n∗s

),

ι := c(h∗sas + bs), γ
(i)
s := −cr′i and zρ∗s(i) := tρ∗s(i) for i ∈ [`∗s]. By Chinese Remainder Theorem (CRT),

the values v′2, . . . , v
′
n∗s

and r′i, tρ∗s(i) for i ∈ [`∗s] modulo p1 are uncorrelated from these values modulo p2.
Therefore, if β = 1, V is a properly distributed sf-type 1 verification text.

Lemma B.3. Game1−(k−1)−2 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A , there exists a PPT algorithm B such that |Adv
1−(k−1)−2
A ,ABS (κ)− Adv1−k−1A ,ABS(κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. B is given an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and depending on the

distribution of β, B either simulates Game1−(k−1)−2 or Game1−k−1.

Setup: Similar to Lemma B.2.

Key Query Answering: The first (k−1) keys are of sf-type 2 and the last (ν1−k) are normal keys. The
kth key is normal in Game1−(k−1)−2 and sf-type 1 in Game1−k−1. Let Aj be the jth query set of attributes.
B answers the key SKAj for Aj as follows:

• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is sf-type 2 key. It picks t
U←− ZN , R′0, Ri

U←− Gp3 for i ∈ Aj and returns the
following to A .

SKAj := [Aj , K := gα+at(Y2Y3)
t, L := gtR′0, Ki := Ti

tRi, ∀i ∈ Aj ]
Since, t modulo p2 and t modulo p3 are uncorrelated, so the key SKAj is properly distributed sf-type
2 key.

• If j = k then it is either normal or sf-type 1 key. B generates SKAk using Tβ of the instance of

DSG2. B implicitly sets gt part to be the Gp1 component of Tβ. It chooses R,R′0, Ri
U←− Gp3 for

i ∈ Ak
SKAk := [Ak, K := gαT aβR, L := TβR

′
0, Ki := T tiβ Ri, ∀i ∈ Ak]

Signature Query Answering: It is normal signature. B can handle the queries of A using MSK.

Forgery: A outputs a signature σ∗ for (m∗,Γ∗s := (M∗s , ρ
∗
s)), where M∗s is a matrix of order `∗s × n∗s. Then,

B prepares a vText for (m∗,Γ∗s) as follows: It computes h∗s := Hs(m
∗||Γ∗s). It selects ~v′s := (1, v′2, . . . , v

′
n∗s

),

where v′2, . . . , v
′
n∗s

U←− ZN .

~V0 :=
(
X1X2, (X1X2)

h∗sas+bs , e(gα, X1X2)
)

~Vi :=
(

(X1X2)
a( ~M

∗(i)
s .~v′s)(X1X2)

−r′itρ∗s(i) , (X1X2)
r′i
)
, for i ∈ [`∗s]

The final vText is V := (~V0, {~Vi}i∈[`∗s ])
B verifies the signature σ∗ using the vText V and returns 1 if it is valid else returns 0.
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Analysis: Let X1X2 = gsgc2. B implicitly sets ~us := s~v′s = (s, sv′2, . . . , sv
′
n∗s

) and r
(i)
s := sr′i for i ∈

[`∗s]. Since, v′2, . . . , v
′
n∗s

are chosen uniformly and independently from ZN , so the vector ~us is a random
vector over Zp1 . Similarly, since r′1, . . . , r

′
`∗s

are uniformly and independently distributed over ZN , so are

r
(1)
s , . . . , r

(`∗s)
s over Zp1 . It implicitly sets ~vs := ca~v′s = (ca, cav′2, . . . , cav

′
n∗s

), ι := c(h∗sas + bs), γ
(i)
s := −cr′i

and zρ∗s(i) := tρ∗s(i) for i ∈ [`∗s]. By CRT, the values v′2, . . . , v
′
n∗s

and r′i, tρ∗s(i) for i ∈ [`∗s] modulo p1 are
uncorrelated from these values modulo p2. Hence, V is a properly distributed sf-type 1 verification text.
Therefore, if β = 0, i.e., Tβ = gtgς3, then the joint distribution of keys, signatures and vText are identical
to that of Game1−(k−1)−2. Now, suppose β = 1, i.e., Tβ = gtgb2g

ς
3. B implicitly sets d := ba, zi := ti for

i ∈ Ak. Since, a, ti modulo p1 and a, ti modulo p2 are uncorrelated, SKAk is almost properly distributed
sf-type 1 key except, the correlation between b and d = ba (the exponents of g2 in L and K resp.) also
appears between c (the exponent of g2 in V01) and ac (first component of ~vs). If we show either d = ba or
ac is independent from the adversary’s point of view, then we are done.

Claim B.4. The shared value in Gp2, i.e., ac is information-theoretically hidden from the adversary A .

Proof of the claim requires the injective restriction on row labeling function ρ∗s and the restriction on
key queries SKA such that Γ∗s(A) = False. Proof of the claim is found in proof of the lemma 8 in [LOS+10].

Therefore, if β = 1, i.e., Tβ = gtgb2g
ς
3, then the joint distribution of keys, signatures and vText are

identical to that of Game1−k−1.

Lemma B.5. Game1−k−1 and Game1−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv1−k−1A ,ABS(κ)−Adv1−k−2A ,ABS(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν1.

Proof. It is similar to that of Lemma B.3 except, the kth key query answering. An instance of DSG2,

(J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} is given to the simulator B and depending on the distribution

of β, it either simulates Game1−k−1 or Game1−k−2. Below, we only describe the construction of kth key.

• It is either sf-type 1 or sf-type 2 key. B generates SKAk using Tβ of the instance of DSG2. B

implicitly sets gt part to be the Gp1 component of Tβ. It chooses ζ
U←− ZN , R′0, Ri

U←− Gp3 for
i ∈ Ak
SKAk := [Ak, K := gαT aβ (Y2Y3)

ζ , L := TβR
′
0, Ki := T tiβ Ri, ∀i ∈ Ak]

In kth key construction an additional term, (Y2Y3)
ζ is added to K. This prevents the requirement of

the claim B.4.

It is easy to check that if β = 0, i.e., Tβ = gtgς3, then the joint distribution of keys, signatures and vText
are identical to that of Game1−k−1. Now, suppose β = 1, i.e., Tβ = gtgb2g

ς
3. B implicitly sets d := ba+ yζ,

where Y2 = gy2 zi := ti for i ∈ Ak. Due to the distribution of d = ba + yζ, the above correlation between
key and ciphertext is not possible in this lemma.

Therefore, if β = 1, i.e., Tβ = gtgb2g
ς
3, then the joint distribution of keys, signatures and vText are

identical to that of Game1−k−2.

Lemma B.6. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of Hs. That is, for every adversary A , there exists PPT algorithms, B and H
such that |Adv

2−(k−1)−2
A ,ABS (κ)− Adv2−k−1A ,ABS(κ)| ≤ AdvDSG2

B (κ) + AdvCR−HsH (κ) for 1 ≤ k ≤ ν2.
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Proof. Similar to previous lemma, B receives an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←−

{0, 1} and depending on the distribution of β, B either simulates Game2−(k−1)−2 or Game2−k−1.

Setup: Similar to Lemma B.2

Key Query Answering: It is sf-type 2 key. Let Aj be the jth query set of attributes. It picks t
U←−

ZN , R′0, Ri
U←− Gp3 for i ∈ Aj and returns the following to A .

SKAj := [Aj , K := gα+at(Y2Y3)
t, L := gtR′0, Ki := Ti

tRi, ∀i ∈ Aj ]
Since, t modulo p2 and t modulo p3 are uncorrelated, so the key SKAj is properly distributed sf-type 2
key.

Signature Query Answering: The first (k − 1) signatures are of sf-type 2 and the last (ν2 − k) are
normal signatures. The kth signature is normal in Game2−(k−1)−2 and sf-type 1 in Game2−k−1. Let

(m(j),Γ
(j)
s := (Ms, ρs)) be the jth query tuple, where Ms is an `s × ns matrix. It chooses rs, t̃, τ

U←−
ZN , R̃0, R̃i, R̃′i

U←− Gp3 for i ∈ [`s]. B chooses a set of attributes A such that Γ
(j)
s (A) = True. It then,

chooses sets IA ⊂ [`s] and {α(i)
s }i∈IA such that

∑
i∈IA α

(i)
s
~M

(i)
s = ~1. B sets α

(i)
s := 0 for i 6∈ IA. It selects

~β
U←− {~β = (~β1, . . . , ~β`s) ∈ Z`sN |

∑
i∈[`s] βi

~M
(i)
s = ~0}. It sets h

(j)
s := Hs(m

(j)||Γ(j)
s ). Then, B answers the

signature σj for (m(j),Γ
(j)
s ) as follows:

• If j > k, it is normal. B can handle it using MSK.

• If j < k, it is sf-type 2. B computes the components of σj as below.

~S0 :=
(
gα+at̃(uh

(j)
s
s vs)

rs(Y2Y3)
t̃, grsR̃0

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`s]

Since, t̃ modulo p2 and t̃ modulo p3 are uncorrelated, so the key σj is properly distributed sf-type 2
signature.

• If j = k then it is either normal or sf-type 1 signature. B generates σk using Tβ of the instance of
DSG2. B implicitly sets grs part to be the Gp1 component of Tβ.

~S0 :=
(
gα+at̃(Tβ)h

(k)
s as+bs , Tβ

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`s]

Forgery: A outputs a signature σ∗ for (m∗,Γ∗s := (M∗s , ρ
∗
s)), where M∗s is a matrix of order `∗s × n∗s. Then,

B prepares a vText V for (m∗,Γ∗s) as follows: It computes h∗s := Hs(m
∗||Γ∗s). It selects ~v′s := (1, v′2, . . . , v

′
n∗s

),

where v′2, . . . , v
′
n∗s

U←− ZN .

~V0 :=
(
X1X2, (X1X2)

h∗sas+bs , e(gα, X1X2)
)

~Vi :=
(

(X1X2)
a( ~M

∗(i)
s .~v′s)(X1X2)

−r′itρ∗(i) , (X1X2)
r′i
)
, for i ∈ [`∗s]

B verifies the signature σ∗ using the vText V and returns 1 if it is valid else returns 0.

Analysis: It is easily verified that if β = 0, i.e., Tβ = grsgς3, then the joint distribution of keys, signatures
and vText are identical to that of Game2−(k−1)−2. Now, suppose β = 1, i.e., Tβ = grsgb2g

ς
3. Let X1X2 =

gsgc2. B implicitly sets d̃ := b(h∗sas + bs), b̃ := b and ι := c(h∗sas + bs) in kth key and vText respectively.
Since, in the security definition B.2, the adversary must not forge σ∗ for a pair (m∗,Γ∗s), for which A

has made a signature query implying that (m∗,Γ∗s) 6= (m(k),Γ
(k)
s ). Since, Hs is a collision resistant hash

function, we have h∗s 6= h
(k)
s . Hence, h∗sas + bs and h

(k)
s as + bs are uniformly and independently distributed
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over Zp2 . Therefore, if β = 1, i.e., Tβ = grsgb2g
ς
3, then the joint distribution of keys, signatures and vText

are identical to that of Game2−k−1.

Lemma B.7. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |Adv2−k−1A ,ABS(κ)−Adv2−k−2A ,ABS(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν2.

Proof. It is similar to the proof of Lemma B.6, except, answering the kth signature query. B is given an

instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and depending on the distribution of β, B

either simulates Game2−k−1 or Game2−k−2. Described here only is the construction of kth signature

• The kth signature is either sf-type 1 or sf-type 2. B generates σk using Tβ of the instance of DSG2.
B implicitly sets grs part to be the Gp1 component of Tβ.

~S0 :=
(
gα+at̃(Tβ)h

(k)
s as+bs(Y2Y3)

t̃, Tβ
)

~Si :=
(

(gt̃)α
(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`s]

Note that an extra term, (Y2Y3)
t̃ is added to the first component of ~S0. Unlike to lemma B.6, we do not

require the restriction argument between the forge and the signatures. It is straightforward that if β = 0
(resp. β = 1), the joint distribution of keys, signatures and vText are identical to that of Game2−k−1 (resp.
Game2−k−2).

Lemma B.8. Game2−ν2−2 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A , there exists a PPT algorithm B such that |AdvFinalA ,ABS(κ)−Adv2−ν2−2A ,ABS (κ)| ≤ AdvDSG3

B (κ)

Proof. The simulator B receives an instance of DSG3, (J , g, gαX2, g
sY2, Z2, X3, Tβ) with β

U←− {0, 1} and
depending on the distribution of β, it either simulates Game2−ν2−2 or GameFinal.

Setup: B chooses a, as, bs
U←− ZN and ti

U←− ZN for i ∈ U . Then, it sets us := gas , v := gbs and
Ti := gti for i ∈ U . B picks a hash function Hs : {0, 1}∗ −→ ZN . It provides PP := (J , g, ga, us, vs, gαT :=
e(g, gαX2), {Ti}i∈U , X3, Hs) to A . In this case, B does not know the master secret MSK.

Key Query Answering: It is sf-type 2 key. Let Aj be the jth query set of attributes. It picks t
U←−

ZN , R0, R
′
0, Ri

U←− Gp3 for i ∈ Aj and returns the following to A .

SKAj := [Aj , K := (gαX2)(g
aZ2)

tR0, L := gtR′0, Ki := Ti
tRi, ∀i ∈ Aj ]

Since, t modulo p1 and t modulo p2 are uncorrelated, so the key SKAj is properly distributed sf-type 2
key.

Signature Query Answering: It is sf-type 2. Let (m(j),Γ
(j)
s := (Ms, ρs)) be the jth query tuple, where

Ms is an `s × ns matrix. It chooses rs, t̃, τ
U←− ZN , R̃, R̃0, R̃i, R̃′i

U←− Gp3 for i ∈ [`s]. B chooses

a set of attributes A such that Γ
(j)
s (A) = True, It then, chooses sets IA ⊂ [`s] and {α(i)

s }i∈IA such that∑
i∈IA α

(i)
s
~M

(s)
s = ~1. B sets α

(i)
s := 0 for i 6∈ IA. It selects ~β

U←− {~β = (~β1, . . . , ~β`s) ∈ Z`sN |
∑

i∈[`s] βi
~M

(i)
s =

~0}. It sets h
(j)
s := Hs(m

(j)||Γ(j)
s ). Then, B answers the signature σj for (m(j),Γ

(j)
s ) as follows:

~S0 :=
(

(gαX2)(g
aZ2)

t̃(uh
(j)
s
s vs)

rsR̃, grsR̃0

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`s]

It is easy to check that σj is properly distributed sf-type 2 signature.
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Forgery: A outputs a signature σ∗ for (m∗,Γ∗s := (M∗s , ρ
∗
s)), where M∗s is a matrix of order `∗s × n∗s. Then

B prepares a vText V for (m∗,Γ∗s) as follows: It computes h∗s := Hs(m
∗||Γ∗s). It selects ~v′s := (1, v′2, . . . , v

′
n∗s

),

where v′2, . . . , v
′
n∗s

U←− ZN .

~V0 :=
(
gsY2, (gsY2)

h∗sas+bs , Tβ
)

~Vi :=
(

(gsY2)
a( ~M

∗(i)
s .~v′s)(gsY2)

−r′itρ∗s(i) , (gsY2)
r′i
)
, for i ∈ [`∗s]

B verifies the signature σ∗ using the vText V and returns 1 if it is valid else returns 0.
It is easy to check that if β = 0, i.e., Tβ = gαsT (resp. β = 1, i.e., Tβ is uniformly and independently
distributed over GT ), then the joint distribution of keys, signatures and vText are identical to that of
Game2−ν2−2 (resp. GameFinal).

C Ciphertext-Policy Attribute-Base Signcryption

C.1 Definition

A ciphertext-policy Attribute-Base Signcryption(CP-ABSC) scheme consists of four PPT algorithms -
Setup, KeyGen, Signcrypt and Unsigncrypt.

• Setup: It takes a security parameter κ and a universe of attributes U as input, outputs the public
parameters PP and the master secret MSK.

• KeyGen: It takes as input a set of attributes A, public parameters PP and master secret MSK and
outputs a secret key SKA corresponding to A.

• Signcrypt: It takes public parameters PP, a message m, a secret key SKA, a policy Γs for signer
and a policy Γe for receiver as input and returns a signcryption Υ for (Γe,Γs) (we assume that Υ
implicitly contains Γe).

• Unsigncrypt: It takes as input public parameters PP, a signcryption Υ, a secret key SKB and a
policy Γs for sender. It returns a value from M∪ {⊥}.

Correctness. For all (PP,MSK) ←− Setup, all m ∈ M, all attribute sets A, all keys SKA ←−
KeyGen(PP,MSK, A), all signer policies Γs with Γs(A) = True, all receiver policies Γe, all sign-
cryptions Υ ←− Signcrypt(PP,m,SKA,Γs,Γe) and all attribute sets B with Γe(B) = True, all keys
SKB ←− KeyGen(PP,MSK, B), it is required that Unsigncrypt(PP,Υ,SKA,Γs) = m.

Definition C.1 (Signer Privacy of CP-ABSC). A CP-ABSC scheme is said to be perfectly private if
for all (PP,MSK) ←− Setup, all attribute sets A1, A2, all keys SKA1 ←− KeyGen(PP,MSK, A1),
SKA2 ←− KeyGen(PP,MSK, A2), all messages m, all claim-predicates Γs := (Ms, ρs) for signer such
that Γs(A1) = Γs(A2) = True, and all claim-predicates Γe := (Me, ρe) for receiver, the distributions of
Signcrypt(PP,m,SKA1 ,Γs,Γe) and Signcrypt(PP,m,SKA2 ,Γs,Γe) are identical.

Similar to AltSign defined in section B, for the CP-ABSC scheme having signer-privacy,
one may replace Signcrypt(PP,m,SKA,Γs,Γe) oracle by an alternative signcryption oracle,
AltSigncrypt(PP,m,MSK,Γs,Γe) in the following two definitions.
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C.2 Adaptive-Predicates IND-CCA2 Security of CP-ABSC

The adaptive security model is defined as an indistinguishability game between a challenger B and an
adversary A , where the adversary has to distinguish the signcryptions under adaptive chosen ciphertext
attack (CCA). The game consists of the following phases:

Setup: The challenger B runs the Setup algorithm to produce the master secret key MSK and the
public parameter PP. Then, B gives PP to the adversary A and keeps MSK to itself.

Query: The adversary A is given access to the oracles KeyGen(PP,MSK, .), Signcrypt(PP, ., .) and
Unsigncrypt(PP, ., .)
Challenge: A provides two equal length messages m0,m1 and the challenge access policies Γ∗s,Γ

∗
e with

the restriction that for each set of attributes A queried to KeyGen(PP,MSK, .) oracle, Γ∗e(A) = False. B

picks b
U←− {0, 1}. Then, it signcrypts the challenge message mb using the challenge policies Γ∗s and Γ∗e

and gives the challenge signcryption Υb to A .

Query: Again, A is given access to the oracles KeyGen(PP,MSK, .), Signcrypt(PP, ., .)
and Unsigncrypt(PP, ., .) but with the restrictions that for each set of attributes, A queried to
KeyGen(PP,MSK, .) implies Γ∗e(A) = False and (Υb, B,Γs) with Γ∗e(B) = True was never queried to
Unsigncrypt(PP, ., .) oracle.

Guess: A sends a guess b′ to B.

The advantage of A in above game is defined by

AdvABSC−CCA
A (κ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
The CP-ABSC scheme is said to be adaptively secure (adaptive-predicates IND-CCA2 secure or in short
APs-IND-CCA2) if for all PPT adversary A , the advantage AdvABSC−CCA

A (κ) is at most a negligible
function in security parameter κ.

Remark C.1. Likewise in Selective-Predicates IND-CCA2 security, the adversary A submits receiver’s
policy Γ∗e before receiving PP of ABSC.

C.3 Adaptive-Predicates Existential Unforgeability of CP-ABSC

The adaptive-predicates existential unforgeable security model is defined as a computational game between
a challenger B and an adversary A , where the adversary has to forge a signcryption for a message (consist
of plaintext, signer’s predicate and receiver’s predicate). The game consists of the following phases:

Setup: The challenger B runs the Setup algorithm to produce the master secret key MSK and the
public parameter PP. Then, B gives PP to the adversary A and keeps MSK to itself.

Query: The adversary A is given access to the oracles KeyGen(PP,MSK, .), Signcrypt(PP, ., .) and
Unsigncrypt(PP, ., .).
Forgery: The adversary outputs a tuple, (Υ∗,Γ∗s,Γ

∗
e).

We say the adversary succeeds in this game if Unsigncrypt(PP,Υ∗,SKB,Γ∗s,Γ∗e) = m∗ 6= ⊥, where
Γ∗e(B) = True and (m∗,Γ∗s,Γ

∗
e) was never queried to Signcrypt oracle and Γ∗s does not accept any set of

attributes queried to KeyGen oracle.

Let AdvABSC−EUF
A (κ) denote the success probability for any adversary A in the above experiment. An CP-

ABSC scheme is said to be adaptive-predicates existential unforgeable (APs-UF-CMA) if AdvABSC−EUF
A (κ)

is at most negligible function in κ
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Remark C.2. Similar to section B.2, the above unforgeability is also called weak unforgeability in the sense
that in forgery A is not allowed to forge for the queried messages. In strong unforgeability (APs-sUF-
CMA), the adversary A may forge Υ∗ for a queried message pair (m∗,Γ∗s,Γ

∗
e) but the replied signcryption

Υ on (m∗,Γ∗s, γ
∗
e ) must be different from the forge signcryption Υ∗.

Remark C.3. Similar to above, there is an another variant of unforgeability, called selective-predicates
unforgeability in both weak and strong sense, where A submits signer’s policy Γ∗s before receiving PP of
ABSC.

C.4 Proof of Theorem 6.2

Theorem C.1. If DSG1, DSG2 and DSG3 assumptions hold, He is a collision resistant hash function and
ΠCommit has hiding property, then our proposed basic CP-ABSC scheme in section 5 is adaptively secure.

Proof. Suppose there are at most ν1 key queries, ν2 unsigncryption queries and ν3 signcryption queries made
by an adversary A , then the security proof consists of hybrid argument over a sequence of 2(ν1 + ν2) + 5
games. The games are defined below:

– GameReal := The original APs-IND-CCA2 security game of CP-ABSC.

– Game0 (= Game1−0−2) is just like GameReal except that the challenge signcryption is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ ν1), challenge signcryption is sf-type 1, all the unsigncryption queries are
answered by normal uq-Key, all the replied signcryptions are normal, the first (k − 1) keys returned
to the adversary are sf-type 2, kth key is sf-type 1 and the rest keys are normal.

– Game1−k−2 (for 1 ≤ k ≤ ν1) is same as Game1−k−1 except the kth key is sf-type 2.

– In Game2−k−1 (for 1 ≤ k ≤ ν2), challenge signcryption is sf-type 1, all the replied signcryptions are
normal, all the keys are sf-type 2, the first (k − 1) unsigncryption queries are answered by sf-type
2 uq-keys, kth unsigncryption query is answered by sf-type 1 uq-key and the rest are answered by
normal uq-keys. (So, in this sequel Game2−0−2 = Game1−ν1−2)

– Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except the kth unsigncryption query is answered by
sf-type 2 uq-key.

– In Game3−k−1 (for 1 ≤ k ≤ ν3), challenge signcryption is sf-type 1, all the keys are sf-type 2, all the
unsigncryption queries are answered by sf-type 2 uq-keys, the first (k − 1) replied signcryptions are
of sf-type II, the kth replied signcryption is sf-type I and the rest are normal signcryption. (So, in
this sequel Game3−0−2 = Game2−ν2−2)

– Game3−k−2 (for 1 ≤ k ≤ ν3) is same as Game3−k−1 except the kth replied signcryption is of sf-type II.

– Game4 is similar to Game3−ν3−2 except that now the challenge signcryption is of sf-type 2.

– Game5 is similar to Game4 except that now the challenge signcryption is of sf-type 3.

– GameFinal is similar to Game5 except that now the challenge signcryption is of sf-type 4.

Let AdvReal
A ,ABSC(κ), Adv0A ,ABSC(κ), Adv1−k−1A ,ABSC(κ), Adv1−k−2A ,ABSC(κ), Adv2−i−1A ,ABSC(κ), Adv2−i−2A ,ABSC(κ),

Adv3−j−1A ,ABSC(κ), Adv3−j−2A ,ABSC(κ), Adv4A ,ABSC(κ), Adv5A ,ABSC(κ) and AdvFinalA ,ABSC(κ) denote the advantages
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of an adversary A in GameReal, Game0, Game1−k−1, Game1−k−2, Game2−i−1, Game2−i−2, Game3−j−1,
Game3−j−2, Game4, Game5 and GameFinal for 1 ≤ k ≤ ν1, 1 ≤ i ≤ ν2, 1 ≤ j ≤ ν3 respectively.

Using lemmas C.2, C.3, C.4, C.5, C.7, C.8, C.9, C.10, C.11, C.12 and C.13, we have the following reduction

AdvABSC−CCA
A (κ) = AdvReal

A ,ABSC(κ)

≤ |AdvReal
A ,ABSC(κ)− Adv0A ,ABSC(κ)|

+

ν1∑
k=1

(|Adv
1−(k−1)−2
A ,ABSC (κ)− Adv1−k−1A ,ABSC(κ)|+ |Adv1−k−1A ,ABSC(κ)− Adv1−k−2A ,ABSC(κ)|)

+

ν2∑
k=1

(|Adv
2−(k−1)−2
A ,ABSC (κ)− Adv2−k−1A ,ABSC(κ)|+ |Adv2−k−1A ,ABSC(κ)− Adv2−k−2A ,ABSC(κ)|)

+

ν3∑
k=1

(|Adv
3−(k−1)−2
A ,ABSC (κ)− Adv3−k−1A ,ABSC(κ)|+ |Adv3−k−1A ,ABSC(κ)− Adv3−k−2A ,ABSC(κ)|)

+ |Adv3−ν3−2A ,ABSC(κ)− Adv4A ,ABSC(κ)|+ |Adv4A ,ABSC(κ)− Adv5A ,ABSC(κ)|

+ |Adv5A ,ABSC(κ)− AdvFinalA ,ABSC(κ)|+ AdvFinalA ,ABSC(κ)

≤ AdvDSG1
B0

(κ) +

ν1∑
k=1

(AdvDSG2
B1−k−1

(κ) + AdvDSG2
B1−k−2

(κ))

+

ν2∑
k=1

(AdvDSG2
B2−k−1

(κ) + AdvCR−HeH2−k−1
(κ) + AdvDSG2

B2−k−2
(κ))

+

ν3∑
k=1

(AdvDSG2
B3−k−1

(κ) + AdvDSG2
B3−k−2

(κ)) + AdvDSG2
B4

(κ) + AdvDSG2
B5

(κ)

+ AdvDSG3
B6

(κ) + AdvHiding
B7

(κ)

where B0,B1−k−1,B1−k−2,B2−k−1,H2−k−1,B2−k−2,B3−k−1,B3−k−2,B4,B5,B6 and B7 are PPT algo-
rithms whose running times are same as that of A . This concludes the theorem.

Lemma C.2. GameReal and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |AdvReal

A ,ABSC(κ)− Adv0A ,ABSC(κ)| ≤ AdvDSG1
B (κ).

Proof. We construct a PPT algorithm B (called simulator) who receives an instance of DSG1, (J , g,X3, Tβ)

with β
U←− {0, 1} and depending on the distribution of β, it either simulates GameReal or Game0.

Setup: B runs C.Setup(1κ) to obtain the public commitment key CK. B chooses α, a, as, ae, bs, be
U←−

ZN and ti
U←− ZN for i ∈ U . Then, it sets us := gas , ue := gae , vs := gbs , ve := gbe and

Ti := gti for i ∈ U . B selects hash functions Hs, He : {0, 1}∗ −→ ZN . It provides PP :=
(J , g, ga, us, ue, vs, ve, gαT , {Ti}i∈U , X3, Hs, He, CK) to A and keeps MSK := (α) to itself.

Key Query Answering: It is normal key. B can handle this, since the MSK is known to him.

Signcryption Query Answering: It is normal signcryption. Let A makes a signcryption query for
the message (m,Γs,Γe). B first computes SKB such that Γs(B) = True using MSK, then the normal
signcryption is generated using SKB.

Unsigncryption Query Answering: B unsigncrypts it by normal uq-key as described in section 6.3.
Since, the MSK is known to B, he can construct the normal uq-key and then returns the message if it is
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valid else returns ⊥. (See footnote 9)

Challenge: A provides two equal length messages m0,m1 and the challenge access policies Γ∗s :=

(M∗s , ρ
∗
s),Γ

∗
e := (M∗e , ρ

∗
e), where M∗s (resp. M∗e ) is an `∗s × n∗s (resp. `∗e × n∗e) matrix. B picks b

U←− {0, 1}.
Then, it runs (c̆b, d̆b)←− Commit(mb). It chooses a set of attributes, A such that Γ∗s(A) = True and then
computes a normal key SKA for A. Now, it executes ABS.Sign(ABS.PP, (c̆b||Γ∗e),SKA,Γ∗s) for the message
(c̆b||Γ∗e) to have σb := (~S0, {~Si}i∈[`∗s ]), where the components are given by

~S0 :=
(
gα+at̃(u

h∗s
s vs)

rsR̃, grsR̃0

)
, where h∗s := Hs(c̆b||Γ∗e||Γ∗s)

~Si :=
(

(gt̃)α
(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

It selects ~v′e := (1, v′2, . . . , v
′
n∗e

), where v′2, . . . , v
′
n∗e

U←− ZN . It chooses r′i
U←− ZN for i ∈ [`∗e]. B implicitly

set gse to be the Gp1 component of Tβ. The ciphertext components of the signcryption are given by

~C0 :=
(
Tβ, d̆b.e(g

α, Tβ)
)

~Ci :=
(
T
a( ~M

∗(i)
e .~v′s)

β T
−r′itρ∗e(i)
β , T

r′i
β

)
for i ∈ [`∗e]

Now, it sets %b0 := (~C0, . . . , ~C`∗e ) and computes h∗e := He(c̆b, %b0, σb). Then it computes another ciphertext
component as

C`∗e+1 := T
aeh∗e+be
β

So, the ciphertext part of the signcryption is %b := (%b0, C`∗e+1). B returns the challenge signcryption
Υb := (c̆b, σb, %b) to A .

Guess: A sends a guess b′ to B. If b = b′ then B returns 1; otherwise it returns 0.

Analysis: First of all, note that the signature part σb of the challenge signcryption Υb is identical to
that of the normal signcryption as well as sf-type 1 signcryption. Let’s concentrate on the distribution of

ciphertext part %b of Υb. B implicitly sets ~ue := se~v
′
e = (se, sev

′
2, . . . , sev

′
n∗e

) and r
(i)
e := ser

′
i for i ∈ [`∗e].

Since, v′2, . . . , v
′
n∗e

are chosen uniformly and independently from ZN , so the vector ~ue is a random vector over

Zp1 . Similarly, since r′1, . . . , r
′
`∗e

are uniformly and independently distributed over ZN , so are r
(1)
e , . . . , r

(`∗e)
e

over Zp1 . Therefore, if β = 0, i.e., Tβ = gse , Υb is a properly distributed normal signcryption.

Suppose β = 1, i.e., Tβ = gsegc2 for some c ∈ ZN . It implicitly sets ~ve := ca~v′e = (ca, cav′2, . . . , cav
′
n∗e

),

ι := c(h∗eae + be), γ
(i)
e := −cr′i and zρ∗e(i) := tρ∗e(i) for i ∈ [`∗e]. By CRT, the values v′2, . . . , v

′
n∗e

and r′i, tρ∗e(i)
for i ∈ [`∗e] modulo p1 are uncorrelated from these values modulo p2. Therefore, if β = 1, Υb is a properly
distributed sf-type 1 signcryption.

Lemma C.3. Game1−(k−1)−2 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A there exists a PPT algorithm B such that |Adv
1−(k−1)−2
A ,ABSC (κ)− Adv1−k−1A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. B is given an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and depending on the

distribution of β, B either simulates Game1−(k−1)−2 or Game1−k−1.

Setup: Similar to Lemma C.2.

Key Query Answering: The first (k−1) keys are of sf-type 2 and the last (ν1−k) are normal keys. The
kth key is normal in Game1−(k−1)−2 and sf-type 1 in Game1−k−1. Let Aj be the jth query set of attributes.
B answers the key SKAj for Aj as follows:

9The queries (key, signcryption and unsigncryption) can be adaptive, i.e., before and after the challenge phase but with
the natural restriction as in definition C.2. In the proof of the lemmas, we write the queries before challenge phase, but it
covers the queries before challenge and after challenge.
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• If j > k, then B runs the KeyGen algorithm and gives the normal key to A .

• If j < k, then it is sf-type 2 key. It picks t
U←− ZN , R′0, Ri

U←− Gp3 for i ∈ Aj and returns the
following to A .

SKAj := [Aj , K := gα+at(Y2Y3)
t, L := gtR′0, Ki := Ti

tRi, ∀i ∈ Aj ]
Since, t modulo p2 and t modulo p3 are uncorrelated, so the key SKAj is properly distributed sf-type
2 key.

• If j = k then it is either normal or sf-type 1 key. B generates SKAk using Tβ of the instance of

DSG2. B implicitly sets gt part to be the Gp1 component of Tβ. It chooses R,R′0, Ri
U←− Gp3 for

i ∈ Ak
SKAk := [Ak, K := gαT aβR, L := TβR

′
0, Ki := T tiβ Ri, ∀i ∈ Ak]

Signcryption Query Answering: Similar to lemma C.2.

Unsigncryption Query Answering: Similar to lemma C.2.

Challenge: It is similar to that of lemma C.2 except the ciphertext part %b of the challenge signcryption

Υb as given below: It selects ~v′e := (1, v′2, . . . , v
′
n∗e

), where v′2, . . . , v
′
n∗e

U←− ZN . It chooses r′i
U←− ZN for

i ∈ [`∗e]. The ciphertext components of the signcryption are given by

~C0 :=
(
X1X2, d̆b.e(g

α, X1X2)
)

~Ci :=
(

(X1X2)
a( ~M

∗(i)
e .~v′s)(X1X2)

−r′itρ∗e(i) , (X1X2)
r′i
)

for i ∈ [`∗e]

Now, it sets %b0 := (~C0, . . . , ~C`∗e ) and then computes h∗e := He(c̆b, %b0, σb). Then it computes another
ciphertext component as

C`∗e+1 := (X1X2)
aeh∗e+be

So, the ciphertext part of the signcryption is %b := (%b0, C`∗e+1).

Guess: A sends a guess b′ to B. If b = b′ then B returns 1; otherwise it returns 0.

Analysis: Let X1X2 = gsegc2. B implicitly sets ~ue := se~v
′
e = (se, sev

′
2, . . . , sev

′
n∗e

) and r
(i)
e := ser

′
i for

i ∈ [`∗e]. Since, v′2, . . . , v
′
n∗e

are chosen uniformly and independently from ZN , so the vector ~ue is a random
vector over Zp1 . Similarly, since r′1, . . . , r

′
`∗e

are uniformly and independently distributed over ZN , so are

r
(1)
e , . . . , r

(`∗e)
e over Zp1 . It implicitly sets ~ve := ca~v′e = (ca, cav′2, . . . , cav

′
n∗e

), ι := c(h∗eae + be), γ
(i)
e := −cr′i

and zρ∗e(i) := tρ∗e(i) for i ∈ [`∗e]. By CRT, the values v′2, . . . , v
′
n∗e

and r′i, tρ∗e(i) for i ∈ [`∗e] modulo p1 are
uncorrelated from these values modulo p2. Hence, Υb is a properly distributed sf-type 1 signcryption.
Therefore, if β = 0, i.e., Tβ = gtgς3, then the joint distribution of keys, signcryptions, uq-keys and challenge
signcryption are identical to that of Game1−(k−1)−2. Now, suppose β = 1, i.e., Tβ = gtgb2g

ς
3. B implicitly

sets d := ba, zi := ti for i ∈ Ak. Since, a, ti modulo p1 and a, ti modulo p2 are uncorrelated, SKAk is
almost properly distributed sf-type 1 key except, the correlation between b and d = ba (the exponents of
g2 in L and K resp.) also appears between c (the exponent of g2 in C01) and ac (first component of ~ve).
Since, the adversary A is forbidden to ask for a key SKA such that Γ∗e(A) = True and ρ∗e is injective, by
claim B.4 the above correlation can be shown to be hidden to A .

Therefore, if β = 1, i.e., Tβ = gtgb2g
ς
3, then the joint distribution of keys, signcryptions, uq-keys and

challenge signcryption are identical to that of Game1−k−1.

Lemma C.4. Game1−k−1 and Game1−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv1−k−1A ,ABSC(κ)−Adv1−k−2A ,ABSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν1.
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Proof. It is similar to that of Lemma C.3 except, the kth key query answering. An instance of DSG2,

(J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} is given to the simulator B and depending on the distribution

of β, it either simulates Game1−k−1 or Game1−k−2. Described below is only the construction of kth key.

• It is either sf-type 1 or sf-type 2 key. B generates SKAk using Tβ of the instance of DSG2. B

implicitly sets gt part to be the Gp1 component of Tβ. It chooses ζ
U←− ZN , R′0, Ri

U←− Gp3 for
i ∈ Ak
SKAk := [Ak, K := gαT aβ (Y2Y3)

ζ , L := TβR
′
0, Ki := T tiβ Ri, ∀i ∈ Ak]

In above computation, an extra term (Y2Y3)
ζ is added to the component, K. Due to this additional

part, Gp2 part of K becomes independent and uniform over Gp2 . Hence, we do not require the claim B.4.
Rest of the proof is very straightforward.

Lemma C.5. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of He. That is, for every adversary A there exists PPT algorithms, B and H
such that |Adv

2−(k−1)−2
A ,ABSC (κ)− Adv2−k−1A ,ABSC(κ)| ≤ AdvDSG2

B (κ) + AdvCR−HeH (κ) for 1 ≤ k ≤ ν2.

Proof. Similar to previous lemma, B receives an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←−

{0, 1} and depending on the distribution of β, B either simulates Game2−(k−1)−2 or Game2−k−1.

Setup: Similar to Lemma C.2

Key Query Answering: It is sf-type 2 key. Let Aj be the jth query set of attributes. It picks t
U←−

ZN , R′0, Ri
U←− Gp3 for i ∈ Aj and returns the following to A .

SKAj := [Aj , K := gα+at(Y2Y3)
t, L := gtR′0, Ki := Ti

tRi, ∀i ∈ Aj ]
Since, t modulo p2 and t modulo p3 are uncorrelated, so the key SKAj is properly distributed sf-type 2
key.

Signcryption Query Answering: Similar to lemma C.2.

Unsigncryption Query Answering: The first (k− 1) unsigncryption queries are answered by sf-type 2
uq-keys and the last (ν2−k) are unsigncrypted by normal uq-keys. The kth unsigncryption query is handled

by normal uq-key and sf-type 1 uq-key respectively in Game2−(k−1)−2 and Game2−k−1. Let (Υj , Bj ,Γ
(j)
s )

be the jth unsigncryption query, where Υj := (c̆j , σj , %
(j)), σj := (~S0, {~Si}i∈[`(j)s ]

), %(j) := (%
(j)
0 , C

`
(j)
e +1

),

%
(j)
0 := (~C0, {~Ci}i∈[`(j)e ]

) and Γ
(j)
e is the policy implicitly contained in Υj . B computes h

(j)
e := He(c̆j , %

(j)
0 , σj).

It picks r, t
U←− ZN , R0, R

′
0, Ri

U←− Gp3 for i ∈ Bj . Demonstrated below are the different types of uq-keys
to be used to answer the unsigncryption queries (as described in section 6.3). To each query, B answers
using the key USKBj if the unsigncryption query is valid10 else returns ⊥.

• If j > k, it is answered by normal uq-key. B can handle it using MSK.

• If j < k, it is handled by sf-type 2 uq-key. B computes the sf-type 2 uq-key USKBj as below.

USKBj := [Bj , K := gα+at(uh
(j)
e
e ve)

r(Y2Y3)
t, K0 := grR0, L := gtR′0, Ki := Ti

tRi ∀i ∈ Bj ]
Since, t modulo p2 and t over p3 are uncorrelated, so the key USKBj is properly distributed sf-type
2 uq-key.

10Here valid query means it does not violet the rules of the security game and Γ
(j)
e (Bj) = True, i.e., if Γ(j)(Bj) = False

(invalid), B returns ⊥ else if Υj = Υb (invalid), returns ⊥ else (valid), answers with USKj
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• If j = k , it is unsigncrypted either by normal or sf-type 1 uq-key. B generates USKBk using Tβ of
the instance of DSG2. B implicitly sets gr part to be the Gp1 component of Tβ.

USKBk := [Bk, K := gα+at(Tβ)h
(k)
e ae+be , K0 := Tβ, L := gtR′0, Ki := Ti

tRi ∀i ∈ Bk]

Challenge: Similar to Lemma C.3, but still the ciphertext part %b of the challenge signcryption Υb are

illustrated. It selects ~v′e := (1, v′2, . . . , v
′
n∗e

), where v′2, . . . , v
′
n∗e

U←− ZN . It chooses r′i
U←− ZN for i ∈ [`∗e].

The ciphertext components of the signcryption are given by

~C0 :=
(
X1X2, d̆b.e(g

α, X1X2)
)

~Ci :=
(

(X1X2)
a( ~M

∗(i)
e .~v′s)(X1X2)

−r′itρ∗e(i) , (X1X2)
r′i
)

for i ∈ [`∗e]

Now, it sets %b0 := (~C0, . . . , ~C`∗e ) and then computes h∗e := He(c̆b, %b0, σb). Then it computes the final
component as

C`∗e+1 := (X1X2)
aeh∗e+be

Guess: A sends a guess b′ to B. If b = b′ then B returns 1; otherwise it returns 0.

Analysis: Let X1X2 = gsegc2. B implicitly sets ~ue := se~v
′
e = (se, sev

′
2, . . . , sev

′
n∗e

) and r
(i)
e := ser

′
i for

i ∈ [`∗e]. Since, v′2, . . . , v
′
n∗e

are chosen uniformly and independently from ZN , so the vector ~ue is a random
vector over Zp1 . Similarly, since r′1, . . . , r

′
`∗e

are uniformly and independently distributed over ZN , so are

r
(1)
e , . . . , r

(`∗e)
e over Zp1 . It implicitly sets ~ve := ca~v′e = (ca, cav′2, . . . , cav

′
n∗e

), ι := c(h∗eae + be), γ
(i)
e := −cr′i

and zρ∗e(i) := tρ∗e(i) for i ∈ [`∗e]. By CRT, the values v′2, . . . , v
′
n∗e

and r′i, tρ∗e(i) for i ∈ [`∗e] modulo p1 are
uncorrelated from these values modulo p2. It is easy to check that if β = 0, then the joint distribution of
keys, signcryptions, uq-keys and challenge signcryption is identical to that of Game2−(k−1)−2.

Suppose β = 1, i.e., Tβ := grgb2g
ς
3. Lets take a look on the distribution of the exponents of g2 in C01

and C`∗e+1, i.e., c and ι = c(h∗eae + be). This type of correlation does not hamper our task unless the same
correlation is found in other components. Unluckily, in kth uq-key almost the similar correlation is found

between the exponents of g2 in K0 and K, i.e., b and d = b(h
(k)
e ae + be).

Claim C.6. If He is a collision resistant hash function, then either h∗e 6= h
(k)
e or B returns ⊥ (indicates

invalid signcryption) to A .

From this claim, it is immediate that for a valid kth unsigncryption query, the variables (h∗eae + be)

and (h
(k)
e ae + be) are uniformly and independently distributed over Zp2 . Therefore, if β = 1 then the joint

distribution of keys, signcryptions, uq-keys and challenge signcryption are identical to that of Game2−k−1.

Proof of the Claim C.6. If the queried signcryption is invalid, then B returns ⊥. Suppose the queried
signcryption is a valid signcryption. Then, we must have the relation (from Unsigncrypt)

e(g, C
`
(k)
e +1

) = e(uh
(k)
e
e ve, C01) (3)

To complete the proof of this claim, we will consider two cases, viz, kth unsigncryption query is made before
challenge phase and after challenge phase.

Before Challenge Phase : Since the components of the challenge signcryption Υb are computed by
randomized way and h∗e is calculated by taking hash (He) of all the components except, C`∗e+1, hence

the pre-computed value h
(k)
e can not be equal to h∗e.
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After Challenge Phase : Suppose h∗e = h
(k)
e . Since He is a collision resistant hash function and Υb 6= Υk

(by security definition C.2), we must have11 C`∗e+1 6= C
`
(k)
e +1

, which implies

e(g, C`∗e+1) 6= e(g, C
`
(k)
e +1

) (4)

e(g, C`∗e+1) = e(uh
∗
e
e ve, C01) (by construction) (5)

= e(uh
(k)
e
e ve, C01) (by assumption, i.e., h∗e = h(k)e ) (6)

From relations 4, 5 and 6, we have following relation

e(g, C
`
(k)
e +1

) 6= e(uh
(k)
e
e ve, C01) (7)

The relations 3 and 7 are contradictory to each other. Therefore, we have h∗e 6= h
(k)
e as our require-

ment.

Lemma C.7. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv2−k−1A ,ABSC(κ)−Adv2−k−2A ,ABSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν2.

Proof. It is similar to the proof of Lemma C.5, except, answering the kth unsigncryption query (i.e., kth

uq-key). B is given an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and depending on

the distribution of β, B either simulates Game2−k−1 or Game2−k−2. Below, we only provide the simulation
of kth unsigncryption query answering.

• The kth signcryption is unsigncrypted either by sf-type 1 uq-key or sf-type 2 uq-key. B generates
USKBk using Tβ of the instance of DSG2. B implicitly sets gr part to be the Gp1 component of Tβ.

USKBk := [Bk, K := gα+at(Tβ)h
(k)
e ae+be(Y2Y3)

t, K0 := Tβ, L := gtR′0, Ki := Ti
tRi ∀i ∈ Bk]

Note that an extra term, (Y2Y3)
t is added to K. Due to this additional term, the exponent of g2 in K

can easily be shown to be independent without any condition. Therefore, Unlike to lemma C.5, we do not
require the above claim. It is straightforward that if β = 0 (resp. β = 1), the joint distribution of keys,
signcryptions, uq-keys and challenge signcryption are identical to that of Game2−k−1 (resp. Game2−k−2).

Lemma C.8. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A there exists a PPT algorithm B such that |Adv
3−(k−1)−2
A ,ABSC (κ)− Adv3−k−1A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ ν3.

11i.e., the corresponding components of Υb and Υk are equal except, C`∗e+1 6= C
`
(k)
e +1
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Proof. An instance (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} of DSG2 is given to B and depending on

the distribution of β, B either simulates Game3−(k−1)−2 or Game3−k−1

Setup: Similar to Lemma C.2.

Key Query Answering: Similar to lemma C.5.

Signcryption Query Answering: The first (k − 1) replied signcryptions are of sf-type II and the last
(ν3−k) are normal signcryptions. The kth replied signcryption is normal in Game3−(k−1)−2 and sf-type I in

Game3−k−1. Let (m(j),Γ
(j)
s ,Γ

(j)
e ) be the jth signcryption query made by A . B chooses a set of attributes

Aj such that Γ
(j)
s (Aj) = True and answers the queries as follows:

• If j > k, then B first constructs normal key SKAj by running KeyGen algorithm and then it computes

jth signcryption Υj using the key SKAj (as in Signcrypt algorithm). The simulator B replies the
normal signcryption Υj to A .

• If j < k, then it is sf-type II signcryption. It first computes the sf-type 2 key SKAj , then using this
key it produces sf-type II signcryption Υj (similar to above case 12).

• If j = k then it is either normal or sf-type I signcryption. B generates signature part σj of the
signcryption Υj using Tβ of the instance of DSG2. B implicitly sets grs part to be the Gp1 component
of Tβ.

~S0 :=
(
gα+at̃(Tβ)h

(j)
s as+bs , Tβ

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`
(j)
s ]

The rest part of the signcryption Υj is computed as described in Signcrypt algorithm.

Unsigncryption Query Answering: It is unsigncrypted by sf-type 2 uq-key. Let (Υj , Bj ,Γ
(j)
s ) be

the jth unsigncryption query, where Υj := (c̆j , σj , %
(j)), σj := (~S0, {~Si}i∈[`(j)s ]

), %(j) := (%
(j)
0 , C

`
(j)
e +1

),

%
(j)
0 := (~C0, {~Ci}i∈[`(j)e ]

) and Γ
(j)
e is the policy implicitly contained in Υj . B constructs the sf-type 2 uq-key

USKBj (given below), then unsigncrypts Υj by USKBj as described in section 6.3. It then returns the
message if it is valid else returns ⊥.

USKBj := [Bj , K := gα+at(uh
(j)
e
e ve)

r(Y2Y3)
t, K0 := grR0, L := gtR′0, Ki := Ti

tRi ∀i ∈ Bj ]
Since, t modulo p2 and t modulo p3 are uncorrelated, so the key USKBj is properly distributed sf-type 2
uq-key.

Challenge: Similar to Lemma C.5

Analysis: It is very straightforward that if β = 0 (resp. β = 1) the distribution of the kth replied
signcryption is identical to normal (resp. sf-type I) signcryption. Therefore, the joint distribution of
keys, signcryptions, uq-keys and the challenge signcryption are identical to that of Game3−(k−1)−2 (resp.
Game3−k−1) if β = 0 (resp. β = 1).

Lemma C.9. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv3−k−1A ,ABSC(κ)−Adv3−k−2A ,ABSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν3.

Proof. Similar to the proof of Lemma C.8, except the S01 component of the signature part σk of the kth

signcryption query. B is given an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and

12Even the normal signcryption and sf-type II signcryption can be computed directly using MSK and the supplied param-
eters of the instance DSG2
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depending on the distribution of β, B either simulates Game3−k−1 or Game3−k−2. Described here is only
the ~S0 part of the signature part σk.

~S0 :=
(
gα+at̃(Tβ)h

∗
sas+bs(Y2Y3)

t̃, Tβ
)

Due to the additional term (Y2Y3)
t̃, the exponent of g2 in S01 becomes uniformly and independently

distributed random variable over Zp2 . Rest of the proof are easily handled similarly to the previous
lemma.

Lemma C.10. Game3−ν3−2 and Game4 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv3−ν3−2A ,ABSC(κ)−Adv4A ,ABSC(κ)| ≤ AdvDSG2

B (κ)

Proof. Similarly, B is given an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and de-

pending on the distribution of β, B either simulates Game3−ν3−2 or Game4.

Setup: Similar to Lemma C.2.

Key Query Answering: Similar to lemma C.5.

Signcryption Query Answering: It is sf-type II signcryption. It is generated in similar manner as
sf-type II signcryptions construction in signcryption query answering of lemma C.8.

Unsigncryption Query Answering: Similar to lemma C.8.

Challenge: It is similar to lemma C.3 except the signature part σb of the challenge signature Υb. B
generates σk using Tβ of the instance of DSG2. B implicitly sets grs part to be the Gp1 component of Tβ.

~S0 :=
(
gα+at̃(Tβ)h

∗
sas+bs , Tβ

)
~Si :=

(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`∗s]

Guess: A sends a guess b′ to B. If b = b′ then B returns 1; otherwise it returns 0.

Analysis: Similar to Lemma C.3, the distribution of the ciphertext part %b of the challenge signcryption Υb

is identical to that of sf-type 1 and 2 signcryptions. Now, the rest of analysis depend upon the distribution
of the signature part σb of Υb. It is easy to check that if β = 0 (resp. β = 1), the distribution of the
signature part σb of Υb is identical to that of sf-type 1 (resp. sf-type 2) signcryption. Hence, if β = 0
(resp. β = 1) the distribution of the challenge signcryption Υb is identical to that of sf-type 1 (resp.
sf-type 2) signcryption. Therefore, the joint distribution of keys, signcryptions, uq-keys and the challenge
signcryption are identical to that of Game3−ν3−2 (resp. Game4) if β = 0 (resp. β = 1).

Lemma C.11. Game4 and Game5 are indistinguishable under the DSG2 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |Adv4A ,ABSC(κ)− Adv5A ,ABSC(κ)| ≤ AdvDSG2

B (κ)

Proof. It is similar to the proof of Lemma C.10, except the signature part σb of the challenge signcryption

Υb. B is given an instance of DSG2, (J , g,X1X2, Y2Y3, X3, Tβ) with β
U←− {0, 1} and depending on the

distribution of β, B either simulates Game4 or Game5. Demonstrated here is only the signature part σb.

~S0 :=
(
gα+at̃(Tβ)h

∗
sas+bs(Y2Y3)

t̃, Tβ
)

~Si :=
(

(gt̃)α
(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`∗s]

Rest of the proof are easily handled similarly to the previous lemma.

Lemma C.12. Game5 and GameFinal are indistinguishable under the DSG3 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |Adv5A ,ABSC(κ)− AdvFinalA ,ABSC(κ)| ≤ AdvDSG3

B (κ)
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Proof. The simulator B receives an instance of DSG3, (J , g, gαX2, g
sY2, Z2, X3, Tβ) with β

U←− {0, 1} and
depending on the distribution of β, it either simulates Game5 or GameFinal.

Setup: B runs C.Setup(1κ) to obtain the public commitment key CK. B chooses α, a, as, ae, bs, be
U←− ZN

and ti
U←− ZN for i ∈ U . Then, it sets us := gas , ue := gae , vs := gbs , ve := gbe and Ti := gti for

i ∈ U . B selects hash functions Hs, He : {0, 1}∗ −→ ZN . It provides PP := (J , g, ga, us, ue, vs, ve, gαT :=
e(g, gαX2), {Ti}i∈U , X3, Hs, He, CK) to A . But B does not know the master secret MSK.

Key Query Answering: It is sf-type 2 key. Let Aj be the jth query set of attributes. It picks t
U←−

ZN , R,R′0, Ri
U←− Gp3 for i ∈ Aj and returns the following to A .

SKAj := [Aj , K := (gαX2)(g
aZ2)

tR, L := gtR′0, Ki := Ti
tRi, ∀i ∈ Aj ]

Since, t modulo p1 and t modulo p2 are uncorrelated, so the key SKAj is properly distributed sf-type 2
key.

Signcryption Query Answering: It is sf-type II signcryption. Let A makes a signcryption query for
the message (m,Γs,Γe). B first computes a sf-type 2 key SKA (as above) such that Γs(A) = True, then
using this key it produces the sf-type II signcryption Υ and returns it to A .

Unsigncryption Query Answering: It is unsigncrypted by sf-type 2 uq-key. Let (Υj , Bj ,Γ
(j)
s ) be the

jth unsigncryption query, where Γ
(j)
e is the policy implicitly contained in Υj . B constructs the sf-type 2

uq-key USKBj (given below), then unsigncrypts it by USKBj . It then returns the message if it is valid
else returns ⊥.

USKBj := [Bj , K := (gαX2)(g
aZ2)

t(uh
(j)
e
e ve)

rR, K0 := grR0, L := gtR′0, Ki := Ti
tRi ∀i ∈ Bj ]

Since, t modulo p2 and t modulo p2 are uncorrelated, so the key USKBj is properly distributed sf-type 2
uq-key.

Challenge: The initial part similar to previous lemma. B generates %b using Tβ of the instance of DSG3.

The signature part σb := (~S0, {~Si}i∈[`∗s ]) is computed below.

~S0 :=
(

(gαX2)(g
aZ2)

t̃(u
h∗s
s vs)

rsR̃0, grsR̃′0
)

~Si :=
(

(gt̃)α
(i)
s (gτ )βiR̃i, (T t̃ρs(i))

α
(i)
s (T τρs(i))

βiR̃′i
)

for i ∈ [`∗s]

It selects ~v′e := (1, v′2, . . . , v
′
n∗e

), where v′2, . . . , v
′
n∗e

U←− ZN . It chooses r′i
U←− ZN for i ∈ [`∗e]. The

ciphertext components of the signcryption are given by

~C0 :=
(
gsY2, d̆b.Tβ

)
~Ci :=

(
(gsY2)

a( ~M
∗(i)
s .~v′s)(gsY2)

−r′itρ∗s(i) , (gsY2)
r′i
)
, for i ∈ [`∗e]

Now, it sets %b0 := (~C0, . . . , ~C`∗e ) and then computes h∗e := He(c̆b, %b0, σb). Then it computes the final
component as

C`∗e+1 := (gsY2)
aeh∗e+be

So, the ciphertext part of the signcryption is %b := (%b0, C`∗e+1). B returns the challenge signcryption
Υb := (c̆b, σb, %b) to A .

Guess: A sends a guess b′ to B. If b = b′ then B returns 1; otherwise it returns 0.

Analysis: It is obvious that if β = 0, i.e., Tβ := gαsT (resp. if β = 1, i.e., Tβ
U←− GT ) form of the challenge

signcryption Υb is identical to that of sf-type 2 (resp. sf-type 3) signcryption. Therefore, if β = 0 (resp.
β = 1) then, the joint distribution of keys, signcryptions, uq-keys and challenge signcryption are identical
to that of Game5 (resp. GameFinal)
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Lemma C.13. For every adversary A there exists a PPT algorithm B such that AdvFinalA ,ABSC(κ) ≤
AdvHiding

B (κ)

Proof. In GameFinal, the decommitment part d̆b is masked with random element from GT or in other word
we can say that the ciphertext part in the challenge signcryption is a encryption of a random message from
the decommitment space. So, the ciphertext part of the challenge signcryption does not carry any informa-
tion about the challenge message mb. Therefore, the commitment part c̆b only may have the information
about mb. Now, we show that if the primitive commitment scheme ΠCommit has the hiding property, then
the adversary A has no advantage in GameFinal. Suppose an adversary A has an advantage in GameFinal,
then we will construct an PPT algorithm B for breaking the hiding property of the commitment scheme
ΠCommit. Let CH be the challenger for the commitment scheme ΠCommit.

Setup: CH runs C.Setup(1κ) and gives the public commitment key CK to B. Now B executes G(1κ) to have
a composite order bilinear groups descriptor J := (N := p1p2p3,G,GT , e) with known factorization p1, p2
and p3 of N . Then, B sets the public parameter PP := (J , g, ga, us, ue, vs, ve, gαT , {Ti}i∈U , X3, Hs, He, CK)
as per rule of the original setup and it gives PP to A . Note that the simulator B knows all the secrets
even including the generator of Gp2 .

Key Query Answering: It is of sf-type 2 key. B can generate the key as it knows all the secrets of
signcryption.

Signcryption Query Answering: It is sf-type II signcryption. By similar argument above, it is easily
computable.

Unsigncryption Query Answering: It is unsigncrypted by sf-type 2 uq-key. Let (Υj , Bj ,Γ
(j)
s ) be the

jth unsigncryption query, where Γ
(j)
e is the policy implicitly contained in Υj . B generates the sf-type 2

uq-key USKBj and then unsigncrypts it by USKBj . It then returns the message if it is valid else returns
⊥.

Challenge: A provides two equal length messages m0,m1 and the challenge access policies Γ∗s :=
(M∗s , ρ

∗
s),Γ

∗
e := (M∗e , ρ

∗
e), where Ms (resp. Me) is an `∗s × n∗s (resp. `∗e × n∗e) matrix to the simulator

B. Then, B sends m0,m1 to CH. Now CH chooses mb
U←− {m0,m1}, runs (c̆b, d̆b) ←− Commit(mb) and

returns challenge commitment part c̆b to B. Note that B does not know the decommitment part d̆b of
the challenge message mb, but it will not hamper the task of B. B picks a random element dr from the
decommitment space. Then it runs the rest of Signcrypt algorithm on (c̆b, dr) using the policies Γ∗s and Γ∗e
to produce the challenge signcryption13 Υb of sf-type 4 and returns it to A .

Guess: A sends a guess b′ to B and B replies with the same guess b′ to CH.

Analysis: In sf-type 4 signcryption, the decommitment part d̆b is masked with an uniformly and in-
dependently chosen element form GT which is same as masking an random element dr with gαseT . It is
straightforward to check that the keys, signcryptions, uq-keys and the challenge signcryption are properly
distributed. If A guesses correctly, then this guess will work for breaking hiding property as well.

C.5 Proof of Theorem 6.4

Suppose an adversary A can break the adaptive-predicates existential unforgeability of the proposed CP-
ABSC scheme with non-negligible advantage ε. Lets assume that A has made ν number of signcryption

13It first produces normal signcryption and then converts it to sf-type 4 using the generator of Gp2
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query to the signcryption oracle. Let (m(i),Γ
(i)
s ,Γ

(i)
e ) be the ith query and Υi := (c̆i, σi, %i) be the corre-

sponding replied signcryption. Let Υ := (c̆, σ, %) be the forge by A for the message (m,Γs,Γe). Let Forged

be the event that c̆||Γe||Γs 6∈ {c̆i||Γ(i)
e ||Γ(i)

s

∣∣ i ∈ [ν]}. Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds ∧ Forged] + Pr[A Succeeds ∧ ¬Forged]

=⇒ Pr[A Succeeds ∧ Forged] ≥ ε/2 or Pr[A Succeeds ∧ ¬Forged] ≥ ε/2

Case Forged : We establish a PPT algorithm BABS (simulator) for forging to the primitive ABS scheme
ΠABS with advantage at least ε/2. Basically in this simulation, the algorithm BABS will make use of
the adversary A . Let CH be the challenger for the primitive ABS scheme ΠABS.

Setup: First, the challenger CH publishes the public parameters ABS.PP of ΠABS. Then, sim-

ulator BABS runs C.Setup(1κ) to produce CK. BABS chooses ae, be
U←− ZN and sets ue :=

gae , ve := gbe . BABS selects a hash function He : {0, 1}∗ −→ ZN . It provides PP :=
(J , g, ga, us, ue, vs, ve, gαT , {Ti}i∈U , X3, Hs, He, CK) to A . Interpretations of the variables described
here are same as in the ABSC scheme in section 5.

Key Query Answering: Since the ABSC scheme and the primitive ABS scheme have the identical key
distribution for a set of attributes, the key queries from A will be forwarded to the challenger CH.
Similarly, the answers (keys) will be reversed back to A .

Signcryption Query Answering: Lets see how BABS will answer the signcryption queries of A . Let

(m(i),Γ
(i)
s ,Γ

(i)
e ) be the ith signcryption query to BABS by A . BABS runs (c̆i, d̆i) ←− Commit(m(i)).

Then, BABS makes a signature query for (c̆i||Γ(i)
e ,Γ

(i)
s ) to CH and gets the replied signature σi from

CH. Then, BABS runs encryption routine of the Signcrypt algorithm to produce the ciphertext part
%i and it returns the ith signcryption Υi := (c̆i, σi, %i) to A .

Forgery: A outputs a tuple (Υ,Γs,Γe). Then, BABS forges the signature σ for (c̆||Γe,Γs) to the
primitive ABS scheme ΠABS.

Analysis: From the event Forged, it implies that (c̆||Γe,Γs) has not been queried for signature to CH.

Case ¬Forged : We set up an algorithm BCommit (simulator) for breaking the relaxed-binding of the
primitive commitment scheme ΠCommit with advantage at least ε/2ν. Let CH be the challenger for
the primitive commitment scheme ΠCommit.

Setup: First, the challenger CH publishes the public commitment key CK. Then, BCommit runs
ABS.Setup(1κ) (Setup algorithm of an ABS scheme BABS) to produce ABS.PP. Rest are same as

above. Note that in this case, BCommit knows the MSK. BCommit picks i
U←− [ν] as a guess such

that c̆||Γe||Γs = c̆i||Γ(i)
e ||Γ(i)

s .

Key Query Answering: The simulator BCommit can handle the key queries asMSK is known to itself.

Signcryption Query Answering: Let (m(j),Γ
(j)
s ,Γ

(j)
e ) be the jth signcryption query to BCommit by A .

If j = i, then BCommit makes a commitment query for the message m(j) to CH to have a pair (c̆j , d̆j)

else BCommit itself computes (c̆j , d̆j). After that, BCommit follows the rest of Signcrypt algorithm in

section 5 to produce the signcryption Υj := (c̆j , σj , %j) for (m(j),Γ
(j)
s ,Γ

(j)
e ) and returns it to A .

Forgery: A outputs a tuple (Υ,Γs,Γe). By the event ¬Forged, we have c̆||Γe||Γs = c̆i||Γ(i)
e ||Γ(i)

s .
Then, BCommit submits d̆ to CH as a witness of breaking relaxed-binding property (for (c̆i(= c̆), d̆i))
of ΠCommit. Note that BCommit obtains d̆ by running the Unsigncrypt algorithm on input Υ as it knows
the MSK.
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Analysis: With probability 1/ν, BCommit correctly guesses i such that c̆||Γe||Γs = c̆i||Γ(i)
e ||Γ(i)

s . It
is easy to see that m = Open(c̆, d̆) and m(i) = Open(c̆i, d̆i). To draw the conclusion, we have to

show that m 6= m(i). Indeed, if m = m(i) and we already have c̆||Γe||Γs = c̆i||Γ(i)
e ||Γ(i)

s implying

(m(i),Γ
(i)
s ,Γ

(i)
e ) = (m,Γs,Γe). Hence, it shows that Υ := (c̆, σ, %) is a forge for (m(i),Γ

(i)
s ,Γ

(i)
e )

(queried message), which is a contradiction to the definition of existential unforgeability of ABSC
scheme.

C.6 Proof of Theorem 7.4

Let A be an adversary that breaks the adaptive-predicates strong existential unforgeability of the proposed
CP-ABSC scheme with non-negligible advantage ε. Suppose A has made ν number of signcryption query

to the signcryption oracle. Let Υi := (c̆i, σ
(i)
s , %(i)) be the replied signcryption to the ith query message

(m(i),Γ
(i)
s ,Γ

(i)
e ) for i ∈ [ν]. Let Υ := (c̆, σs, %) be the forge by A for the message (m,Γs,Γe). We define an

event as
Forged := verk 6∈ {verk(i)

∣∣ i ∈ [ν]}

Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds ∧ Forged] + Pr[A Succeeds ∧ ¬Forged]

=⇒ Pr[A Succeeds ∧ Forged] ≥ ε/2 or Pr[A Succeeds ∧ ¬Forged] ≥ ε/2

Case Forged : We establish a PPT algorithm BwABS for forging to the primitive ABS scheme ΠwABS with
advantage at least ε/2.

Setup: First, the challenger CH publishes the public parameters ABS.PP of ΠwABS. Then,

the simulator BwABS runs C.Setup(1κ) to produce CK. BwABS chooses ae, be
U←− ZN and sets

ue := gae , ve := gbe . BwABS selects a hash function He : {0, 1}∗ −→ ZN . It provides PP :=
(J , g, ga, us, ue, vs, ve, gαT , {Ti}i∈U , X3, Hs, He, CK) to A .

Key Query Answering: Since the ABSC scheme and the primitive ABS scheme have the identical key
distribution for a set of attributes, the key queries from A will be forwarded to the challenger CH.
Similarly, the answers (keys) will be reversed back to A .

Signcryption Query Answering: Let (m(i),Γ
(i)
s ,Γ

(i)
e ) be the ith signcryption query to BwABS by

A . BwABS executes (c̆i, d̆i) ←− Commit(m(i)) and (verk(i), signk(i)) ←− Gen(1κ). Then, BwABS

makes a signature query for (verk(i),Γ
(i)
s ) to CH and gets the replied signature σ

(i)
w from CH.

Then, BwABS runs %
(i)
0 ←− ABE.Encrypt(PP, d̆i,Γ(i)

e ). It computes h
(i)
e := He(c̆i, %

(i)
0 , σ

(i)
w ) and

C
`
(i)
e +1

←− fun(PP, h(i)e , s(i)e ). Then it executes σ
(i)
o ←− OTS.Sign(h

(i)
e ||C`(i)e +1

||Γ(i)
e ||Γ(i)

s , signk(i))

and sets Υi := (c̆, σ
(i)
s , %(i)), where σ

(i)
s := (σ

(i)
w , σ

(i)
o , verk(i)) and %(i) := (%

(i)
0 , C

`
(i)
e +1

). It returns the

ith signcryption Υi to A .

Forgery: A outputs a tuple (Υ,Γs,Γe). Then, BwABS forges the signature σw for (verk,Γs) to the
primitive ABS scheme ΠwABS.

Analysis: By the event Forged, we have verk 6= verk(i) for i ∈ ν. Therefore, (verk,Γs) has not been
queried for signature to CH.

Case ¬Forged : In this case, we will develop an algorithm BOTS for forging to the primitive strong
unforgeable one-time signature scheme ΠOTS with advantage at least ε/2ν. Let CH be the challenger

45



for the primitive signature scheme ΠOTS. The challenger CH runs (verk, signk)←− Gen(1κ) and gives

verk to BOTS. The simulator BOTS picks i
U←− [ν] as a guess such that verk = verk(i).

Setup: Similar to that of section 5.

Key Query Answering: BOTS can handle the key queries as it knows the MSK.

Signcryption Query Answering: Let (m(j),Γ
(j)
s ,Γ

(j)
e ) be the jth signcryption query to BOTS by A .

B (j 6= i) :
BOTS executes (c̆j , d̆j) ←− Commit(m(j)), (verk(j), signk(j)) ←− Gen(1κ). Then, it runs

σ
(j)
w ←− wABS.Sign(PP, verk(j),SKA,Γ(j)

s ), %
(j)
0 ←− ABE.Encrypt(PP, d̆j ,Γ(j)

e ), C
`
(j)
e +1

←−

fun(PP, h(j)e , s
(j)
e ), σ

(j)
o ←− OTS.Sign(h

(j)
e ||C`(j)e +1

||Γ(j)
e ||Γ(j)

s , signk(j)). It sets σ
(j)
s :=

(σ
(j)
w , σ

(j)
o , verk(j)), %(j) := (%

(j)
0 , C

`
(j)
e +1

) and returns the jth signcryption Υj := (c̆j , σ
(j)
s , %(j))

to A .

B (j = i) :
Same as above except BOTS does not run Gen(1κ) but it sets verk(j) := verk and it makes a

query to CH for the message h
(j)
e ||C`(j)e +1

||Γ(j)
e ||Γ(j)

s and gets the replied signature σ
(j)
o .

Forgery: A outputs a tuple (Υ,Γs,Γe). Then, BOTS forges the signature σo for he||C`e+1||Γe||Γs to
the primitive one-time signature scheme ΠOTS.

Analysis: With probability 1/ν, BOTS correctly guesses i such that this case is happened.

Now we only have to show that (he||C`e+1||Γe||Γs, σo) 6= (h
(i)
e ||C`(i)e +1

||Γ(i)
e ||Γ(i)

s , σ
(i)
o ). Indeed, if

(he||C`e+1||Γe||Γs, σo) = (h
(i)
e ||C`(i)e +1

||Γ(i)
e ||Γ(i)

s , σ
(i)
o ), we have he = h

(i)
e , C`e+1 = C

`
(i)
e +1

, σo = σ
(i)
o .

Since He is collision resistant, we have c̆ = c̆i, σw = σ
(i)
w , %0 = %

(i)
0 and which implies d̆ = d̆i and

using c̆ = c̆i, we have m = m(i). All together, we have (Υ,m,Γs,Γe) = (Υi,m
(i),Γ

(i)
s ,Γ

(i)
e ), which is

contradiction to the definition of strong existential unforgeability of CP-ABSC scheme.

D Mechanism for Full Construction

Although the technique is available in [LOS+10] but for self-containment, in this section we briefly demon-
strate it. The mechanism described here is for both CP-ABS and CP-ABSC supporting MSPs. For full
construction, the row labeling functions of span programs are not assumed to be injective. If we allow an
attribute to repeat in the span programs at most M time and the size of the universe U is n, then the
size of new universe U ′ for the full construction will be nM. Basically in this full construction, for each
attribute χ ∈ U , we consider M copies of χ in U ′. To enumerate each copy, we assign a label say j to
the attribute say χ, i.e., U ′ := {(χ, j)|χ ∈ U , j ∈ [M]}. Similarly, for any access policy Γ := (M,ρ) if
ρ(i) = χ and the attribute χ appears jth time, then we label the ith row by (χ, j), i.e., we have a new
row labeling function ρ′ defined by ρ′(i) := (χ, j). Likewise if A is a set of attributes corresponding to U ,
then A′ := {(χ, j)|χ ∈ A, j ∈ [M]} is the set of attributes for U ′. Then, we have that the set of attributes
A satisfies the policy (M,ρ) if and only if A′ satisfies (M,ρ′). Due to this technique, the sizes of public
parameters and key increase by a factor linear to M, but the sizes of signature (resp. signcryption) and the
cost of sign and ver (resp. signcrypt and unsigncrypt) for CP-ABS (resp. CP-ABSC) remain unchanged.
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E Strong Unforgeability in presence of Unsigncryption Oracle

The strong existential unforgeability of the published version (in ProvSec, 2014) of this paper was proven
without giving the unsigncryption oracle access to the adversary A . In this full version, we include the
proof of strong unforgeability, where A is provided the access to unsigncryption oracle.

The proof style is just an extension of the unforgeability proof of CP-ABS (section 4), where a verifi-
cation text (for verifying the forgery) is changed to a sf-type 2 with respect to which the forgery will be
invalid. The oracle queries are handled in similar manner as in confidentiality proof of CP-ABSC (section
6.2). We will be considering two forms of semi-functional key, viz, sf-type I and sf-type II. Each of the
following stuffs has two forms, sf-type 1 and sf-type 2: verification text (involved for checking signature
part of the forge), unsigncryption-query key and signcryption. Below, we only define the sf-type 1 and
sf-type 2 vText as rest are similar to that of section 6.2.

Semi-functional Type 1 Verification text. Pick c, ι
U←− ZN , ~vs

U←− ZnsN . For each i ∈ [`s], pick

γ
(i)
s

U←− ZN . For each i ∈ U , choose zi
U←− ZN . The sf-type 1 vText is obtained by modifying normal

vText V = (~V0, {~Vi}i∈[`s]) as given below:

~V0 :=
(
gs gc2 , (u

hs
s vs)

s gι2 , g
αs
T

)
~Vi :=

(
gaλ

(i)
s T−r

(i)
s

ρs(i)
g
~M

(i)
s .~vs+γ

(i)
s zρs(i)

2 , gr
(i)
s g−γ

(i)
s

2

)
, for i ∈ [`s]

Semi-functional Type 2 Verification text. This is same as sf-type 1 vText except the following

~V0 :=
(
gsgc2, (u

hs
s vs)

sgι2, ĝt
)
, where ĝt

U←− GT

Theorem E.1. If DSG1, DSG2 and DSG3 assumptions hold for J , ΠOTS is a strong unforgeable one-
time signature scheme and Hs, He are collision resistant hash functions, then the proposed basic CP-ABSC
scheme in section 7 is strong existential unforgeable.

Proof. Suppose an adversary A can break the adaptive-predicates strong existential unforgeability of the
proposed CP-ABSC scheme with non-negligible advantage ε. Lets assume that A has made ν3 number of

signcryption query to the signcryption oracle. Let (m(i),Γ
(i)
s ,Γ

(i)
e ) be the ith query and Υi := (c̆i, σ

(i)
s :=

(σ
(i)
w , σ

(i)
o , verk(i)), %(i)) be the corresponding replied signcryption. Let Υ := (c̆, σs := (σw, σo, verk), %) be

the forge by A for the message (m,Γs,Γe). We define an event as

Forged := verk 6∈ {verk(i)
∣∣ i ∈ [ν3]}

Then, we have

ε ≤ Pr[A Succeeds] := Pr[A Succeeds ∧ Forged] + Pr[A Succeeds ∧ ¬Forged]

=⇒ Pr[A Succeeds ∧ Forged] ≥ ε/2 or Pr[A Succeeds ∧ ¬Forged] ≥ ε/2

Case Forged : Suppose there are at most ν1 key queries and ν2 unsigncryption queries, then the security
proof consists of hybrid argument over a sequence of 2(ν1+ν2+ν3)+4 games. The games are defined
below:

– GameReal := The original APs-sUF-CMA security game of CP-ABSC.

– GameReal′ := This is same as game GameReal except the event Forged is always happened.
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– Game0 (= Game1−0−2) is just like GameReal′ except that the vText is of sf-type 1.

– In Game1−k−1 (for 1 ≤ k ≤ ν1), vText is sf-type 1, all the unsigncryption queries are answered by
normal uq-Key, all the replied signcryptions are normal, the first (k − 1) keys returned to the
adversary are sf-type 2, kth key is sf-type 1 and the rest keys are normal.

– Game1−k−2 (for 1 ≤ k ≤ ν1) is same as Game1−k−1 except kth key is sf-type 2.

– In Game2−k−1 (for 1 ≤ k ≤ ν2), vText is sf-type 1, all the replied signcryptions are normal, all the
keys are sf-type 2, the first (k − 1) unsigncryption queries are answered by sf-type 2 uq-keys,
kth unsigncryption query is answered by sf-type 1 uq-key and the rest are answered by normal
uq-keys. (So, in this sequel Game2−0−2 = Game1−ν1−2)

– Game2−k−2 (for 1 ≤ k ≤ ν2) is same as Game2−k−1 except the kth unsigncryption query is answered
by sf-type 2 uq-key.

– In Game3−k−1 (for 1 ≤ k ≤ ν3), vText is sf-type 1, all the keys are sf-type 2, all the unsigncryption
queries are answered by sf-type 2 uq-keys, the first (k − 1) replied signcryptions are of sf-type
II, the kth replied signcryption is sf-type I and the rest are normal signcryption. (So, in this
sequel Game3−0−2 = Game2−ν2−2)

– Game3−k−2 (for 1 ≤ k ≤ ν3) is same as Game3−k−1 except the kth replied signcryption is sf-type
II.

– GameFinal is similar to Game3−ν3−2 except that the vText is of sf-type 2.

Let AdvReal
A ,ABSC(κ), AdvReal′

A ,ABSC(κ), Adv0A ,ABSC(κ), Adv1−k−1A ,ABSC(κ), Adv1−k−2A ,ABSC(κ), Adv2−i−1A ,ABSC(κ),

Adv2−i−2A ,ABSC(κ), Adv3−j−1A ,ABSC(κ), Adv3−j−2A ,ABSC(κ) and AdvFinalA ,ABSC(κ) denote the advantages of an ad-
versary A in GameReal, GameReal′ , Game0, Game1−k−1, Game1−k−2, Game2−i−1, Game2−i−2,
Game3−j−1, Game3−j−2 and GameFinal for 1 ≤ k ≤ ν1, 1 ≤ i ≤ ν2, 1 ≤ j ≤ ν3 respectively.

In GameFinal, the part, V03 of ~V0 is chosen independently and uniformly random from GT imply-
ing that each forge will be invalid with respect to the vText. Therefore, the adversary A has no
advantage in GameFinal.
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Using lemmas E.2, E.3, E.4, E.5, E.6, E.7, E.8 and E.9, we have the following reduction

1

2
.AdvABSC−EUF

A (κ) =
1

2
.AdvReal

A ,ABSC(κ) ≤ AdvReal′
A ,ABSC(κ)

≤ |AdvReal′
A ,ABSC(κ)− Adv0A ,ABSC(κ)|

+

ν1∑
k=1

(|Adv
1−(k−1)−2
A ,ABSC (κ)− Adv1−k−1A ,ABSC(κ)|+ |Adv1−k−1A ,ABSC(κ)− Adv1−k−2A ,ABSC(κ)|)

+

ν2∑
k=1

(|Adv
2−(k−1)−2
A ,ABSC (κ)− Adv2−k−1A ,ABSC(κ)|+ |Adv2−k−1A ,ABSC(κ)− Adv2−k−2A ,ABSC(κ)|)

+

ν3∑
k=1

(|Adv
3−(k−1)−2
A ,ABSC (κ)− Adv3−k−1A ,ABSC(κ)|+ |Adv3−k−1A ,ABSC(κ)− Adv3−k−2A ,ABSC(κ)|)

+ |Adv3−ν3−2A ,ABSC(κ)− AdvFinalA ,ABSC(κ)|

≤ AdvDSG1
B0

(κ) +

ν1∑
k=1

(AdvDSG2
B1−k−1

(κ) + AdvDSG2
B1−k−2

(κ))

+

ν2∑
k=1

(AdvDSG2
B2−k−1

(κ) + AdvDSG2
B2−k−2

(κ))

+

ν3∑
k=1

(AdvDSG2
B3−k−1

(κ) + AdvCR−HsH3−k−1
(κ) + AdvDSG2

B3−k−2
(κ)) + AdvDSG3

B4
(κ)

where B0,B1−k−1,B1−k−2,B2−k−1,B2−k−2,B3−k−1,H3−k−1,B3−k−2 and B4 are PPT algorithms
whose running times are same as that of A .

Case ¬Forged : This case is similar to that of Theorem 7.4. We note that in this case the simulator can
handle the unsigncryption queries as it knows the MSK.

The following lemmas can be proven similarly to that of CP-ABS and CP-ABSC.

Lemma E.2. GameReal′ and Game0 are indistinguishable under the DSG1 assumption. That is, for every
adversary A there exists a PPT algorithm B such that |AdvReal′

A ,ABSC(κ)− Adv0A ,ABSC(κ)| ≤ AdvDSG1
B (κ).

Lemma E.3. Game1−(k−1)−2 and Game1−k−1 are indistinguishable under the DSG2 assumption. That

is, for every adversary A there exists a PPT algorithm B such that |Adv
1−(k−1)−2
A ,ABSC (κ)− Adv1−k−1A ,ABSC(κ)| ≤

AdvDSG2
B (κ) for 1 ≤ k ≤ ν1.

Lemma E.4. Game1−k−1 and Game1−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv1−k−1A ,ABSC(κ)−Adv1−k−2A ,ABSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν1.

Lemma E.5. Game2−(k−1)−2 and Game2−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of He. That is, for every adversary A there exists a PPT algorithm B such that

|Adv
2−(k−1)−2
A ,ABSC (κ)− Adv2−k−1A ,ABSC(κ)| ≤ AdvDSG2

B (κ) for 1 ≤ k ≤ ν2.

Lemma E.6. Game2−k−1 and Game2−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv2−k−1A ,ABSC(κ)−Adv2−k−2A ,ABSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν2.
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Lemma E.7. Game3−(k−1)−2 and Game3−k−1 are indistinguishable under the DSG2 assumption and col-
lision resistant property of Hs. That is, for every adversary A there exists PPT algorithms, B and H
such that |Adv

3−(k−1)−2
A ,ABSC (κ)− Adv3−k−1A ,ABSC(κ)| ≤ AdvDSG2

B (κ) + AdvCR−HsH (κ) for 1 ≤ k ≤ ν3.

Lemma E.8. Game3−k−1 and Game3−k−2 are indistinguishable under the DSG2 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv3−k−1A ,ABSC(κ)−Adv3−k−2A ,ABSC(κ)| ≤ AdvDSG2

B (κ)
for 1 ≤ k ≤ ν3.

Lemma E.9. Game3−ν3−2 and GameFinal are indistinguishable under the DSG3 assumption. That is, for
every adversary A there exists a PPT algorithm B such that |Adv3−ν3−2A ,ABSC(κ)−AdvFinalA ,ABSC(κ)| ≤ AdvDSG

B (κ)
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