
Concurrent Secure Computation with

Optimal Query Complexity

Ran Canetti ∗ Vipul Goyal† Abhishek Jain‡

Abstract

The multiple ideal query (MIQ) model [Goyal, Jain, and Ostrovsky, Crypto’10] offers a
relaxed notion of security for concurrent secure computation, where the simulator is allowed to
query the ideal functionality multiple times per session (as opposed to just once in the standard
definition). The model provides a quantitative measure for the degradation in security under
concurrent self-composition, where the degradation is measured by the number of ideal queries.
However, to date, all known MIQ-secure protocols guarantee only an overall average bound
on the number of queries per session throughout the execution, thus allowing the adversary
to potentially fully compromise some sessions of its choice. Furthermore, [Goyal and Jain,
Eurocrypt’13] rule out protocols where the simulator makes only an adversary-independent
constant number of ideal queries per session.

We show the first MIQ-secure protocol with worst-case per-session guarantee. Specifically,
we show a protocol for any functionality that matches the [GJ13] bound: The simulator makes
only a constant number of ideal queries in every session. The constant depends on the adversary
but is independent of the security parameter.

An immediate corollary of our main result is in extending the password authenticated key
exchange (PAKE) protocol of [GJO10] from the case of a single password to the general case
of multiple arbitrary passwords. Specifically, we give the first PAKE protocol for the fully
concurrent, multiple password setting in the standard model with no set-up assumptions.

1 Introduction

General feasibility results for secure computation were established nearly three decades ago in the
seminal works of [Yao86, GMW87]. However, these results only promise security for a protocol if it
is executed in isolation, “unplugged” from any network activity. In particular, these results are not
suitable for the Internet setting where multiple protocol executions may occur concurrently under
the control of a common adversary.

A brief history of concurrent security. Towards that end, an ambitious effort to understand
and design concurrently secure protocols kicked into gear with early works such as [GK96, DDN00a],

∗Boston University and Tel Aviv University. Email: canetti@bu.edu. Supported by the Check Point Institute
for Information Security, ISF grant 1523/14, and NSF Frontier CNS 1413920 and 1218461 grants.
†Microsoft Research India. Email: vipul@microsoft.com
‡Johns Hopkins University. Email: abhishek@cs.jhu.edu. Work done in part while visiting Microsoft Research,

India, and at Boston University and MIT, where the author was supported in part by NSF 1218461 and DARPA
FA8750-11-2-0225.

1

and later the study of the concurrent zero knowledge setting [DNS98, RK99, CKPR01, KP01,
PRS02]. For other functionalities and in more general settings, however, far-reaching impossibility
results were established [CF01, CKL03, Lin03, BPS06, Goy12, AGJ+12, GKOV12]. These results
refer to the “plain model” where the participating parties have no trusted set-up, and hold even if
the parties have access to pairwise authenticated communication and a broadcast channel.

Two main lines of research have emerged in order to circumvent these impossibility results. The
first concerns with the use of trusted setup assumptions such as a common random string, strong
public key infrastructure or tamper-proof hardware tokens (see, e.g. [CLOS02, BCNP04, Kat07]).

The second line of research is dedicated to the study of weaker security definitions that allow
for positive results in the plain model, without additional trust assumptions. The most notable
examples of this include security w.r.t. super-polynomial time simulation [Pas03, PS04, BS05,
CLP10, GGJS12] and input-indistinguishable computation [MPR06, GGJS12]. One main drawback
in this line of research is that it is not always clear by “how much” is the definition of security
relaxed, or in other words “how much security” is being lost due to concurrent attacks.

The multiple ideal query model and its applications. The multiple ideal query model (or,
the MIQ model in short) of Goyal, Jain and Ostrovsky [GJO10] takes a different approach to the
problem of quantifying the security loss. In this model, the simulator is allowed to query the ideal
functionality multiple times per session (as opposed to just once in the standard definition). On
the technical side, allowing the simulator multiple queries indeed facilitates proofs of security in
a concurrent setting. On the conceptual side, this model allows for a natural quantification of
the “security loss” incurred by concurrent attack: the more ideal queries, the weaker the security
guarantee. Furthermore, the effect of multiple ideal queries strongly depends on the task at hand,
thus allowing for more fine-tuned notions of security for a given problem or setting.

One functionality where this approach proved very effective is that of password-based key ex-
change (namely the two-party function that outputs a secret random value to both parties if the
inputs provided by the two parties are equal). When the number of queries made by the simulator
per session is a constant, the security guarantees of the MIQ model actually imply fully concurrent
password-based authenticated key exchange (see [GL01, GL06, GJO10]). This fact was exploited
by Goyal et. al [GJO10] to get the first concurrent PAKE in the plain model — albeit with the
significant restriction that the same password is to be used as input in every session. This restric-
tion results from a weakness in their modeling and analysis - a weakness that we overcome in this
work.

The central question: how many queries? So, how to best bound the number of ideal queries
made by the simulator? Intuitively, if we allow a large number of queries, then the security guarantee
may quickly degrade and become meaningless; in particular, if enough queries are allowed, then the
adversary may be able to completely learn the inputs of the honest parties. On the other hand, if
the number of allowed queries is very small (say only 1 + ε per session) then the security guarantee
is very close to that of the standard definition. To exemplify this further, let us recall the following
example from [GJ13]: consider two parties who wish to jointly evaluate a polynomial over a point
[NP06, NP99]. The input of party P1 is a polynomial Q, while the input of P2 is a point α. At
the end of the protocol, the party P2 gets Q(α) as the output. This is a natural functionality with
applications to list intersection, mutual authentication, metering on the web, etc (see [NP06] for
more details on these).

2

Now, observe that if we only allow, say, 2 queries to a malicious P2 in the ideal world (per real
world session), then as long as Q is a high-degree polynomial, the security guarantee for P1 is still
quite meaningful. Instead of a single point, now a malicious adversary may learn the output on
two points of its choice (from an exponential domain of points). However, the adversary still does
not learn any information about what the polynomial evaluates to on rest of the domain. On the
other hand, if we allow too many queries (exceeding the degree of the polynomial), then the ideal
world adversary may be able to learn the entire polynomial Q!

Another related example is 1-out-of-m OT. Here, as long as λ, the simulator’s query complexity,
is smaller than m, MIQ provides meaningful security which degrades gracefully with λ. More
generally, the remaining security for any session i in concurrently secure computation of function f
is proportional to the “level of unlearnability” of f(·, xi) after q queries, where xi is the secret
input of the honest party in session i. Password-based key exchange is an extreme case of an
unlearnable function. Ideally, we would like to bring λ as close as possible to 1.

Prior work: Average case vs. worst case guarantees. The best positive result in the MIQ
model is due to Goyal, Gupta, and Jain [GGJ13] (improving upon [GJO10]). They provide a con-

struction where the number of ideal queries in a session are (1 + log6 n
n), where n is the security

parameter. However, this is only an average-case guarantee over the sessions that provides very
weak security. In particular, it does not preclude the ideal adversary from making an arbitrarily
large number of queries in some chosen sessions (while keeping the number of queries low in the
other sessions). In cases of interest, such as the PAKE functionality or the above oblivious poly-
nomial evaluation functionality, this means that the security in some sessions may be completely
compromised !

Furthermore, Goyal and Jain [GJ13] recently proved an unconditional lower bound on the num-
ber of ideal queries per session. Specifically, they show that there exists a two-party functionality
that cannot be securely realized in the MIQ model with any (adversary independent) constant
number of ideal queries per session. A natural and important question is thus what is the best
worst-case bound we can give on the number of ideal queries asked per session?

1.1 Our Results

In this work, we fully settle the question of worst-case number of per session ideal queries in the
context of general function evaluation. Our main result is stated below.

Theorem 1 (Main result (informally stated)). Under standard cryptographic assumptions, for
every PPT functionality f , there exists a protocol in the MIQ model where the simulator makes
only a constant number of ideal queries in every session. The aforementioned constant is dependent
upon the adversary, and, in particular on the number of sessions (rather than being universal).

If the number of concurrent sessions being executed by the adversary is nc, then the constant
in the above theorem will be derived from c. A more detailed discussion on this can be found at
the end of this subsection.

We stress that due to the worst-case guarantee of our result, we are able to achieve, for the first
time in the study of the MIQ model, meaningful security for all sessions, which is much closer to
standard security for secure computation. Interestingly, our protocol is the same as the [GGJ13]
protocol. Still, we provide a significantly better analysis of its security. We stress that prior to this
work, no approach for obtaining a worst-case bound on the ideal query complexity was known.

3

Our upper bound tightly matches the lower bound of Goyal and Jain [GJ13] which rule out
protocols where the simulator makes a constant number of ideal queries per session for any universal
constant. Taken together, this fully resolves the central problem in the study of the MIQ problem: a
(adversary dependent) constant number of ideal queries per session is both necessary and sufficient
for simulation. Thus, our work can be viewed as the final step in understanding the simulator query
complexity of the MIQ model.

Fully concurrent PAKE without setup. Say that a password-based key exchange protocol is
fully concurrent if it remains secure in a setting where unboundedly many executions of the protocol
run concurrently, on potentially different passwords. An immediately corollary of our main result
is the resolution of the long standing open problem of designing a fully concurrent PAKE protocol
in the standard model and with no setup assumptions:

Theorem 2 (Concurrent PAKE (informally stated)). Under standard cryptographic assumptions,
there exists a fully concurrent Password-based Key Exchange protocol in the standard model and
with no trusted set-up. The security of the exchanged keys is c/|D|, where D is the password
dictionary and c is an adversary-dependent constant.

A discussion on adversary dependent constants. In the above theorems, if the number of
concurrent sessions being executed by the adversary is nc, then the number of ideal world queries
made by the simulator (in Theorem 1) or the distinguishing probabilty for the exchanged keys (in
Theorem 2) is a function of c alone. We call this as an adversary dependent constant. Consider
any adversary which runs in polynomial time. For such an adversary, there must exist a constant
c such that nc bounds its running time (and hence the number of concurrent sessions). Then if the
number of ideal queries is a function of c alone, it does not grow with n. Thus overall, the number
of ideal queries is a fixed constant for every polynomial time adversary (although this constant
could be different for different polynomial time adversaries).

We remark that this is reminiscent of how we define and treat the running time of simulator
in zero-knowledge (and other cryptographic protocols). The running time of the simulator may
depend upon the running time of the adversary (and in particular upon the number of sessions in
the concurrent setting), and, hence is not an a priori fixed polynomial. However for every adversary,
there is a (possibly different) polynomial in the security parameter which describes the running time
of the simulator.

1.2 Technical Overview

Simulator Query Complexity and Precise Simulation. The question of simulator query
complexity in the MIQ model is intimately connected to the notion of precise simulation introduced
by Micali and Pass [MP06]. Recall that traditional simulator strategies allow for the simulator’s
running time to be an arbitrary polynomial factor of the (worst-case) running time of the real
adversary. The notion of precise simulation concerns with the study of how low this polynomial
can be. This idea is, in fact, much more general and can also be used in the context of resources
other than running time, such as memory, etc. Thus, in the most general sense, the goal of precise
simulation is to develop simulation strategies whose resource utilization is “close” to the resource
utilization of the real adversary.

4

As observed in [GJO10], the study of simulator query complexity in the MIQ model can also
be cast as a precise simulation problem by viewing the trusted party queries as the resource of the
simulator. Therefore, advances in precise simulation strategies go hand in hand with improvements
in the simulator query complexity in the MIQ model. Indeed, prior works in the MIQ model
[GJO10, GGJ13] have relied upon sophisticated precise simulation strategies in order to obtain
their positive results. We note, however, that till date, all precise simulation strategies only focus
on minimizing the total cost of the simulator across all the sessions. Indeed, this is why these works
only yield an average-case bound on the simulator query complexity.

In this work, we are interested in minimizing the worst-case simulator query complexity per
session. In other words, we are interested in simulation strategies that guarantee local precision
for every session.

Our approach in a nutshell. Towards that end, our starting observation is that the problem
of bounding the simulator query complexity per session can be reduced to bounding the number
of times the output message of a session appears in the entire simulation transcript.1 In other
words, we need a precise (concurrent) simulation strategy where the output message of every
session appears only a constant number of times across the entire simulation transcript.2 For this
purpose, we revisit existing precise simulation strategies. Concretely, we show that a slight variant
of the “sparse” rewinding strategy of Goyal, Gupta and Jain [GGJ13] (that we henceforth refer to
as the GGJ simulation strategy) satisfies our desired property. We prove this by a novel, purely
combinatorial analysis. Our final secure computation protocol remains essentially identical to those
in the prior works in the MIQ model.

We now give an overview of the steps involved in our proof. Say that we wish to analyze the
number of queries in session i. Consider the specific point in the protocol execution of session
i where, the simulator actually makes a query to the ideal functionality: call this point pi (for
example, this may be the 5th message of the protocol execution in session i). This means that
whenever the simulator reaches the point pi (in the overall concurrent execution), it will have to
call the trusted functionality for session i to compute the next outgoing message. Thus, now the
problem reduces to simply counting how many times the point pi occurs in the entire rewinding
schedule. Observe that in each thread of execution, point pi only occurs once. However, there
could be multiple threads of execution resulting because of rewinding. Therefore, pi may also occur
multiple times in the rewinding schedule.

While a direct (full) analysis of the GGJ rewinding strategy [GGJ13] turns out to be complex,
we are able to break it down into three different steps. Each step builds upon the previous one,
with the final step yielding us the desired bound on the simulator query complexity. Below, we
provide an informal overview of each of the three steps and refer the reader to the later sections
for details.

Step 1. Lazy-KP with static scheduling: We first consider the warm-up case when scheduling
of messages by the adversary is static. This means that the ordering of the messages of different
sessions is decided by the adversary ahead of time and is fixed (and does not change upon rewinding

1More concretely, we wish to bound the first message in the protocol where the simulator is forced to query the
trusted party in order to obtain the function output.

2Note that the output message of a session may appear more than once in the simulation transcript if the simulator
employs rewinding.

5

by the simulator). Further, instead of directly analyzing the GGJ simulator [GGJ13], here we will
analyze the query complexity of the (simpler) “lazy-KP” simulator [PTV14, PRS02, KP01] for the
case where the simulator uses a splitting factor of n for rewinding. That is, during simulation, each
thread is divided into n equal parts, and, each resulting part is rewound individually (resulting in
different threads of execution).

In this case, we are able to prove that the simulator makes at most O(1) queries to the ideal
functionality in any given session. This is done by relying on the following fact. Say that the point
pi does not occur in a given thread. Then, since the adversary only employs static scheduling,
this would mean that the point pi also cannot occur in any threads resulting from rewinding this
thread. Thus, the proof reduces to a counting argument on the number of threads resulting from
rewinding the part of the main thread containing pi. If d is the depth of recursion for our recursive
rewinding schedule, then we are able to show that there are at most O(2d) threads containing point
pi. However, the depth d will be a constant for lazy-KP simulation with splitting factor n.

Step 2. Lazy-KP with dynamic scheduling: Now we analyze a general adversary that may
dynamically change the ordering of the messages across different sessions upon being rewound.
Hence, different threads of execution may have different ordering of the messages. We shall continue
to analyze the lazy-KP simulation strategy with splitting factor n.

In this case, we are able to prove that the simulator makes at most O(log(n)) queries to the
ideal functionality in any given session. The key difficulty in this case is that even if a given thread
does not contain the point pi, the threads resulting from its rewinding may still have pi. Hence, it
seems hard to rule out the possibility that pi may show up in a large number of threads throughout
the simulation.

To overcome this problem, we rely on the following fact: once the point pi is seen in the main
thread of execution, it cannot occur in any thread arising out of the main thread after that point.
We also observe that before this point is seen in the main thread, there seems hope to rule out its
occurrence in a “large” number of look ahead threads. This relies on the symmetry of the main and
the look-ahead threads, and, on the fact that this point has roughly equal probability of occurring
first in the main thread vs occurring first in any given look ahead thread. Indeed, this step of
the proof is much more involved than the first step and we refer the reader to Section 4 for more
details.

Step 3. Sparsifying the lazy-KP simulation: In the final step, we analyze the sparse rewind-
ing strategy of [GGJ13]. Very roughly speaking, the sparse rewinding strategy of [GGJ13] aims
to rewind the adversary in “as few places as possible” while still solving all the sessions. More
specifically, there is a cost associated with creating each look ahead, and, the goal of the rewinding
strategy is to solve all sessions while minimizing the cost.

The sparse rewinding strategy of [GGJ13] builds upon the lazy-KP simulator with splitting
factor n. Very roughly, [GGJ13] pick a subset of the total threads resulting out of the lazy-KP
simulation, and choose to execute only the threads in the subset (while ignoring the remaining
threads by aborting them at their start). In more detail, at each level of recursion, [GGJ13]

randomly chooses polylog(n)
n fraction of the total threads and execute them while ignoring the rest.

Interestingly, Goyal et. al [GGJ13] show that, if one uses protocols with somewhat higher round
complexity, all the session will still be solved even though most of the look-ahead threads are never
executed.

6

The key idea of our final step is to leverage this sparsification in order the reduce the number
of queries from O(log(n)) from the previous step to O(1). Recall from above that if we were to
use the full lazy-KP simulation, the point pi would have occurred at O(log(n)) places in the entire
simulation. However, now, in the GGJ rewinding strategy, it will occur only O(1) times because
most of the threads will never be executed. More details are given in section 5.

2 Our Model

We define our security model by extending the standard real/ideal paradigm for secure computation.
Roughly speaking, we consider a relaxed notion of concurrently secure computation where the ideal
world adversary is allowed to make an a priori fixed λ number of output queries to the ideal
functionality for each session. Note that in contrast, the standard definition for concurrently secure
computation only allows for one output query per session to the ideal adversary. We now give more
details.

Notation. Let n denote the security parameter. We denote computational indistinguishability by
c≡. In this work, we consider malicious, static adversaries that choose whom to corrupt before the
start of any protocol. Further, we work in the static input setting, i.e., we assume that the inputs
of the honest parties in all sessions are fixed at the beginning. We do not require fairness.

Ideal model. We first define the ideal world experiment, where there is a trusted party for
computing the desired two-party functionality f . Let there be two parties P1 and P2 that are
involved in multiple, say m = m(n), evaluations of f .3 Let S denote the adversary. The ideal world
execution (parameterized by λ) proceeds as follows.

I. Inputs: P1 and P2 obtain a vector of m inputs, denoted ~x and ~y respectively. The adversary
is given auxiliary input z, and chooses a party to corrupt. Without loss of generality, we
assume that the adversary corrupts P2 (when the adversary controls P1, the roles are simply
reversed). The adversary receives the input vector ~y of the corrupted party.

II. Session initiation: The adversary initiates a new session by sending a start-session message
to the trusted party. The trusted party then sends (start-session, i) to P1, where i is the index
of the session.

III. Honest parties send inputs to trusted party: Upon receiving (start-session, i) from the
trusted party, honest party P1 sends (i, xi) to the trusted party, where xi denotes P1’s input
for session i.

IV. Adversary sends input to trusted party and receives output: Whenever the adversary
wishes, it may send a message (i, `, y′i,`) to the trusted party for any y′i,` of its choice. Upon
sending this pair, it receives back (i, `, f(xi, y

′
i,`)) where xi is the input value that P1 previ-

ously sent to the trusted party for session i. The only limitation is that for any i, the trusted
party accepts at most λ tuples indexed by i from the adversary.

V. Adversary instructs trusted party to answer honest party: When the adversary sends
a message of the type (output, i, `) to the trusted party, the trusted party sends (i, f(xi, y

′
i,`))

to P1, where xi and y′i,` denote the respective inputs sent by P1 and adversary for session i.

3Note that there is no a priori bound assumed on m.

7

VI. Outputs: The honest party P1 always outputs the values f(xi, y
′
i,`) that it obtained from

the trusted party. The adversary may output an arbitrary (probabilistic polynomial-time
computable) function of its auxiliary input z, input vector ~y and the outputs obtained from
the trusted party.

The ideal execution of a function F with security parameter n, input vectors ~x, ~y and auxiliary
input z to S, denoted IdealF ,S(n, ~x, ~y, z), is defined as the output pair of the honest party and S
from the above ideal execution.

Definition 1 (λ-Ideal Query Simulator). Let S be a non-uniform probabilistic (expected) ppt
machine representing the ideal-model adversary. We say that S is a λ-ideal query simulator if it
makes at most λ output queries per session in the above ideal experiment.

Real model. Let Π be a two-party protocol for computing F . Let A denote a non-uniform
probabilistic polynomial-time adversary that controls either P1 or P2. The parties run concurrent
executions of the protocol Π, where the honest party follows the instructions of Π in all executions.
The honest party initiates a new session i with input xi whenever it receives a start-session message
from A. The scheduling of all messages throughout the executions is controlled by the adversary. At
the conclusion of the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire view of the execution
of the protocol.

The real concurrent execution of Π with security parameter n, input vectors ~x, ~y and auxiliary
input z to A, denoted RealΠ,A(n, ~x, ~y, z), is defined as the output pair of the honest party and A,
resulting from the above real-world process.

Definition 2 (λ-Secure Concurrent Computation in the MIQ Model). A protocol Π is said to λ-
securely realize a functionality F under concurrent self composition in the MIQ model if for every
real model non-uniform ppt adversary A, there exists a non-uniform (expected) ppt λ-ideal query
simulator S such that for all polynomials m = m(n), every pair of input vectors ~x ∈ Xm, ~y ∈ Y m,
every z ∈ {0, 1}∗,

{IdealF ,S(n, ~x, ~y, z)}n∈N
c≡ {RealΠ,A(n, ~x, ~y, z)}n∈N

3 Framework for Concurrent Extraction

The Setting. Consider the following two-party computation protocol Π = (P1, P2):

• Stage 1: First, P1 and P2 interact in the commit phase of an execution of an extractable
commitment scheme 〈C,R〉 (described below) where P2 acts as the committer, committing
to a random string, and, P1 acts as the receiver.

• Stage 2: At the end of the commitment protocol, P1 sends a special message msg to P2.

Now, consider the scenario where P1 and P2 are interacting in multiple concurrent executions of
Π. Suppose that P2 is corrupted. Our goal is to design a simulator algorithm S that satisfies the
following two properties:

• Extraction in all sessions: S must successfully extract the value committed by adversarial
P ∗2 in each execution of Π.

8

• Minimize the query parameter: Let λ denote the upper bound on the number of times
the special message msgs of any session s appears in the entire simulation transcript. We
refer to λ as the query parameter. Then, the goal of S is to minimize the query parameter.

In the next subsection, we describe the extractable commitment scheme 〈C,R〉 from [PRS02].
Later, in Sections 4 and 5, we analyze the “lazy-KP” rewinding strategy [PTV14, PRS02, KP01]
and the “sparse” rewinding strategy of Goyal, Gupta and Jain (GGJ) [GGJ13].

3.1 Extractable Commitment Protocol 〈C,R〉

Let com(·) denote the commitment function of a non-interactive perfectly binding string commit-
ment scheme. Let n denote the security parameter. Let ` = ω(log n). Let N = N(n) which will be
determined later depending on the extraction strategy. The commitment scheme 〈C,R〉 between
the committer C and the receiver R is described as follows.

Commit Phase: This consists of two stages, namely, the Init stage and the Challenge-Response
stage, described below:

Init: To commit to a n-bit string σ, C chooses (` ·N) independent random pairs of n-bit strings

{α0
i,j , α

1
i,j}

`,N
i,j=1 such that α0

i,j ⊕α1
i,j = σ for all i ∈ [`], j ∈ [N]. C commits to all these strings using

com, with fresh randomness each time. Let B ← com(σ), and A0
i,j ← com(α0

i,j), A
1
i,j ← com(α1

i,j)
for every i ∈ [`], j ∈ [N].

Challenge-Response: For every j ∈ [N], do the following:

• Challenge : R sends a random `-bit challenge string vj = v1,j , . . . , v`,j .

• Response : ∀i ∈ [`], if vi,j = 0, C opens A0
i,j , else it opens A1

i,j by sending the decommitment
information.

Open Phase: C opens all the commitments by sending the decommitment information for each
one of them. R verifies the consistency of the revealed values. This completes the description of
〈C,R〉.

Notation. We introduce some terminology that will be used in the remainder of this paper. We
refer to the committed value σ as the preamble secret. A sloti of the commitment scheme consists
of the i’th Challenge message from R and the corresponding Response message from C. Thus, in
the above protocol, there are N slots.

4 Lazy-KP Extraction Strategy

In this section, we discuss the “lazy-KP” rewinding strategy4 [PTV14, PRS02, KP01] with a “split-
ting factor” of n. We note that the idea of using a large splitting factor was first used in [PPS+08].

For this strategy, we will first prove that λ = O(1) for static adversarial schedules. Next, we
will prove that for dynamic schedules, λ = O(log n). In both of these results, the constants in O
depend on number of sessions started by the concurrent adversary.

4The term “lazy-KP” originates in [PTV14].

9

Lazy-KP Simulator. The rewinding strategy of the lazy-KP simulator is specified by the
Lazy-KP-Simulate procedure. Very roughly, the simulator divides the current thread (given
as input) into n equal parts and then rewinds each part individually and recursively. The input
to the Lazy-KP-Simulate procedure consists of a triplet (`, hist, T). The parameter ` denotes
the adversary’s messages to be explored, the string hist is a transcript of the current thread of
execution, and T is a table containing the contents of all the adversary’s messages explored so far
(to extract the preamble secrets and for sending the Stage 2 special message in protocol Π in any
session).

The simulation is performed by invoking the procedure Lazy-KP-Simulate with appropriate
parameters. Let m = poly(n) denote the number of concurrent sessions in the adversarial schedule.
Then, the Lazy-KP-Simulate procedure is invoked with input (m (N + 1) , ∅, ∅), where m(N + 1)
is the total number of adversary’s messages in a schedule of m sessions. The Lazy-KP-Simulate
procedure is described in Figure 1. Note that here (similar to [PPS+08]) we divide each thread into
n parts. In other words, we consider a splitting factor of n.

Lazy-KP-Simulate(`, hist, T):

Bottom level (` = 1):

• Run P1’s algorithm to choose the next message α1 and feed P ∗
2 with (hist, α1). Let α2 be the

answer of P ∗
2 .

• Output ((α1, α2), α2).

Recursive step (` > 1):

1. Initialize h̃ist = ∅, T̃ = ∅.

2. For every i ∈ [n]:

(a) Compute (h̃isti,1, T̃i,1)← Lazy-KP-Simulate
(
`/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

(b) Compute (h̃isti,2, T̃i,2)← Lazy-KP-Simulate
(
`/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

(c) Update h̃ist = (h̃ist, h̃isti,1) and T̃ = (T̃ , T̃i,1, T̃i,2).

3. Output (h̃ist, T̃).

Figure 1: Lazy-KP Simulator with splitting factor n. Even though the messages in {h̃isti,2} do not

appear in the output, some of them do appear in T̃ .

For every session s consisting of an execution of Π, the goal of the simulator is to find two
instances of any slot i ∈ [N] of the commitment protocol 〈C,R〉 where the simulator’s challenges
are different and adversary responds with a valid response to each challenge. Note that in this case,
the simulator can extract the preamble secret of 〈C,R〉 from the two responses of the adversary.
On the other hand, if the simulation reaches Stage 2 in Π at any time, without having extracted
the preamble secret from the adversary, then it gives up the simulation and outputs ⊥. In this
case, we say the simulator gets stuck.

It follows from [PTV14] that the lazy-KP simulator (as described above) gets stuck with only

10

negligible probability.

Theorem 3 ([PTV14]). Let N = O(n). Then, for any concurrent schedule of m = poly(n)
sessions, the lazy-KP simulator gets stuck with only negl(n) probability.

4.1 Terminology for Concurrent Simulation

Here we introduce some terminology and definitions regarding concurrent simulation that will be
used in the rest of the paper.

Execution Thread. Consider any adversary that starts m = poly(n) number of concurrent
sessions of Π. In order to extract the preamble secret in every session, the simulator creates
multiple execution threads, where a thread of execution is a simulation of (part of) the protocol
messages in the m sessions. We differentiate between the following:

Main Thread vs Look-ahead Thread : The main thread is a simulation of a complete execution of the
m sessions, and this is the execution thread that is output by the simulator. In addition, from any
execution thread, the simulator may create other threads by rewinding the adversary to a previous
state and continuing the execution from that state. Such a thread is called a look-ahead thread.
Note that a look-ahead thread can be created from another look-ahead thread.

Complete vs Partial Thread : We say that an execution thread T is a complete thread if it shares
a prefix with the main thread: it starts where the main thread starts, and, continues until it is
terminated by the simulator. Other threads that start from intermediary points of the simulation
are called partial threads. Note that by definition, the main thread is a complete thread. In general,
a complete thread may consist of various partial threads. Various complete threads may overlap
with each other. For simplicity of exposition, unless necessary, we will not distinguish between
complete and partial threads in the sequel.

Simulation Transcript. The simulation transcript is the set of all the messages between the
simulator and the adversary during the simulation of all the concurrent sessions. In particular, this
includes the messages that appear on the main thread as well as all the look-ahead threads.

Simulation Index. Consider m = poly(n) concurrent executions of Π. Let M = m(2N + 2),
where 2N + 2 is the round complexity of Π. Then, a simulation index i denotes the point where
the i’th message (out of a maximum of M messages) is sent on any complete execution thread in
the simulation transcript.

Note that a simulation index i may appear multiple times on over various threads in the sim-
ulation transcript. However, a simulation index i can appear at most once on any given thread
(complete or partial). In particular, every simulation index i ∈ [M] appears on the main thread
(unless the main thread is aborted prematurely). Further, if a look-ahead thread T was created
from a thread at simulation index i, then only simulation indices j > i can appear on T .

Static vs Dynamic Scheduling. Consider the concurrent execution of m = poly(n) instances
of Π. Recall that the adversary controls the scheduling of the protocol messages across the m
sessions. We say that a concurrent schedule is static if the scheduling of the protocol messages is
decided by the adversary ahead of time and does not change upon rewindings. Thus, in a static

11

Figure 2: One recursion step for splitting factor 4. Every Ti and T ′i are sibling threads.

schedule, protocol messages appear in the same order on every complete thread. In particular, for
every i ∈ [M], every instance of a simulation index i in the simulation transcript corresponds to
the same message index j ∈ [2N + 2] of the same session s (out of the m sessions). However note
that the actual content of the j’th message may differ on every execution thread.

We say that a concurrent schedule is dynamic if at any point during the execution, the adver-
sary may decide which message to schedule next based on the protocol messages received so far.
Therefore, in a dynamic schedule, the ordering of messages may be different on different execution
threads in the simulation. In particular, each instance of a simulation index i may correspond to a
different message ji of a different session si.

Recursion Levels. We define recursion levels of simulation and count the number of threads at
each recursion level for the lazy-KP simulator. We say that the main thread is at recursion level 0
of simulation. Note that the Lazy-KP-Simulate divides the main thread of execution into n parts
and executes each part twice. This results in 2n execution threads, n of which are part of the main
thread, while the remaining n are look-ahead threads. All of these 2n threads are said to be at
recursion level 1. Now, each of these threads at recursion level 1 is divided into n parts and each
part is executed twice. This creates 2n threads at recursion level 2. Since there are 2n threads at
recursion level 1, in total, we have (2n)2 threads at recursion level 2. (Again, out of these (2n)2

threads, 2n2 threads actually lie on the 2n threads at level 1.) This process is continued recursively.
At recursion level `, there are (2n)` threads. Since there are total m(2N + 2) messages across the
m sessions, the depth of the recursion is a constant c′, where c′ = c + log(2N + 2) when m = nc.
Then, at recursion level c′, there are (2n)c

′
threads.

Sibling Threads. Consider Figure 2 where a thread T at some recursion level ` is divided into
n = 4 parts, which leads to the creation of 8 threads at recursion level `+ 1. Each pair of threads
(Ti, T

′
i) that are started from the same point are referred to as sibling threads.

12

4.2 Analysis of λ for Static Schedules

We start by analyzing the lazy-KP extraction strategy for static schedules. Let λlazy-KP denote the
query parameter for the lazy-KP simulator. We claim the following:

Theorem 4. For any constant c and any concurrent execution of m = nc instances of Π where the
scheduling of messages is static, λlazy-KP = 2c

′
, where c′ = c+ log(2N + 2).

In order to prove Theorem 4, we will make use of the following lemma.

Lemma 1. For any constant c and any concurrent execution of m = nc instances of Π, the
simulation transcript generated by the lazy-KP simulator is such that every simulation index i ∈ [M]
appears 2c

′
times, where c′ = c+ log(2N + 2).

Proof. Fix any simulation index i ∈ [M]. We will count the number of threads where i appears in
the simulation transcript. We will use the definition of recursion levels for our analysis.

• First note that simulation index i appears exactly once on the main thread. Since main
thread is the only thread at recursion level 0, we have that i appears once at recursion level
0.

• Now, recall that there are 2n threads at recursion level 1. Then, the simulation index i
appears on exactly 2 threads at recursion level 1 that are siblings of each other. To see
this, recall that the Lazy-KP-Simulate procedure divides the main thread into n equal
parts T1, . . . , Tn. Note that each of these parts corresponds to a thread at recursion level 1.
Further, Lazy-KP-Simulate creates n look-ahead threads T ′1, . . . , T

′
n, one from each thread

Ti, which contribute to the remaining n threads at recursion level 1. Now, since simulation
index i appears at most once on the main thread, let k be such that index i appears on Tk (on
the main thread). Then, note that amongst the set of look-ahead threads {T ′j}, simulation
index i can only appear on T ′k (which is a sibling of Tk). Thus, in total, simulation index i
appears on 2 threads at recursion level 1.

• Now, suppose by induction hypothesis that the simulation index i appears 2` times at recur-
sion level `. Let T1, . . . , T2` denote these 2` threads at recursion level ` where i appears. Now,
note that each of these threads Tj leads to 2n threads at recursion level ` + 1, out of which
exactly 2 contain the simulation index i. Thus, in total simulation index i appears 2`+1 times
at recursion level `+ 1.

• Finally, by induction, there are 2c
′

appearances of simulation index i at the last recursion
level c′ = c+ log(2N + 2).

Now, note that in order the count the total number of different threads where the simulation
index i appears in the simulation transcript, we only need to count the number of times it appears
at recursion level c′. This is because half of the 2c

′
appearances of simulation index i at recursion

level c′ are on threads that are part of the threads at recursion level c′ − 1. In particular, this is
true for every recursion level `.

From the above, we have that each simulation index i appears on 2c
′

different threads in the
simulation transcript.

13

Proof of Theorem 4. Consider any session s. From the definition of static scheduling, we have
that for every j ∈ [2N + 2], if the j’th message of session s appears at simulation index i on any
thread, then every instance of simulation index i in the simulation transcript corresponds to the
j’th message of session s. Now, from Lemma 1, since each simulation index appears 2c

′
times in

the simulation transcript, we have that the special message of every session s appears 2c
′

times in
the simulation. Thus, we have that λlazy-KP = 2c

′
for static schedules.

4.3 Analysis of λ for Dynamic Schedules

We now analyze the query parameter λlazy-KP for the lazy-KP extraction strategy for dynamic
schedules. We claim the following:

Theorem 5. For any polynomial m = poly(n), for any concurrent execution of m instances of Π
(with possibly dynamic scheduling of messages), λlazy-KP = O(log n) except with negligible probabil-
ity.

Proof of Theorem 5. Fix any session s out of the m = nc sessions. Note that the special
message msgs of session s appears exactly once on the main thread. Let imain denote the simulation
index where msgs appears on the main thread. Now, we will count:

1. The number of times msgs appears in the simulation transcript before imain. Let δ1 denote
this number.

2. The number of times msgs appears in the simulation transcript at imain or after imain. Let δ2

denote this number.

Thus, the total number of times msgs appears in the simulation transcript is δ1 + δ2. In the rest
of the proof, we will compute δ1 and δ2. In particular, we will show that (for every session s)
δ1 + δ2 is bounded by O(log n) except with negligible probability. Note that this implies that
λlazy-KP = O(log n).

Let i1, . . . , ik be the distinct simulation indices where msgs appears in the simulation transcript.
Let i1, . . . , ik be ordered, i.e., for every ` ∈ [k − 1], i` < i`+1. Let k1 ≤ k be such that ik1 < imain

and ik1+1 ≥ imain. We first make the following claim:

Lemma 2. For any ` ∈ [k], the probability that msgs does not appear on the main thread at
simulation index i` is at most (1− 1

c′).

Proof. Consider the simulation index i1. From Lemma 1, we have that i1 appears on 2c
′

threads
in the simulation transcript. Let T [i1] = T1, . . . , T2c′ denote these threads. Now, let q be such that

the special message msgs appears at simulation index i1 on q of these 2c
′

threads. Let T ∗[i1] =
T ∗1 , . . . , T

∗
q denote these q threads. Let Tmain denote the main thread. Then, we have that:

Pr [Tmain ∈ T ∗ [i1]] =
q

2c′
(1)

To see this, recall that the Lazy-KP-Simulate procedure uses uniformly random coins on each
execution thread, and follows the same strategy. Thus, the view of the adversary is indistinguishable
on each thread. In particular, if p is the probability that a message α appears on a thread T and
m′ appears on its sibling thread T ′ with, then with probability p−negl(n), m′ appears on T and m

14

appears on T ′. (This is the “symmetry” property for threads in the lazy-KP simulation.) Therefore,
Equation 1 follows.

From Equation 1, we have that:

Pr [Tmain /∈ T ∗ [i1]] = 1− q

2c′

Note that the above probability is maximum when q = 1. Hence, we have that:

Pr[msgs does not occur on main thread at i1] ≤ 1− 1

2c′
. (2)

Now, consider simulation index i2. Again, from Lemma 1, we have that i2 appears on 2c
′

threads.
Let T [i2] denote the set of these threads. Now, note that msgs cannot appear on the look-ahead
threads T ∈ T ∗[i1] ∩ T [i2]. Thus, following Equation 2, we have that:

Pr[msgs does not occur on main thread at i2] ≤ 1− 1

2c′′
.

where c′′ ≤ c′. Continuing the same argument, we have that for every ` ∈ [k − 1],

Pr[msgs does not occur on main thread at i`+1] ≤ Pr[msgs does not occur on main thread at i`]

Thus, for every i`, we have that the probability that msgs does not occur on main thread at i`
is at most 1− 1

c′ .

Computing δ1. Now, note that (1 − 1
c′)

t = negl(n) for t = ω(log n). Therefore, we have that

k1 = O(log n). Now, since each of the simulation indices i1, . . . , ik1 appears 2c
′

times in the
simulation transcript, we have that:

δ1 ≤ 2c
′O(log n) (3)

Computing δ2. We now compute the value of γ2. Towards this, let us suppose that for every
simulation index i ∈ [`], the Lazy-KP-Simulate procedure runs all threads starting from simulation
index i in parallel. That is, Lazy-KP-Simulate performs one step of execution on each of these
threads. It then performs the next execution step on each of these threads, and so on. Note that
this is without loss of generality since the Lazy-KP-Simulate procedure runs all such threads
independently.

Now, we first observe that msgs cannot appear on a look-ahead thread that starts at a simulation
index i > imain. Thus, to compute δ2, we only need to consider the look-ahead threads that started
at simulation indices i < imain and did not finish before reaching imain. Let Tgood denote the set of
such threads.

Then, we claim that:

Lemma 3. |Tgood| ≤ 2c
′
.

Proof. Suppose for contradiction that |Tgood| > 2c
′
. Now, by definition, each thread T ∈ Tgood is

such that a simulation index i ≥ imain appears on it. In other words, simulation index imain appears
on each thread T ∈ Tmain. However, from Lemma 1, simulation index imain appears on at most 2c

′

threads. This is a contradiction.

15

Now, assuming the worst case where msgs appears on each thread T ∈ Tgood, we have that:

δ2 ≤ 2c
′

(4)

Completing the Proof of Theorem 5. From Equation 3, we have that δ1 = O(log n). From Equation
4, we have that δ2 = O(1). Thus, summing up δ1 and δ2, we have that for every session s, number of
times msgs appears in the simulation transcript is O(log n). Thus, we have that λlazy-KP = O(log n).
This completes the proof.

5 GGJ Extraction Strategy

In this section, we discuss the GGJ extraction strategy [GGJ13] and analyze the query complexity
parameter for the same. Unlike [GGJ13] that used a splitting factor of 2, we will work with n as the
splitting factor. For this strategy, we will prove that for every concurrent schedule of polynomial
number of sessions, the query parameter λ = O(1). Here, the constant in O depends on the number
of concurrent sessions.

We start by providing a brief overview of the GGJ extraction strategy. We then describe the
GGJ strategy more formally and then proceed to analyze the query parameter λ for the same.

Overview. Roughly speaking, the GGJ rewinding strategy can be viewed as a “stripped down”
version of the lazy-KP simulation strategy. In particular, unlike lazy-KP that executes every thread
at every recursion level, here we only execute a small fraction of them. The actual threads that are
to be executed are chosen uniformly at random, at every level. It is shown in GGJ that by slightly
increasing the round complexity – (roughly) N = n2 from N = n, executing a polylogn

N fraction of
threads at every level is sufficient to extract the preamble secret in every session.5

Below, we describe the GGJ rewinding strategy in two main steps:

1. We first describe an algorithm Sparsify that essentially selects which threads to execute in the
lazy-KP recursion tree (Section 5.1).

2. Next, we describe the actual GGJ simulation procedure GGJ-Simulate that is essentially
the same as the Lazy-KP-Simulate strategy, except that it only executes the threads selected
by Sparsify (Section 5.2).

5.1 The Sparsification Procedure

We first describe the lazy-KP simulation tree and give a coloring scheme for the same. Next,
we describe the Sparsify algorithm that takes the lazy-KP simulation tree as input and outputs a
“trimmed” version of it that will correspond to the GGJ simulation tree.

Lazy-KP Simulation Tree. Let m = nc be the total number of concurrent sessions of Π started
by an adversary A. Then, the Lazy-KP-Simulate strategy for A can be described by a 2n-ary
tree Treelazy-KP of constant depth c′ where c′ = c+log(2N +2). The nodes in Treelazy-KP are colored
white or black as per the following strategy:

5We do not attempt to optimize the round complexity parameter here since our focus is on minimizing the
parameter λ.

16

Figure 3: The lazy-KP simulation tree for splitting factor 2.

• The root node is colored white.

• Consider the 2n child nodes of any parent node. The odd numbered nodes are colored white
and the even numbered nodes are colored black.

Let us explain our coloring strategy. The root node (which is colored white) corresponds to the
main thread of execution. Each black colored node Node corresponds to a look-ahead thread that
was forked from the thread corresponding to node Parent(Node). A white colored node Node (except
the root node) corresponds to a thread T ′ that is a part of the thread T corresponding to node
Parent(Node).

Figure 3 denotes the lazy-KP simulation tree for splitting factor n = 2 with white boxes repre-
senting white nodes and grey boxes representing black nodes.

Node Labeling. To facilitate the description of the GGJ simulation strategy, we first describe a
simple tree node labeling strategy for Treelazy-KP. The root node is labeled 1. The i’th child (out of
2n children) of the root node is labeled (1, i). More generally, consider a node Node at level ` ∈ [c′].
Let path be its label. Then the i’th child of Node is labeled (path, i).

Below, whenever necessary, we shall refer to the nodes by their associated labels.

The Sparsify Procedure. Let p be such that 1
p = polylog(n)

N . The Sparsify function transforms the
lazy-KP simulation tree Treelazy-KP into a “sparse” tree Treesp in the following manner.

Let the root node correspond to level 0 and the leaf nodes correspond to level c′. The Sparsify
procedure starts at level 0 and traverses down Treelazy-KP, stopping at level c′. It performs the
following steps at every level ` ∈ [c′]:

17

1. Choose 1
p fraction of the total black nodes at level `, uniformly at random. Let B` denote the

set of these nodes.

2. Delete from Treelazy-KP, every black node Node at level ` that is not present in set B`. Further,
delete the entire subtree of Node from Treelazy-KP.

The resultant tree is denoted as Treesp. Looking ahead, we will describe the GGJ rewinding
strategy as essentially a modification of Lazy-KP-Simulate in that it only executes the threads
corresponding to the nodes in Treesp.

5.2 The GGJ-Simulate Procedure

The rewinding strategy of the GGJ simulator is specified by the GGJ-Simulate procedure. The
input to the GGJ-Simulate procedure consists of a tuple (path, `, hist, T). The parameter path
denotes the label of the node in Treesp that is to be explored, ` denotes the number of adversary’s
messages to be explored (on the thread corresponding to the node labeled with path), the string
hist is a transcript of the current thread of execution, T is a table containing the contents of all the
adversary’s messages explored so far (to extract the preamble secrets and for sending the Stage 2
special message in Π in any session).

The simulation is performed by invoking the procedure GGJ-Simulate with appropriate pa-
rameters. Let m = poly(n) denote the number of concurrent sessions in the adversarial schedule.
Then, the GGJ-Simulate procedure is invoked with input (1,m (N + 1) , ∅, ∅), where m(N + 1) is
the total number of adversary’s messages in a schedule of m sessions. The GGJ-Simulate proce-
dure is described in Figure 4. Note that unlike [GGJ13], where each thread is recursively divided
into two parts, here we divide each thread into n parts. In other words, we consider a splitting
factor of n. For every session s consisting of an execution of Π, the goal of the simulator is to
find two instances of any slot i ∈ [N] of the commitment protocol 〈C,R〉 where the simulator’s
challenges are different and adversary responds with a valid response to each challenge. Note that
in this case, the simulator can extract the preamble secret of 〈C,R〉 from the two responses of the
adversary. On the other hand, if the simulation reaches Stage 2 in Π at any time, without having
extracted the preamble secret from the adversary, then it gives up the simulation and outputs ⊥.
In this case, we say the simulator gets stuck.

It is implicit in [GGJ13] that the GGJ simulator (as described above) gets stuck with only
negligible probability when N = O(n2).

Theorem 6 ([GGJ13]). Let N = O(n2) be the number of slots in 〈C,R〉. Then, for any concurrent
schedule of m = poly(n) sessions of Π, the GGJ simulator gets stuck with only negl(n) probability.

We now analyze the query parameter λGGJ for the GGJ simulation strategy. We claim the
following:

Theorem 7. For every constant c, every m = nc number of concurrent executions of Π, the query
parameter λGGJ = O(1), where the constant depends on c.

Proof. Fix any session s. We will show that the special message msgs can appear at most O(1)
times at each recursion level RL`. Then, since there are only a constant number of recursion levels,
it will follow that λGGJ = O(1).

Towards that end, lets fix a recursion level `. First recall from Theorem 5 that for the lazy-KP
simulation strategy, λlazy-KP = O(log n). In particular, this implies that at every recursion level ` in

18

GGJ-Simulate(path, `, hist, T):

Bottom level (` = 1):

• Run P1’s algorithm to choose the next message α1 and feed P ∗
2 with (hist, α1). Let α2 be the

answer of P ∗
2 .

• Output ((α1, α2), α2).

Recursive step (` > 1):

1. Initialize h̃ist = ∅, T̃ = ∅.

2. For every i ∈ [n]:

• If node (path, 2i− 1) /∈ Treesp, set h̃isti,1 = ∅, T̃i,1 = ∅.
Else, compute:

(h̃isti,1, T̃i,1)← GGJ-Simulate
(

(path, 2i− 1) , `/n,
(
hist, h̃ist

)
,
(
T , T̃

))
.

• If node (path, 2i) /∈ Treesp, set h̃isti,2 = ∅, T̃i,2 = ∅.
Else, compute:

(h̃isti,2, T̃i,2)← GGJ-Simulate
(

(path, 2i) , `/n,
(
hist, h̃ist

)
,
(
T , T̃

))
.

• Update h̃ist = (h̃ist, h̃isti,1) and T̃ = (T̃ , T̃i,1, T̃i,2).

3. Output (h̃ist, T̃).

Figure 4: GGJ Simulator with splitting factor n. Even though the messages in {h̃isti,2} do not

appear in the output, some of them do appear in T̃ .

the lazy-KP simulation, msgs for a session s appears on at most O(log n) threads. Using the tree
terminology as introduced earlier, we have that msgs appears on (the threads corresponding to) at
most O(log n) black nodes at level ` in Treelazy-KP. Now, recall that at every level `, the Sparsify

procedure selects only 1
p = polylogn

N fraction of black nodes, uniformly at random, and deletes the
rest of the black nodes. Using Chernoff bound, we now show that the probability that Sparsify
selects ω(1) black nodes containing msgs is negligible.

Towards that end, first note that the expected number of black nodes selected by Sparsify that
contain the heavy message msgs is µ = polylogn

N · O(log n). Let γ denote the actual number of black
nodes at level ` containing msgs that are selected by Sparsify. Then, we have that:

Pr[λ ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
(5)

Setting (1 + δ)µ = ω(1), and ignoring the O(log n) in µ, we have that (1 + δ) = ω(1)·N
polylogn . Now, using

19

the fact that 1 + δ ≈ δ and substituting values in Equation 5, we have:

Pr[γ ≥ ω(1)] ≤

 e
ω(1)·N
polylogn(

ω(1)·N
polylogn

) ω(1)·N
polylogn


polylogn

N

≤
(
polylogn

N

)ω(1)

= negl(n)

when N = O(n). Thus, for every level `, we have γ = O(1). It then follows that λGGJ =
O(1).

6 From Concurrent Extraction to Concurrently Secure Computa-
tion

Theorem 8. Assuming 1-out-of-2 oblivious transfer, for any efficiently computable functionality f
there exists a protocol Π that O(1)-securely realizes f in the MIQ model.

We construct such a protocol by following the exact recipe of [GJO10, GGJ13]. We note that
the works of [GJO10, GGJ13] show how to compile a semi-honest secure computation protocol
Πsh for any functionality f into a new protocol Π that securely realizes f in the MIQ model (we
discuss the query parameter λ shortly). The core ingredient of their compiler is a concurrently
extractable commitment 〈C,R〉, which in turn is used inside a concurrent non-malleable zero-
knowledge protocol. In particular, it follows from these works that if there exists a concurrent
simulator for 〈C,R〉 with query parameter λ, then the resultant (compiled) protocol Π λ-securely
realizes f .

Then, in order to prove Theorem 8, we construct such a protocol Π by simply plugging in
our O(n2)-round extractable commitment scheme in the construction of [GJO10, GGJ13]. Then,
it follows from Theorem 7 that protocol Π O(1)-securely realizes f in the MIQ model, where the
constant in O depends on c, where nc is the number of sessions opened by the concurrent adversary.
For completeness, we provide a description of protocol Π in Appendix A (which remain identical
to these prior works except for the concurrently extractable commitment scheme being used).

Concurrent PAKE in the plain model. Consider the PAKE functionality: it takes a password
as input from each party, and, if they match, outputs a randomly generated key to both of them.
The above protocol, when executed for the PAKE functionality gives a PAKE construction in the
MIQ model where the simulator makes a constant number of queries per session in the ideal world.
We then plug in Lemma 7 in [GJO10] which shows that a PAKE construction in the MIQ model
for a constant number of queries implies a concurrent PAKE as per the definition of Goldreich and
Lindell [GL01] (with the modification that the constant in big O is adversary dependent). Put
together, this gives us a construction of concurrent password-authenticated key exchange in the
plain model.

20

References

[AGJ+12] Shweta Agrawal, Vipul Goyal, Abhishek Jain, Manoj Prabhakaran, and Amit Sahai.
New impossibility results on concurrently secure computation and a non-interactive
completeness theorem for secure computation. In CRYPTO, 2012.

[BCNP04] B. Barak, R. Canetti, J.B. Nielsen, and R. Pass. Universally composable protocols with
relaxed set-up assumptions. In FOCS, 2004.

[Blu87] Manual Blum. How to prove a theorem so no one else can claim it. In International
Congress of Mathematicians, pages 1444–1451, 1987.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In FOCS, 2006.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net -
concurrent composition using super-polynomial simulation. In Proc. 46th FOCS, 2005.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO,
2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eurocrypt, 2003.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-

knowledge requires
∼
Ω (log n) rounds. In STOC, pages 570–579, 2001.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party
and multi-party secure computation. In STOC, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In FOCS, 2010.

[DDN00a] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437 (electronic), 2000. Preliminary version in STOC
1991.

[DDN00b] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In STOC,
pages 409–418, 1998.

[GGJ13] Vipul Goyal, Divya Gupta, and Abhishek Jain. What information is leaked under
concurrent composition. In CRYPTO, 2013.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure com-
putation in constant rounds. In Eurocrypt, 2012.

[GJ13] Vipul Goyal and Abhishek Jain. On concurrently secure computation in the multiple
ideal query model. In Eurocrypt, 2013.

21

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated session-key
generation on the internet in the plain model. CRYPTO, 2010. Full version available
online.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, February 1996. Preliminary
version appeared in ICALP’ 90.

[GKOV12] Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti. Im-
possibility results for static input secure computation. In CRYPTO, 2012.

[GL01] Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords
only. In CRYPTO, pages 408–432, 2001.

[GL06] Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords
only. J. Cryptology, 19(3):241–340, 2006.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC,
1987.

[Goy12] Vipul Goyal. Positive results for concurrently secure computation in the plain model.
In FOCS, 2012.

[HHK+05] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero Morselli, and
Ronen Shaltiel. Reducing complexity assumptions for statistically-hiding commitment.
In Eurocrypt, pages 58–77, 2005.

[Kat07] J. Katz. Universally composable multi-party computation using tamper-proof hardware.
In Eurocrypt, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, 2001.

[Lin03] Yehuda Lindell. Bounded-concurrent secure two-party computation without setup as-
sumptions. In STOC, pages 683–692. ACM, 2003.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In STOC, 2006.

[MPR06] Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In
FOCS, 2006.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect zero-
knowledge arguments for NP using any one-way permutation. J. Cryptology, 11(2):87–
108, 1998.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In Crypto ’99,
pages 573–590, 1999.

22

[NP06] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,
35(5):1254–1281, 2006.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Eurocrypt, 2003.

[PPS+08] Omkant Pandey, Rafael Pass, Amit Sahai, Wei-Lung Dustin Tseng, and Muthuramakr-
ishnan Venkitasubramaniam. Precise concurrent zero knowledge. In Eurocrypt, 2008.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In STOC, 2004.

[PTV14] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubramaniam.
Concurrent zero knowledge, revisited. Journal of Cryptology, 27(1):45–66, 2014.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt, 1999.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, 1986.

A The Protocol

In this section, we describe our concurrently secure computation protocol Π in the MIQ model for
a general functionality F . We remark that this protocol is exactly the same as the one presented
in [GJO10, GGJ13] except that we shall use an N = O(n2)-round version of the extractable com-
mitment scheme 〈C,R〉 (Section 3.1), while [GJO10, GGJ13] require different round-complexities
for 〈C,R〉.

We start by recalling the building blocks used in the protocol.

A.1 Building Blocks

A.1.1 Statistically Binding String Commitments

In our protocol, we will use a (2-round) statistically binding string commitment scheme, e.g.,
a parallel version of Naor’s bit commitment scheme [Nao91] based on one-way functions. For
simplicity of exposition, in the presentation of our results, we will actually use a non-interactive
perfectly binding string commitment.6 Such a scheme can be easily constructed based on a 1-to-1
one way function. Let com(·) denote the commitment function of the string commitment scheme.
For simplicity of exposition, in the sequel, we will assume that random coins are an implicit input
to the commitment function.

6It is easy to see that the construction given in Section A does not necessarily require the commitment scheme
to be non-interactive, and that a standard 2-round scheme works as well. As noted above, we choose to work with
non-interactive schemes only for simplicity of exposition.

23

A.1.2 Statistically Witness Indistinguishable Arguments

In our construction, we shall use a statistically witness indistinguishable (SWI) argument 〈Pswi, Vswi〉
for proving membership in any NP language with perfect completeness and negligible soundness
error. Such a scheme can be constructed by using ω(log k) copies of Blum’s Hamiltonicity proto-
col [Blu87] in parallel, with the modification that the prover’s commitments in the Hamiltonicity
protocol are made using a statistically hiding commitment scheme [NOVY98, HHK+05].

A.1.3 Semi-Honest Two Party Computation

We will also use a semi-honest two party computation protocol 〈P sh
1 , P sh

2 〉 that emulates the func-
tionality F (as described in section 2) in the stand-alone setting. The existence of such a protocol
〈P sh

1 , P sh
2 〉 follows from [Yao86, GMW87, Kil88].

A.1.4 Concurrent Non-Malleable Zero Knowledge Argument

Concurrent non-malleable zero knowledge (CNMZK) considers the setting where a man-in-the-
middle adversary is interacting with several honest provers and honest verifiers in a concurrent
fashion: in the “left” interactions, the adversary acts as verifier while interacting with honest
provers; in the “right” interactions, the adversary tries to prove some statements to honest verifiers.
The goal is to ensure that such an adversary cannot take “help” from the left interactions in order
to succeed in the right interactions. This intuition can be formalized by requring the existence of a
machine called the simulator-extractor that generates the view of the man-in-the-middle adversary
and additionally also outputs a witness from the adversary for each “valid” proof given to the
verifiers in the right sessions.

Barak, Prabhakaran and Sahai [BPS06] gave the first construction of a concurrent non-malleable
zero knowledge (CNMZK) argument for every language in NP with perfect completeness and
negligible soundness error.

In our main construction, we will use a specific CNMZK protocol, denoted 〈P, V 〉, based on
the CNMZK protocol of Barak et al. [BPS06] to guarantee non-malleability. Specifically, we will
make the following two changes to Barak et al’s protocol: (a) Instead of using an ω(log n)-round
extractable commitment scheme [PRS02], we will use the N -round extractable commitment scheme
〈C,R〉 (described in Section 3.1). (b) Further, we require that the non-malleable commitment
scheme being used in the protocol be public-coin w.r.t. receiver7. We now describe the protocol
〈P, V 〉.

Protocol 〈P, V 〉. Let P and V denote the prover and the verifier respectively. Let L be an NP
language with a witness relation R. The common input to P and V is a statement x ∈ L. P
additionally has a private input w (witness for x). Protocol 〈P, V 〉 consists of two main phases:
(a) the preamble phase, where the verifier commits to a random secret (say) σ via an execution of
〈C,R〉 with the prover, and (b) the post-preamble phase, where the prover proves an NP statement.
In more detail, protocol 〈P, V 〉 proceeds as follows.

7The original NMZK construction only required a public-coin extraction phase inside the non-malleable com-
mitment scheme. We, however, require that the entire commitment protocol be public-coin. We note that the
non-malleable commitment protocol of [DDN00b] only consists of standard perfectly binding commitments and zero
knowledge proof of knowledge. Therefore, we can easily instantiate the DDN construction with public-coin versions
of these primitives such that the resultant protocol is public-coin.

24

Preamble Phase.

1. P and V engage in execution of 〈C,R〉 (Section 3.1) where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical
zero-knowledge argument of knowledge (SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉 that was exe-
cuted in step 1.

4. P commits to the witness w using a public-coin non-malleable commitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to x (i.e., R(x,w) = 1, where
w is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

A.1.5 Modified Extractable Commitment Scheme 〈C ′, R′〉

Due to technical reasons, in our secure computation protocol, we will also use a minor variant,
denoted 〈C ′, R′〉, of the extractable commitment scheme given in Section 3.1. Protocol 〈C ′, R′〉
is the same as 〈C,R〉, except that for a given receiver challenge string, the committer does not
“open” the commitments, but instead simply reveals the appropriate committed values (without
revealing the randomness used to create the corresponding commitments). More specifically, in
protocol 〈C ′, R′〉, on receiving a challenge string vj = v1,j , . . . , v`,j from the receiver, the committer
uses the following strategy: for every i ∈ [`], if vi,j = 0, C ′ sends α0

i,j , otherwise it sends α1
i,j to R′.

Note that C ′ does not reveal the decommitment values associated with the revealed shares.
When we use 〈C ′, R′〉 in our main construction, we will require the committer C ′ to prove the

“correctness” of the values (i.e., the secret shares) it reveals in the last step of the commitment
protocol. In fact, due to technical reasons, we will also require the the committer to prove that the
commitments that it sent in the first step are “well-formed”.

We remark that the extraction proofs for the Lazy-KP-Simulate procedure (Section 4) and
GGJ-Simulate procedure (Section 5) also hold for the 〈C ′, R′〉 commitment scheme.

A.2 Protocol Description

Notation. Let com(·) denote the commitment function of a non-interactive perfectly binding
commitment scheme. Let 〈C,R〉 denote the N -round extractable commitment scheme and 〈C ′, R′〉
be its modified version as described in Section A.1.5. Let 〈P, V 〉 denote the modified version
of the CNMZK argument of Barak et al. [BPS06] as described in Section A.1.4. Further, let
〈Pswi, Vswi〉 denote a SWI argument (Section A.1.2) and let 〈P sh

1 , P sh
2 〉 denote a semi-honest two

party computation protocol 〈P sh
1 , P sh

2 〉 that securely computes F in the stand-alone setting as per
the standard definition of secure computation (Section A.1.3).

Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security parameter. Protocol
Π = 〈P1, P2〉 proceeds as follows.

25

I. Trapdoor Creation Phase.

1. P1 ⇒ P2 : P1 creates a commitment com1 = com(0) to bit 0 and sends com1 to P2. P1 and
P2 now engage in the execution of 〈P, V 〉 where P1 proves that com1 is a commitment to 0.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, it creates a commitment com2 = com(0) to
bit 0 and sends com2 to P1. P2 and P1 now engage in the execution of 〈P, V 〉 where P2 proves
that com2 is a commitment to 0.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor”
to be used during the simulation of the protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs and random
coins (to be used in the next phase) via the commitment protocol 〈C ′, R′〉.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to be used as P1’s
randomness in the execution of 〈P sh

1 , P sh
2 〉 in Phase III) and engages in an execution of 〈C ′, R′〉

(denoted as 〈C ′, R′〉1→2) with P2, where P1 commits to x1‖r1. Next, P1 and P2 engage in
an execution of 〈Pswi, Vswi〉 where P1 proves the following statement to P2: (a) either there
exist values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2 is valid with respect to the
value x̂1‖r̂1, or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1) be the random
string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting the adversary’s
input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution of 〈P sh
1 , P sh

2 〉
where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since 〈P sh

1 , P sh
2 〉 is secure only against

semi-honest adversaries, we first enforce that the coins of each party are truly random, and then
execute 〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives a proof using 〈Pswi, Vswi〉 of its

honest behavior “so far” in the protocol. We now describe the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends it to P2. Similarly,
P2 samples a random string r′1 and sends it to P1. Let r′′1 = r1 ⊕ r′1 and r′′2 = r2 ⊕ r′2. Now,
r′′1 and r′′2 are the random coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.

2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a message from P sh
1

followed by a reply from P sh
2 . Let transcript T1,j (resp., T2,j) be defined to contain all the

messages exchanged between P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2) is supposed to
send a message in round j. For j = 1, . . . , t:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j , x1, r

′′
1) and send it to P2. P1 and P2 now engage in

an execution of 〈Pswi, Vswi〉, where P1 proves the following statement:

i. either there exist values x̂1, r̂1 such that (a) the commitment protocol 〈C ′, R′〉1→2

is valid with respect to the value x̂1‖r̂1, and (b) β1,j = P sh
1 (T1,j , x̂1, r̂1 ⊕ r′1)

ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of the protocol Π = 〈P1, P2〉.

26

	Introduction
	Our Results
	Technical Overview

	Our Model
	Framework for Concurrent Extraction
	Extractable Commitment Protocol "426830A C,R"526930B

	Lazy-KP Extraction Strategy
	Terminology for Concurrent Simulation
	Analysis of for Static Schedules
	Analysis of for Dynamic Schedules

	GGJ Extraction Strategy
	The Sparsification Procedure
	The GGJ-Simulate Procedure

	From Concurrent Extraction to Concurrently Secure Computation
	The Protocol
	Building Blocks
	Statistically Binding String Commitments
	Statistically Witness Indistinguishable Arguments
	Semi-Honest Two Party Computation
	Concurrent Non-Malleable Zero Knowledge Argument
	Modified Extractable Commitment Scheme "426830A C',R' "526930B

	Protocol Description

