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Abstract

We show a framework for constructing identity-based encryption (IBE) schemes that are (almost)
tightly secure in the multi-challenge and multi-instance setting. In particular, we formalize a new notion
called broadcast encoding, analogously to encoding notions by Attrapadung (Eurocrypt ’14) and Wee
(TCC °14). We then show that it can be converted into such an IBE. By instantiating the framework using
several encoding schemes (new or known ones), we obtain the following:

e We obtain (almost) tightly secure IBE in the multi-challenge, multi-instance setting, both in com-
posite and prime-order groups. The latter resolves the open problem posed by Hofheinz et al (PKC
’15).

e We obtain the first (almost) tightly secure IBE with sub-linear size public parameters (master public
keys). In particular, we can set the size of the public parameters to constant at the cost of longer
ciphertexts. This gives a partial solution to the open problem posed by Chen and Wee (Crypto *13).

By applying (a variant of) the Canetti-Halevi-Katz transformation to our schemes, we obtain several CCA-
secure PKE schemes with tight security in the multi-challenge, multi-instance setting. One of our schemes
achieves very small ciphertext overhead, consisting of less than 12 group elements. This significantly
improves the state-of-the-art construction by Libert et al. (in ePrint Archive) which requires 47 group
elements. Furthermore, by modifying one of our IBE schemes obtained above, we can make it anonymous.
This gives the first anonymous IBE whose security is almost tightly shown in the multi-challenge setting.

Keywords. Tight security reduction, identity-based encryption, multi-challenge security, chosen cipher-
text security.

1 Introduction
1.1 Backgrounds

In the context of provable security, we reduce the security of a given scheme to the hardness of a computational
problem, in order to gain confidence in the security of the scheme. Namely, we assume an adversary A who
breaks the scheme and then show another adversary BB who solves the (assumed) hard problem using .A. Such
a reduction should be as fight as possible, in the sense that B’s success probability is as large as .A. In this
paper, we mostly focus on the tight security reduction in identity-based encryption (IBE) [52].
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IBE is an advanced form of public key encryption in which one can encrypt a message for a user identity,
rather than a public key. The first fully secure (or often called, adaptively secure) construction in the standard
model was given in [10]. Later, further developments were made [53, 31, 7, 54]. All the above mentioned
papers only deal with the single-challenge, single-instance case. Since it is known that the security in the
(much more realistic) multi-challenge and multi-instance setting can be reduced to the security in the single-
challenge and single-instance setting [6], these schemes are secure in the former setting in asymptotic sense.
However, this reduction incurs O(uQ).) security loss, where (). is the number of challenge queries made by
the adversary and p is the number of instances. Since all the above schemes already loose at least O(Qy)
security in the reductions, where Q). is the number of key extraction queries made by A, theses schemes loose
at least O(uQ.Qy) security in total.

Recently and somewhat surprisingly, Chen and Wee [18, 20] showed the first IBE scheme (CW scheme)
whose reduction cost is independent of ()i, resolving an important open question posed in [53]. Subsequently,
Blazy et al. [8] were able to obtain anonymous IBE and hierarchical IBE with the same security guarantee.
The drawback of these schemes is its large public parameters (master public keys): It is proportional to
the security parameter and thus rather large. Note that they only consider the single-challenge and single-
instance setting. Very recently, further important development was made by Hofheinz, Koch, and Striecks
[33] who extended the proof technique of Chen and Wee in a novel way and proposed the first IBE scheme
(HKS scheme) whose reduction cost is independent from all of u, Q)., and Q. However, they only give a
construction in composite-order groups and explicitly mention that the construction in prime-order groups
remains open. We focus on the following two important open problems in this paper:

e Can we construct a fully, (almost) tightly secure IBE scheme in the multi-challenge and
multi-instance setting from a static assumption in the prime-order groups?

e Can we construct a fully, (almost) tightly secure IBE scheme from a static assumption with
constant-size public parameters even in the single-challenge and single-instance setting?

1.2  Our Results

New Tightly-Secure IBE Schemes. In this paper, to tackle the above problems, we revisit the proof technique
in [18] and [33] and propose a framework for constructing almost tightly secure IBE. The almost tight security
means that the reduction cost is independent from p, ()., and ()i, and is a small polynomial in the security
parameter. In particular, we formalize the notion of broadcast encoding analogously to Attrapadung [4] and
Wee [55]. Then we show that it can be converted into fully, (almost) tightly secure IBE scheme, in the
multi-challenge and multi-instance setting. We propose such conversions both in prime-order and composite-
order groups. Furthermore, we propose two broadcast encoding schemes satisfying our requirement. By
instantiating our generic conversion with these schemes, we obtain several new IBE schemes. In particular,

e We obtain the first IBE scheme in prime-order groups with almost tight security in the multi-challenge
and multi-instance setting. The security of our scheme can be shown under the decisional linear (DLIN)
assumption. This resolves the first question above.

e We obtain the first IBE scheme with almost tight security in the multi-challenge and multi-instance
setting and with sub-linear public parameter-size (but at the cost of larger ciphertext-size). An IBE
scheme with almost tight security and sub-linear public parameter size is not known, even in the single-
challenge setting. This partially answers the second question above.

Application to Chosen-Ciphertext Secure Public Key Encryption. By applying a variant of Canetti-
Halevi-Katz transformation to the new IBE schemes, we obtain several new chosen-ciphertext (CCA) secure
public key encryption (PKE) schemes. The conversion is tightness-preserving, namely, if the original IBE



is tightly secure in the multi-challenge and multi-instance setting, the resulting PKE scheme is also tightly
secure in the same setting. One of our schemes achieves very compact ciphertext size. The ciphertext over-
head of the scheme only consists of 10 group elements and 2 elements in Z,. This is much shorter than the
state-of-the-art construction of PKE scheme with the same security guarantee [36]: their scheme requires 47
group elements.

Extension to Anonymous IBE. Furthermore, by modifying one of the new IBE schemes obtained above, we
obtain the first anonymous IBE scheme with (almost) tight security reduction in the multi-challenge settings
for the first time. The security proof is done by carefully combining information-theoretic argument due to
Chen et al. [17] and a computational argument.

See Table 1 for overview of our schemes.

Table 1: Comparison of Almost Tight IBE from Static Assumptions

Schemes lpp| + [mpk|  |CT|  |skip] Anon? Multi- Underlying Security
challenge? group Assumption
CW13 [18] O(k) o) 01 No No Composite SGD, CW
HKS15 [33] O(k) o) 0(1) No Yes Composite SGD, HKS
Ours: $2MP O(k) o) 0(1) No Yes Composite SGD, Problem 5
Ours: ¢ O(k'79) O(k°) O(k°)  No Yes Composite ~ SGD, Problem 13, 14
CW13 18]t O(x) o(1) 0(1) No No Prime DLIN
BKP14 [8]*1 O(x) O(1) O(1)  Yes No Prime DLIN
Ours: dprime O(k o) 0(1) No Yes Prime DLIN
Ours: ¢Sp|r;me O(k'79) O(k°) O(k°)  No Yes Prime DLIN
Ours: ®anon O(k) o) 0(1) Yes Yes Prime DLIN

We compare IBE schemes focusing tight security reduction from static assumptions in the standard model. |pp| + |mpk|,
|CT], and |skip| show the size of the master public keys and public parameters, ciphertexts, and private keys, respectively. To
measure the efficiency, we count the number of group elements. In the table, x denotes the security parameter. “Anon” shows
whether the scheme is anonymous. “Multi-Challenge?”” asks whether (almost) tight security reduction in the multi-challenge
setting is shown. “SGD” stands for sub-group decision assumptions. “CW” and “HKS” denote specific assumption used in the

corresponding paper. For & and CD;';me, we can assign any 0 < ¢ < 1.

* This is the only scheme that can be generalized to HIBE.

 These schemes can be generalized to be secure under the k-linear assumption (k-LIN) [30, 51] for any £ € N. In such
a case, |pp| + |mpk|, |CT|, and |skip| are changed to be O(k*k), O(k), and O(k), respectively. Note that the DLIN
assumption corresponds to the 2-LIN assumption.

1.3 Our Techniques

Difficulties. To solve the first question above, natural starting point would be trying to apply the frameworks
for composite-order-to-prime-order-conversion dedicated to identity/attribute-based encryption [37, 19, 3, 17,
2] to the HKS scheme [33]. However, security proofs for CW and HKS schemes significantly deviate from
the most standard form of dual system encryption methodology [40, 42, 55, 4], only for which the above
mentioned frameworks can be applied. Another approach is to try to convert specific assumptions they use
into prime-order. In fact, Chen and Wee [18] were able to accomplish such a conversion for their scheme.
However, their technique is non-generic and therefore it is highly unclear whether the same argument is
possible for the assumptions that HKS use.

Next, we explain the difficulty of the second question. The reason why all IBE schemes featuring (al-
most) tight security reduction in previous works [18, 8, 33] require large public parameters is that they use
(randomized version of) Naor-Reingold PRF [43] in their construction. Note that the Naor-Reingold PRF
requires seed length which is linear in the input size, which in turn implies very long public parameters in the
IBE schemes. A natural approach to improve the efficiency would be, as noted by Chen and Wee [18, 20], to



reduce the seed length of the Naor-Reingold PRF. However, this is a long-standing open problem and turns
out to be quite difficult.

Our Strategy. In this paper, we introduce new proof techniques for IBE schemes (with almost tight security)
that rely only on the subgroup decision assumptions *. This allows us to use frameworks for composite-order-
to-prime-order conversions in the literature [25, 47, 37, 24, 28, 3, 17, 2] (to name only a few) which converts
subgroup decision assumption into a static assumption in prime-order groups, such as the DLIN assumption.
Therefore, using these techniques, we are able to convert a variant of HKS scheme into prime-order. This
answers the first question above. Note that in the security proof of HKS (and CW), they rely on some specific
assumptions in composite-order groups in addition to subgroup decision assumptions. Because of these, it is
unclear how to convert HKS scheme into prime-order.

As for the second question, we view Chen and Wee’s scheme as being constructed from, somewhat sur-
prisingly, broadcast encryption mechanism, instead of (Naor-Reingold) PRF, and hence can avoid the above
difficulty regarding PRF. More precisely, we show that the task of constructing almost tightly secure IBE
scheme is essentially reduced to a construction of broadcast encryption, and based on this idea, we are able to
obtain the first IBE scheme with sub-linear size public parameters and almost tight security. In the following,
we explain our technique.

Detailed Overview of Our Technique. Let us start from the following variant of the Chen and Wee’s IBE
scheme. Let the identity space of the scheme be {0, 1}*. Fori € {1, 2, 3}, let g; be the generator of a subgroup
of order p; of G, which is bilinear groups of composite order N = p;paps. Let also h be a generator of G.
The master public key, a ciphertext, and a private key for an identity ID are in the following form:

mpk = (g0, 0" g el b)),

CTID _ <giq7 gi Zie[l,é] wi,IDi7 6(91, h)sa .M > ; SkID — (ha . gIZiE[l,Z] wi,IDi’ g;r >

where ID; is the i-th bit of ID and M is the message.! Now we are going to show the security. We only
consider the single-challenge and single-instance case here for simplicity. In the security proof, at first, the
challenge ciphertext is changed to the following form using a subgroup decision assumption:

(gf ] ggv gi D ie[1,e) Wi ID; 'g;ZiE[l,Z] wi,'Di’ e(gf . 957 ha) M ) ]

Then, we consider £ hybrid games. In Game;, all private keys are in the following form:

( Be . ggi(lmi) . gI 2ie1. w"ﬂ'Di’ g;r )

where ID|; is the length i prefix of the identity ID and R; : {0,1}* — N is a random function. Intuitively,
through these hybrid games, the randomizing part of the key (highlighted in the box) are gradually randomized
and made dependent on more and more bits of each identity. Finally, in Gamey, we can argue that any
adversary cannot obtain the information on the message M, because these randomizing parts prevent it.

A crucial part of the security proof is to establish the indistinguishability between Game;«_1 and Game;»
for all +* € [1,/]. For the target identity ID* (recall that we are considering the single-challenge and single-
instance case for now), we assume that b* := 1D} is known to the reduction algorithm in advance, since it can

*In fact, we also require the decisional bilinear Diffie-Hellman (DBDH) assumption on the composite-order groups (Problem 5)
in addition to the subgroup decision assumptions. However, the assumption does not use the power of composite-order groups. In
other words, it does not imply the factoring assumption. Therefore, it is ready to be converted into prime-order.

TIn the actual scheme, skp is randomized by elements of Gp,, but we do not care this point in this overview.



be guessed with probability 1/2. At the core of the proof for this is an indistinguishability of the following
distributions:

. ;g S Zie[l,é] Wi, ID¥ s Zie[l,e] Wi, Ip¥
Given <gf “93 91 "Gy :
T2 e[, WilD; _p\ € A T ic[,g WilD;  _
(91 ‘,91T> ~ < 95 |" % Lo (1)

for all ID such that ID;« # b*, where & <~ Zy. Indistinguishability of Game;«_; and Game; is reduced to
Equation (1). The reduction algorithm can create the challenge ciphertext using the first term in Equation (1).
It can also set private key as

B . g2Ri*71(ID‘i*—1) .gzzieswiJDi’g;r if IDjs = b*
he . ggi*—l(lD\i*—l) . ggl .g;’zieswiv'Di,gl—r if ID;+ # b*

where @ = 0 or & & Z ~. It is clear that the game corresponds to Game;«_1 if & = 0. On the other hand, if
&7 N, it corresponds to Game;« with

~

- Ri 1 (ID] s~ if 1D+ = b
Ri*(ID]i*)_{ 1(IDfi—1) !

~

Rie_1(ID|i+_1) + & if ID;+ # b

If & is freshly chosen for every distinct ID|;+, the simulation is perfect. Therefore, our task of the security
proof is reduced to establish Equation (1). To understand better, we decompose the private key in Equation
(1) and restate it again in a slightly stronger form:

. 3 SZie[l,e]mei* §Zie[1,e]wi,|oi*
Given <gf-g§, 9% “ 9y :

C

TWik 1 p* _ i, < A TW;ik 1 p* _ i,
(91 o aglrv{giw]b}(j,b);é(i*,lfb*)) ~ (93 "9 o 791T,{gzw]b}(j,b);é(i*,kb*))-

Let us consider a bijection map f : {(4,b) }ie[1,9,0ef0,13 — [1,2€] and replace (7,b) with f((i,b)). We can
further restate the requirement as:

Given <9f : g§, gizjes* Y 'ngjes* Wj)

- ; c N . _ .
O VA T R (I R A Ui Py @

where S* = {f(i,1D}) }ice, 7° = f((4*,1 — b)), and thus 7% ¢ S*. We call the terms in the second line
above as the challenge terms. (It should not be confused with challenge ciphertext.) At this point, we can now
see a similarity to broadcast encryption. We consider the following broadcast encryption which captures the
essence of the above requirement. Let the set of user index be [1, 2¢].

)

mpk = (9179?17"'79}0%76(917}”&)7
s S jes W s a rwr _—T Tw;
CTs = (91,9: 77" 7elg,h)** - M), skr = (A1, 97" {91 }iepaiy)

where CTg is a ciphertext for a set S C [2¢] and sk, is a private key for a user index 7 € [2/]. This is in fact
a variant of the broadcast encryption by Gentry and Waters [27]! Indeed, Equation (2) can be interpreted as
a security condition for this broadcast encryption scheme (in the sense of encoding analogous to [55, 4]). It
says that given semi-functional ciphertext for a set S*, a normal private key for 7% ¢ S™ is indistinguishable



from a semi-functional private key for 7*. At this point, we are able to understand the core technique in Chen
and Wee in terms of broadcast encryption scheme.

However, we have not finished yet. In order to make the proof go through, we argue that an adversary
cannot distinguish challenge terms in Equation (2), even if these are given to the adversary unbounded many
times with freshly chosen randomness &, r. Such an indistinguishability can be shown by a standard tech-
nique [38, 55, 4] if the challenge term is given to the adversary only once. This can be accomplished by the
combination of subgroup decision assumption and the parameter-hiding argument. In parameter-hiding argu-
ment, a value which is information-theoretically hidden is used to make normal private key semi-functional
[40, 38, 55, 4]. At the first glance, this argument does not seem to be extended to the case where many chal-
lenge terms are given to the adversary, since entropy of hidden parameters (in this case, wy, ..., woy mod p3)
is limited. However, we have to simulate unbounded number of challenge terms. Chen and Wee [18] resolve
this problem by using computational argument instead of information-theoretic argument as above. Namely,
they assume a variant of the DDH assumption on G, * and embed the problem instance into the above chal-
lenge terms. Indistinguishability of multiple challenge terms are tightly reduced to the assumption, using the
random self-reducibility of the assumption. On the other hand, our technique for boosting to multi-challenge
is much simpler. Our key observation is that the challenge term in Equation (2) can be easily randomized by
picking a < Z, and computing

((9‘3 o) () (9 )a}ﬁw) = <g§“' g g {gh ™ }#T*) : 3)

where ' = ar and & = ad. It is easy to see that ¥ mod p; is uniformly random and independent from
anything. We can also see that @ mod py = 0 if @ = 0 and & mod po is uniformly random if & # 0
mod ps. By this argument, we can see that indistinguishability of the single-challenge-term case implies that
for the multi-challenge-term case. Based on all the above discussion, we are able to show the security for the
above scheme only using the subgroup decision assumption.

Overview of Our Framework. We refine the idea above and combine it with the technique by HKS to
propose our framework for constructing IBE schemes that are (almost) tightly secure in the multi-challenge
and multi-instance setting, in both composite and prime-order groups. We first define a broadcast encoding,
which is an abstraction of broadcast encryption. The syntax of it is a special case of “pair encoding” in [4]
(also similar to “predicate encoding” in [55]). Then, we define perfect master-key hiding (PMH) security and
computational-master-key hiding (CMH) security for it. These security notions are also similar to those of
[55, 4]. The former is statistical requirement for the encoding, and the latter is computational requirement.
We can easily show that the former implies the latter. Then, we also introduce intermediate notion multi-
master-key hiding (MMH) security for the encoding. This is more complex notion compared to the PMH and
CMH-security, but implied by these, thanks to our boosting technique above. Then, we show that broadcast
encoding satisfying the MMH security requirement can be converted into IBE scheme. All these reductions
are (almost) tightness-preserving, namely, if the original broadcast encoding is tightly PMH/CMH secure,
the resulting IBE scheme is also tightly secure in the multi-challenge and multi-instance setting. Finally, we
provide broadcast encoding schemes that satisfy our requirement. One is implicit in Gentry-Waters broadcast
encryption scheme [27] and the other is completely new. By instantiating our general framework with the
latter construction, we obtain IBE scheme with almost tight security and with sub-linear master public key
size.

1Of course, in symmetric bilinear groups, the DDH assumption does not hold. They considered a DDH assumption on Gp, Where
each term is perturbed by a random element in G,,, which prevents trivial attack against the assumption.



1.4 Related Works

Related Works on IBE. The first realizations of IBE in the random oracle model were given in [12, 50, 22].
Later, realization in the standard model [15, 9] were given. In the random oracle model, it is possible to
obtain efficient and tightly secure IBE scheme [5]. Gentry [26] proposed a tightly secure anonymous IBE
scheme under a non-static, parametrized assumption. Chen and Wee proposed the first almost tightly secure
IBE scheme under static and simple assumptions [18, 20]. Attrapadung [4] proposed an IBE scheme whose
security loss only depends on the number of key queries before the challenge phase. Jutla and Roy [34]
constructed very efficient IBE scheme from the SXDH assumption, based on a technique related to NIZK.
Blazy, Kiltz, and Pan [8] further generalized the idea and show that a message authentication code with a
certain specific algebraic structure implies (H)IBE. They further obtained almost tightly secure anonymous
IBE and (non-anonymous) HIBE via the framework. Note that all above mentioned schemes only focus on
the single-challenge setting.

Related Works on the Multi-Challenge CCA-Secure PKE. Bellare, Boldyreva, and Micali [6] gave a tight
reduction for the Cramer-Shoup encryption [23] in the multi-instance (multi-user) and the single-challenge
setting. They posed an important open question of whether it is possible to construct tightly CCA-secure
PKE scheme in the multi-instance and the multi-challenge setting. The first PKE scheme satisfying the re-
quirement was proposed by Hofheinz and Jager [32]. Their scheme requires hundreds of group elements in
the ciphertexts. Subsequently, Abe et al. [1] reduced the size by improving the efficiency of the underlying
one-time signature. Libert et al. [35] greatly reduced the ciphertext and made it constant-size for the first
time. The ciphertext overhead of their scheme consist of 68 group elements. Very recently, Libert et al. [36]
further reduced it to 47 group elements. Concurrently and independently to us, Hotheinz [29] proposes the
first PKE scheme with the same security guarantee and fully compact parameters, which means all parameters
are constant-size. While the ciphertext-size (which consists of 60 group elements) is longer than construction
in [36], it achieves much shorter public parameters. We note that while the technique is very powerful, it is
unclear how to extend the technique to the IBE setting.

2 Preliminaries

Notation. Vectors will be treated as either row or column vector matrices. When unspecified, we shall let
it be a row vector. We denote by e; the i-th unit (row) vector: its ¢-th component is one, all others are zero.
0 denotes the zero vector or zero matrix. For an integer n € N and a field F, GL,,(IF) denotes the set of all
invertible matrix in F"*". For a multiplicative group G, we denote by G* a set of all generators in G. We
also denote by [a, b] a set {a,...,b} for any integer a and b and [n] = [1,n] for any n € N. We denote by
u <& U the fact that u is picked uniformly at random from a finite set U.

2.1 Identity-based Encryption

In this section, we define the syntax and security of IBE (in the multi-challenge, multi-instance setting).

Syntax. An IBE scheme with identity space ZD and message space M consists of the following algorithms:

Par(1%) — (pp,sp): The parameter sampling algorithm takes as input a security parameter 1* and outputs a
public parameter pp and a secret parameter sp.

Gen(pp, sp) — (mpk, msk): The key generation algorithm takes pp and sp as input and outputs a master
public key mpk and master secret key msk.

Ext(msk, mpk, ID) — skjp: The user private key extraction algorithm takes as input the master secret key
msk, the master public key mpk, and an identity ID € ZD. It outputs a private key skip.



Enc(mpk, ID,M) — CT: The encryption algorithm takes as input a master public key mpk, an identity 1D,
and a message M € M. It will output a ciphertext CT.

Dec(skip, CT) — M: The decryption algorithm takes as input a private key skp and a ciphertext CT. It
outputs a message M or | which indicates that the ciphertext is not in a valid form.

We require correctness of decryption: that is, for all x, all pp and sp produced by Par(1%), all (mpk, msk)
produced by Gen(pp, sp), all ID € ZD, all M € M, all CT returned by Enc(mpk, ID, M), and all sk|p returned
by Ext(msk, mpk, ID), Dec(skip, CT) = M holds.

In our constructions, we will set identity space ZD = {0, 1}* for some ¢ € N. Note that the restriction
on the identity space can be easily removed by applying a collision resistant hash function CRH : {0, 1}* —
{0,1}* to an identity. Typically, we would set £ = ©(k) to avoid the birthday attack.

Security Model. We now define (1, Q., Q)-security for an IBE & = (Par, Gen, Ext, Enc, Dec). This secu-
rity notion is defined by the following game between a challenger and an attacker 4.

Setup. The challenger runs (pp,sp) < Par(1%) and (mpk"), msk")) & Gen(pp, sp) for j € [u]. The chal-

lenger also picks random coin coin <~ {0, 1} whose value is fixed throughout the game. Then, (pp, {mpk )} jelu))

is given to A.

In the following, A adaptively makes the following two types of queries in an arbitrary order.

—Key Extraction Query. The adversary A submits (Extraction,j € [u],ID € ID) to the challenger.
Then, the challenge runs skl%) & Ext(msk(j ) mpk{), ID) and returns skl%) to A.

—Challenge Query. The adversary A submits (Challenge,j € [u],ID € ID,Mg,M; € M) to the
challenger. Then, the challenger runs CT < Enc(mpk(j), ID, Mgoin) and returns CT to A.

Guess. At last, A outputs a guess coin’ for coin. The advantage of an attacker A in the game is defined as
IBE ; ;
AdVISS (1.0u.0p) (F) = | Prlcoin’ = coin] — 3.
We say that the adversary A is valid if and only if A never queries (Extraction, j, ID) such that it has
already queried (Challenge, j, ID, My, M) for the same (7, D) (and vice versa); .4 has made at most Q..

challenge queries; and A has made at most ), key extraction queries.

Definition 1. We say that IBE ® is secure if Adv'j’; (1,00:Q%) (k) is negligible for any polynomially bounded
1, Q¢ Qr, and any valid PPT adversary A.

Anonymity. We also consider anonymity for the IBE scheme. To define (u, Q., Q)-anonymity for an IBE

scheme, we change the form of challenge queries in the above game as follows.

—Challenge Query. The adversary A submits (Challenge,j € [u], 1D, D1 € ZD, Mo, M; € M) to the
challenger. Then, the challenger runs CT < Enc(mpk(j), [D¢oins Mcoin) and returns CT to A.

We say that the adversary A4 is valid if A never queries (Ext raction, j, ID) such that it has already queried

(Challenge,j,1Dg, D1, Mg, M) for the same j and ID € {IDy, ID;} (and vice versa); A has made at most

Q. challenge queries; and .4 has made at most (), key extraction queries. We define the advantage of A in

this modified game as Advﬁ'%'::(#,Qan)(n) := | Pr[coin’ = coin] — 1|.

Definition 2. We say that IBE & is anonymous if Advﬁd%'?( MQC’Qk)(HJ) is negligible for any polynomially

bounded u, Q., Q, and any valid PPT adversary A.

2.2 Composite-Order Bilinear Groups

We will use bilinear group (G, Gr) of composite order N = p1papsps, where pi1, pa, p3, p4 are four distinct
prime numbers, with efficiently computable and non-degenerate bilinear map e(-) : G x G — Gp. For each
d|N, G has unique subgroup of order d denoted by G,. We let g; be a generator of G,,. For our purpose,
we define a (composite order) bilinear group generator Geomp that takes as input a security parameter 1” and



ai a2 as

outputs (N, G, Gr, g1, 92,93,94,€(-)). Any h € G can be expressed as h = g7 g52g5°gy*, where a; is
uniquely determined modulo p;. We call g the G, component of h. We have that e(g%, h®) = e(g, h)* for
any g,h € G,a,b € Z,e(g,h) # 1g, forg, h # 1@,ande(g,h) = 1g, forg € Gy, and h € Gy,; with i # j.

Let (N, G,Gr, g1, 92,93, 94, €(-)) & Geomp(1%) and g & G*. We define advantage functlon Advi (k)
for Problem xx for any adversary A as

Advi’lxx(’i) = |Pr[A(gl7g4ag7D7T0) - ]'] - Pr[A(glag47g7D)T1) — 1”

In each problem, D, Ty, and T} are defined as follows. In the following, for i,j € [1,4], gij 1s chosen as

gU <_ G;ng
Problem 1. D = (), Ty & G,,, and Ty & Gy, py-

Problem 2. D = (g12, g3, goa), Tp < Gy, py and Ty & Gy pops-

Problem 3. D = (913,92,934) To <— Gp1p4, and Ty <— G;;lpsm‘

Problem 4. D = (glg,ggg) To (— Gp1p2, and Ty (— G;ma

Problem 5. D = (gg,gg,gg,gg,gf), To = e(g2, g2)"Y%, and T = e(ga, g2)*¥* 17, where x,y, 2 & Zy and
v & Ly

Problem 1 2, 3, and 4 are called sub-group decision problems. Problem 5 is called the decisional bilinear
Diffie-Hellman problem.

Matrix-in-the-Exponent. Given any vector w = (wi,...,wy) € Z7; and a group element g, we write
g% € G" to denote (¢g“*,...,9"") E G™: we define g™ for a matrix A in a similar way. ¢® - ¢® de-
notes componentwise product: g - g = ¢A*B. Note that given g and a matrix B of “exponents”, one
can efficiently compute gB4 and g = (¢g™)B. Furthermore, if there is an efficiently computable map
e: G x G — Gr, then given g® and ¢gB, one can efficiently compute e(g, g)A B via (e(g,g)ATB)i,j =
1, e(g%i, gPr3) where A; j and B; ; denotes the (i, j)-th coefficient of A and B respectively. We will use
e(g, gB) = ey, g)ATB to denote this operation.

3 Broadcast Encoding: Definitions and Reductions

In this section, we define the syntax and the security notions for broadcast encoding. The syntax of our
definition corresponds to a special case of “pair encoding” defined in [4] and is also similar to “predicate
encoding” in [55]. As for the security requirement for the encoding, ours are slightly different from both. We
define several flavours of the security requirement: perfect master-key hiding security (PMH), computational-
master-key hiding (CMH) security, and the multi-master-key hiding (MMH) security. The last one is useful,
since we can obtain IBE scheme from broadcast encoding scheme satisfying the security notion, as we will
show in Section 4. However, MMH security is defined by relatively complex game and may not be easy to
show. Later in this section, we will show that MMH security can be tightly reduced to much simpler CMH
and PMH security. The reduction is based on very simple but powerful randomness amplification argument
(Lemma 2).



3.1 Broadcast Encoding: Syntax

The broadcast encoding [1 consists of the following four deterministic algorithms.

Param(n, N) — d; : It takes as input an integer n and N and outputs d; € N which specifies the number of
common variables in CEnc and KEnc. For the default notation, w = (wj, ..., wg, ) denotes the list of
common variables.

KEnc(r, N) — (k,d}) : It takes as input 7 € [n], N € N, and outputs a vector of polynomials k =
(k1,. .., kq,) with coefficients in Z, and d), € N that specifies the number of its own variables. We as-
sume that ds and d’, only depend on n and do not depend on 7 without loss of generality. We require that
each polynomials k is a linear combination of monomials o, r;, wyr; where o, 11, . . ., Ty, Wi, - - W,
are variables. More precisely, it outputs {b,},c(a,] {005} (1,)e(da)x[ay]> A0 {00k} (1, k)€ lda) x [d) x [d1]
in Zy such that

k, (a,rl, o T Wy ,wd1> =bo+ ( Z bL,jrj) + ( Z bL,j,kwkrj)
]

J€ldy (4,k)€[d5]x [d1]
for ¢ € [da].
CEnc(S,N) — (c,dj) : It takes as input S C [n], N € N, and outputs a vector of polynomials ¢ =
(c1,...,cq,) with coefficients in Zy, and d5 € N that specifies the number of its own variables. We
require that polynomials c in variables sg, s1, .. ., Sl Wi - - -, W, has the following form:

There exist (efficiently computable) set of coefficients {a.,; } (. j)e(ds] x[0.a5] a0 { @05k} (1.5.k) € [ds] x [0,25] % [d ]
in Zy such that

cb<so,51, ooy Sl WL - ,wd1> = ( Z abjjsj> + ( Z aL7j7kwksj)
J€[0,d3] (J:k)€[0,d5]x [di]
for . € [d3]. We also require that ¢; = sp.
Pair(7, S, N) — E: Ittakes asinput 7 € [n], S C [n],and N € N and outputs amatrix E = (E; ;)ic(d,),je[ds] €
Zd2 ><d3
Ne.
Correctness. The correctness requirement is as follows.

e We require that for any n, N, d; < Param(n, N), k <— KEnc(7, N), ¢ < CEnc(S,N), and E «
Pair(7, S, N), we have that

kEc' = as whenever TeS.

The equation holds symbolically, or equivalently, as polynomials in variables o, 71,. .., 74, S0, 51,
: ,sdé,wl,...,wdl.

e For p that divides N, if we let KEnc(7, N) — (k,d}) and KEnc(7,p) — (k/,d5), then it holds that
dy = dJ and k mod p = k’. The requirement for CEnc is similar.

Note that since kEc' = Z(z’,j)e[dg]X[ds} E; jk;cj, the first requirement amounts to check if there is a
linear combination of k;c; terms summed up to asg. In the descriptions of proposed broadcast encoding
schemes, which will appear later in this paper, we will not explicitly write down E. Instead, we will check
this condition.

10



3.2 Broadcast Encoding: Security

Here, we define two flavours of security notions for broadcast encoding: perfect security and computational
security. As we will see, the former implies the latter. In what follows, we denote w = (w1, ..., wq, ),
r=(ry,... ,rdé), and s = (s, 51, - . .,sdzg).

(Perfect Security.) The pair encoding scheme 1 = (Param, KEnc, CEnc, Pair) is @Q-perfectly master-key
hiding (Q-PMH) if the following holds. For any n € N, prime p € N, 7 € [n], and S1,...,Sg C [n] such
that 7 ¢ S; for all j € [Q)], let Param(n, p) — d1, (k;,dy) < KEnc(7,p), and (cs;,ds ;) <= CEnc(S;,p)
for j € [@], then the following two distributions are identical:

{ {csj(sj,w)}je[@, k- (0,r,w) } and { {csj(sj,w)}je[Q], k- (o, r,w) } 4)

; dy+1 .
where w &~ Zgl, a Ly r & (Z;;)dé, sj & Zp3+ for j € [Q)].

(Computational Security on G,,). We define ()-computational-master-key hiding (Q)-CMH §) security on
Gp, for a broadcast encoding 1 = (Param, KEnc, CEnc, Pair) by the following game. At the beginning of
the game, an (stateful) adversary A is given (1%, n) and chooses 7* € [n]. Then, parameters are chosen as
(N,G,Gr, 91,92, 93, g1, e(+)) & Geomp(17), Param(n, N) — dy, and w & Z‘]i\}. The advantage of A is
defined as
OMHC Ly oMK (.
AV 6,, (8) = [PLAQ", n) = 7, A(g1, g2, g3, ga) O O ] —

CMH.C .y OCMHK ()

O % o
Pr[A(l’i’n) — 7—*’ A(91792793794> T W T, W,1 — 1”

In the above, (’)gvI WH ’llf (+) for b € {0, 1} are called only once while (’)S*M WHC() can be called at most @) times.

These oracles can be called in any order.

o OS*MWHC() takes S C [n] such that 7* ¢ S as input. It then runs CEnc(S,N) — (c,d}), picks

A A oA ” $ dh+1
§ = (50,81,---,8d/3) < Z,}" ", and returns gg(

oracle is called.

%) We note that § is freshly chosen every time the

CMH,K
* OT*,w,b

(+) ignores its input. When it is called, it first runs KEnc(7*, N) — (k,d),) and picks r =

. . d . .
(P15 Tay) & 732 and & & Zy. Then it returns

k(b-&,f,W) {gg(o’ﬁ’w) ifb=20

2 SR ey =1,

We say that the broadcast encoding is Q-CMH secure on G, if Advi’?{'—,ﬁQ,Gm (k) is negligible for all PPT
adversary A.
(Computational Security on G,,). We define Advi’YH:'Q’Gpa (k) and Q-CMH security on Gy, via similar

game. The difference from the above game is that gg &%) and g;{
gk(b-d,i‘,\?v)
3

(Ba8%) above are replaced with gg &%) and

respectively.

COMPARISON WITH DEFINITION IN [4]. By setting @) = 1, the Q-PMH and the ()-CMH security defined as
above almost correspond to the perfect security and the co-selective security defined in [4] respectively. We

§ Here, we use CMH to stand for “computational-master-key hiding” (for broadcast encoding), while in [4], CMH refers to “co-
selective master-key hiding” (for pair encoding). We hope that this should not be confusing, since our notion of 1-CMH security is in
fact almost the same as the notion of co-selective master-key hiding security (for broadcast predicate) anyway.
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need to deal with the case of () > 1 in order to handle the multi-challenge setting. Another difference is that
we use groups with the order being a product of four primes, while they deal with a product of three primes.

We have the following lemma which indicates that ()-PMH security unconditionally implies ()-CMH
security on both of G,, and G,,,. The proof appears in Appendix A.

Lemma 1. Assume that a broadcast encoding T satisfies Q-PMH security for some () € N. Then it follows
that Adv%ﬂnﬁQ@pi (k) < dy/pi fori € {2,3}.

3.3 Multi-Master-Key Hiding Security in Composite Order Groups

Here, we define multi-master-key hiding security for a broadcast encoding, which is more complex security
notion compared to the CMH security. A broadcast encoding scheme that satisfies the security notion can be
converted into an IBE scheme as we will show in Section 4.

Multi-Master-Key Hiding Security (on G,,). We define (Q., Q))-multi-master-key hiding ((Q., Q% )-
MMH) security on Gy, for a broadcast encoding 1 = (Param, KEnc, CEnc, Pair). The security is defined
by the following game. At the beginning of the game, A is given (17, n) and chooses 7* € [n]. Then, pa-

rameters are chosen as (N, G, Gr, g1, 92, 93, 94, €(+)) & Geomp (1), go4 & G},ps» d1 < Param(n, N), and

w & Zﬁl\}. The advantage of A is defined as

MMH.C () MMHK
Adv%,l\lﬂlTQc,Qk),Gm(”) = [Pr[A(1%,n) = 7%, A(g1, 9V, 9, gaa, g3, 92) w1 Ormiwiol) 5 1] -
MMH,C(')7OMMH,K()

PI‘[A(ln,n) — 7-*7 A(9179¥V79§V,g24,g3,g4) W w1y 1]|

In the above, OMM;|C() and OMMVL_';)K(-) for b € {0,1} can be called at most (). times and Q) times,

respectively. They can be called in any order.

o (’)EA*M“',*C() takes S C [n] such that 7* ¢ S as input. It then runs CEnc(S,N) — (c,d}), picks
s & Z;i\{;ﬂ and § <& chl\/?ﬂ and returns gf(s’w) . gg(é’w).

MMH,K
d OT*,w,b

() ignores its input. When it is called, it first runs KEnc(7*, N) — (k, db), picks & & Zy,

$ pd .
r& Z]\%, 5 & Z‘]l\%. Then it returns

k(0,r, .
gk(o,l‘,w) . gk(b-d,0,0) . 95 — gl( rw) ’ gg . ifo=0
1 2 4 gi((o’r’“') . g(a,o,o) g8 ifb=1.

In the above, r, &, and & as well as s and § are all freshly chosen every time the corresponding oracle
is ca'llf.:d. We say that the broadcast encoding is (Q¢, Q)-MMH secure on G, if Adv%y’}ﬂ&Qka)’G]}Q (k) is
negligible for all PPT adversary .A.

Mu.lti-Master-Key Hiding S.ecurity (Qn Gp,). We 'deﬁne (Qc, Qr)-MMH security on G, and Adv%f\lﬂITQc,Qk),G% (k)
similarly to the above. The difference is the following.

e The input to A is replaced with (g1, 97", 93", 934, 92, g4)-

c(s,w) c(§,w)

° g “ Gy in the above is replaced with gf(s’w) . gg(é’w).
° gf(o’r’w) .gé‘(b‘é"o’o) -gg is replaced with gi((o’r’w) . gg(b'd’o’o) : gg-
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3.4 Reduction from MMH security to CMH security

We then prove that the (Q., Qr)-MMH security for a broadcast encoding on G, (resp. G,,) can be tightly
reduced to its Q.-CMH security on G, (resp. G, ) and the hardness of the Problem 2 (resp. 3).

Theorem 1. For any i € {2, 3}, broadcast encoding N, and adversary A, there exist adversaries By and By
such that

C PXX
Adv%'\qug%@k)’@pi (k) < AdeMHQC,GP (k) + 2Advy >
and max{Time(B1), Time(B2)} ~ Time(A) + (Qr + Q.) - poly(k,n) where poly(k,n) is independent of
Time(.A). In the above, Py = P2 if i = 2 and Py = P3 if i = 3.

Proof. By the symmetry between the case of ¢+ = 2 and 7 = 3, it suffices to show the theorem for the case
of i = 2. Here, we introduce Lemma 2 and 3. The former indicates that (Q., Qr)-MMH security can be
tightly reduced to (Q., 1)-MMH security. The latter shows (Q., 1)-MMH security can be tightly reduced to
the hardness of the Problem 2 and Q.-CMH security. Combining these lemmas, the theorem follows. O

Lemma 2. For any broadcast encoding 11 and adversary A, there exists another adversary B such that

1
MMH
AV 0,016y (F) < AdVET 0. 1) 6, (F) + -~

and Time(B) ~ Time(A) + Qy - poly(k,n) where poly(k,n) is independent of Time(A).

Proof. We construct B against (Q., 1)-MMH security of the broadcast encoding from A against (Q., Q)-
MMH security of the same encoding. At the beginning of the game, A (1%, n) submits its target index 7* € [n].
B then submits the same index and is given (g1, g}, 93", g24, g3, 94). Then, BB simply pass it to A. B also calls

MMH,K . k(0,r,w k(b-4,0,0
O wip () toobtalngl( )'92( )

with probability at least 1 — 1/ps. When .A calls O,

. 5 . In the following, we assume that & # 0 mod ps. This happens

MMH, C( -) on input S, B calls the same oracle on the same

MMH,K
T ,wW,b

input and passes what is given from the oracle to .A. When A calls O (+), B picks random «a & Zy,

& 7% and 8 & 7%
r' < Z,,and §' < 77}, computes
k(0,r,w)  k(b:4,0,0)  §\*  k(Or,w) & _ k(0,ard+r',w)  k(b-ad,0,0) 546"
(91 9 -94) gy 91 =01 "9 917
and returns it to A. Finally, B outputs A’s output as its guess. It is easy to see that the simulation by B is

perfect. In particular, B has made only single call to Oiﬂ*Mv:,—' ;)K (+). Therefore, the lemma follows. O

Lemma 3. For any broadcast encoding 11 and adversary A, there exist adversaries 31 and Bs such that
MMH P
Ao, 1.6, (8) < AdVET o 6, (£) + 2Advy

and max{Time(B;), Time(B2)} ~ Time(A) + Q.poly(x, n) where poly(k,n) is independent of Time(A).

Proof. We prove the lemma via the following sequence of games. We consider following games for b €
{0,1}. We write Eventyy to denote the probability that .4 outputs 1 in Gameyy.

MMHC() dOMMHK()

T, W,b

Gameg, : This is the (Q., 1)-MMH security game with oracles O

MMH’K(‘) as follows: When it s called, ONLMH’K(-) runs KEnc(7*, N) —

T Wb T, W,b
. . . s d k(0,r, k(bé, T,

k, picks & Vil Zy, r,t & Z,;, and 0 & Zjl\?, and returns 91( rw) 92( aF,w)

k(O,r,w)  k(b&,0,0) 5

91 * 99 “94-

Gamey p: In this game, we change O

- g2 instead of
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We have that

Adv%!}q'}Qal)’Gm (k) = | Pr[Eventg o] — Pr[Eventg 1]|

< | Pr[Event; o] — Pr[Event; ;]| + Z | Pr[Eventq ;] — Pr[Eventy p]|.
be{0,1}

Therefore, we complete the proof of the lemma by showing the following claims. g

Claim 1. (Gameg y to Gamey p). For any b € {0, 1} and adversary A, there exists an adversary By such that
| Pr[Eventg ;] — Pr[Event; ]| < Adeﬁ(n) and Time(By) ~ Time(A) + Q. - poly(k,n) where poly(k,n) is
independent of Time(A).

Proof. We construct B3; that attacks Problem 2 from .A. Given the problem instance (g1, g3, 94, 912, 924, 9, T')

where T' & Gypor T & Gy, pops» B1 simulates (Qc, 1)-MMH security game for A as follows.

Setup of Parameters. Given 7* from A, B; picks w ¢~ Zﬁl\} and gives (g1, 9Y, 9%, 924, 93, g4) to A.
Simulating ODA*M“':"C(-). Given S, By runs CEnc(S, N) — (c,d}) and picks s’ = (s, s}, ...,/ ) < Z%‘H.
’ 3

Then it returns gfés W) 1o A. Let giz2 be gi2 = ¢7* - g5 (where a; € Z;, and ay € Zj;,). Then we have

gfésl’w) = gf(alsl’w) -gf(@s/’w). This implicitly set s = a;8’ mod p; and § = ass’ mod py. Since (s

mod p;,§ mod py) in Gamey , and Game p, as well as (a;s’ mod py,azs’ mod py) in the simulation are
uniformly distributed over Zj,, x Zjp, due to the Chinese Remainder Theorem, B; correctly simulates the

oracle.

MMAK(.). When it is called, B KEnc(r*, N) — k, picks &' & Zy, r' <& Z%, and

rewh C)- en it is called, By runs KEnc(7*, N) — k, picks & < Zn, v’ < Z,}, an
Y

& & Z?\?. Then it returns 750" W) . g;{ib &,0.0) gf, to A.

. . . s . s t1 to ¢
We claim that 15}2 szrilulates Gameq if T' - G, ,,, and Gamey  if T' < G, ., - Let T'be T' = gy'-g5° - g4

and ga4 be ga4 = g52g,*. Then we have

Simulating O

k(0,r',w k(b:64',0,0) § _ k(Ot1r',w)  k(bugd'tor',w) & +k(busd’ tar’,w)

&)

At first, we observe that the G, component of the Equation (5) is uniformly random over ng regardless of

$ * $ * .

T & Gplm orT < Gmpzm’ as desired. N
IfT & G, ps» We have t3 = 0 and therefore Gy, component of the Equation (5) is g;{ (buzd0w)
. A . . . . A A

gg(b e ’O’O). In this case, B implicitly sets r = ¢;r' mod p;, & = us& mod po. It can be seen that

. . o d! .
t1r" mod p; and ugd’ mod po are uniformly distributed over Z,? and Z,, respectively. Therefore, B; has
MMH,K
T*,wW,b

In the case of T & Gy, pops» B1 implicitly sets r = #1r' mod p1, ¥ = for’ mod pp, and & = uad’
mod po. Due to the Chinese Remainder Theorem, (r mod pi,T mod p2) in Game; ; as well as (¢’
mod p1,tor’ mod pe) in the simulation are uniformly distributed over Zip, X Zp,. Furthermore, & = U
MMH,K

T ,wW,b

correctly simulates O (-) in Gameg p.

mod po is also uniformly random over Z,,. Therefore, B; correctly simulates O (-) in Gamey .

Guess. Finally, By outputs A’s output as its guess. As we have seen, the game corresponds to Gameg ;, if

T & G;,p, and Gamey p if T & G;,pops- Thus, we may conclude that | Pr(Eventg;) — Pr(Event;p)| <
Advig: (k). O

Claim 2. (Game; o to Gamey 1). For any adversary A, there exists an adversary By such that | Pr[Event; o] —
Pr[Event; ;]| < Adv%Q{'H}Qme (k) and Time(Bz) ~ Time(A) + Q. - poly(k,n) where poly(k,n) is inde-
pendent of Time(A).

14



Proof. We construct B3 against ().-CMH security of the broadcast encoding from A.

Setup of Parameters. At the beginning of the game, A(1”,n) submits index 7* € [n]. By submits the same
index and is given (g1, g2, g3, 94). Then, By picks w & Z‘]l\} and implicitly sets w = w mod p;, w = W
mod ps, and w = W mod py where W <& ZCJZ\} is chosen by the game (and is not explicitly known to Bs).
By the Chinese Remainder Theorem, w is uniformly distributed over Z‘]j\}. B2 also picks a & Z7 and gives
(91,97 = g7, 95 = 9%, 924 = (9294)", g3, 94) to A.

MMH, C( ). Given S from A, B3 calls its oracle (’)S*'\/'WHC() on input S to obtain g, &%) Then, it

(s,w) c(s,w) c(8,w) c(s,w)

. Finally, it returns g - gy = g3 g;:(é,\?v) to A.

Simulating O,

picks s & VAN 3+ and computes gf

Slmulatlng (’)IVIM‘:I bK( ). When it is called, B; calls its oracle (’)CMH K( -) to obtain g, K(ba.2W) Then, it picks

r & Z]\?, 5 & Z?VQ, computes gi((o’r’v_v), and gives gi((g’r’w) "Gy (ba r W) 93 =g, k(0r,w) - o k(ba.g,w) | gl to A.
Guess. Finally, B2 outputs A’s output as its guess. It is easy to see that the view of A corresponds to Game

if b = 0 (i.e., By is equipped with the oracle (’)CMH K( )

CMH,K

*wl

) and Gamey 1 if b = 1 (i.e., By is equipped with the

oracle O (+)). Thus, we may conclude that |Pr[Event170] Pr[Eventy ;]| < AdVBz,I'I,QC, Gy (k). O

4 Almost Tight IBE from Broadcast Encoding in Composite-Order Groups

In this section, we show a generic conversion from a broadcast encoding scheme to an IBE scheme. An
important property of the resulting IBE scheme is that (u, Q., Qp)-security of the scheme can be almost
tightly reduced to the ().-CMH security of the underlying broadcast encoding scheme (and Problem 1, 2, 3, 4,
and 5 ). In particular, the reduction only incurs small polynomial security loss, which is independent of © and
Q. Therefore, if the underlying broadcast encoding scheme is tightly ().-CMH secure, which is the case for
all of our constructions, the resulting IBE scheme obtained by the conversion is almost tightly secure. Note
that in the following construction, we have sp = L. This mean that the key generation algorithm Par does not
output any secret parameter. This property will be needed to convert our IBE scheme into CCA secure PKE
scheme in Section 8.

Construction. Here, we construct an IBE scheme ®°™P from a broadcast encoding 1 = (Param, KEnc, CEnc,
Pair). Let the identity space of the scheme be ZD = {0, 1} and the message space be M = {0,1}™. We

also let H be a family of pairwise independent hash functions H : G — M. We assume that , /b2 2m = 2~ 9(K)
so that the left-over hash lemma can be applied in the security proof.

Par(1%) : Tt first runs (N, G, Gr, 1, 2, 93, 94, €(-)) <= Geomp(1*) and Param(2¢, N) — d;. Then it picks
w & Z;i\}, a7, H & H and sets b := (g1929394)®. Finally, it outputs pp = (g1, g%, g1, h, H) and
sp= 1.

Gen(pp,sp) : It picks o <& Zy and outputs mpk = (pp, e(g1, h)*) and msk = a.

Ext(msk, mpk, ID) : It first sets S = {2i — ID;|i € [¢]} where ID; {0, 1} is the i-th bit of ID € {0, 1}*.

Then it runs KEnc(j, N) — (k;,d}) and picks r; < ZA? and §; & ZP forall j € S. It also

k;(0,r;,w)

picks random {a; € Zn};ecs subject to constraint that o« = ) ._¢ a;. Then, it computes g, ,

Pair(j, S, N) — E;, and

JES
Sk] — hkj (2;0,0) gfj(ovrjvw) . gij (6)
for all j € S. Note that gi‘j ©Or7%) can be computed from g}’ and rj = (rj1,...,7;q) efficiently
because k;(0,r;, w) contains only linear combinations of monomials 7 ;, ;;w; . Finally, it outputs
private key skip = Hjes(skj)EJ
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Enc(mpk, D, M) : It first sets S = {2¢ — ID;|¢ € [¢]}. Then it runs CEnc(S,N) — (c,d}), picks s =
(0, 815+ -, Sdg) & Z(]i\‘;’“, and computes gf(s’w). Note that gf(s’w) can be computed from ¢}V and s
efficiently because c(s, w) contains only linear combinations of monomials s;, s;w;. Finally, it outputs

T = <01 = g™ 0y = H(e(g1, h)™*) & M ) . %)

Here, @ denotes bitwise exclusive OR of two bit strings.

Dec(skip, CT) : It parses CT — (C4,Cy) and computes e(skjp, C]) = e(g1, h)*0®. Then, it recovers the
message by M = Cy & H(e(g1, h)%0%).

CORRECTNESS. We show the correctness of the scheme. It suffices to show the following.

e(skE,C'lT) _ e((H(Skj)Ej)T’gf(S,W)T)

jes

= H e((hkj(%‘O,O) _giﬁ'(oarwW) 'ggj)T,glch(s’w)T)

JES

k. (ao: i, | T Eefen”

= I 6<(91j(aa] TV (gagsga)(a00) . gh) T gEielE) )

jes
- H e(gu, g1)k (@@ T WB (s w) |

JES
= [letor.g0 =[] elor. )™ = e(gr, ).

The fifth equation above follows from the correctness of the broadcast encoding.

REMARK. It would be more intuitive to set skjp as {sk;}jes instead of defined as above. In such a case, the
decryption algorithm first computes e((sk;]j)T, cl) = e(gl,gl)k(ao‘ﬂVrﬂ'vW)TEiC(svw) = e(g1, h)®°%. Then
it computes [[;cq e(g1,7)*% = e(g1, h)*°“ and recovers the message. Since the same S and {E; } jes are
always used in the algorithm, it can be accelerated by pre-computing | | jes sk;:j. In our scheme described

above, we use this value as a private key. This optimization not only accelerate the decryption algorithm, but
also makes the private key shorter.

Security. The following theorem indicates that the security of the IBE is (almost) tightly reduced to the
MMH security of the underlying broadcast encoding on G, and G,,, and Problem 1, 4, and 5. Combining the
theorem with Theorem 1, the security of the scheme can be almost tightly reduced to the Q).-CMH security of
the underlying encoding (and Problem 1, 2, 3, 4, and 5 ). The reduction only incurs O(¢) security loss. The
proof will appear in Appendix B.

Theorem 2. For any adversary A, there exist adversaries B; for i € [1,5] such that
AV B coms (100,00 () < Advg! (k) + Advig: (k) + Qe - 27
P. MMH MMH
+ (2Ad"8§ () + AdVE, 1,0, Q1) Gy (F) + AIVEIR(0,,01), Gy (”)>

and max{Time(B;)|i € [1,5]} =~ Time(A) + (1 + Q. + Q) - poly(x, {) where poly(k, {) is independent of
Time(A).
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5 Framework for Constructions in Prime-Order Groups

In Section 3 and 4, we show our framework to construct almost tightly secure IBE in composite-order groups.
Since we carefully constructed the framework so that we only use the subgroup decision assumptions and
the DBDH assumption in the security proof, we can apply recent composite-order-to-prime-order conversion
techniques in the literature [19, 3, 17, 2] to the framework. We choose to use [3], but other choices might
be possible. In this section, we show our framework for constructing almost tightly secure IBE in prime-
order groups. Our framework is almost parallel to that in composite-order groups. Namely, we define CMH
security and MMH security in prime-order groups. Then, we show reduction between them. Finally, we show
a generic construction of IBE scheme from broadcast encoding and show that the scheme is (almost) tightly
secure if the underlying encoding is tightly CMH secure.

In the following, we will use asymmetric bilinear group (G, G2, Gr) of prime order p with efficiently
computable and non-degenerate bilinear map e(-) : G; x Go — Gr. For our purpose, we define a prime-order
bilinear group generator Gprime that takes as input a security parameter 1 and outputs (p, G1, G2, Gr, g, h, e(+))
where g and h are random generator of G and G, respectively. Let 77 : Zf,x‘l — Z;‘;XQ, T Zéx‘l — Zf,Xl,
and 73 : Z;‘,X‘l — Zg“ be the projection maps that map a 4 x 4 matrix to the leftmost 2 columns, the third
column, and the fourth column, respectively.

Intuition. In prime-order groups, we work with 4 x4 matrix. The first two dimensions serve as ‘“normal space”
(corresponding to Gy, ), while the third and the fourth dimension serve as double “semi-functional spaces”
(corresponding to G, and G,,,). There is no corresponding dimension to G,,. While the use of 4 x 4 matrices
is similar to Chen and Wee [18, 20]7, conceptually, our techniques are quite different from theirs. They use
the first two dimensions as a normal space and the last two dimensions as single semi-functional space. In
contrast, we introduce additional semi-functional space to be able to prove the multi-challenge security rather
than single-challenge security. Furthermore, due to our new proof technique, these semi-functional spaces are
smaller compared to those of [18, 20].

5.1 Decisional Linear Assumption and Intermediate Problems

Here, we introduce the decisional linear problem (DLIN). Then, we introduce Problem 7, 8, 9, 10, 11, and 12.
As we show in Appendix C.1, all of them are reduced to DLIN. These problems are used to prove the security
of our proposed schemes in prime-order groups. The reason why we introduce these intermediate problems
is to make security proof of our constructions clearer and modular.

We define the decisional-linear problem (DLIN) as follows.

Problem 6. (DLIN Problem.) Let (p, G1, G2, Gr, g, h, e(-)) <& Gorime(17). We define advantage function for
any adversary A as

AN (k) = | Pr[A(g, 9™, g2, 9™, g%, 9722, b R RO, RO, RS RO Tp) — 1] —
A
Pr[A(g7ga17ga27ga37ga1517ga2827 h7 hala ha27ha37 ha1317 ha2827T1) — 1”

where a1, ag, a3,y & 7, 51,89 <& Ly, To = g®31%52) and Ty = ¢*3(1+52)47 We say that the DLIN
D

assumption holds if Adv AL'N (k) is negligible for any PPT adversary A.

We can also define a slight variant of the above problem where Ty and T are set as Ty = h%3(51+s2)
and T = h®(51+52)+7  We abuse notation and denote the advantage function for A for the variant also as
AdeL'N (k). Note that we can define several weaker variants of the above assumption. For example, one can

Y They showed a construction that is secure under the k-LIN assumption for any %, using 2k x 2k matrices. When k = 2, the
scheme is secure under the DLIN assumption.
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remove h%*1 and h*?°2 from the input to .A. Such a variant is a weaker assumption than the above one. We
define the strongest form of the assumption for the sake of simplicity. However, none of our reductions in this
paper needs all terms in the problem instance.

REMARKS. Typically, we sample a1, as, as, s1, S2,7 & Zyp; this only yields a 4/p negligible difference in
the advantage.

Intermediate Problems. In the following, we introduce intermediate problems. As we show in Appendix
C.1, the hardness of these problems can be tightly reduced to the DLIN assumption. We also show that these
problems have random self-reducibility in Appendix C.2.

Let (p,G1,G2,Gr, g, h,e(-)) < Gorime(17) and B & GIL4(Z,). Also let D € Z;l)x‘l be a random full
rank diagonal matrix for which the entries (3,3) and (4,4) are 1. Then, Z € Z;** is defined as Z = B~ ' D.

We define advantage function Advi"x(n) for Problem xx for any adversary A as

Adv™ (k) = | Pr[A(g, h, D, Ty) — 1] — Pr[A(g, h, D,T1) — 1]|.

In each problem, D, Tj, and T} are defined as follows.

t
Problem 7. D = (¢B, n™(%)), T = gB(é), and T} = gB(é) where t < 72*\ and t < 7,
o 2(1) =(3) =(§) g
Problem 8. D = (¢ ®) ¢m®) 5 \0/ h%), Ty = h \0/, and T = h \0/ where t,u & ng and
ta & 7
t t
Problem 9. D = (¢B, pm1(Z) poraftoanf porof+ooofy 0 gB<3), and Ty = gB<§) where t & 7241,
LT 75,0 = (1002) ¢ GLa(Z,y), £ = Ze], and f = Ze].

02,1 022
t t
Problem 10. D = (¢B, hm(Z) poraf+0aaf porof+020f) 70 gB(é), and Ty = gB<%) where t & 724,
i Zy, © = (91’1 01’2> & Gly(Zy), f = Ze], and f = Ze] .

02,1 02,2
Problem 11. D = (¢*, g, h?), Ty = e(g, h)*¥%, and T\ = e(g, h)***t where x, 1, z < Ly, and & Zy,

Problem 12. D = 0, Ty = ¢X°, and Ty = g% where X, < ng(ZgX6) and X; & Rk6(ZgX6). Here, we

denote by Rki(ZgXb) the set of all a x b matrices over Z, with rank i.

Note that quite similar problems to Problem 7 and 8 are introduced in [18, 19]. The problem 9 and 10
seem to be new. Roughly speaking, Problem 7, 8, 9, and 10 are analogue of sub-group decision assumption
in composite-order groups. The problem 11 is called the decisional bilinear Diffie-Hellman problem in the
literature. Problem 12 is the Matrix DLIN assumption, which is introduced in [44].

5.2 Computational-Master-Key Hiding Security on Prime Order Groups

Here, we define Q-computational-master-key hiding (Q-CMH) security on (G1, G3) for a broadcast encoding
N = (Param, KEnc, CEnc, Pair). The definition is quite similar to that on composite-order groups. Consider
the following game:
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At the beginning of the game, an (stateful) adversary A is given (1%, n) and chooses 7* € [n]. Then,
parameters are chosen as (p, G1, Ga, Gr, g, h, e(*)) & Gprime(1%), di < Param(n,p), and w & Zgl. The
advantage of A is defined as

CMH.C () HCMHK ()

oSMcy oM
AdVRT Q. (61.62) () = [PILA(L", 0) = 7%, A(g, b)) 1] —

CMH,C CMH,K
PI‘[A(lHﬂ’L) — 7_*7 A(ga h)OT*’W (')’OT*’W*I(') — 1”

In the above, (’)E*M WH f () for b € {0,1} are called only once while (’)S*M V':C( -) can be called at most @) times.
These oracles can be called in any order.

. (’)C*MV';’C(-) takes S C [n] such that 7 ¢ S as input. It then runs CEnc(S,p) — (c,d), picks § &

-
dh+1 o
Zy* ", and returns ge&W),

. (’)S*Mvgllf() ignores its input. When it is called, it first runs KEnc(7*, p) — (k, d5) and picks - <- Zgé
. REOEW) ifp —
and & & Zy,. Then it returns pK(b-auE W) — o 1
RR(@EW) ifh = 1.
We say that the broadcast encoding is Q-CMH secure on (G1, G2) if Advle'v| HQ (G1,G) () is negligible for all
PPT adversary .A. As in composite-order groups, Q-PMH security unconditionally implies Q-CMH security.

The proof of the lemma appears in Appendix D.1.

Lemma 4. Assume that a broadcast encoding 11 satisfies Q-PMH security for some () € N. Then it follows
CMH
that Adv ' (6,6, (K) < db/p.

5.3 Preparation

Here, we introduce notation needed to define multi-master-key hiding (MMH) security in prime-order groups.
Here, we assign each variables in polynomials k and c vectors or matrices, rather than scalar values (as in the
definition of the CMH security). Let p be a prime number. We assign each variable w; a matrix W; € Zé“
for i € [d], variable ov a column vector o € Zy*!, variable ; a vector x; € Zj*! for i € [dj], and variable
s; a vector y; € Zﬁ“ for i € [0,d}]. The evaluation of polynomials kz and cp, which are indexed by an
invertible matrix B € Zé“ and Z € Zé“, are defined as follows. In the following, we denote

W = (Wy,...,Wg) € (Z24)h, X:(xl,...,xdé>€Z§Xdé

4x (df+1)

Y (yO,yl,---,ydg) € Zp , Z=B")" D

where D € Zéx‘l is a full-rank diagonal matrix with the entries (3, 3) and (4, 4) being 1. Letk = (ky, ..., kq,)

be a vector of polynomials in variables o, 71, . . . , Tay, Wi, - - -, W, with coefficients in Z,, such that
k‘b(a,rl,...,rdxz,wl,...,wdl) =bo+ ( Z bLyjr]) + ( Z bL,j,kaij)
Jjelds] (5,k)€lds]x[d1]

for ¢ € [dy]. We define kz(a, X, W) € Z;‘;Xdz as kz(a, X, W) =

kz.. <a,X,W> =ba + ( Z bb,jsz) + ( Z bL,j,kaTZXj) c Zf,“

J€(db] (J,k)€ldy] x [da] L€[d2]
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Letc = (ci, ..., cd,) be a vector of polynomials in variables sg, s1, . . ., Sl Wi - - -, Wi, with coefficients in
Z,, such that

cL(so,sl, oy Sl WL - ,wd1> = < E aw‘sj> + ( E am’kwksj)

7€[0,d3] (k) €[0,d5] x [d1]

for v € [d3]. We define cg(Y, W) € Z;L,Xdi‘ ascp(Y,W) =

e, (Y,W) = ( Z aLJByj) + ( Z aL,j,kaByj> €z

F€[0,d}] (4,k)€[0,d5] x [d1] 1E]ds)

Restriction on the Encoding. In our framework for prime-order constructions, we define and require regular-
ity of encoding similarly to [3], which is needed to prove the security of our IBE obtained from the broadcast
encoding. Note that all of broadcast encoding schemes that appear in this paper satisfy the requirement.
Compared to the definition in [3], our definition is less general, but simpler and sufficient for our purpose.

Definition 3 (Regularity.). We call a broadcast encoding regular if the following hold:

1. For v € [1,dy),// € [1,d3] such that there is j € [1,d5],k € [1,dq],5" € [0,d5], k" € [1,d1] where
b,k # 0and ay ji i # 0, we require that E, ; = 0.

2. Forall j € [1,d5), there is i € [da] such that k; = r;. Similarly, for all j' € [0, d})], there is i € [d3] such
that c;; = sj.

Correctness of Encoding. Let 7 € [n] and S C [n] be an index and a set such that 7 € S. Let also
KEnc(r, p) = (k,db), CEnc(S, p) — (c,ds), and Pair(r, S,p) = E = (Ey,) (y.0)e(da] x[ds] € Zngd3. Then,
by the correctness of the broadcast encoding, we have >, \c(a,1x[a5] Eniknc. = aso (the equation holds
symbolically). From this, we have the following. (Note that the claim is shown similarly to Claim 15 in [3]. )
The proof will appear in Appendix D.2.

Lemma 5. We have 3, c1a,1x(ds) Ene - kz.n(ct, X, W) Teg (Y, W) = a Byy.

5.4 Multi-Master-Key Hiding Security in Prime-Order Groups

Here, we define multi-master-key hiding (MMH) security and its variant. The former and the latter are equiv-
alent, but it is convenient to define both. Then, we show that the CMH security implies MMH security,
similarly to the case of composite-order groups.

MMH Security in Prime-Order Groups. We define (Q., Qx)-multi-master-key hiding (MMH) security of
a broadcast encoding N = (Param, KEnc, CEnc, Pair) (in prime-order groups) by the following game:

At the beginning of the game, A is given (1, n) and chooses 7* € [n]. Then, parameters are chosen
as (p,G1,Ga2,Gr, g, h,e(+)) € Gprime(1%), di < Param(n,p), B <~ GL4(Z,), W = (Wy,...,Wg,) <
(Zﬁ“)dl. A random full-rank diagonal matrix D € Z2** with the entries (3, 3) and (4,4) being 1, is also
chosen. The matrix Z € Z;’;X"‘ is set as Z := (B~1)TD. The advantage of A is defined as

MMH,C MMH, K .

Adv%vhquQc,QkL(Gth)(’{) = |Pr[A(1%,n) — T, A(params)OTﬂBﬂw(')’ O zw,o() — 1]
MMH,C () OMMH,K ()

—Pr[A(1",n) — 7%, A(params) 7 BwW\) Vrxzwal) 5 1]
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where

7r1(B)’ g7r3(B), gﬂ'l(wlB)’ . gﬂl(Wdl B)7 971'3(VV1B)7 —

(9 9 g
params-(h7 hZ, h”l(wlTZ), o hm(WLZ)’ hws(WlTZ)7 cee hfrg(WLZ) .

In the above, (’)D/I*MBH@%(-) is called at most (). times, while ODA*MZH“’,\E; »(+) for b € {0, 1} are called at most

@y, times. These oracles can be called in any order.

OMMILE() takes S C [n]\{7*} as input. It then picks s, s, . . . ,Sd, & 727 80,81, .. 84, &z,
and runs CEnc(S,p) — (c,dj). Thenitsets S € Zéx(déﬂ) and S € Zﬁx(déﬂ) as
s=((9).(%9) "y as=((5).(%) 0 -
— 9 , 9 yT 8 an = 86) s 501 R 33

and returns ¢gB(S+S:W),

Oy*'\/IZH\&{; »(+) ignores its input. When it is called, it first runs KEnc(7*,p) — (k, d5), picks & &z,
r Td, Axdly . :
T, Ty & 72, and sets R = <( 81) s ( o )) € 7, “. Finally, it returns
0

pkz(ORW) if p =0

hkz(b.af,R,W) _ K
hkz(d-f,R,W) ifb=1

where f = my(Z) = Z - 5 .

In the above, we note that S and S as well as R and & are freshly chosen every time the corresponding oracle is
f:alled..We say that the broadcast encoding is (Q., Qx)-MMH secure on (G1, G2) if Adv%y’}ﬁQc’Qk)’(Gth) (k)
is negligible for all PPT adversary A.

A Variant of MMH-Security. It is convenient to consider a variant of the (Q., Qx)-MMH security, that we
call (Q¢, Qr)-MMH’ security. (Q., Qr)-MMH’ security is defined by a game that is the same as (Q., Qk)-
MMH security game above except that

e params is replaced with

g gn®) gu®  mWiB) m(WaB)  m(WiB)  m(WyB)
arams =
P h, hZ7 hm(WlTZ)’ U (W:irl Z)’ hrrz(WlTZ)’ o hm(W; Z)
’ & s s Syt / ~ 0
. OM'?AB'TWC() returns g°B(5+5:W) where S = <( 9?) , ( 81) S ( 83 >> € Z;X(dﬁl), S = ((5%) ,
0 0 Ax (djy+1 s < = =B
(501) gy (ES/ >) € Zyp (d3 ),so,sl,...,sdg3 eZIQ,“,andso,sl,...,sdg3 & Zp.
3
/ ~a r rg
. Oiﬂ*MZHWKb() returns hxz(6ERW) where 6 & 7,1y, .. T & 72" R = <( 81> e < 82 >) €

Z;Xdé, and f = m3(Z) = Ze, .

We define the advantage of the adversary in this modified game as Adv&ﬂ"}qﬁ(éc@k)’(@h@ﬂ(/-i). If we
exchange the third and the fourth column of B and Z, (Q., Qx)-MMH’ security game defined as above
corresponds to (Q., Qr)-MMH security game. Therefore, the following lemma immediately follows.
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Lemma 6. For any broadcast encoding 1 and adversary A, there exists another adversary B such that
MMH’ MMH : ~ T
AV 11(Qe@0).(61,62) (F) = AdVE (G, 0,),(61,6,) () and Time(B) ~ Time(A).

CMH Security Implies MMH Security. Similarly to the case in composite-order groups, we have that CMH
security tightly implies MMH security (assuming the hardness of the Problem 8). More formally, we have the
following theorem:

Theorem 3. For any broadcast encoding Tl and adversary A, there exist adversaries By and Bs such that

1

MMH CMH P

AV A (Qe @i (61,62) (F) S AdVEL NG, (61,62 (#) + 2Adv, +

and max{Time(B1), Time(B2)} ~ Time(A) + (Qr + Q.) - poly(k,n) where poly(k,n) is independent of
Time(A).

The proof of the theorem is almost parallel to that of Theorem 1 and appears in Appendix D.3.

5.5 Almost Tightly Secure IBE from Broadcast Encoding in Prime Order Groups

Here, we construct an IBE scheme ®P"™¢ from broadcast encoding scheme M = (Param, KEnc, CEnc, Pair).
Let the identity space of ®P™ be D = {0, 1} and the message space M be M = Gr. We will not use
pairwise independent hash function differently from our construction in composite-order groups. We note that
similarly to our construction in composite-order groups, we have sp = _L in the following.

Par(1%,¢) : It first runs (p, Gy, Go,Gr, g, h,e(-)) & Gprime(1%) and Param(2¢,p) — d;. Then it picks
B & GLy(Zy), W = (Wy,...,Wgq,) & (ng‘l)d1 and a random full-rank diagonal matrix D € Z;**
with the entries (3,3) and (4,4) being 1. Finally, it sets Z = B~ D and outputs

9, gﬂ'1(B)’ g7r1(VV1B)7 e, g7r1(Wd1B)
pp = h. pT(Z)  pm(W{Z) hm(w;lrlz) and sp= 1.

In the following, we will omit subscript B and Z from cg(S, W) and kz(a, R, W) and just denote
c(S, W) and k(a, R, W) for ease of notation. B and Z are fixed in the following and clear from the context.

Gen(pp) : It picks a & Z3** and outputs mpk = (pp, e(g, h)aTﬂl(B)) and msk = av.
Ext(msk, mpk, ID) : Itfirstsets S = {2i—1D;i € [£]} where ID; € {0, 1} is the i-th bitof ID € {0, 1}“. Then
: r.
truns KEnc(j.p) = (k) pickss o1, & 23 anasees®y = () 0 (7)) €
0

Z;;Xdé for all j € S. It also picks random {c; € Z3*'};cg subject to constraint that ¢ = > jes Q-
Then, it computes Pair(j,S,p) = E; = (Ej,n,L)(n,L)e[dz}x[dg] and

sk = pli(e Ry, W) {skj, = hkj*"(aj’Rj’W)}ne[dz] ©)

for all j € S. Note that h¥/(®-Rs:W) can be computed from «;, h™ (%), and {g™ (Wi Z)}ie[dl] ef-
ficiently because k;(a;, Rj, W) = {k; (o, Rj, W)}, (4, contains only linear combination of a;,

i T
Z <r8 ) = m(Z)r;, and W, Z ( é ) = m1(W, Z)r;. Finally, it outputs private key

skip = [T sk . (10)

JESNE[d2] L€[ds]
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Enc(mpk, ID, M) : Itfirstsets S = {2i—ID;|i € [{]}. Thenitruns CEnc(S, p) — (c,dj}), picks So, S1, ..., Sq,

\ s s Sa! 4x (dh+1 .
<$—Z%X1,andsetsS: (( 80) , ( 81) yo ,( 03)> GZPX( st ).Thenltreturns
0

T

CT = <C1 =g SW = e(g,h)> mBlso.m ) )

Note that g*(5W) can be computed from g™ B) and {g™ (WiB)}ie[dﬂ efficiently because c(S, W) con-
tains only linear combinations of B (582) = m(B)s; and W,;B <S§> = m(W;B)s;. Cy can be

computed from e(g, h)"‘Tm(B).

Dec(skip, CT) : Let CT be CT = (Cy, Cy). From Cy = ¢g¢(8W) = {ch(S,W)}LG[dB]’ it computes
H e gcb(S,VV)7 H skjE’;r?],L _ 6(9, h)aTTrl (B)so (11)
L€[d3] jeSmE(da)
and recovers the message by Cs/e(g, h)aTm(B)SO =M.

CORRECTNESS. We show the correctness of the scheme. It suffices to show Equation (11).

H e | g=m™, H sku’L — H 6(97h)En,LcL(SW)Tkj,n(ajﬁRmW)
1€]ds] JjE€SmE[ds] L€lds],j€SmE(d2]
— H e(g, h)Zretds)nelas] Pnckin (e Ry W) Teu(S,W)
jes
aTB(S(?) T
_ He(g,h) J 0 :e(g, h)a m1(B)so
jes

The third equation above follows from the correctness of the underlying broadcast encoding.

Security. The following theorem indicates that the security of the IBE is (almost) tightly reduced to the MMH
security of the underlying broadcast encoding on (G1, G2) and Problem 7, 10, and 11. Combining the theorem
with Theorem 3, 7, 8, 10, and 11, the security of the scheme can be almost tightly reduced to the Q.-CMH
security of the underlying encoding and the DLIN assumption. The reduction only incurs O(¢) security loss.
The proof will appear in Appendix D.4.

Theorem 4. For any adversary A, there exist adversaries By, Bo, Bs, and By such that
IBE P P P MMH
AdVA,q)prime:(#vchQk)(ﬁ) S AdVBI(’i) + Adeél (F{/) + 2€ (Ade{l;(](K/) + AdVB47n7(chQk)v(leG2)(K/)>

and max{Time(B;)|i € [1,4]} =~ Time(A) + (1 + Q. + Q) - poly(x, £) where poly(k, ) is independent of
Time(A).

6 Construction of Broadcast Encoding Schemes
In this section, we show two broadcast encoding schemes [ and [g,. As we will see, we can tightly prove

the (Q.-CMH security for these schemes for any Q.. Therefore, by applying the conversion in Section 4
and 5, we obtain IBE schemes with almost tight security in the multi-challenge and multi-instance setting
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both in prime and composite-order groups. An IBE obtained from [l.. achieves constant-size ciphertexts,
but at the cost of requiring public parameters with the number of group elements being linear in the security
parameter. Our second broadcast encoding scheme [, partially compensate for this. By appropriately setting
parameters, we can realize trade-off between size of ciphertexts and public parameters. For example, from the
encoding, we obtain the first almost tightly secure IBE with all communication cost (the size of pp and CT)
being O(y/k). Such a scheme is not known even in the single-challenge setting [18, 8]. While the structure
of MM is implicit in [27], Ty, is new. The construction of [, is inspired by recent works on unbounded
attribute-based encryption schemes [41, 48, 49]. However, the security proof for the encoding is completely
different.

6.1 Broadcast Encoding with Constant-Size Ciphertexts

At first, we show the following broadcast encoding scheme that we call ... The scheme has the same
structure as the broadcast encryption scheme proposed by Gentry and Waters [27]. For I, we can prove
Q-PMH security for any ). By Lemma 1, we have that Q)-CMH security of ll.c on G,, and G, can be
tightly proven unconditionally. Similar implication holds in prime-order groups. See Lemma 4.

Param(n, N) — dy : Itoutputs d; = n.

KEnc(r, N) — (k,d}) : Ttoutputs k = (o + rwy,, 1wy, ..., "Wr—1,7, rWr41,...,7wy) and dj = 1 where
r=r.

CEnc(S,N) — (c,dj) : Let S C [n]. Itoutputs ¢ = (s, > ;g sw;)and d5 = 0 wheres = s.

CORRECTNESS. Let 7 € S. Then, we have

s | (a+rws) + Z rw; — stj -7 = sa. (12)

jeS\{r} jes
Lemma 7. T defined above is (Q-PMH secure for any Q € N.

Proof. Let T € Uje(q)S;. It is clear that information on w is not leaked given {cg; (sj, W)} ¢[q)- Thus, a is
information-theoretically hidden from k. («, r, w), because « is masked by 7w, which is uniformly random
over Zy. Thus, the lemma follows. O

6.2 Encoding with Sub-linear Parameters

We propose the following broadcast encoding scheme that we call lg,. We can realize trade-off between
sizes of parameters by setting ;. For the encoding scheme, we are not able to show the Q-PMH security.
Instead, we show the ()-CMH security.

Param(n, N) — d; : Itoutputs d; = 2ny + 3. We let no = [n/n;|. For ease of the notation, we will denote

W = (U, ..., Uny, v, U, ... Uy, v, w) in the following.

KEnc(r, N) — (k,d}) : It computes unique 71 € [n1] and 72 € [na] such that 7 = 71 + (72 — 1) - ny. Then
it sets dj = 1 and r = r and outputs

k= (a+rw, r, r(v+1un), {ruiticp\fnys "0 +72ul), {ruticm\ i) -
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CEnc(S, N) — (c,dj) : It first defines S; and S; for j € [ng] as
§;=SN0[(~Dm+1jml, 8 ={'~(~Dm|j €58}, (13)

sets s = (S0,t1,...,tny, th,. .., 1) and d3 = 2no + 1, and outputs

c=|s0, { sow+ti(v+i Y )+t +i> ), b,
jESi jesi iE[’rLQ]

CORRECTNESS. Let 7 € S and 71, 7 be defined as above. Then, we have 7 € S, and

S0+ (a+rw) — | sow + tr, U+TQZUj +t’72 v’+TQZu; e
JESry JESry

+ tr - | r(v+Tmun) + T2 Z U +tn, | (0 +Tul,) + 2 Z U

JESH\{T1} JEST,\{m1}
= $SpQ.

In Appendix E, we prove the Q-CMH security of g, on (G, G2) under the DLIN assumption. The Q-CMH
security on Gy, and G, also can be shown assuming the DLIN assumption on the corresponding group.

6.3 Implications

For MMy, we call an IBE scheme obtained by applying the conversion in Section 4 to My ®5E™°. Similarly,
we call a scheme obtained by the conversion in Section 5.5 ORL™E. The concrete descriptions of the obtained
schemes appear in Appendix H. ®¢¢™ and ®Z™ are the first IBE schemes that are (almost) tightly secure
in the multi-challenge and multi-instance setting, from a static assumption in prime-order groups (the DLIN
assumption). " and ®E™ achieve constant-size ciphertext, meaning the number of group elements in
ciphertexts is constant. The drawback of the schemes is their long public parameters. In CD;c;mp and CDEIrF',me, we
can trade-off the size of ciphertexts and public parameters. For example, by setting ny = y/n, we obtain the
first almost tightly secure IBE scheme such that all communication cost (the size of the public parameters, the
master public keys, and the ciphertexts) is sub-linear in the security parameter. Such a scheme is not known
in the literature, even in the single-challenge and single-instance setting. Also see Table 1 in Section 1 for the

overview of the obtained schemes.

7 Anonymous IBE with Tight Security Reduction.

All our IBE schemes obtained so far is not anonymous. In these schemes, one can efficiently check that a
ciphertext is in a specific form using pairing computation, which leads to an attack against anonymity. In
this section, we show that ®£™® can be modified to be anonymous, by removing all group elements in Go
from the public parameter pp and put these in sp instead. We call the resulting scheme ®,,0,. This is the
first IBE scheme whose anonymity is (almost) tightly proven in the multi-challenge. While our technique for
making the scheme anonymous is similar to that in [17], the security proof for our scheme requires some new
ideas. This is because [17] only deals with the single-challenge setting whereas we prove tight security in the
multi-challenge setting. The security proof requires new combination of information-theoretic argument (as

in [17]) and computational argument.

Construction. Let the identity space of the scheme be {0, 1} and the message space be Gr. We note that
we have sp # L in the following, differently from other constructions in this paper.
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Par(1%,¢) : Ttfirstruns (p, G1, Ga, Gr, g, b, e()) € Gprime(1%). Thenit picks B & GL4(Z,), W1, ..., Wy

& Z;l,x‘l and a random full-rank diagonal matrix D € Zéx‘l with the entries (3,3) and (4,4) be-

ing 1. Finally, it sets Z = B~ "D and returns pp = (g, g™ ®) gmWiB)  4m1(WaB))

sp = (h, k@) pm(WiZ)  gmi(W32)),

and

a'lm (B))

Gen(pp,sp) : It picks a < Zg“ and outputs mpk = (pp, e(g, h) and msk = (a, sp).

Ext(msk, mpk, ID) : Tt first sets S = {2i — ID;|i € [{]} where ID; € {0, 1} is the i-th bit of ID € {0, 1}".
Then it picks random r & ZZXI and returns skip = (K1 = hot2ies ”1(W:Z)r, Ky = h"rl(z)r).

Enc(mpk, ID, M) : It first sets S = {2i — ID;|i € [(]}. Then it picks random s < 22*" and returns CT =
(C = gmBls Oy = gXiesmWiB)s 0y — o(g p)o m(B)s. V).

Dec(skip, CT) : It parses the ciphertext CT as CT — (Cy, C2,C3), and computes e(Cy, K1)e(Cq, K2) =
e(g, h)"‘TWl(B)S. Then, it recovers the message by C3/e(g, h)o‘Tm(B)s =M.

Remark. We have to ensure that the key extraction algorithm Ext always use the same randomness r for the
same identity, in order to (tightly) prove the security of the scheme. This can be easily accomplished, for
example, using PRF [26]. For the sake of simplicity, we do not incorporate this change into the description
of our scheme. Instead, in the security proof, we assume that the adversary A makes at most single key
extraction query for the same identity.

Security. The following theorem establishes the security of ®,n0n in the single-instance case. The proof
appears in Appendix F. While we think that it is not hard to extend the result to the multi-instance setting, we
do not treat it in this paper.

Theorem 5. For any adversary A, there exists an adversary BB such that
AV o (100 (8) < B+ T)AdVE"N (k) + (1204 1) /p

and Time(B) ~ Time(A) + (Q. + Q) - poly(k, £) where poly(k, £) is independent of Time(A).

8 Application to CCA Secure Public Key Encryption

Here, we discuss that our IBE schemes with almost tight security reduction in the multi-instance and multi-
challenge setting yield almost tightly CCA secure PKE in the same setting via simple modification of Canetti-
Halevi-Katz (CHK) transformation [16]. The difference from the ordinary CHK transformation is that we use
(tightly secure) Q-fold one-time signature introduced and constructed in [32]. Another difference is that we
need a restriction on the original IBE scheme. That is, we require that the key generation algorithm Gen of the
IBE scheme does not output any secret parameter. Namely, sp = L. Roughly speaking, this is needed since
the syntax of the PKE does not allow key generation algorithm to take any secret parameter. Note that this
condition is satisfied by all of our constructions except for that in Section 7. See Appendix G for the details
about the conversion.

By applying the above conversion to ®P"™® prime

slp slp

and W™ The former allows flexible trade-off between the size of public parameters and ciphertexts. The
latter achieves significantly short ciphertext-size: The ciphertext overhead of our scheme only consists of 10
group elements and 2 elements in Z,,. This significantly improves previous results [32, 1, 35, 36, 29] on PKE
scheme with the same security guarantee in terms of the ciphertext-size. Note that state-of-the-art construction
by [36] and [29] require 47 and 59 group elements of ciphertext overhead, respectively. Namely, ciphertext

and ®P™¢ we obtain new PKE schemes that we call ¥
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overhead of our scheme is (at least) 74% shorter, compared to theirs. On the other hand, the size of public
parameter of the scheme in [29] is much shorter than ours (and those of [35, 36]). The former only requires
17 group elements, but the latter requires many more.

The reason why we can achieve very short ciphertext size is that our strategy to obtain PKE scheme is
quite different from other works. Roughly speaking, all of the previous constructions [32, 1, 35, 36, 29] follow
the template established by Hofheinz and Jager [32]. They first construct (almost) tightly-secure signature.
Then, they use the signature to construct (almost) tightly-secure unbounded simulation sound (quasi-adaptive)
NIZK. Finally, they follow the Naor-Yung paradigm [45] and convert the CPA-secure PKE with tight security
reduction [11] into CCA-secure one using the NIZK. On the other hand, our construction is much more
direct and simpler. Our conversion only requires very small amount of overhead in public parameters and
ciphertexts.
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A Proof of Lemma 1

Proof. 1t suffices to show the lemma for the case of ¢ = 2. By the Q-PMH security, for all 7* and Sy, ..., Sg
such that 7% & Uj;¢(¢] S, we have that two distributions ({cs; (5, W)} jeq), k= (0,1, w)) and ({cs, (85, W) } e
kr+ (o, 1, w)) are the same, where (k-+,d5) < KEnc(7,p2), and (cs;, d3 ;) <= CEnc(S}j, pe) for j € [Q]. By
a standard argument (e.g., complexity leveraging [55]), this means that the two distributions are the same even
if a distinguisher adaptively chooses each .S; depending on {cs_, (s;/, W)}jre[j—1) and k7« (ba, T, w) (where

= 0 or b = 1). By the correctness of the encoding (second condition), advantage of any adversary in Q-
CMH security game would be 0, if r was chosen random subject to constraint that (r mod p3) € (Zzz)dé. In

. . 5 .
the actual ()-CMH security game, r is chosen as r &z . This may alter the advantage at most dy/py. O

B Security Proof for Our Scheme in Section 4

For the sake of simplicity, we first consider the case of 1 = 1 (i.e., the single instance case). Namely, we first
show the following theorem. Later in this section, we explain how to modify our proof for the single-instance
case to deal with the multi-instance case.

Theorem 6. For any adversary A, there exist adversaries By, Bo, Bs, B4, and Bs such that
AV'ES 10000 (8) < Advig (k) + Advig: (k) + Qe - 270
+0 (QAdVg; (k) + AdVIME 0 i, (8) + AVEMH 0, (K))
and max{Time(B;)|i € [1,5]} ~ Time(A) + (Qc + Q) - poly(x, £) where poly(k,{) is independent of
Time(A).

Proof. The overall structure of the proof is similar to [33].

Semi-functional Ciphertexts and Private Keys. We define several types of ciphertexts and private keys
that are used in the security proof. In the following, we will pick random functions R; : {0,1}* — Zy and
R; : {0,1}" — Zy (via lazy sampling) for i = 0,...,¢. Here, we use {0,1}° to denote the singleton set
containing just the empty string €. For an identity ID € {0, 1}, ID|; denotes the first i bits of ID, that is,
length ¢ prefix of ID.
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- Semi-functional ciphertexts. We consider Type 1, Type (2,4), and Type (3, ¢) of semi-functional cipher-
texts for ¢ € [0, £]. The form of semi-functional ciphertext are as follows.

<gf(s,w) . gg(S,W) . H <e(gfo . QSO ,ha)> @ Mcoin> Type 1
w s,w s $ a ﬁz ID|; 1
CT = (gf(s’ Vg™ H <6(91°- 95 | h | gyt ”)) @Mcoin> Type (2, 1)
c(s,w c(s,w s 3 @ R;(ID|; .
<91( ). 93( ) , H (6(910' g3’ |, h" -| g3 (el )) ©® Mcoin) Type (3,1)

where 8 = (30,31,...34) T & Z3 and 8 = (30, 51,...,54)7 & 23
- Random ciphertexts. We consider Type 1 and Type 2 of random ciphertexts. The form of ciphertexts are
as follows.
(gf(s’w)- 5= | H (e(gl,h)w- e(g2,92) ) ® Mcoin) Type 1
CT =

<g§(S7W) : gg(é,W) 5 Ivlrand) Type 2

where z & Zy and M,3,q & {0,1}™.

- Semi-functional Private Keys. We consider Type (1,4) for i € [0,¢] and Type (2,:) fori € [¢ — 1] of
semi-functional private keys. To create a semi-functional private key, we replace sk; in Equation (6)
with

sk, — hki(03.00) .gi(j(o,rj,w) ‘ g;j(%-,o,o) . g;’q(%,o,O) ' gjfj (14)

where {§; € Zn}jcs and {¥; € Zy }jes are random numbers subject to constraint that
~ [Ri(D}; Type (1, = . .
S 4= Ri(IDl:) ype (1,7). Y4 =Ri(ID|;) Type (1,7) and (2,1).
ics Ri+1(ID}it1) Type (2,1) ies

Then the semi-functional private key is created as skip = [ | je S(skj)Ef.

Sequence of Games. Next, we define a sequence of games to establish the security of the IBE scheme. We
write Advyy (k) to denote the advantage of A in Gameyy.

Gameg : This is the real security game.
Game;: In this game, all challenge ciphertexts created by the challenger are changed to be Type 1.

Gamey; 1 (fori € [1,¢+ 1]): In this game, all challenge ciphertexts are of Type (2,7 — 1) whereas all private
keys created by the challenger are Type (1,7 — 1).

Gamey; 2 (fori € [1,¢]): This game is the same as Gamey ; ; except that challenge ciphertexts for identities
ID such that ID; = 0 are changed to be Type (3,7 — 1) where ID; is the i-th bit of ID.

Gamey; 3 (for i € [1,¢]): This game is the same as Gamey ; 2 except that challenge ciphertexts for identity ID
such that ID; = 1 are changed to be Type (2, ¢) and all private keys are changed to be Type (2,7 — 1).

Gamey ;4 (for i € [1,/]): This game is the same as Gamey ; 3 except that challenge ciphertexts for identity
ID such that ID; = 0 are changed to be Type (3, ¢) and all private keys are changed to be Type (1,1).

30



Games: This game is the same as Gamey ¢ 1 1 except that all ciphertexts are changed to be random ciphertexts
of Type 1.

Gamey: This game is the same as Games except that all ciphertexts are changed to be random ciphertexts of
Type 2.

Observe that we have Adv4(x) = 0 since the view of A is independent from the value of coin in Game,. We
have that

IBE

AdVA,d)Comp,(l,Qc,Qk)(Kl) = Pr[AdVO]
< | Pr[Advg] — Pr[Advq]| 4+ | Pr[Adv;] — Pr[Advy 1 1]|
+ Y |Pr[Adva ;] — Pr[Adva ]l + Y | Pr[Adva 4] — Pr[Advaii1,i]|

i€[f],j€[1,3] €[4
+ | Pr[Advg ¢111] — Pr[Advs]| + | Pr[Advs] — Pr[Advg]|

Therefore, we complete the proof by showing lemma 8, 9, 10, 11, 12, 13, 15, and 16 in the following. O

Lemma 8. (Gamej to Gamey). For any adversary A, there exists an adversary By such that |Advg(k) —
Advy (k)| < Adei (k) and Time(B1) ~ Time(A) + (Qc + Qk) - poly(k, £) where poly(k, £) is independent
of Time(A).

Proof. We construct an adversary B who attacks Problem 1 from an adversary A who distinguishes the
games. We note that these games only differ in the creation of challenge ciphertexts. 3; simulates the
challenger for A as follows.

Setup. At the outset of the game, 5; is given the problem instance of the assumption (g1, g4,9,7) where
either T <& Gy, or T & G;,p,- Then, it runs Param(2¢, N) — dj, picks w & Z;i\}, a & Zn, HE H,
sets h := g, and returns the public parameter pp = (g1, 97", g4, h, H) and the master public key mpk =
(pp, e(g1, h)®) to A. By also sets msk = « and flips a coin coin ¢ {0,1}.

Key Extraction Queries. When the adversary A submits (Extraction, 1, D) to the challenger, 13; simply
runs Ext(msk, mpk, ID) — skjp and returns skp to .A.

Challenge Queries. When the adversary .4 submits (Challenge,1,1D, Mg, M;) to the challenger, 53; sets

S = {2¢ — ID;|i € [¢]} and runs CEnc(S,N) — (c,ds). Then it picks s’ = (36,5’1,...,3&3) & Z%’H

and returns CT = (TC(S’,WL H (e(TSf), ha)) e Mcoin) to A. We claim that it is properly distributed normal

ciphertext or semi-functional ciphertext of Type 1.
Let Tbe T = gi' - g*. Then we have

CT = (g§(tls W) 'gg(t” ,w)’ H(e(gilso '95280, ho‘)) @ Mcoin> .

ItT & G;;l, we have that #; & Z3y and ty = 0. In this case, B; implicitly sets s = t1s’ mod p;.
Since t1s’ mod p; is uniformly distributed over Zgj”ﬂ and e(gilsO . g?so, hY) = e(q, h)tlséa holds, B;
has correctly simulated the challenge ciphertext in Gameg. On the other hand, if 7' < Gp,p,» then we
have 1, to & Z%;. In this case, By implicitly sets s = ¢1s’ mod p; and § = t2s’ mod ps. Both of (s
mod p1,§ mod po) in Game; and (t18’ mod p1,t2s’ mod ps) in the simulation are uniformly distributed
over Zp, X Zp, due to the Chinese Remainder Theorem. Therefore, By correctly simulates Game.

Guess. When A outputs coin’, By outputs 1 if coin’ = coin and 0 otherwise.
B, has properly simulated Gameg if T < G,, and Gamey if T & G, p,- Hence, we may conclude that

|Advo(k) — Adv (k)] < Advy! (k). O
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Lemma 9. (Game; to Gamey 1.1). For any adversary A, we have Advi (k) = Adva 11 (k).

Proof. This is purely a conceptual change and thus .A’s advantage is not altered. To see this, let us consider a
modified version of Game; in which we first choose o', 4,5 & Zx and then set (unique) v € Zp such that
he = b g - g5. Since « is still uniformly distributed over Zx due to the Chinese Remainder Theorem,
the view of the adversary in the modified game is the same as Game;. Furthermore, we claim that the view
of the adversary in the modified game is also the same as Gameg 1. This can be seen by regarding ¢ in
the modified game as « in Gamey 1 1, 7 as ﬁg(ID\O), and 7 as ﬁo(IDlo). We check this. At first, it is easy to
see that the distribution of the private keys in the modified game is the same as that of Games 1 1. As for the
master public key and the challenge ciphertexts, we have e(g1, h®) = e(g1,h® - gj - gg) = e(g1,h) and
e(gy° - gﬁo, h*) = e(gy° - gﬁo, he g;y . gg) =e(g7° - g§0, R g;) These indicate that the view of A in the
modified game is also the same as Gamey 1 1. Thus, the lemma follows. O

Lemma 10. (Gameg ;« 1 to Gamey j» 2). For any i* € [1,/] and adversary A, there exists an adversary B2
such that |Advg ;= 1(k) — Adva » 2(k)| < Advz,;(/f) and Time(Bz) ~ Time(A) + (Q. + Qk) - poly(k, ¢)
where poly(k, £) is independent of Time(A).

Proof. We construct an adversary By who attacks Problem 4 from an adversary A who distinguishes the
games. We note that these games only differ in the creation of challenge ciphertexts for identity ID such that
ID;« = 0. By simulates the challenger for A as follows.

Setup. At the outset of the game, B5 is given the problem instance of the assumption (g1, g4, 912, g23, 9, 1)

. 5 s . . S rd 5
where either T' <~ G}, ,,, or T' <~ Gy ... Then, it runs Param(2(,N) — di, picks w < Z%, o < Zp,

H & H, sets h = g, and returns the public parameter pp = (g1, 9}, 94, h, H) and the master public key
mpk = (pp, e(g1, 7)) to A. By also sets msk = « and flips a coin coin & {0,1}.

Simulating Random Function. Throughout the game, B, simulates a random function Rg=_1(-) : {0,1}"~! —
Zy via lazy sampling. Let go3 be ga3 = g5° g5°. Ba will implicitly sets

/Iii*fl(ID|i*fl) = ’UJQRZ'*,l(ID’Z'*,l) mod P2 and

Ris—1(ID[3+—1) = u3R#_1(ID]+—1) mod p3

in the following. By the Chinese Remainder Theorem, we have that (u2 Ri*—1(ID]i*—1) mod pa, usRix_1(ID|+—1)

~ ~

mod pg) in the simulation as well as (Ri*_l(ID]i*_l) mod p2, Rix—1(ID|;~1) mod p3) in Gamey ;1 and
Gamey ;« o are uniformly distributed over Z,, x Z,,, for all distinct ID|;»_;. Therefore, simulation of Ris_1 ()

and Ry () by By is perfect. (Note that the value of ﬁi*_l (IDjx—1) mod p1psps and Rix_1 (IDjx—1) mod p1p2p4
are not specified. This is not a problem, because these values are information-theoretically hidden from the
view of A in both of Gamey ;~ 1 and Gamey ;« o.)

Key Extraction Queries. When the adversary .A submits (Extraction, 1, D) to the challenger, B creates
{sk; }jes as Equation (6). This is possible since By has msk = a.. Then, B calls the random function R+ _1(-)
on input ID|[;x_; to obtain v = Rjx_1(ID|;x—1) € Zx and picks random {v;};es subject to constraint that
> jes Vi = 7- Then, By computes ski; = sk; - g;‘g (5:09) 4nd returns the private key skip = Hjes(sk’j)Ej
to A. We claim that By correctly simulates semi-functional private key of Type (1,7* — 1). We have that
sk, = sk; -912‘1 (u27;,0,0) .gé‘f(“371’0’0), Here, B, implicitly sets 4; = ua7; and 7; = ugy; for j € S. Since

{#; mod pa}jes and {¥; mod ps}jes are uniformly distributed subject to constraint that

Z'?j:ﬁi*fl(lDi*fl) mod p; and Z:szﬁi*fl(lDi*fl) mod ps,
jes jes

By’s simulation is perfect.
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Challenge Queries. When the adversary .4 submits (Challenge,1,1D, My, M;) to the challenger, B2 sets
S = {2i — ID;|i € [¢]} and runs CEnc(S, N) — (c, dj). Then, it proceeds as follows. There are two cases.

. di+1
— IfIDs = 1, By picks 8" = (sg, 87,...,5),) & 737 and returns
3

CT = (g%SI’W)’ H(e(gfg, B . g§§*71(ID|i*71))) ® Mcoin )

to ,A. We claim that this is properly distributed semi-functional ciphertext of Type (2,7* — 1). Let g2 be

12 = gl g2, We have g5t ™) = g2 o2 w) g
e(gf& h* - gag 91 92 2 3

. syt spt2 u2R;x _1(ID|;x_1)
= 6(91 gy" T hT gy ' )

Ri*—l(IDli*—l)) _ e( sot1 S6t2,ha ) gU2R¢*—1(|D\i*—1) 'QUSRi*—l(ID‘i*—I))

(gigtl _g;om, he g2Ri*—1(ID|i*—1))'

Here, By implicitly sets s = 18’ mod p; and § = t3s’ mod ps. By the Chinese Remainder Theorem,
one can see that it is properly distributed semi-functional ciphertext of Type (2,7* — 1).

— IfIDs+ = 0, By picks 8" = (sg, 81,...,5)) & Z%‘H and returns
3
CT = (Tc(s’,w), H(e(TSéJ, Be . g2R§'*—1(|D|i*—1))) & Meoin )

to A. By a similar argument to the above case, it is not hard to see that the ciphertext is properly distributed
semi-functional ciphertext of Type (2,i*—1)if T’ & Gr . and semi-functional ciphertext of Type (3, ¢* —

pip2
) if T & G}, .

Guess. When A outputs coin’, Bs outputs 1 if coin’ = coin and 0 otherwise.

B3 has properly simulated Gamey ;« 1 if T’ & G;lm and Gamey ;« o if T’ & G;1p3' Hence, we may conclude
that [Adva i+ 1 (k) — Adva i+ 2 (k)| < Advg! (k).

O

Lemma 11. (Gamey ;« o to Gamey ;» 3). Forany i* € [1,{] and adversary A, there exists an adversary Bs such
that |Advs i+ 2 (k) —Adva i+ 3(k)| < Adv}\g"g'\f'n"f(Qka)’sz) (k) and Time(B3) ~ Time(A)+(Q+Qx)-poly(, £)
where poly(k, £) is independent of Time(A).

Proof. We construct an adversary B3 who breaks the (Q., Qx)-MMH security of the underlying broadcast
encoding on G, from an adversary A who distinguishes Gamey ;« » and Gamey ;+ 3 for some i* € [1, ¢]. We
note that these games differ in the creation of ciphertexts for ID such that ID;+ = 1 and all private keys. In
this proof, we first describe B3 and then analyse the view of A in the simulation.

Setup. At the outset of the game, B3 submits 7% = 2¢* as its target and is given (g1, g1, 93, 924, g3, 94)-
It first picks a & Z3y and sets h := (g1g2493)®. It then picks H & M, o & Zy and returns the public
parameter pp = (g1, g}, g4, h, H) and the master public key mpk = (pp, e(g1, h)®). Bs keeps a, g3, g, and
g24 privately. Bs also flips a random coin coin < {0, 1}.

Programming Random Functions. Throughout the game, B3 simulates a random functions R;x_;(+) :
{0,1}"~1 = Zy and Ri=_1 () : {0,1}""~ — Zy via lazy sampling. B also maintains a list List of length
1* prefixes of identities for which key extraction query was made. The list is set as List = () at the beginning
of the game.

Key Extraction Queries. When the adversary A submits (Extraction,1,ID) to the challenger, B3 first
sets S = {2¢ — ID;|i € [{]} and runs KEnc(j, N) — (k;,d5) for all j € S. It then calls random functions
Ri*fl(') and F{i*fl(') on input |D‘i*,1 to obtain y = Ri*,1(|D|i*,1) and ¥ = ﬁi*—l(ID‘i*fl)- Then, it picks
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r & Z]d\?, oy & Z?VQ forall j € S. It also picks random {«; € Zn}jcs, {7 € Zn}jes. and {7; € Zn}jes
subject to constraint that Zjes a; = a, Zjes v; = 7, and Zjes 4; = 7. Next, B3 computes {sk;}cs as
follows. There are three cases to consider:

k;(0,r", (i (5
— In case of ID;+ = 1 (or, equivalently, if 7* & .5), it sets sk; = hki(@;,0,0) 'glj( rj,w) ,g;i(%,0,0) -g;(] (74,0,0) .

g4] forall j € S. Let gas be gos = g5 g,*. Then, we have that

o k;(0,r", ) ) (R, 8 1k 10,0
skj = th(O‘JaO,O) . 91]( rj,w) . g;(j(’U«Q'YJvaO) . gil;J(’Y]vaO) . g4y+ 5 (u47;,0,0) (15)
Here, Bj implicitly sets 9; = uz; for j € S. {;};es are random subject to constraint that ) ;¢ §; =
ug - Ri*—l(ID’i*—l)-

— In case of ID; = 0 (or, equivalently, if 7* € S) and ID|;» ¢ List, Bs first calls OM" K () to obtain

T, w,b
k.« (0 k. (b-&,0,0 A
9,7 Orw) 9 w (06,0,0) gjf where r, &, and § are randomness chosen by the oracle. Then, B3 sets sk; as

Equation (15) for j € S\{7*} and

_ k.« (0,r,w) ko« (b:4,00) § ko« (a,+,0,0)  Kro(Or o w)  k «(7,5,00)  k«(5,+,00) &
skee = (g 92 +g1) - (h ( ', 924 " 93 94

_ hkT* (ar%,0,0) ko« (Oar"!‘r;.* W) k,« (b-&+uzvy,+,0,0) k., « (9,%,0,0) 5+5;* +k % (uay,+,0,0)

= "9 P * 03 N

for j = 7*. Here, B implicitly sets 4; = upv; for j € S\{7*} and 47« = w2y, + b - &. Therefore,
{%;}jes are random subject to constraint that ;¢ ; = u2 - Rix—1(ID[»—1) + b - &. Finally, B3 updates
the list as List < List U {ID|+ }.

— In case of ID;+ = 0 and ID|;« € List, A must have made a key query for ID’ such that ID’|;+ = ID|;~.
Since ID}. = ID;+ = 0, B3 must have called O“{ny bK( -) to deal with the first such key extraction query
made by A. Let gk +(Orw) gg *(6:6,00) g4 be the answer to the oracle call. In this case, B3 does not call
Oiﬂ*wa(-) and computes {sk;};cg in the same way as the above case using gi‘f*(o’r’w) . g;(T*(b'd’O’O) -g2.
As the above case, {#;}jes are random subject to constraint that » ;o9 = u2 - Rpx—1(ID];+—1) + b &

Finally, B3 computes Pair(j, S, N) — E; for all j € S and returns skjp = Hjes(skj)Ej to A.

Challenge Queries. When the adversary .4 submits (Challenge,1,1D, Mg, M;) to the challenger, 3 sets
S = {2i — ID;|i € [¢]} and runs CEnc(S, N) — (c,d}). Then, B3 proceeds as follows. There are two cases.

c(s,w)  c(8,w)

MMH, C( -) to obtain g; - G

— If ID;» = 1 (or, equivalently, if 7% ¢ 5), it submits .S to its oracle O_.
Then it returns

CT = (C(SW)'g;(é’W)vH(e(Ql g5 e gay 1P 1)))@'\/'0””)

to A. Recall that g;° - gg’o is the first coefficient of the vector gf(s’w) - gy (&w) (by the restriction we posed
on the broadcast encoding scheme). We have that
(g - g O,ha z* 1(ID] 3% — 1)) = e(gd g O’hoz U2Rz* 1(ID]ix 1) gZ4Ri*—1(ID|i*—1))

— e(gio O,ho‘ U2Rz* 1(ID]gx 1)).

Then, the ciphertext returned to A is in the form of

w S,wW o UR* ID@*
CT = (g7 g5*™, H(e(g - g3, b+ 5> %)) © Moin )
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— IfID;» = 0 (or, equivalently, if 7% € .S), it first computes CEnc(S, N) — (c, d}), picks s = (s, 51, . - ., sdé),

- ~ - ~ dh+1
s = (so,sl,...,sdé) & Z,; " and computes gf(s’w)

w S, W s 3 @ Iii*_ ID|;% _
CT = (g5 g% H(e(go - g0, he - g =P =)) @ Mgin) to A.

(8,w)

and gg from ¢g}” and g3'. Then it returns

Guess. When A outputs coin’, By outputs 1 if coin’ = coin and 0 otherwise.

Analysis. We claim that 4’s view corresponds to that of Gameg;« 2 if b = 0 (i.e., B3 is equipped with
oracle OMW[]K(')) and Gameg ;3 if b = 1 (B3 is equipped with OM'?A“':’lK(-)). In the case of b = 0, it
is easily seen that B3 simulates Gamey ;« o with ﬁi*,l(-) : {0,1}"~1 — Zy such that ﬁi*,l(ID\i*,l) =
ug + Rix—1(ID|+—1). Since R;«_1(+) is a random function, ﬁp_l(-) is also a random function. Thus B3
correctly simulates Gamey ;x . On the other hand, in the case of b = 1, one can see that B3 simulates

Gameg ;+ 3 with ﬁl*() : {0,1}"" — Zy such that

/F\\)' (|D| ) o ug - Ri*71(|D|i*fl) 1f|DZ* =1
! o ug - Ri*_l(lD’i*_l) + & if|Di* =0

where & is freshly chosen for every distinct 1D |;+. Since R;«_1(+) is a random function, R;» (+) defined above is

also a random function. Therefore, B3’s simulation is perfect. Hence, we may conclude that |Advs jx 2(k) —
MMH

AdV2774'*73(K‘)| S AdeS;ny(Qc;Qk)prQ (/{) I:l

Lemma 12. (Gamey ;» 3 to Gamey i« 4). Forany i* € [1,¢] and adversary A, there exists an adversary B4 such
that |Adva ;+ 3(k) —Adva = 4 (k)| < Advg"jf'n'j(Qan),Gpg (k) and Time(By) ~ Time(A)+(Q.+Q4)-poly(k, £)
where poly(k, {) is independent of Time(A).

Proof. We construct an adversary By that breaks (Q., Qx)-MMH security of the encoding on G, (instead of
Gp,) from an adversary .A who distinguishes the games. The lemma can be shown analogously to Lemma 11.
We only highlight the main difference.

o 34 sets 7* = 2¢* — 1 instead of 7 = 27*.

e B, simulates R+ (-) and Ri«_1(-) throughout the game and use these functions to create challenge ci-
phertexts and private keys. It will simulate Gameg j« 3 with Rj«_1(ID|»—1) = ug - Rjx—1(ID]jx—1) or
Gamegﬂ-*A with

us - Ri*—l(ID‘i*—l) lfIDz* =0

Ry« (ID+) =
( | ) {U3 . Ri*fl(ID‘i*fl) +a ifIDx=1

where uz € Zj; is deﬁni/ldmis Ka number satisfying g34 = g5° - g;* for some uy € Z} and & is the

7w (). @is freshly chosen for every distinct ID[;+.

randomness chosen by O

MMH,C(_)

T W

e 34 computes the challenge ciphertext by itself if ID;» = 1. Otherwise, it makes oracle call to O
and creates the ciphertext using the answer from the oracle.

e 34 maintains a List of length i* prefixes of identities for which key extraction query was made. For key
extraction query made by A, 134 generates private key by itself if ID;« = 0. If ID;« = 1 and ID|;+ ¢ List,

it calls (’)w\f:i)K (+) and creates the private key using the answer. Otherwise, .A must have queried private
key for ID" such that ID’|;« = ID|;«. B, must have called Oy*ny gK(~) to deal with the first such key

extraction query made by A. B, creates the private key using the answer to the query.
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Lemma 13. (Gameg ;+ 4 to Gamey j+41,1). For any i* € [1, (] and adversary A, there exists an adversary Bs
such that |Advg j» 4(k) — Advg ix111(K)| < Advzg (k) and Time(Bs) ~ Time(A) + (Q. + Qx) - poly(k, £)
where poly(k, £) is independent of Time(A).

Proof. The proof is the same as that of Lemma 10 except that we replace R;«_1, R;*_l, ﬁi*_l, and ﬁi*_l with

RZ’*, Rg*, ﬁi*, and ﬁi*. O

The following lemma shows random self-reducibility of the Problem 5. The lemma is needed to prove
Lemma 15 in the following.

Lemma 14. (Random Self-Reducibility of Problem 5 [43].) There exists an efficient algorithm that on input

~ $ .
. . &7 0 mod
(92,95, 95, 95, (g2, g2)™* ) outputs (g3, e(g2, g2)***7) where K v Fr#0 modp, and & ¢

Zn.

¥=0  ify=0 mod py

Proof. The algorithm picks a, b & Zy and implicitly sets £ = axz + b and ¥ = a~. It is easy to see that &
mod po is uniformly random over Z,, and ¥ = 0 mod p» in the case of ¥ = 0 mod po. It can also be seen
that (Z,%) mod po is uniformly random over ZgQ in the case of v £ 0 mod ps. Furthermore, the algorithm
can efficiently compute g = (g%)%¢5 and e(g2, g2)** ™7 = (e(g2, g2)™*™7) e(g, g5)°. O

Lemma 15. (Gamey o111 to Games). For any adversary A, there exists an adversary Bg such that |Adva ¢4 1 1(K)—
Advs (k)| < AdVZ‘Z(H) and Time(Bg) ~ Time(A) + (Q. + Qk) - poly(k, £) where poly(k, £) is independent
of Time(A).

Proof. We construct an adversary Bg who attacks Problem 5 from an adversary A who distinguishes the
games.

Generating Q.. tuples. At the outset of the game, Bg is given the problem instance (g1, g2, 93, 94, 9, 95, 95, 95,
e(ga, g2)™*T7) where either v = 0 or v < Zy . Bg proceeds as follows.

Setup. It runs Param(2/, N) — dj, picks w & Zdl, a & Zn, H & ‘H, sets h := g, and returns the
public parameter pp = (g1, g), 94, h, H) and the master public key mpk = (pp, (g1, h)%) to A. Bg also sets
msk = « and flips a coin coin < {0,1}.

Programming Random Functions. Throughout the game, B simulates random functions Ry(:) : {0, 1} —

Zy and Ry(+) : {0, 1} — Zy via lazy sampling. In the following, Bg will implicitly set Ry(-) : {0,1}¢ — Zy
as

R (ID) = R¢(ID) if (Extraction,1,ID) is queried
| Re(ID) +yz if (Challenge,1,ID, Mg, M) is queried for some Mg, M.

Since (Extraction,1,ID) and (Challenge,1,ID, My, M;) are never queried for the same ID (by the
restriction posed on the adversary), ﬁg(-) above is well-defined. Furthermore, since Ry(+) is a random function,
Re(-) is also a random function.

Key Extraction Queries. When the adversary A submits (Ext ractlon 1,1D) to the challenger, Bg pro-
ceeds as follows. Bg first sets S = {2i — ID;|i € [¢]} and picks r; ¢~ Z % for j € S. Then, Bg calls Ry(+) and
Re(-) to obtain 4 = Ry(ID) = Ry(ID) and 7 = R,(ID). It then picks random {oj € Zn}jes, {35 € Zn}jess
and {¥; € Zn }jes subject to the constraint that } ;g j = @, > ;cs¥j = - and 3, g7 = 7. Then, Be
creates {sk;}jcs as Equation (14) using the values. Finally, Bs computes Pair(j, S, N) — E; forall j € S
and returns the private key skjp = Hjes(skj)Ej to A.
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Challenge Queries. When the adversary .4 submits a challenge query (Challenge,1,1D, My, M;) to the

challenger, Bg proceeds as follows. Bg first sets S = {2i — ID;|i € [¢]} and computes CEnc(S, N) —
(c,dy). Then, it picks s & Z(]ié’ﬂ, S1yeees édfg & Zy. 1t also runs the algorithm in Lemma 14 on input
(92, 9%, 9%, g5, e(ga2, g2)*¥*7) to obtain (g3, e(ga, go)*¥*+7) where 4 & Zy if v # 0 mod py and 4 = 0
if v = 0. It then implicitly sets So := & and 8 = (Sp, ..., 34;). Next, it computes gf(s’w) and g;(é’w). The
latter is efficiently computable because Bg knows g5 and w, and, c(S, w) contains only linear combinations
of monomials 3;, §;w;. It also calls Ry(-) on input ID and computes T = e(g{°, h®) - e(g%, h* - gZRé(ID)) .

e(g2, g2)®¥*+7. Finally, it returns CT = (gf(s’w) . gg(é’w), H(T) @ Mcoin) to .A. We have that

T = e(gi,h®)-e(gs, - gi"))  e(gy, go) ™+
= e(gi®, h®) - e(gh, h* - gR PV gy, go)
= (gl g2, h - gR D)) . e(gy, go)7.

Therefore, it can be seen that the challenge ciphertext is properly distributed semi-functional ciphertext of
Type (2, /) if v = 0 and random ciphertext of Type 1if v # 0 mod po.

Guess. When A outputs coin’, Bs outputs 1 if coin’ = coin and 0 otherwise.

Bg has properly simulated Gamey o111 if ¥ = 0 and Gameg if & Z%. Hence, we may conclude that
[Adva,ei1,1(k) — Advs (k)| < Advi® (k). O

Lemma 16. (Games to Game,). For any adversary A, we have |Advs(r) — Advy(k)| < Q. - 27 %),

Proof. These games only differ in the creation of the challenge ciphertexts. For each challenge ciphertext, we
claim that

(H,H(e(g1, h)*** - e(g2,92)7)) and (H, Mrand) (16)

are 2-2(%) close even if we fix s and a. This follows from the left-over hash lemma since e(go, g2)? is
distributed uniformly randomly (and independently from the view of .A) over the subgroup of G7 with order
p2 and has at least log po bit of min-entropy. By replacing H(e(g1, k)50 - e(ga, g2)?) in each challenge
ciphertext with a random string one by one, we have that |Advs(x) — Advy(k)| < Q. - 27 %), O

Extension to the Multi-Instance Case. So far, we have considered single instance case (1 = 1). We explain
how to extend our proof for the single-instance case to deal with multi-instance case (¢ > 1).

(Proof Sketch of Theorem 2.) The main difference from the single instance case is that we have to simulate
different random functions for each index of the instance. Namely, we simulate random functions ﬁgﬂ )() :
{0,1}* — Zy and ﬁlm() : {0,1}* — Zy for i € [0,/ and each index j € [u]. Then, we consider
Gameg to Gamey exactly the same as the single instance case above except that semi-functional ciphertexts
and semi-functional private keys for j-th instance are computed using ﬁgj ) (+) and ﬁgj ) (+). We have to bound
the difference of the advantage of A between the games as in the proof of Theorem 6. Only slightly subtle
parts in the proof are to bound the difference of the advantage in Games ;« 2 and Gamey ;« 3, Gamey ; 3 and
Gamey ;« 4, and Gamez and Gamey.

We first bound the difference between Games ;+ o and Gamey ;+ 3. To do so, we assume an adversary A
that distinguishes these games and construct an adversary 3 against the ().-CMH security of the underlying
broadcast encoding on G,,. We sketch the reduction.

e B selects 7% = 2¢* as its target.
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e Simulation of the challenge ciphertexts is analogous to Lemma 11. Namely, for a query (Challenge, j,
ID, Mg, My) from A, it creates the challenge ciphertext by itself if ID;+ = 0. Otherwise, it makes an

MMH,C (+) and creates the ciphertext using the answer from the oracle.

oracle call to O,

e To answer key extraction queries from A, 3 maintains a list List of (j,D|;+) such that A has made a
query of the form (Extraction, j, ID) throughout the game. When A makes a query (Extraction,
j,ID), B proceeds as follows. If ID;x = 1, it creates the private key by itself. If ID;x = 0 and
(j,1D;+) & List, it makes a query to (’)E/I*'\/IV:| Q)K(-) and creates the private key using the answer. Oth-
erwise, A must have made a query of the form (Extraction,j,ID’) such that ID'|;+ = ID|. By
must have called OﬂM“t' ;)K(-) to deal with the first such key extraction query made by A. BB, creates the

private key using the answer to the query.

This completes the description of the reduction.
The difference of the advantage of A in Gamey ;+ 3 and Gamey ;» 4 can be bounded similarly to the above.
The difference of the advantage in Gamey s ; and Games can be bounded similarly to Lemma 15. Here, we

simulate FNQEJ)() {0, 1} — Zy for j € [u] as

RO (D) = RY(ID) if (Extraction, j, D) is queried
¢ Réj)(ID) +yz if (Challenge,j, 1D, Mgy, M) is queried for some My, M;
where Réj ) (:) : {0,1}* — Zy is a random function whose value is known to the simulator.

C Random Self-Rducibility of the Intermediate Problems and Reductions
from the DLIN Assumption

C.1 Reductions from DLIN

Following theorems show that the hardness of Problem 7, 8, 9, 10, 11, and 12 can be tightly reduced to the
DLIN assumption.

Theorem 7. For any adversary A, there exists an adversary B such that Advi{(/ﬁ) < AdvB"N(k) and
Time(B) ~ Time(A) + poly(x) where poly(x) is independent of Time(.A).

Proof. Here, B and Z are 4-by-4 matrices. A similar lemma is already shown for 3-by-3 matrices in [18]. It
is straightforward to extend the result, but we include the proof for completeness. Given the problem instance
(g, h, g™, g%, g%, g5, g% T = ¢o3(s1+52)+7) where v = 0 or v < Z%, B proceeds as follows. (B
disregards other terms in the problem instance.)

Programming B, Z. B picks |, Zo < Z,, and defines A, A*, and D as

a1 a; —ay "ag
-1 -1
a2 4x4 * a —Gy asg 4x4
A = Z A" = 2 2 7
a3 as 1 < p ’ 1 < p
1 1

aizi

asZz

and D = 272 ) . (17)

38



It is easy to check that A* = A~ . Next, B samples B’ & GL4(Zyp) and implicitly sets B = B’A. Then,
wehaveZ=B 'D=B" A" "D= B’_T(A*D). It is clear that B and Z are properly distributed.
Programming t and ¢. B implicitly sets t = (s1,52) ' and £ = 7.

Simulating Input to A. In the following, we check that B can efficiently compute all input to A. At first, 5

can efficiently compute ¢B = gB/A since it knows ¢ and B'. It can also compute h™ (%) = BB~ M (ATD)

. T o s(t)  wa(})
since it knows all entries of B’~ ' and A™ (A"P). Furthermore, it can efficiently compute g \0/ =g 0
from B’ and

Therefore, 3 can simulate all input to A.

Output. Finally, B inputs all terms computed above to A and outputs the same bit as 4.
As we can see, BB properly simulates the problem instance of Problem 7 to A. Therefore, we have that
Advi{(m) < AdvBHN(k). O

Theorem 8. For any adversary A, there exists an adversary B such that Advig(n) < AdvB"N (k) and
Time(B) ~ Time(A) + poly(k) where poly(k) is independent of Time(.A).

Proof. Here, B and Z are 4-by-4 matrices. A similar lemma is already shown for 3-by-3 matrices in [18]. It
is straightforward to extend the result, but we include the proof for completeness. Given the problem instance
(g, h, h%, ho2 ho3 hors1 po2s2 T — pas(s1+s2)+7) where v = 0 or y < Z, it proceeds as follows. (B
disregards other terms in the problem instance.)

Programming B, Z. B picks Z1, Z, & Z,, and defines A, A*, and D as Equation (17). Next, B samples

B’ & GL4(Z,) and implicitly sets B = B’ A*D. We have
Z=B 'D=B '(A")" "D 'D=B"A.

It can be seen that B and Z are properly distributed.

Programming u and @. B implicitly sets u = (s1,52) " and @ = 7.

Programming t and {. 3 picks random v - Z3*! and implicitly sets (¥) = E~!v, where E € Z3*3 is the
upper left 3 x 3 submatrix of A*D.

Simulating Input to A. In the following, we check that BB can efficiently compute all input to .A. At first,
B can efficiently compute h% since it knows h” and B’. It can also compute g™ (B) = pB' ™ (AD) and

t
! * * * B ( £>
g™(B) = pB m(A™D) gince it knows all entries of B/, h™(A™D) and 47™(A™D) Tt can compute g \0/ =

¢ halsl

B’A*D(g) B/(Y ) . A(u) ho2s2
g 0/ =g (%) because it knows all entries of B and v. Furthermore, we have h \0/ = T
1g,

) ) Z(E) B’_TA<3) A(g)
Thus B can efficiently compute all entries of h \0/ = h 0/ from B’ and h  \0/. Therefore, B can
simulate all input to A.

Output. Finally, B inputs all terms computed above to A and outputs the same bit as A.
As we can see, BB properly simulates the problem instance of Problem 8 to .A. Therefore, we have that
Advis(/{) < AdvBN(k). O
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Theorem 9. For any adversary A, there exists an adversary B such that Advig(/ﬁ) < AdvB"N(k) 4+ 1/p and
Time(B) ~ Time(.A) + poly(x) where poly(k) is independent of Time(A).

Proof. At first, B3 is given the problem instance of the DLIN assumption (g, g%, g2, g%, g***1, g*2%2 h, h®
h®2 h% T = ga3(51+52)+’7) where either ~y & Z,, or v = 0 and proceeds as follows. (B disregards other
terms in the problem instance.)

Programming t, 7, and f. B picks &,¢ < 7Z, and implicitly sets t = (s1,82) ", = & — azsy, and = .
We have that £ # 0 with probability at least 1 — 1/p. Conditioned on the event, (t,%,%) is distributed as
(6 ¢ 220 8¢ Zx £=0)if y = 0and (t ¢ Z2¥1, & < 23 1 & Z7) if y ¢ Z7,

Programming B, Z. B defines A and A* as

ay al_1 —al_lag —al_lag
_ a2 4x4 * ay —ay as 4x4
A= as 1 €Z, and A" = 1 €7,
az as 1 1
It is easy to check that A* = A~ . It also picks 31, 5 < Z,, and implicitly defines
al,%l
_ a2z 4x4
D= 1 €Z,".
1
It follows immediately that
a1s1 s -1 -1
t g Z1 —aq a3 —aq ag
A<t~> g 4 « ) —a;'as 4x4
g \t/ = o € Zy, A*D = 1 €Z,",
T 1
0 —as 0 0
AD| ! 0 and AD| © |=f @
a1 a1 —a2 —ag
0 0 a2 a2

Next, B samples B’ <~ GIL4(Z,) and implicitly sets
B=BA, and Z=B 'D=B" 'A-"D=B"(A*D).

It is clear that B and Z are properly distributed.

Simulating Input to A. In the following, we check that 3 can efficiently compute all input to A. At first, B
pm(Z) — B~ T (A'D)
(4 Y
B ¢ Al ¢
R™1(A™D) Eyrthermore, /5 can compute g \i/ since itknows g \¢/ and B'.
(a1A*De]) and h—agf'—l—agf — hB/fT(A*D(—age;—Q—ageI))

can efficiently compute ¢®B since it knows g and B’. It can also compute since it
knows all entries of B’ and
since it knows all

entries of k1A De; | p(A"D(—azef +aze])) and B'~ . BB then picks (iéi i;; ) & GLy(Z,) and implicitly

sets @ = (91’1 91’2) = (4 .2). <¢1’1 ¢12 ) It is easy to see that © is properly distributed and B can

02,1 02,2 az P2,1 P22

efficiently compute A01if+025f = (h“lf)(bl’j : (h_“2f+a2f)¢2'j for j € {1,2}.

: -7
It can also compute h*f = hB’
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Output. Finally, B inputs all terms computed above to A and outputs the same bit as 4.
As we have seen, B properly simulates the problem instance of Problem 9 to A, except for probability
1/p. Therefore, we have that Advi’f(f@) < AdvB"N(k) 4 1/p. O

Theorem 10. For any adversary A, there exists an adversary B such that Advim(/{) < 2AdvR"N(k) 4+ 2/p
and Time(B) ~ Time(A) + poly(x) where poly(k) is independent of Time(.A).
Proof. The theorem can be shown by applying Theorem 9 twice. We first replace the challenge term Ty =
t t
B( ¢ B(é) .
g <0) in the problem instance of Problem 10 with g \t/ where t & Zg“, it & Z,,. By Theorem 9,
there exists an adversary B such that Time(B) ~ Time(A) + poly(x) and the change of the probability that

the adversary A outputs 1 is bounded by Advgl‘"\I (k) + 1/p. Then, we further replace the challenge term with

t

B( 0
Ti=g (f ) . By the symmetry of the third and the fourth column of B, we can apply Theorem 9 again. The
change of the probability that .A outputs 1 is bounded by AdvB"N (k) + 1/p. O

The following theorems are already shown by previous works [14, 44, 46]. Note that these theorems are
shown in symmetric pairing groups or groups even without pairing, which are different situations than ours.
However, their proofs trivially work also in our setting.

Theorem 11. (Theorem 2.13 in [46]. See also [14].) For any adversary A, there exists an adversary B
such that Advi“(/i) < AdvR"N (k) and Time(B) ~ Time(A) + poly (k) where poly(r) is independent of
Time(A).

Theorem 12. (Lemma A.1 in [44].) For any adversary A, there exists an adversary B such that Advf:\12 (k) <
4AdvRYN (k) and Time(B) ~ Time(A) + poly (k) where poly(k) is independent of Time(A).

C.2 Random Self-Reducibility of the Intermediate Problems

Here, we show that Problem 7, 8, 9, 10, and 11 have random self-reducibility. The following theorem is a
slight extension of Lemma 1 in [24].

Lemma 17. (Random Self-Reducibility of Problem 7, 8, 9, and 10.) There exists an efficient algorithm that
t s
(1)) s ()
on input (g™ B) g \t/)) outputs g \5/) where
s 72, 887, 5=0 if ((#£0, ¢
s 7P, 5=0,547, if (E=0,140)
s<& 7z 5=0 0 0,{=0

RN

t

i 5(3)
Similarly, there exists an efficient algorithm that on input (gm(B), g™®B) g <t> ) outputs g \5/ where

s 2P 5487, 5=0  ift=0
s 72, 88Ty, 57, if E4£0.

Proof. At first, we show the former part of the lemma. The algorithm proceeds as follows. It picks a & V/
and s’ & ZZ“ and implicitly setss = s’ +a-t, 8 = a -, and 5 = a - £. It can be seen that s is uniformly
distributed over Zg“ and the value of a is information-theoretically hidden only given s. It is clear that
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We then show the latter part of the lemma. The algorithm picks &, a & Ly, S & Zg“ and implicitly
setss=s +a-t,§=a-t+§,and § = a - . It can be seen that s and § are uniformly random over ZI%XI

and Z, respectively. Furthermore, it can be seen that § = 0 if # = 0 and 3 & Z, if t # 0. The algorithm can

5(3)
compute g s/ as

gB@) - (f(?))“.f(%) .gB(%) _ (f(%))“ g B (B
0

Lemma 18. (Random Self-Reducibility of Problem 11 [43].) There exists an efficient algorithm that on input
(9, 9", 9", h*, e(g, h)™¥**7) outputs (g*, e(g, h)*V**7) where

$ &2y, A8 T, ify#0
& &7y, 4=0  ify=0.

Proof. The lemma can be shown analogously to Lemma 14 and thus we omit here. O

D Omitted Proofs from Section 5

D.1 Proof of Lemma 4

Proof. By the QQ-PMH security, for all 7* and Sy, ..., Sq such that 7% € U;c(g)S;, we have that two dis-
tributions in Equation (4) are the same. By a standard argument (e.g., complexity leveraging [55]), this
means that the two distributions are the same even if a distinguisher adaptively chooses each S; depending
on {Csj, (sj, W) }jrelj—1) and k- (ba, v, w) (where b = 0 or b = 1). Therefore, advantage of any adversary in

Q-CMH security game would be 0, if r was chosen as r < (Z;)d'2 as in the Q-PMH-security game. In the

actual Q-CMH security game, r is chosen as r & Zgé. This may alter the advantage at most d5, /p. g
D.2 Proof of Lemma 5
Proof. (sketch.) All monomial terms appear in _, ¢ (4,1x[as] En,knC. are

as;jr, SR a- (wysjr)
rj - (sypwi) = (wirj) - s

for j € [db), k € [di], j/ € [0,d5], kK € [di]. Coefficients of all terms except for spox summed up
to 0, because of the correctness of the encoding. We note that the terms of the form wy/wys;r; do not
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appear because of the regularity of the encoding (the first condition). If we expand Z(n, V)€ [da] X [ds] E,, -
kz.,(c, X, W) T cg (Y, W), terms corresponding to above monomials appear:

aTBy]-/, (ZX]‘)T Byj/, aT : Wk/Byj/

.
(zx;)" - WiBy; = x]Z"W,By; = (W[ Zx;) - By;.

The coefficients of all terms other than o ' By are summed up to 0 because of the correctness of the encoding.
O

D.3 Proof of Theorem 3

Proof. Here, we prove Theorem 3. We introduce Lemma 19 and 20. The former indicates that (Q., Q)-
MMH security can be tightly reduced to (Q., 1)-MMH security. The latter shows (Q., 1)-MMH security can
be tightly reduced to the hardness of the Problem 8 and ().-CMH security. Combining these lemmas, the
theorem follows. O

Lemma 19. For any broadcast encoding Tl and adversary A, there exists another adversary BB such that

1

MMH MMH

AdV 4 (00,01, (G1,62) (K) < AAVB R (0, 1),(61,62) (K) T ;

and Time(B) ~ Time(A) + Qy, - poly(k, n) where poly(x,n) is independent of Time(A).

Proof. We construct B against (Q)., 1)-MMH security of the broadcast encoding from A against (Q., Qx)-
MMH security of the same encoding. At the beginning of the game, A(1%, n) submits its target index 7* € [n].
B then submits the same index and is given the parameter params = (g, g™ (B) gms(B) {g™ (WiB)}ie[dﬂ,
{g’r3(WiB)}i€[dﬂ, h,hZ, {h”l(WiTZ)}ie[dl], {h”3(WiTZ)}Z-€[d1]). Then, B simply pass it to .A. B also calls

OMMZH‘% »(+) to obtain hkz(b-6ERW) I the following, we assume that & # 0. This happens with probability

at least 1 — 1/p. When A calls (’)mMBH@() on input S, B calls the same oracle on the same input and

passes what is given from the oracle to A. When A calls (’)MMZH“}'V( »(+), B picks (freshly random) a & L,
. / r ’ /
i, .. .,r:i,Q & 72V and sets R/ = <<r01> S < 2 )) € Zf,Xd"’. Then it computes
0 0

(hkz(b.af,R,W))“ . pkz(OR\W) _ pkz(b-acf,aR+R/ W)

and returns it to A. It is easy to see that aR + R/ is uniformly random subject to constraint that the last two
rows are all zero vectors. Furthermore, since the value of a is information-theoretically hidden only given

aR + R/, aé is uniformly and independently random over Z,,. Finally, B outputs A’s output as its guess. It

is easy to see that the simulation by B is perfect. In particular, B has made only single call to (’)ﬂMZHQ}Kf (o)

Therefore, the lemma follows. O
Lemma 20. For any broadcast encoding Tl and adversary A, there exist adversaries 31 and Bs such that
MMH CMH P
AV ,(Qe 1),(61,62) (F) < AdVEn g, (61,65 (K) + 2Advy,
and max{Time(B;), Time(B2)} ~ Time(A) + Q.poly(x, n) where poly(k,n) is independent of Time(A).

Proof. We prove the lemma via the following sequence of games, which are defined for b € {0, 1}. We write
Event,y to denote the probability that 4 outputs 1 in Game,y.
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Gameg, : This is the (Q., 1)-MMH security game with oracles OMMBH@(-) and ODA*MZHQ}'; (o)
Gamey p: Inthis game, we change (’)y*MZHV;,(b() as follows: When it is called, (’)y*MZHVPV(b() runs KEnc(7*,p) —
k, picks & €= Zy, 11, ..., vq <~ Z2¥1, P, gy ¢ Zp, and returns
hkz (b~5cf,R+lf{,W) (18)

. A 4xd! 5 4xd;
instead of R*z("¢ERW) Here R € Z,"" and R € 7, are defined as

ry Tal, N 0 0
R = (o) o and R = (1> o)) (19)
0 0 0 0
Gamey ;: This game is the same as Game; ; except that we change how to choose W. Here, we first pick
W = (Wi,...,W/, ) & (Z4) % and aiy, . .., g, < Zp and set
W, =W/ + ;- BVB~! (20)

for i € [d]. In the above, V = eJ - e3 € Z;;X‘l, namely, V is the zero matrix with the (3, 3) entry is
replaced with 1.

Gamegsp: This game is the same as Gamey 3, except that we change params as

s T T !/ W/ B . ,
params:<g’ g ®) gm®)  mWiB) (W B) o m(WiB)

m3(W, B)
. ,
T T .
h, hZ, prWiTz) o mW D) gmwiTz) (W, 1)
Namely, we set up params using W’ instead of W. We remark that oracles (’)D"*'?/'B"k;g (-) and Oﬂ“"ZH“{; ,()
are unchanged from the previous game.

We have that
AdV%,Il\ﬂltJ(ch,l),(Gl,Gg)(“) = | Pr[Eventg o] — Pr[Eventq 1]
< | Pr[Events ] — Pr[Events 1]| + Z | Pr[Event; 3] — Pr[Event; 1 ]].
b€{0,1},i€{0,1,2}
Therefore, we complete the proof by showing the following sequence of claims. g

Claim 3. (Gameg ; to Gamey p). For any b € {0, 1} and adversary A, there exists an adversary By such that
| Pr[Eventg ;] — Pr[Event; ]| < Advgi(/ﬁ) and Time(By) = Time(A) + Q. - poly(k,n) where poly(k,n) is
independent of Time(A).

t
5(s)
Proof. We construct 3; that attacks Problem 8 from .4. Given the problem instance (g, h, g™ (B) gmsB) o \o/,

u
(%)
W2, T=h 0 ) where @ & Zy, or i = 0, By simulates (Q., 1)-MMH security game for A as follows.
W,B)

Setup of Parameters. Given 7* € [n] from A, B; picks W1, ..., W, & Z;‘,X‘l and computes g™ (
gWim(B) and B Wi 2) for j € [dy] from g™ (®) and h%. Then it gives params = (g,g”l(B),g’T?’(B),

{g™WViB Y1, L™ VB i, by b2, (R VT D (R WVI B} ) to A
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Simulating OMMBH@(). Given S C [n], By first runs CEnc(S,p) — (c,dj). Then it runs the algorithm in

t
oput (7@, 6> () 0 abtain o°(5) o s < 0,

Lemma 17 on input (g™ ®) g \0/) to obtain g \0/ fori € [0, d}] where s; < L, i < Zp (Recall

(S+S,W)

S

and returns it to 4, where S and S are defined as Equation (8).

Si

that ¢ # 0). Finally, it computes ¢©

B( 3 .
Note that it can be efficiently computable from {g <% ) }ielo,a;) and {W}je(q,) since ¢(S + S, W) only
i Sj
contains linear combination of B ( %- ) and W;B ( sj ) .
0
Simulating Oy*'vle\{; »(-). When it is called, B; first runs KEnc(7*,p) — k and picks & & Z,. Then, it

u r;

z ()

runs the algorithm in Lemma 17 on input (h™(%) h <8>) to obtain & \0/ for i € [1,d)) where (r; &

72 7y & Zp) if @ # 0 and (r; < Z2¥1,7 = 0)if @ = 0. Finally, it computes A¥z(>af.R+REW) 4pq

returns it to A. Here, R and R are defined as Equation (19). Note that it is efficiently computable from & ,hZ,
r;

Ty

() . |
{h N0/ }iclay)s and {W};c(q,) since kz(b - af, R + R, W) only contains linear combination of Z (%),
W] Z (7). and 6f = iZe].

0
Guess. Finally, B; outputs A’s output as its guess. It can be seen that the game corresponds to Gameg j, if
@ = 0 and Gamey p, if @ < Zy,. Thus, we may conclude that | Pr(Eventg;) — Pr(Event; ;)| < Adej (k). O
Claim 4. (Game; j, to Gamey ). For any adversary A, we have Pr[Event, 3] = Pr[Eventy ).

Proof. Since each W; is uniformly random over Z;‘,” in both games, the change from Game; ; to Gamey ,,
is only conceptual. Therefore, the claim follows. g

Claim 5. (Gameyj, to Games ). For any adversary A, we have Pr[Eventy 3] = Pr[Events p]|.
Proof. We claim that this change is only conceptual. To see this, it suffices to observe that
mi(W;B) = m(W}B + w;BV) = m’(W;-B) +w,;B-m(V) = m(W}B)
m(W]Z) = (W, Z+4;B" "V B'Z) = (W, Z+9B VBB D)
= (W, Z) +@;B" 'm(V'D) = (W, Z)

hold for i € {1,3}, j € [d1]. In the above, we use the fact that 7;(V) and 7;(V T D) are zero matrices for
i € {1, 3}. This follows because D is a diagonal matrix and V = e;r - es. O

Claim 6. (Games o to Games 1). For any adversary A, there exists an adversary By such that | Pr[Events o] —
Pr[Events ]| < AdVlCSLVIH,QC (G1,Go)(K) and Time(Bz) ~ Time(A) + Q. - poly(k, n) where poly(k, n) is
independent of Time(A).

Proof. Before going into the proof, we need some definitions and preparations.
Preparations. Let w = (wi,...,wWy,) and S and S be as in Equation (8). Then, for S C [n] and
CEnc(S,p) — (c,d}), we have that

cg(S+S, W) = ( Z a,;B (Sé)) + ( Z a, jx(W}, + - BVB™1)B (Z))

jelo,ds] (4,k)€[0,d5] x [d1] ’ L€]ds)

_ ( Z awB(%))Jr( Z Qujk <WLB<Z§>+B<w%§j>>>

jel0,dy)] (5,k)€0,d3]x [d1] L€[d3]
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= cB(S, W)+ cg(S, W, w)

where ci3 (S, W', w) is defined as

ch(S, W W) = (Z aL,jB<§0j)>+< Z )k <W2B<2)+B(w;gs])))

j€[0,d4] (4,k)€[0,d5] x [d1] L€[ds3]
0 / 0
= B (cb(éo,\?v)) + Z a,;,c W, B (%)
(5,k)€[0,d3] x [d1] v€[ds)
In the above, § = (80, 51, ..., §dg)- We observe that gcﬁ(s’wl7w) can be efficiently computed given B, W',
and ¢°®W) since ¢°5W%) contains the terms (g%, ... ,gsdé) because of the regularity of the encoding (the

second condition).

Let 3 € Z, and R and R be as in Equation (19). Then, for 7 € [n] and KEnc(7,p) — (k, d}), we have
that

kz(a+ Bf, R+ R, W)

i (D na(i) (5 wawen sve ()

= A (4,5)€lds]x[di] 1€[da)
- s (Zna())« (3w (w7 () vs 2(3)
i€[dy) (4,5) €ldy] x [da] L€[da]

= kz(a,R, W)+ Kk (5f, R, W, W).

In the third line above, we used the fact that (BVBH'Z=B"'VID=B V=B DV = ZV.
Here, k7, (8f, R, W', W) is defined as

ky,(BF, R, W', w)

- ea @ (a3 vl vea(})

ieldy) (4,5) €ldy] x [da] L€d2]
0 T (9
= !z (m(ﬁér,w)> + > bW Z <%)
(4,9)€lda] x[d] v€[da)
Inthe above, t = (71,...,74 ). Similarly to the case of gcia(s WW)| we can efﬁClenﬂY compute /¥ (BER W)

given Z, W', and R(BEEW) gince RK(BEEW) contains the terms (h™, ... R 2) because of the regularity of
the encoding (the second condition).

Reduction. Having finished the preparation, we now construct an adversary B2 against ().-CMH security of
the broadcast encoding from an adversary A who distinguishes Games o from Games ;.

Setup of Parameters. Given 7* from A, B2 submits the same index. Then, B3 is given (g, h). It then picks
B & GLy(Z,), W = (W/,... ,Wg) & (Z;X‘l)dl, and a random full-rank diagonal matrix D € Z3**
with the entries (3, 3) and (4, 4) being 1. Then, it sets Z = B~ D. Finally, it computes and gives params =
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(ga g™ (B) ) gﬂ?’(B)v {gﬂ-l (W;B)}ie[dl]a {gﬂ-s(W;B)}iE[dﬂ? h, hza {hﬂ-l (W;TZ)}iE[dl]a {hﬂ-B(W;TZ)}iE[dﬂ) to A. In
the following, Bs implicitly sets W; = W +@;BVB~! fori € [d1] and W = (W1,..., W, ) where 10; is
chosen by the game and is not (explicitly) known to Bs.

Simulating OﬂMBHQVg,(-). When A calls (’)MMBH@(-) on input S C [n], B2 submits the same S to its ora-

cle OS*M\SC() to obtain g¢®%), where ¢ + CEnc(S,p) and § = (5, ... ,Sa,) & ZZ3+1. B> then picks
S0, - - -8, & ZIQ,XI and computes ¢°BSW) and gc%(S,W',\fv). The latter can be efficiently computed from B,

S+SW) — 4eB(SW) . 4ep(S, W' W)

W, and ¢°®W). Finally, it computes g°B( and returns it to A.

Simulating OE/I*MZHW{,( (1) When A calls (’)MMZH%{; »(+), B2 calls its oracle OS*M V';'It( (+) to obtain pk(b-at i)
where k < KEnc(7,p) and t = (74,... ,fdé) & ZzQ. B then picks ry,...,rq & ZIQ,X1 and computes
Rkz(O.RW) anq pkz (b-6fRW' W) The latter can be efficiently computed from Z, W, and hX(®-485%)  Finally,

pkz(b-6f RARW) _ pkz(OR,W') | ki (b-af R,W

it computes W) and returns it to A.

Guess. Finally, B> outputs A’s output as its guess. It can be seen that the game corresponds to Games g if
S*M‘::g()) and Games 1 if b = 1(i.e., if By is equipped with the

(+)). Thus, we may conclude that | Pr[Events o] — Pr[Events ;]| < AdV%gH,QC,(GI,Gg(“)‘ 0

b =0 (i.e., if By is equipped with the oracle O
CMH,K

T W,1

oracle O

D.4 Security Proof for Our Scheme in Section 5.5

For the sake of simplicity, we first show the following theorem that establishes the security of the scheme
for the case of ;4 = 1 (i.e., the single instance case). Later, we explain how to modify our proof for the
single-instance case to deal with the multi-instance case.

Theorem 13. For any adversary A, there exist adversaries B1, Bs, Bs, and By such that
P P P
AV orime (10,1 (F) < Adv] (1) + Advyg)' () + 2 (Ade;—’ (%) + AdVET (@, @0). (61 ,G2) (“))

and max{Time(B;)|i € [1,4]} =~ Time(A) + (Qc + Q) - poly(k, £) where poly(k,{) is independent of
Time(A).

Proof. (of Theorem 13.) The proof of the theorem is almost parallel to that of Theorem 6.

Semi-functional Ciphertexts and Private Keys. We define several types of ciphertexts and private keys

that are used in the security proof. In the following, we will pick random functions R; : {0,1}* — Z,, and

Ri : {0,1} — Zy (via lazy sampling) for i = 0,...,¢. Here, we use {0,1}° to denote the singleton set

containing just the empty string e. For an identity ID € {0, 1}, ID|; denotes the first i bits of ID, that is,

length 7 prefix of ID.

- Semi-functional ciphertexts. We consider Type 1, Type (2,%), Type (3,%), and Type 4 of semi-functional
ciphertexts for i € [0, £]. The form of semi-functional ciphertext are as follows.

¢ 50
) B( 3

<gc(S+S,W)7 e(g (6)) ,h®) - Meoin) Type 1 (2D
S0

_ c(S+8,W) B(éo) a+R; (ID];) £ ‘
CT= ¢ [ g°BFST e(g \o/  potROPTY Mg, | Type (2,4) 22)
7 (3) e
(gc(s+s7w)7 e(g 3o ,ha+Ri(|D|i)'f) . Mcoin) Type (3, Z) . (23)
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In the above,

s ((0-(0(5) - (B (%)),
o (BB (1)) tomd oz

$ A A A ~ o~ ~ $
where so,81,...,84, < Z%Xl and S0, 81, ..., 8a;, 80,81, - -, Sa, < Lp.
- Random ciphertexts. We also consider random ciphertexts. The form of ciphertexts are as follows.

CT = (QC(S+S’W)a Mrand ) (25)

where Myang & G and S and S are defined as above.

- Semi-functional Private Keys. We consider Type (1,%) for i € [0,¢] and Type (2,4) for i € [0,¢ — 1] of
semi-functional private keys. To create a semi-functional private key, we replace sk; in Equation (9)
with

sk; = pki (e +3; 8475 Ry W) _ {skj, = h’fj,n(aﬁ%fv‘%?ij»W)}ne[dﬂ (26)
where {¥; € Zp}jcs and {¥; € Zy}jes are random numbers subject to constraint that
. Ri(ID; Type (1, .= ‘ .
5, = RillBli) e (LA s R DLy Type (1,7) and (2,4).

Then the semi-functional private key is created as Equation (10).

Sequence of Games. Next, we define a sequence of games to establish the security of the IBE scheme. We
write Advyy (k) to denote the advantage of A in Gamey.

Gamey : This is the real security game.
Game;: In this game, all challenge ciphertexts are changed to be Type 1.

Gamey ;1 (fori € [1, ¢+ 1]): In this game, all challenge ciphertexts are of Type (2,7 — 1) whereas all private
keys created by the challenger are Type (1,7 — 1).

Gamey; 2 (fori € [1,¢]): This game is the same as Gamey ; ; except that challenge ciphertexts for identities
ID such that ID; = 0 are changed to be Type (3,7 — 1) where ID; is the i-th bit of ID.

Gamey; 3 (fori € [1,¢]): This game is the same as Gamey; 2 except that challenge ciphertexts for identity ID
such that ID; = 1 are changed to be Type (2,4) and all private keys are changed to be Type (2,7 — 1).

Gamey; 4 (for i € [1,/]): This game is the same as Gamey ; 3 except that challenge ciphertexts for identity
ID such that ID; = 0 are changed to be Type (3, ) and all private keys are changed to be Type (1,1).

Gameg: This game is the same as Gamey ¢4 1,1 except that all ciphertexts are changed to be random cipher-
texts.

Observe that we have Advs(x) = 0 since the view of A is independent from the value of coin in Games.
‘We have that

AV Gmime (10,01 (F) = Pr[Adv]
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< ‘Pr[AdVQ] — Pr[AdVl]‘ + ‘PI‘[AdVl] — PI'[AdVQ,Ll”

+ Z ’PI’[AdVQJ"j] — Pr[AdVQ’i’j_;_lH + Z ’PI‘[AdVQJ'A] — PI‘[ACIVQJ‘_HJH
i€lf),5€[1,3] i€[e]
+ | Pr[Adva sy1,1] — Pr[Advs]| 4+ Pr{Advs]

Therefore, we complete the proof by showing Lemma 21, 22, 23, 24, 25, 26, and 27. O

Lemma 21. (Gameg to Game;). For any adversary A, there exists an adversary By such that |Advy (k) —
Advy (k)| < AdeZ(m) and Time(By) ~ Time(A) + (Q. + Qk) - poly(k, £) where poly(x, {) is independent
of Time(A).

Proof. We construct 31 that attacks Problem 7 from an adversary .4 who distinguishes the games. We note
that these games only differ in the creation of challenge ciphertexts. By simulates the challenger for A as
follows.
t
5(3)

Setup. At the outset of the game, /3] is given the problem instance of the assumption (g, k, g2, h™(%) g \0/)
where either £ = 0 or ¢ < Zy. Then, it runs Param(2¢,p) — di, picks W1,..., Wy, & Zf;x"‘ and
a & 721 It also computes g™ (WsB) and pWi2) — pWIm(Z) for j € [dy]. Note that the latter can
be efficiently computed from hm(2), Finally, it returns the public parameter pp = (g, g™ (B) gm(WiB)
gﬂ'l(WdlB)’ h, hm(Z)7 st (WIZ)’ e hm(WLZ))

and the master public key mpk = (pp, e(g, h)o‘T’”(B)) to
A. By also sets msk = a and flips a coin coin < {0, 1}.

Key Extraction Queries. When the adversary A submits (Ext raction, 1, ID) to the challenger, 3; simply
runs Ext(msk, mpk, ID) — skjp and returns skp to A.

Challenge Queries. When the adversary A submits (Challenge,1,ID, Mg, M) to the challenger, B first
sets S = {2i — IDZ-|it€ [¢]} and runs CSIiEnc(S,p) — (c,ds). Then it runs the algorithm in Lemma 17

B( ¢ B( & : .
on input (g™ (B) ¢ <0>) to obtain g (0) for i € [0,d}] where (s; < Zg“,éi & 7,)if £ # 0 and
S0

(s; ¢ 7213 = 0)if £ = 0. Finally, it computes (gC(S+S’W),e(gB(S(JO) ,h®) - Mcoin) and returns
it to A, whse_re S and S are defined as Equation (24). Note that gC(SJFS’W) can be efficiently computable

Sq
5

from {g 0 }ico,ay) and {W; };¢(q,) since ¢(S + S, W) only contains linear combination of B( Oz) and
s
0

We claim that it is properly distributed normal ciphertext if ¢ = 0 and semi-functional ciphertext of Type 1
S

e 8 o ) . B(ég) T

if ¢ < Z,. The latter is trivial. To see the former, it suffices to notice that e (g 0/, ho‘) =e(g,h)* m1(B)so

holds (since 5y = 0).

Guess. When A outputs coin’, B; outputs 1 if coin’ = coin and 0 otherwise.

B1 has properly simulated Gameg if £ = 0 and Game if £ < Z;,. Hence, we may conclude that [Advo(r) —

Advi (k)| < Advzz (k). 0

Lemma 22. (Game; to Gamey 11). For any adversary A, we have Adv; (k) = Adva 1 1 (k).

Proof. This is purely a conceptual change and thus .A’s advantage is not altered. To see this, let us consider

a modified version of Game; in which we first choose o < Zf,”, 4,7 & Z,, and then set o € Zé“ as
a=ao + 'Ayf' + 7yf' . Since e is still uniformly distributed over Zéx 1. the view of the adversary in the modified
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game is the same as Game;. Furthermore, we claim that the view of the adversary in the modified game is
also the same as Gameg ;1 1. This can be seen by regarding ' in the modified game as c in Games ;1 1, ¥ as
Ro(ID]o), and 7 as Ro(ID]o). It is easy to see that the distribution of the private keys in the modified game is
the same as that of Gamey 1. As for the master public key and the challenge ciphertexts, we have

e(g, h)aTm(B) = e(y, h)(a’—i—’}f—i—’?'f')‘r-wl(B) — e(g, h)a’Tm(B)

and

(g’ )(WI (B)SO+§0-7T2(B))T(a’_i,-fy.f‘_t'_,?.f‘)

e(g, h
e(g, h) T (B)so+s0ma(B) T (e +5-6)
S0
= C(gB(SOO) ,ha/"'_ﬁ/f‘)
In the above, we use the fact that 1 (B) Tf = 7 (B)Tf = 0 and m(B) Tf = 0. These indicate that the view

of A in the modified game is also the same as Gamey ;1 1. Thus, the lemma follows. O

Lemma 23. (Gamegy ;« 1 to Gamey j+ 2). For any i* € [1,(] and adversary A, there exists an adversary B2
such that |Adva i+ 1 (k) — Adva x o(K)| < Advlpgé“(n) and Time(Bz2) ~ Time(A) + (Qc + Q) - poly(x, £)
where poly(k, {) is independent of Time(A).

Proof. We construct B, that attacks Problem 10 from an adversary .A who distinguishes the games. We note
that these games only differ in the creation of challenge ciphertexts. By simulates the challenger for A as
follows.

Setup. At the outset of the game, Bs is given the problem instance of the assumption (g®, R™(Z) po1af+02.f
t

. _ B 3 ) )
hoL2Et0228 g <t>) where either (f < Zy,t = 0)or (t =0,t & Zy). Then, it runs Param(2¢,p) — dj,
m(W;B) and hm(W]TZ) _ hWJTm(Z)

g for
(Z

picks Wy, ..., W, & Z;l)x‘l and a & Z;‘;Xl. It also computes
J € [d1]. Note that the latter can be efficiently computed from h™ ). Finally, it returns the public parameter

pp = (g, g B) gm(WiB) om(Wa,B) py pmi(Z) h”l(wlTZ), e hm(W;lZ)) and the master public key

mpk = (pp, e(g, h)o‘Tm(B)) to A. B also sets msk = o and flips a coin coin < {0,1}.

Programming Random Functions. Throughout the game, B, simulates random functions R;=_1(-) : {0,1}*"~! —
Zpand R, (-) : {0,1}"~! — Z,, via lazy sampling. In the following, B2 will implicitly sets the functions

ﬁz‘*—l(‘) : {0, 1}i*_1 — Zp and K’i*—l(') : {0, 1}i*_1 — Zp as

Ei*—1(|D|i*—1) _ (91,1 91,2) (Rz‘*—1(|D\z‘*—1)> @7
Ri—1(ID}ix—1) 021 622) \Rix_1(ID]x-1)) "
01,1 01,2

. p :
Since Rijx_1(-) and R}._,(-) are random functions and (92,1 022

> is an invertible matrix, /Iii*_l() and

Ris_1 (+) defined as above are random functions as well.

Key Extraction Queries. When the adversary A submits (Extraction,1,1D) to the challenger, B
first sets S = {2i — ID;|i € [{]}, runs KEnc(j,p) — (kj,d3), picks rj1,....r)q & Z]%XI, and sets

. r. A
R, = <(r'§1),--- N j;g)%)) € Z, " for all j € S. It also chooses random {o; € Z3*'}jes such

that . s ; = a. Then, B calls the random functions R;«_1(-) and Ri._;(-) on input ID|;+_ to ob-
tain v = Rj»—1(ID[;»—1) € Zy and ' = Rl,_;(ID];x—1) € Zp. It also picks random {v; € Z,};cs and
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{’y; € Zp} jes subject to constraint that jesV; =7 and > jes 'yg = 7. Then it implicitly sets 4, and 7; as
v = 01175 + 91,27} and y; = 0217; + 927275 and computes

~ ~ . ~ ~ ! ~ ~
<h91,1f+6’2,1f)7J . <h91,2f+9272f)73 — puttf

for j € S. Then, it computes

sk; = ki (e Ry W) | ple (358+3,5,0,W) _ p k(e +4;84+5,8 Ry W)

for all j € S. Finally, it computes skjp as Equation (10) and returns it to \A. We can see that {%;},cs
and {7} es are uniformly random subject to constraint that } . ¢%; = Rix—1(ID[;x—1) and ;o7 =

Rix—1(ID]i*—1). Therefore, By perfectly simulates a semi-functional private key of Type (1,i* — 1).

Challenge Queries. When the adversary A submits (Challenge,1,ID, My, M;) to the challenger, B2
first sets S = {2i — ID;|i € [¢]} and runs CEnc(S,p) — (c,d4). It also calls Rjx_;(+) and R}, _;(-) on

input ID;«_1. It can efficiently compute ARi*—1(IDix—1)f+Rix_1(IDis_)f 3¢ pRix 1 (IBix—)F+R 1 (1D )f

£10. F\Rix_1(IDs_ 10, F\RL, (IDgs_ .
(ROraf+020 ) 1 1 (hO12+0228) % 1 U Then, it proceeds as follows. There are two cases.

t S;
B(i ) B(§i)
— If IDj = 0, it runs the algorithm in Lemma 17 on input (g™ ) ¢ <t ) toobtain g \3i/ fori € [0, d4]
where (s; ¢ 721, 5; & Z,,8 = 0)if (f # 0,£ = 0) and (s; <~ Z2¥1, 3, = 0,5; < Z,)if (f = 0,7 £ 0).
S0
A B ( S0 ) ~ W~ ~
Finally, it computes (g¢(S+S+SW) ¢(g \5o/  poatRer—1(IDm—)E+Ri 1 (1D —0F) . M1 ) and returns it to
A, where S, S, and S are defined as Equation (24). Note that g®S+S+SW) can be efficiently computable
Si
B ( §i ) ~ ~ S;
from {g 5/ }ic0,a,) and {W;}j¢q,) since ¢(S+S+S, W) only contains linear combination of B < 8i )
8i

Sj

and W;B ( 55 ) . Furthermore, we have that
55
s %
e(gB(sé]> e h/R\’i*fl(lDi*—l)f‘+§i*fl(lDi*—1)f‘) _ e(gB(SOO) ’ha‘f'ﬁi*fl(lDi**l)f) and
Sé) B Sé)
e(gB(éo) ,he . hRi*fl('Di*71)f‘+Rz‘*f1('Di*fl)?) — e(gB(§o) 7h0‘+R¢*71(|D¢*71)f)’

because eiBTf = (0 for ¢ # 3 and eiBTf' = 0 for ¢ # 4. Therefore, the ciphertext returned to A is
properly distributed semi-functional ciphertext of Type (2, i* — 1) if (£ & Ly, t = 0) and Type (3,i* — 1)
if (£ =0, & 7).
(%)
. B
— IfID;x = 1, it picks sg, s1, - . - S, & ZIQ,“, 50,81, .- ~7§dg & Ly, computes (gc(s*'svw), e(g 0 , h&-
hRi*—1('Di*—1)f+Ri*—1('Di*—1)‘g) ‘Mgoin ) » and returns it to .A. Note that 13, can efficiently compute ge(S+S,W)
from ¢B, {s;, Sitielo,ay)> and {W}je(q,)- It is easy to see that By properly simulates semi-functional
ciphertext of Type (2,7* — 1).
Guess. When A outputs coin’, Bs outputs 1 if coin’ = coin and 0 otherwise.
B has properly simulated Gamey ;= 1 if (t & Ly, t =0) and Gamey ;x o if (t=0,t & Z;‘,). Hence, we may
conclude that [Adva i+ (k) — Adva i+ 3(k)| < Advi!® (k). O

Lemma 24. (Gamey ;« o to Gamey j+ 3). For any i* € [1,(] and adversary A, there exists an adversary B3
such that |Adva i« o(Kk) — Advg i+ 3(k)| < Advgﬂ?,'\,/lﬂl—j(Qc,Qk),Gl,Gg (k) and Time(B3) ~ Time(A) + (Q. + Qk) -
poly(k, £) where poly(k, {) is independent of Time(A).
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Proof. We construct an adversary B3 who breaks the (Q., Qr)-MMH security of the underlying broadcast
encoding from an adversary .4 who distinguishes Game ; o and Gamey ; 3. We note that these games differ
in the creation of ciphertexts for ID such that ID;« = 1 and all private keys. In this proof, we first describe B3
and then analyse the view of A in the simulation.

Setup. At the outset of the game, 33 submits 7% = 2¢* as its target and is given params = (g, g™ (B) gms(B)
{gwl(wlB)}ie[dm{g B(WZB)}iG[d1]7h7 hZ, {hm (Wi Z)}ie[dl]v {hms(Wi Z)}ie[dl])- It then picks o ¢ Zy<
and returns the public parameter pp = (g, g™ (®), {g”l(WiB)}ie[dl], h, h™(Z) {h”l(W:Z)}ie[dﬂ) and the

master public key mpk = (pp, e(g, h)® ™(B))

. B3 keeps « and params privately.

Programming Random Functions. Throughout the game, B3 simulates random functions Ry _1(-) : {0, 1}t
— Zpand Ry=_1(+) : {0,1}""~1 — Z,, via lazy sampling. B3 also maintains a list List of length i* prefixes of
identities for which a key extraction query was made. The list is set as List = () at the beginning of the game.
Bs also flips a random coin coin < {0,1}.

Key Extraction Queries. When the adversary A submits (Extraction,1,ID) to the challenger, B3 first
sets S = {2i — ID;|i € [¢]} and runs KEnc(j,p) — (kj,d5) for all j € S. It then calls random functions

Ri+_1(-) and Rix_1(-) on input ID|;+_; to obtain v = Ri_1(ID|;+_1) and 5 = Ryx_1(ID|;+_1). Then, it

r’ r.,
picks 1 1, ... 7r;',d’2 & 721 and sets R} = (( f()]’l) s < i >) for all j € S. It also picks random
0

{a; € Z;‘;Xl}jeg, {7 € Zp}jes, and {7} € Zp}jes subject to constraint that 3 ;g aj = @, D> eV =7
and ZjeS 4; = 7. Then, it computes hkj(aj’R}’W), ki (if+7;£.0.0) "and

pli(og R W) | pk;(;£+7;£,0,0) _ p k(e +;E+5,£ R, W)
for all j € S. Note that these values can be efficiently computed from v;, ¥;, o5, R;-, and hZ. Then, Bs sets
{sk;};jes as follows. There are three cases to consider:
— Incase of ID;» = 1 (or, equivalently, if 7% & 5), it sets
— pkilaytrf 3, EREW)

Skj

for all j € S. Here, Bz sets 4; = «y; for j € S. Thus, {9;},cs are random subject to constraint that
> jes Vi = Ris—1(IDix—1).

— In case of ID;x = 0 (or, equivalently, if 7* € S) and ID|;+ ¢ List, Bs first calls Oi/'*MZHWK »(+) to obtain

plr+ (b-6f.R.W) where R and & are randomness chosen by the oracle. Then, B3 computes

s (ax +yx E4+5,4F, R W) hkT*(b&f',R,W) — Rk (0 +(vrx+b-a)E+7,+F, R+R., W)

and sets

sk; = { ’ i7T (28)

PR (@or +(rex +- )BT B RARLLW) 5
for j € S. Here, Bs implicitly sets 4; = ; for j € S\{7*} and 4+ = v« + b - &. Therefore, {7;};es

are random subject to constraint that » s 9; = Rix—1(ID[;+—1) + b - &. Finally, Bs updates the list as
List « List U {|D|Z*}
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— Incase of ID;+ = 0 and ID|;» € List, A must have made a key query for ID’ such that ID|;« = ID|;«. Since
ID}, = ID;+ = 0, B3 must have called (’)ﬂMZH“’/{,( »(+) to deal with the first such key extraction query made

by A. Let h¥* (b6, R.W) be the answer to the oracle call. In this case, Bs does not call Oﬂ'vIZHK;g »(-) and

computes {sk; }jcs as Equation (28) using h** (b6, R W)

to constraint that 3 ;g9 = Ri=—1(ID[3+—1) + b &.

. As the above case, {7;};jcs are random subject

Finally, Bs computes skjp as Equation (10) and returns it to .A.

Challenge Queries. When the adversary .A submits (Challenge,1,ID, Mgy, M) to the challenger, B3 sets
S = {2i — ID;|i € [¢]} and runs CEnc(S, p) — (c,dj). Then, B proceeds as follows. There are two cases.

— If ID;+ = 1 (or, equivalently, if 7% ¢ S), it submits S to its oracle OmMBH@(-) to obtain gc(s+s’w). It then

80
N B( 3 .
calls R;+_1(-) on input ID|;+_1 and returns CT = (g°(5+SW) (g <S(?> , bt Rix (D)) - M) to
. B<S ) .. . S+S W
A. The latter part of CT can be efficiently computable because g \ 0/ is included in g<B(S+5:W) (by the
regularity of the broadcast encoding scheme) and B3 knows « and h%.

. . . . S -~ - $
— If ID;+ = 0 (or, equivalently, if 7* € 5), it picks sg, s1, ... »Sdy Z?,Xl, 505815+, 8, Z,, and
computes
s

S
gB(§i> = g ®B)si g5ims(B)  anqg gij<§0i> = gm(W;B)si | g8im3(W;B)

S0
. B( 0 - N

for i € [0,d4] and j € [dy]. Finally, it computes CT = (g¢5+SW) ¢(g <§0>,h°‘+Ri*1('D|i*1)'f) :

Mcoin) and returns it to A. Note that B3 can efficiently compute ¢g(5+5W) because ¢(S + S, W) only
i Sj

contains linear combination of B <SQ ) and W,-B( 5 ) .

Si

Si

Guess. When A outputs coin’, B outputs 1 if coin’ = coin and 0 otherwise.

Analysis. We claim that A’s view corresponds to that of Gamey ;« o if b = 0 (i.e., Bs is equipped with oracle
OEA*MZH&O()) and Gamey ;» 3 if b = 1 (B3 is equipped with ODA*MZHW{;I()) In the case of b = 0, it is easily
seen that B3 simulates Gamey ;+ o with ﬁi*_l(-) :{0,1}7" "1 = Zy, being ﬁi*_1(|D|i*_1) = Rix_1(ID|i*—1).
Therefore B3 correctly simulates Gamey ;+ 2. On the other hand, in the case of b = 1, one can see that B3
simulates Gamey ;+ 3 with Ri«(+) : {0,1}" — Z,, being

R (ID]) = Ry«_1(ID]3+_1) if 1D = 1
ST T ARy (D] 1) + & if 1D =0

where & is freshly chosen for every distinct 1D|;+. Since Rjx_1(-) is a random function, R+ (+) defined above

is also a random function. Therefore, B3 correctly simulates Games ;+ 3 in this case. Hence, we may conclude
MMH

that [Adva is 2(k) — Advaix 3(k)| < AdVig, 1 (0. 04).(G1,G2) (F)- O

Lemma 25. (Gameg ;« 3 to Gamey j» 4). For any i* € [1,(] and adversary A, there exists an adversary By
such that |Advg j» 3(k) — Advg i+ 4(k)| < AdVI'\S’AJ\,AI'I'-,'(QC,Qk),(Gl,Gg)("3) and Time(By) ~ Time(A) + (Q. +
Qy) - poly(k, £) where poly(k, ) is independent of Time(.A).

Proof. We construct an adversary B, that breaks (Q., Qx)-MMH’ security of the encoding from an adversary

A who distinguishes the games. The lemma can be shown analogously to Lemma 24. We only highlight the
main difference.
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o By sets 7 = 2¢* — 1 instead of 7% = 2¢*.

e B3, simulates ﬁl*() and R;«_1(-) throughout the game and use these functions to create challenge
ciphertexts and private keys. It will simulate Gameg i« 3 with Rjx_1(ID];x—1) = Rix_1(ID]ix—1) or
Gamegyi*A with

R (ID|;.) = 4 Rir=1(1Dli=1) if ID+ =0
ST T AR (ID] 1) + @ if 1D =1

/
where ¢ is the randomness chosen by OM'?/IZI_,'W',(I (+). & is freshly chosen for every distinct ID|;x.

e 34 computes the challenge ciphertext by itselfif ID;« = 1. Otherwise, it makes oracle call to OMMBH&C(-)

and creates the ciphertext using the answer from the oracle.

e 34 maintains a List of length i* prefixes of identities for which key extraction was made. For key
extraction query made by A, 34 generates private key by itself if ID;« = 0. If ID;« = 1 and ID|;+» ¢ List,

/
it calls Oy*MZHWKb(-) and creates the private key using the answer. Otherwise, .4 must have queried

private key for ID’ such that ID’|;+ = ID|;+. B4 must have called OMMZH‘;g,Kb(-) to deal with the first such

key extraction query made by .A. By creates the private key using the answer to the query.
O

Lemma 26. (Gameg ;+ 4 to Gamey j«41,1). For any i* € [1, /] and adversary A, there exists an adversary Bs
such that |Advg i« 4(k) — Adva ix411(K)| < AdVZ;OOﬁ) and Time(Bs) ~ Time(A) + (Q. + Qx) - poly(k, ¢)
where poly(k, £) is independent of Time(A).

Proof. The proof is the same as that of Lemma 23 except that we replace R;«_1, R;*_l, ﬁi*_l, and ﬁi*_l with
Rix, Rg*, R;+, and R;». O

Lemma 27. (Gamey o111 to Games). For any adversary A, there exists an adversary Bg such that |Adva ¢4 1 1(K)—
Advs(k)| < AdVZé] (k) and Time(Bg) ~ Time(A) + (Qc + Q) - poly(x, £) where poly(k, ¢) is independent
of Time(A).

Proof. We construct an adversary Bg who attacks Problem 11 from an adversary .A who distinguishes the
games. Bg is given the problem instance (g, h, g%, g%, h*, e(g, h)™*T7) where either v = 0 or v <& Z, and
proceeds as follows.

Setup. Bg runs Param(2¢,p) — dy and picks B ¢ GL4(Zp), W = (W1,...,Wy,) < (Z**)% and a
random full-rank diagonal matrix D € Z2** with the entries (3,3) and (4,4) being 1. Finally, it sets Z =

B~ "D and returns the public parameter pp = (g, g™ ®B), gm(WiB) ,g" (WaB) py pmi(Z) h”l(wlTZ),

. 7h7r1(W§12)) and the master public key mpk = (pp, e(g, h)aTwl(B)) to A. Bg also flips a coin coin <
{0,1}.
Programming Random Functions. Throughout the game, B simulates random functions Ry(-) : {0, 1} —
Z, and Ry(+) : {0,1}* — Z, via lazy sampling. In the following, Bs will implicitly set R,(-) : {0,1}¢ — Z,
as
R (ID) R¢(ID) if (Extraction,1,ID) is queried
‘ "~ |Re(ID) +yz if (Challenge,1,ID, Mg, M) is queried for some Mg, M.

Since (Extraction,1,ID) and (Challenge,1,1D, Mo, My) are never queried for the same ID (by the

restriction posed on the adversary), Ry(-) is well-defined. Furthermore, since Ry(-) is a random function,
Re(+) is also a random function.
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Key Extraction Queries. When the adversary A submits (Extraction,1,ID) to the challenger, Bg calls
Re(+) and Ry(-) on input ID to obtain 4 = R(ID) = Ry(ID) and 4 = R¢(ID). Then it sets S = {2i —
ID;|i € [€]} where ID; € {0,1} is the i-th bit of ID € {0,1}%. Then it runs KEnc(j,p) — (k;,d5), picks
. r. /
Tilee . T & ng, and sets R = <(r§1) o < ]6d2 >> c ZﬁXdQ for all j € S. It also picks random
0
{etjes, {9j}tjes, and {7;}jes subject to constraints that 3 ;g aj = a, Zjes Yj=9-and > o = 7.
Next, it computes k; (ct; + 4;f + 7;f, R, W) and sets sk; = h¥i (@i T E+5ERW) for all j € S. Finally, Bg
computes skjp from sk; as Equation (10) and returns it to A.

Challenge Queries. When the adversary A makes challenge query (Challenge,1,ID, Mg, My), Bg pro-
ceeds as follows. Bg first sets S = {2i — ID;|i € [¢]} and computes CEnc(S,p) — (c,d}). Then, it picks

80,815 -+, Sa, & Z%Xl, 1,00 7§dg & Zy and runs the algorithm in Lemma 18 on input (g, h, g%, ¢, h*,
e(g, h)™**7) to obtain (g%, e(g, h)®**7) where 4 & Z, if v # 0 and 4 = 0 if v = 0. Then, it implicitly
sets Sg = & and computes

=)
g 6) _ g7r1(B)So . (gi‘)ﬂ'z(B)

Si Si

and g \0/ fori € [1,d}]. Then, it computes g*ST5W) from {g \ 0 }iefo,a;) and W, where S and S are
defined as Equation (24). Finally, it returns the challenge ciphertext

So
30

& B N N A
CT = (=557, (g (o),h“>-e(g%hRf“D))-e<g,h)W“-Mcom)

to A. We have that

S0 So
B( s . . N B s .S N
e(g (o“>,ha>-e<gx,hR4<'D>>~e<g,h>W“ — (g (°),ha>-e<g,h>S°Rf“D>-e(g,w

S| S0
S0 §0

= e(gB( 0 ),h"‘) . e(gB( 0 ) : hﬁg(lD)Ze;) ce(g,h)

0

o

S0

B s = A N
= e(g ( 5))7h"+Rf('D)f) ~e(g, b)Y

where we use the fact BTZei;r = De;)r = eg in the second line. It can be seen that the challenge ciphertext is
a properly distributed semi-functional ciphertext of Type (2, ¢) if 4 = 0 and a random ciphertext if ¥ & L.

Guess. When A outputs coin’, Bg outputs 1 if coin’ = coin and 0 otherwise.

Bg has properly simulated Gamey o if v = 0 and Gameg if & Z,,. Hence, we may conclude that
|Advg ¢11(k) — Advs (k)| < Adleg;1 (K). O

Extension to the Multi-Instance Case. As in the case of the constructions in composite order groups, we
can easily extend the above proof to the case of the multi-instance case.

(Proof Sketch of Theorem 4.) To prove Theorem 4, we have to change the proof of Theorem 13 so that we
simulate R(])(-) : {0,1}" — Z, and RZ(»])(~) : {0,1}" — Z, for i € [0,/] and each j € [u]. Then, we

i
consider Gameg to Games exactly the same as the single instance case except that semi-functional ciphertexts

and semi-functional private keys for j-th instance are computed using ﬁgj ) () and E(] ) (). The difference of

advantage of A between them can be bounded accordingly. This can be done almost parallel to the case of
composite-order groups and thus we omit the details. See the proof sketch of Theorem 2.
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E CMH-Security of [y,

Here, we discuss the ()-CMH security of [l,. We first prove the following theorem that indicates that g,
is (Q-CMH secure on prime-order groups (G; and G2) assuming the DLIN assumption. Then, we discuss the
security of [g, on composite-order groups.

Theorem 14. For any Q). and any adversary A, there exists an adversary BB such that Advi'\f-ljp Qo (G1,Ga) (k) <
AdvDL'N( ) and Time(B) ~ Time(A) + Q. - poly(k,n) where poly(k, n) is independent of Time(.A).

Proof. We construct B that attacks the DLIN problem from A that violates the ().-CMH security of the above
broadcast encoding. Given the problem instance (g, g**, g%2, h%, g™, g*22 T = h“3(‘31+‘32)+7) where v =
0 orvy &7 B proceeds as follows. (B disregards other terms in the problem instance.)

Setup of Parameters. At the beginning of the game, A outputs its target 7* € [n]. Let 7% = 77 + (15— 1) -y
where 77 € [n1] and 75 € [no]. B first picks 01,...,0,,,07,...,0, ,¢0,¢ & Zyp. Then it implicitly sets

IN Ay
W= (U1, ..., Uny, 0,0, ... Uy, , 0", 10) as

{ei iti e m\{r{}

0.+ i , bi=—Tat+ ¢, wi=cate
tco fe=m1]

g {e< itiem\T) g

0/ + CQ le - Tl
We can see that w is correctly distributed.

Simulating OCMH C( -). Given S such that 7% ¢ S, B first defines S for j € [ns] as Equation (13) and picks
50,81, &ngy &1 6 & 7Z,. It then implicitly sets #; and 7/ as

TS it ¢ S;

ti = ar1& + 80/vi, ;= aslj + 50/vi, where vi:=q 1 0
7—2 —1 1f7_1 S Sz

for i € [n2]. Note that 77 ¢ Sy, since 7% ¢ S. Furthermore, we also have |73 —i] < ng < p and

1 <75 <ng <pforalli € [ng]. Thus, for all i € [ng], v; defined as above are non zero. Therefore, t; and f;
are well-defined for all i € [ns].
It can be seen that we have

Sot + L (0 + > ) + 5 (60 +i ) df)

JES; JES;
= So(c1 +c2) + (a1& + So/vi) - (0 + i Z 0; — vic1) + (a2€l + So/vi) - (¢ +i Z 0 — vica)
JES; JjES;
= SocT +3veat+ (G(d+i Y 0))ar — (Ewidarer + (S0(d+i Y 0;)/vi) — BacT
j€S; JES;
(& +i > 0))as — (Evi)asca + (30(¢ +1i Y 0))/vi) —Foee
JES; jES;

= @0+ P; 101 + P 20101 + P 3a2 + Pjga2c

where q)z[) = §O(¢ + (25/ _i_izjesi(@j + 9;))/1/1, (I)i,l = fz((ﬁ +i2j€5¢ Qj), (I)i,Q = —&Vi, (IDi,EI — 57{((25/ +
iy jes; ) and ®; 4 = —{v; in the above. B can efficiently compute

ggOUA’JFfi (ﬁ+i2j65i ﬁj)JFE; (ﬁl+iZjGSi ﬁ;) — g‘Pi,o X (ga1)‘1>i,1 X (ga161)¢i,2 . (ga2)¢i,3 . (ga202)<1>i,4’
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g = (g™)% g™/, and gl = (g2)% . gho/m

for i € [n2], since {®; j }icln,) je[5) is known to B. It computes g°5™) as above and returns it to A.

OCMH K

Simulating O, Wb

(+). When A calls the oracle, B implicitly sets 7 = a3 and & = y and returns

hk(OAé,f‘,VAV) _ (hfﬁz—i—a T, hr(v+7'2u *) _ (ha3)¢+7'2 Tf7 {hfﬁi _ (hag,)@i }ie[m]\{rf}’)

P P +r3al ) ¢ +730 & ey /
h = ha?’, h 2t 1 = (ha3) 2 1, {h, Uy —= (h,a3)07.}i€[nl]\{7_1*}
to A. It can be seen that 3 simulates OC*M‘:::)(( )if &=~ =0and (’)C*'\/IVI;| f( Nifa =~y & Ly
Guess. Finally, B outputs .4’s output as its guess. As we have seen, the game corresponds to the case of b = 1
if y & Z,, and b = 0 if v = 0. Thus, we may conclude that Ade MapsQes(G1, G2)( k) < AdvDL'N( ). O

We then introduce two problems in order to discuss the Q-CMH security of [y, on composite-order
groups. We define advantage function AvaXX( ) for Problem xx for any adversary A as follows. Let

(N> Ga GT? 91,92, 93,94, € ( )) <_ gcomp(lﬁ) in the fOHOWing'

Problem 13. (DLIN Problem on G,,.) We define advantage function for any adversary A as

P,
AdVEE (k) = | PrlA(g1, 92, 93, 91,95, 957, 957, 95™, 9522, To) — 1] —
Pr [A(gl 92793794792 792 )92 79(21151592252 Tl) — 1”

$ -
where a1, as, a3,y < 7, s1,82 < LN, Tp = g;3(51+52), and Ty = gg3(sl+s2)+7.

Problem 14. (DLIN Problem on G,,.) We define advantage function for any adversary A as

P,
Advis, (k) = Pr[A(g1, 92, 95, 94, 95", 957, 957, 957" 95°7, To) — 1] —
Pr[A(g1, 92, 93, 94, 95", 952, 5%, 93*°1, 93272, T ) — 1]

where ay,az, az,y < 7, 51,82 E TN, Ty = gg3(s1+82), and T, = 933(814—52)-&-7'

By replacing g and h with go (resp. g3) in the proof of Theorem 14, we immediately obtain the security
theorem for the Q-CMH security of [, on G, (resp. G,;) as follows;

Theorem 15. Fori € {2,3}, any Q., and any adversary A, there exists an adversary BB such that AdV,(il'jf'Elec,Gp. (k)

< AdVZXX(/ﬁJ) and Time(B) ~ Time(A) + Q. - poly(k,n) where poly(k,n) is independent of Time(A). In
the above, Py = P13 if i = 2 and Pyx = P14 if i = 3.

F Proof of Theorem 5

Proof. We assume that the adversary A makes at most single key extraction query for the same ID in the
security game. This restriction can be easily removed by using a PRF. See remark in Section 7.

Sequence of Games. We define a sequence of games to establish the security of the IBE scheme. We
erte Advxx( ) to denote the advantage of A in Gameyy. In the following, we will pick random functions
Re:{0,1}¢ — 7y, and Re:{0,1}¢ — Zy, (via lazy sampling).

Gameg : This is the real security game for anonymous IBE.
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Game;: In this game, all challenge ciphertexts are changed to a ciphertext for a random message. Namely,
when the adversary submits (Challenge, 1, (IDg,|D1), (Mg, M1)) to the challenger,

T = (ca O R ) R Mrand> (29)

is returned. Here, s & Zg“, § & Zp, and Myang & Gp. Seoin C [2¢] in the above is defined as
Scoin = {2¢ — ID¢oin ;| € [¢(]} where IDggin ; is the i-th bit of ID¢oj,. Note that while the distribution of
the ciphertext is independent from Mg, it still depends on ID;p, in this game.

Furthermore, for key extraction query (Extraction, 1,|D) made by A, the challenger returns

+3 . WTZ[ 0 )+R,(ID)E+R,(ID)F —z(0
skip — <K1:ha Pies W, (0) ¢(ID)f4-Ry( )7 Ky =g (0)> (30)

where r & z2°1, f= Zej,f = Ze], and S = {2i — ID;|i € [{]}. Namely, the challenger returns
semi-functional key of Type (1, ¢) (in terminology of the proof of Theorem 13).

Games: In this game, the challenge ciphertexts are further modified as
S S
B( 3 s W;B( 3
CT = (Cl =g (§>7 02 = gZZESmm <§)7 C3 = Mrand) (31)

$ a o~ $
where s < ZIQ,“, 5,5 & Zyp, and Mang < Gr.

Gameg: This game is the same as Games except that we change how to choose W1, ..., Wy, Here, we first
pick Wi, W, ... Wi, & Z2*4 and A & Z2*2. We denote the i-th column of A as a; € Z24*? for
i € {1,2}. Then, we set another matrix A’ € Zg“ sothat i (A’) = 0, ma(A’) = a;, and m3(A) = a,.
Wi,..., Wy are set as

W, =W, +BA'B™!, Wy = W, + BA'B™!, and W, = W fori € [3,2/].

Gamey: In this game, public parameter pp and all private keys are computed using W7, ..., WY, instead of
Wi, ..., Wy (The challenge ciphertexts are unchanged.) Namely, pp is set as pp = (g, g’rl(B), gt (WllB),
., g™t (W'%B)) and all private keys are created as
al r ) . p r £
o — <K1 _ ot e W 2(8)+Rg(ID)f+Rz(ID)f7 K — gz(g)) | )

Games: In this game, we change all challenge ciphertexts to be uniformly random group elements. Namely,
the challenger gives CT = (C1, Co, C3) such that Cy, Cy & Z;l)Xl and C3 & Gr to A when A requests
a challenge ciphertext.

Observe that we have Advs(x) = 0 since the view of A is independent from the value of coin in Games. We
have that

AN 1000 (8) = Pr[Advo] < > | Pr[Adv,] — Pr[Adv;1]| + Pr[Advs).
1€[0,4]

Therefore, we complete the proof by showing Lemma 28, 29, 30, 31, and 32 in the following. O
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Lemma 28. (Gameg to Gamey). For any adversary A, there exists an adversary By such that |Advo(k) —
Advy (k)] < (8€+2)Adv21‘”\'(/€)+12€/p and Time(By) ~ Time(A)+(Q.+ Q) -poly(k, £) where poly(k, ¢)
is independent of Time(A).

Proof. This can be shown by repeating the proof of Theorem 13 for the case of the underlying broadcast
encoding is ... There are only two differences. The first one is that the simulator does not give sp =
(h, R (Z) pm (WlTZ), een g“l(wgez)) to A. The second one is that the adversary submits two identities in
the challenge query. The proof of the Theorem 13 can easily be modified accordingly. O

Lemma 29. (Game; to Gamey). For any adversary A, there exists an adversary B such that |Advy (k) —
Adva (k)| < AdVEZ(I{) and Time(Bz) ~ Time(A) + (Q. + Qk) - poly(k, £) where poly(k, {) is independent
of Time(A).

Proof. We construct an adversary 32 who attacks the Problem 9 from an adversary .A who distinguishes the
games. The proof of the lemma is similar to that of Lemma 23.

Setup of Parameters. At the beginning of the game, B; is given the problem instance (g, h, g2, h™1(Z)
t

B2 E+02.1F) hz(elvﬁ*e%??),gB(%)) where f = 0 or £ & Z,. It first picks W1,..., Wy, & Zy** and
a & Zg“. Then, it computes the public parameter pp = (g, gm(B) gm(WiB) gm (WNB)) and the
master public key mpk = e(g, n)® ™(B) and returns it to .A. By also flips a coin coin <- {0, 1}.

Simulating Random Functions. Throughout the game, B simulates random functions Ry(+) : {0,1}¢ — Z,
and R)(-) : {0,1}* — Z, via lazy sampling. It implicitly sets R¢(ID) and Ry(ID) as Equation (27). Since
R¢(+) and R)(-) are random functions, Ry(-) and R,(-) are random functions as well.

Challenge Queries. When the adversary .4 makes challenge query (Challenge,1,1Dg,ID;, My, My), By
proceeds as follows. By first sets Soin = {2i — IDggin ;|7 € [¢]} Where IDggin ; is the i-th bit of IDegin. Then, it
t

(1)) ahin (1) %
runs the algorithm in Lemma 17 on input (g™ (®), g™(®) g \i/) t0 obtain g \5/ where (s < 72%1,5 &
Z,,5=0)ift = 0and (s & Zg“, & Ly, s & 7,) if t # 0. Then it picks Myang & G and returns the

| o(0) g mral?)

challenge ciphertext CT = (Cy =g \s/,Cy =g " " 5/,C3 = Myand, ) to A.
Key Extraction Queries. When the adversary A submits (Extraction,1,ID) to the challenger, B3 first
sets S = {2 — ID;|i € [(]} and r & Z?,Xl. Then it computes ARe(IDDf+RAADIE — (h91v1f+6271f)R£(|D£) .

(h91v2f+92»2?) Re(IDo), Finally, it computes the private key as

skip = <K1 _ ha+ziesW,L.Tﬂ'l(Z)r+§g(ID)f'+§g(lD)f7 Ky = gffrl(Z)r)

and returns it to A.
Guess. When A outputs coin’, By outputs 1 if coin’ = coin and 0 otherwise.

BB, has properly simulated Game; if £ = 0 and Gamey if < Zy,. Hence, we may conclude that |Adv; (k) —
Adva (k)| < Advz;’ (k). 0

Lemma 30. (Gamey to Gamegy). For any adversary A, we have Advy = Advs.

Proof. Since each W; is uniformly random over ng‘l in both games, the change from Game; to Gamej is
only conceptual. Therefore, the lemma follows. O

Lemma 31. (Games to Gamey). For any adversary A, we have Advs = Advy.
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Proof. We claim that the change from Games to Gamey is conceptual. At first, we have that
™1 (WZB) =T (W;B) + (BA/) =T (W,/LB) +B- ™1 (A/) =T (W;B)

fori € {1,2} and W; = W/ for i € [3, 2/]. Therefore, pp is not altered by this change.
The private keys returned to A i~n Gameg are in the form of skip = (K1, K2) where Ky = h=m(Z)r and
K| = Rt ics M (W, Z)r+R (ID)f+R(ID)f We have that

o . T S D P D =
K = h JrZzGSWZZ(8)+Rg(ID)f+RZ(ID)f

_ ha+((2ies W/H+BA'B~1TZ (§> +R,(ID)f+R,(ID)f

ha+zies w'z ( é ) +(Re(ID)+m2(A) T (D)r)f+(Re (ID)+m3(A/) Ty (D)) F

r —~ a o~ ~
ha+zies W'z <8>+R2(ID)f+R2(ID)f

In the second line above, we used the fact that ((1 € S)A (2 ¢ S)) vV ((1 € S) A (2 € S)). In the third line
above, we used the fact that

R,(ID) = R¢(ID)+ m2(A") 7 (D)r and
R)(ID) = Ry(ID) + m3(A") "7y (D)r.

These functions are well-defined (throughout the game), because .A makes key extraction query for the same
ID at most once. Furthermore, these functions are random functions because R;(-) and Ry(-) are so. One can
observe that the distribution of private keys is also the same as that in Gamey. The lemma follows readily. O

Lemma 32. (Gamey to Games). For any adversary A, there exists an adversary Bs such that |Advy(k) —
Advs (k)| < Advgf(m) + 1/p and Time(B3) ~ Time(A) + (Q. + Qx) - poly(k, ) where poly(k, ) is
independent of Time(A).

Proof. We show an adversary B3 that attacks the Problem 12 from A who distinguishes the games. Given
the problem instance (g, h, gX) where either X ¢ Rko(Z5*%) or X ¢ Rkg(Z5*F), it proceeds as follows.
Let the upper two rows of X be U € ng6 and lower four rows be L € ngﬁ_ We assume that U is full-

rank. This happens with probability at least 1 — 1/p regardless of X ¢~ Rka(Z8*®) or X - Rkg(Z5*C). If
X & Rka(Z5*®), we have that there exists a random matrix A € Z3*? such that L = AU.

Setup. At the outset of the game, B3 picks B ¢~ GL4(Z,), W1, ..., W}, & Z24 o & Z1*! and a random
full-rank diagonal matrix D € Z2** with the entries (3, 3) and (4, 4) being 1. It then sets Z = B~ "D and
returns pp = (g, g™ ®), gmt(WiB) ¢ (Wy,B)) and mpk = e(g, h)* ™ ®) 10 A.

Simulating Random Functions. Throughout the game, 53 simulates random functions ﬁg() :{0,1} - 7Z,
and Ry(-) : {0,1}* — Z,, via lazy sampling.

Key Extraction Queries. When A submits (Extraction,1,ID) to the challenger, B3 picks r < ZZXI,
computes skip as Equation (32) and returns it to .A. Note that sk;p can be efficiently computed using c,
{Wi}tic[2q. and Z.
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Challenge Queries. When A submits (Challenge,1,IDg, D1, Mg, M;) to the challenger, B3 picks s &
Zg“, v & Zg“, and Myapng & Gr and computes gV and ¢g™V. Then it returns

S

CT = ( Ci = gB(USV)7 Cy = gZz‘eSCOm W;B(UV) . gBLv7 C3 = Miand )

, , B(y) Zics. WiB(Uy) BLv -
to A where Seoin = {2i—IDcoini|i € [¢]}. Note that g~ Uv/, g=€Scon 1“1\ UV/ ‘and g can be efficiently
computed from ¢V, g™V, B, s, and {Wg}ie[%]. We claim that it is properly distributed ciphertext in Game,

or Games, depending on whether X & Rka(Z5*¢) or X & Rke(Z5%C).
In the case of X & Rk (Z5*¢), By implicitly sets (£) := Uv. Since U is a full-rank matrix, (§) is

S

. B
uniformly random over Z}%XI. We also have that Lv = AUv = A ( g) Thus, it holds that C; = g <§> and

2=49 g =9 =g .
Here, By implicitly sets W; = W} + BA’B™! for i € [1,2] and W; = W/ for i € [3,2(] where A’ € Z**
is defined so that 71 (A’) = 0 and the right half of A’ corresponds to A. Therefore, in this case, B3 simulates
the ciphertext in Game,4. (Note that A’ is fixed throughout the game.)

On the other hand, if X & Rke(Z5%®), (Uv,Lv) is uniformly random over Z2** x Z3*!. Since B is
full-rank, it can be seen that (C, C2) is also uniformly random over Zéx U x Z%X !, Therefore, the distribution
of challenge ciphertexts is the same as that of Games.

Guess. Finally, B3 outputs A’s output as its guess.

As we have seen, the game corresponds to the case of Gamey if X <& ng(ZgXG) and Games if X &
Rkg(Z5*%). Thus, we may conclude that |Advy(x) — Advs (k)| < Advgf(/{). O

G Omitted Details from Section 8

G.1 Definitions

@-fold One-Time Signature. We define (Q-fold one-time signature scheme introduced in [32], which consists
of the following five algorithms ¥ = (¥.Par, ¥X.Gen, ¥.Sign, ¥.Verify). The parameter generation algorithm
¥ .Par takes 1* as input and outputs a public parameter ppy. The key generation algorithm ¥.Gen takes ppy
as input and outputs a verification key vk and a signing key sigk. The signing algorithm ¥.Sign takes sigk and
a message M as input and outputs a signature o on M. The verification algorithm X.Verify takes a verification
key vk, a message M, and a (purported) signature ¢ and outputs 1, which indicates that the signature is valid,
or 0.

Security. We now define the security for a @Q-fold OTS scheme ¥ = (¥.Par, ¥.Gen, ¥.Sign, ¥.Verify) by the
following game between a challenger and an attacker .A.
Setup. The challenger runs ppy ¢~ ¥.Par(1%) and (vk;, sigk;) & Y.Gen(pps) for j € [Q]. Then,
(PPx, {Vvk;}jelq)) is given to A.
Signing Queries. In the game, A adaptively makes signing queries at most () times. When A submits
(Sign,j € [Q], M), the challenger runs o < Y .Sign(sigk;, M) to obtain the signature o and returns it to A.
A may request (up to) one signature for each j € [Q)].
Forgery. At last, A outputs a forgery (j* € [Q], M*, 0*). We say that A wins the game if >_.Verify (vk;«, M*, 0*) =
1 and one of the following conditions holds.

e A have never made a signing query for j*.
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e A made a signing query for j*. Let the query be (Sign, j*, M) and the response to it by the challenger
be 0. Then, (M, o) # (M*, 0*).
We define the advantage of the adversary .4 Adva:rzsg (k) as the probability that A wins in the above game.

Definition 4. We say that a Q-fold OTS scheme ¥ is secure if AdVSl,TZS, Q(KZ) is negligible for any polynomially
bounded () and any PPT adversary A.

CONCRETE CONSTRUCTION. Hotheinz and Jager [32] gave a concrete construction of tightly secure Q-
fold one-time signature. In their scheme, the public parameter (ppy) consists of two group elements and
description of a collision resistant hash function. vk consists of two group elements and o consists of two
elements in Z,. The scheme can be used to sign any bit strings. The security of the scheme is reduced to the
discrete logarithm problem in the underlying group of the scheme. The corresponding reduction looses only
a factor of 2, which is independent of ().

Public Key Encryption. A public key encryption scheme consists of the following five algorithms W =
(W.Par, W.Gen, V.Enc, W.Dec). The parameter generation algorithm W.Par takes 1* as input and outputs a
public parameter pp. The key generation algorithm W.Gen takes pp as input and outputs a encryption key ek
and a decryption key dk. The encryption algorithm W.Enc takes ek and a message M and outputs a ciphertext
CT. The decryption algorithm takes dk and a ciphertext CT and outputs a message M or | which indicates
that the ciphertext is not in a valid form. We require the usual correctness properties.

Security. We now define (1, Q., Q)-security for a PKE scheme W = (W.Par, W.Gen, V.Enc, V.Dec) by the
following game between a challenger and an attacker A.

Setup. The challenger runs pp <~ W.Par(1%) and (ek"?), dk()) & W.Gen(pp) for j € [u]. The challenger
also picks random coin coin ¢~ {0, 1} whose value is fixed throughout the game. Then, (pp, {ek?)} jelu)) 18
given to A.
In the following, A adaptively makes the following two types of queries in an arbitrary order.
—Decryption Queries. The adversary A submits (Decryption,j € [u],CT) to the challenger. Then, the
challenger runs W.Dec(dk"), CT) — M/ L and returns the result to .A.
—Challenge Queries. The adversary A submits (Challenge,j € [u],Mg,M; € M) to the challenger.
Then, the challenger runs CT <~ W.Enc(ek), Mcoin) and returns CT to A.
Guess. Atlast, A outputs a guess coin’ for coin. The advantage of an attacker A is defined as Adviﬂi( 1.Qe Q) (k) =
| Pr[coin’ = coin] — 3.
We say that the adversary A is valid if and only if .A never queries (Decryption,j, CT) such that CT

was obtained as an answer to the query (Challenge, j, Mg, M;) for the same j and some Mg, M; € M; A
has made at most (). challenge queries; and .4 has made at most )}, key extraction queries.

Definition 5. We say that a PKE scheme WV is secure if AdV,lel,(\E, (1,00.0%) (k) is negligible for any polynomially
bounded i, Q., Q, and any valid PPT adversary A.

G.2 CCA Secure PKE from IBE

Here, we show a generic construction of CCA-secure PKE from an IBE scheme and a Q-fold OTS scheme.
We require that in the original IBE scheme, the key generation algorithm does not output any secret parameter.
Namely, we require that sp = L. This requirement is satisfied in all of our IBE schemes except for that in
Section 7. If the original IBE and ()-fold OTS scheme are tightly secure, the resulting PKE is tightly secure
as well. We construct PKE scheme W from an IBE scheme ® = (®.Par, ®.Gen, ®.Ext, ®.Enc, ®.Dec) and a
Q-fold OTS scheme ¥ = (X.Par, X.Gen, X.Sign, X_.Verify) as follows. Without loss of generality, we assume
that identity space of ¢ contains all possible vk output by X.Gen.
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W.Par(1%) : Itruns X.Par(1%) — ppy and ®.Par(1%) — (ppg,sp = -L). Then, it outputs ppy, = (Ppe, PPy )-

V.Gen(ppy) It parses ppy — (Ppe, pps) and runs ®.Gen(ppg,sp = L) — (mpk, msk). Then, it outputs
the encryption key ek = (ppg, pps, mpk) and the decryption key dk = (mpk, msk).

W.Enc(ek, M) Tt first parses ek — (ppg, PPy, mpk). Then, it runs X.Gen(pps) — (vk, sigk), ®.Enc(mpk, vk,
M) — CTg, and ®.Sign(sigk, CT¢) — o. Finally, it outputs CTy = (vk, CT¢,0).

W.Dec(dk, CTy) It first parses the ciphertext as CTy — (vk,CTq,0). Any ciphertext not satisfying this
format is rejected (i.e., the decryption algorithm outputs ). Then, it checks whether o is a valid
signature on CT¢ by running ¥.Verify(vk, CT¢, o). If it is 0, the decryption algorithm outputs L.
Otherwise, it runs ®.Ext(msk, mpk, vk) — skyk and outputs ®.Dec(skyk, CTo) — Mor L.

Theorem 16. For any valid adversary A against the above PKE scheme, there exist adversaries By and Bs
such that AdvA WV, (1,00,05) () < Ade1 ,(1,00,0) (F) T+ Advg;%Qc(fi) and max{Time(B;), Time(B2)} ~
Time(A) + (1t + Qr + Qc) - poly(r) where poly(r) is independent of Time(A).

Proof. We prove the theorem by the following sequence of the games. We write Advyy (k) to denote the
advantage of A in Gameyy.

Gameg : This is the real security game.

Game; : In this game, the challenger runs X..Par(1%) — ppy and (vk;, sigk;) < X.Gen(ppy) fori € [Q,] at
the outset of the game and use (vk;, sigk;) to create the i-th challenge ciphertext.

Game, : In this game, the challenger stops the experiment and forces A to output a random bit if .4 submits
(Decryption,j’,CTy = (vk',CT4,0’)) that satisfies ¥.Verify(vk’,CT},0’) = 1 and one of the
following conditions:

(Case A) There exists i* € [Q] such that vk’ = vk;+ and A has not made the i*-th challenge query yet.

(Case B) There exists i* € [Q.] such that vk = vk;« and A’s i*-th challenge query is in the form of
(Challenge,j’, Mg, M) for the same j'.

Since the change from Gamey to Game; is only conceptual, we have Advg(x) = Advi (k). Therefore, we
have Adviﬁ’(MQan)(f@) = Advg(x) < |Advi(k) — Adva(k)| + Adva(k) and it suffices to show Lemma 33
and 34 in the following. O

Lemma 33. (Game1 to Gamey). For any adversary A, there exists an adversary By such that |Advy (k) —
Advs (k)| < Ade 3.0.(r) and Time(B1) ~ Q. - poly(x) + Time(A) where poly(x) is independent of
Time(A).

Proof. The Game, differs from Game; only if A makes a decryption query of the specific form defined as
above (Case A and B). We let the probability of this event in Game; be . We construct an adversary By
against the ).-fold OTS scheme whose advantage is € from A.

Setup. At the outset of the game, B is given (pps, {vki}ic|g.])- Then, it runs ®.Par(1%) — ppe and
.Gen(ppg) — (mpk"), msk) for j € [u] and returns ppy = (pPo,pps) and {ek) = (ppo,pPs,
mpk(j))}je[u] to A. It also picks coin < {0,1}.

Challenge Queries. For the i-th challenge query (Challenge,j, Mg, M;) made by A, B; proceeds as
follows. It first runs ®.Enc(mpk"), vk;, Mgoin) — CTo and then submits (Sign,i, CTe) to its challenger.
Then, ¥.Sign(sigk;, CT¢) — o is returned to Bs. Finally, B3 returns CTy = (vk;,CTo,0) to A.
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Decryption Queries. When A makes query (Decryption,j’,CTy, = (vk',CTy,0’)), By proceeds as
follows. If ¥.Verify(vk’, CTy,0’) = 0, it returns L to A. If not, By searches for i* such that vk’ = vk;«. If
there is such ¢*, B; checks whether (Case A) or (Case B) holds. If it holds, B; stops the game and outputs
(i*, CTly, o') as its forgery. Otherwise, it answers the decryption query using {dk") = (mpk(), msk())} el
Analysis. Let (i*,CT},0’) be the output of By. If (Case A) holds, B; has not made signing query for
1*. Therefore, B; wins the game in this case. We then consider (Case B). Let the ¢*-th challenge query
be (Challenge,j’, Mg, M) and answer to the query be CTy, = (vk;+, CTg,0”). Note that B; has made
a signing query (Sign,i*,CTy) to obtain o”. Since A is a valid adversary, we have that (j',CTy,) #
(4', CTy). In particular, we have (CTy, 0”) # (CT4, 0”). Therefore, B; wins the game also in this case. O

Lemma 34. For any adversary A, there exists an adversary By such that Advs (k) < Adv'Bqu)’( Hanva)(K)
and Time(B2) ~ (Qc + Qk) - poly(x) + Time(A) where poly(x) is independent of Time(.A).

Proof. We construct an adversary By against (u, Q., Q)-security of the IBE scheme from A. By simulates
Games, for A as follows.

Setup. At the outset of the game, B is given ppg and {mpk(j)}je[u]. Then, it runs X.Par(1®) — ppy

and returns ppy = (ppe, ppy) and {ek’) = (ppe., pps, mpk(j))}je[#] to A. By also picks (vk;, sigk;) <
¥ .Gen(ppy) fori € [Q.].

Challenge Queries. When the adversary .A makes the i-th challenge query (Challenge, j, Mg, M1), Bs first
requests (Challenge,j, vk;, Mo, M) for its challenger and receives ®.Enc(mpk?), vk;, Mgoin) — CTo.
Then, B2 runs x.Sign(sigk, CTo) — o and returns the challenge ciphertext (vk, CTo, o) to A.

Decryption Queries. When A makes query (Decryption,j,CTy = (vk',CT4,0”’)), Bs first checks the
validity of o’ by X.Verify(vk’, CT4,0”). If it is 0, it returns L. Otherwise, By checks whether (j/, CTy, =

(vk',CTy, 0')) satisfies (Case A) or (Case B) condition. If it satisfies, B2 aborts and outputs a random bit.
(")

oK and returns

Otherwise, B2 makes key extraction query (Ext raction, j', vk’) to its challenger to obtain sk
.Dec(CTh,sk7)) — M/ L.
Output. Finally, B outputs the same bit as A4 as its guess.

Analysis. It is clear that we have Adva(k) < AdVIK?QI?¢,(u,QC,Qk)(H)‘ Here, we check that By is a valid
adversary. At first, we check that Bs never makes any prohibited key extraction query. For a decryption
query (Decryption,j’,CTy = (vk/,CT4, o’)) that satisfies neither (Case A) nor (Case B) condition, we
have that vk & {vk;};c(g,.}. or, for all i* € [Q.] such that vk;» = vk’, we have that the i*-th challenge
query made by A is (Challenge,j”, Mjj, M) for some j” # j’. In any case, B> is allowed to make key
extraction query of the form (Extraction,j’,vk’). Next, we check that By never makes any prohibited
challenge query. Let us assume that B, makes the i-th challenge query (Challenge, j,vk;, Mg, M) for
some j, Mg, and My. Then, since B> has not aborted until then, A has not made any decryption query that
satisfies (Case A). Therefore, for all key extraction query (Extraction,j’,vk’) made by Bs until then, we
have that vk’ # vk;. O

H Concrete Descriptions of Our Schemes

Here, we show concrete description of our proposed schemes. In all of the following schemes, we let the
identity space be {0, 1}%.

H.1 Description of IBE Scheme ®2™P

Let the message space be M = {0, 1}"". We also let H be a family of pairwise independent hash functions

H: Gr — M. We assume that %‘ = 2~5k),
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Par(1%) : It first runs (N, G, Gr, g1, 92, g3, 94, €(+)) & Geomp(1”) and picks w = (wq ..., wap) & Z%,
a Zy, H & . Then it sets h := (g1929394)® and outputs pp = (91,9 ,94,h,H) and sp = L.

Gen(pp, sp) : It picks « & 7Zx and outputs master public key mpk = (pp, e(g1, h)*) and msk = a.

Ext(msk, mpk, ID) : It first sets S = {2i — ID;|i € [(]} where ID; € {0, 1} is the i-th bit of ID € {0, 1}*. It
then picks 7, 81, 2 <~ Zy and returns

Sk|D = (Kl = hagIZJES wj.gi?’ K2 = 9;7’922) .

Enc(mpk, ID, M) : It first sets S = {2i — ID;|i € [¢]}. Then it picks s <~ Zy and outputs

T=(Ci=g, Cr=g"

jeswj7 ngH(e(gl,h)Sa)@l\/l>.
Dec(skip, CT) : It parses CT — (C1,C2,C3) and computes e(C1, Ki)e(Ca, K2) = e(g1,h)*®. Then, it
recovers the message M by M = C5 @ H(e(g1, h)**).

REMARK. There is a slight gap from the description of the above scheme to the resulting scheme obtained by
our conversion in Section 4 to ... We call the former scheme (A) and the latter scheme (B). In particular,
the description of the key extraction algorithm Ext in scheme (A) is slightly simplified compared to that of
scheme (B). We explain this. In the key extraction algorithm of scheme (B), sk; defined as Equation (6) is
computed for all j € S. We have

Coraws 8 s . 5. Ny
skj = (W9 g™, {9 94" Yees\(sys 917 94°)
where 7, 0;0,0; % & Zy forall k € S. From the Equation (12), we have that

E; riwi 65 w8 —r; 6,
Skjj — (hajg?w’géf’“ H <g;kag4ij)’ 9 Tjg4y)
kes\{j}
(B gites T gres S g T g,

Therefore, we have that sk;p in scheme (B) is in the form of

2jesTi 2jes 95,0
94 )

I

) ) . ) 5 _
SkID — Hsk;:] — (hagizges TJ)(Zkeka)gllz]es,kes j.k 9
jEeS

The above private key corresponds to that of scheme (A) if wereplace } ;g reg ks D_jes Ty and Y e dj0
with 41, r, and d9, respectively. It is clear that this does not change the distribution of the private key and thus
does not harm the security at all.

We note that we will apply similar simplification to the key extraction algorithms that appear in this
Appendix.

H.2 Description of IBE Scheme ¢

slp

Let the message space be M = {0, 1}". We also let H be a family of pairwise independent hash functions
H: Gpr — M. We assume that M 9—Q(x)  We set £1 and /5 be integers such that £1/o > 2/.

p2
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Par(1%) : It first runs (N, G, Gr, g1, 92, 93, 94, €()) & Geomp(17) and picks w = (u1,...,up,,v,uf,. ..,
up v w) & Z20F3 o & 7%, H & . Then it sets h = (g1g2g3g4)® and outputs pp =
0 N N P
(.glagiﬂag% h7 H) and sp = L.

Gen(pp,sp) : It picks o <& Zy and outputs mpk = (pp, e(g1, h)*) and msk = a.

Ext(msk, mpk, ID) : Tt first sets § = {2i — ID;|i € [¢]} where ID; € {0, 1} is the i-th bit of ID € {0, 1}%. Tt
then defines S; and S; for j € [(5] as

Si=85n[G—-Db+1,54], S;={'-G-1lj €S} (33)
Finally, it picks 41 & Zy and 1y, 824,034, 5:’” & Zy fori e [¢2] and outputs

(U+i ZjESi uj)ri 5371'

Z’LE[Z ]’LU?"i 1 —T; 62i K37Z = gl g4 9
SI(|D — Kl - hagl 2 9417 K2,i = gl " g4 Ty /s AV
(W'Y co Ui 8
K/ o JES; 3,1
3. =91 91 ) icjey)

EnC(l 1p (7ID,M) . It first sets S = {2Z ID’L’Z S [6]} Ihen, it picks S’tl""7tfg7t€|_,-..,t22 $ ZN
Outputs y |
Cl gf’ CQ,’L = g;.vs (v iZjESi uj)ti (UI iszSi ’U,;.)t;,

04 = H(e(gl, h)sa) ) M, t;
1 1€[£2]

CT =
Csi = g\, Cy;=g

Dec(skip, CT) : It parses the ciphertext CT as CT — (Cy, {C2;, Cs.4, Céﬂ;}ie[gﬂ, Cy). It then computes
(O, Kai) - e(Csi, K3) - e(Cy 4, K3 ;) = e(g1, 1)
Finally, it computes e(C1, K1) - [[;cge(91,91) """ = e(g1, h)** and recovers the message M by
M = Cy @ H(e(g1, h)**).
H.3 Description of IBE Scheme ®Pi™e

Let the message space be M = Gr.

Par(1%,¢) : Itfirstruns (p, G1, Ga, Gr, g, b, e()) € Gprime(1%). Thenit picks B & GL4(Z,), W1, ..., Wy
& Z** and a random full-rank diagonal matrix D € Z3** with the entries (3,3) and (4,4) being 1.
Finally, it sets Z = B~ "D and outputs

g, gTrl(B)7 g7r1(W1B)7 . g”l(W%B)
pp = <h, h7r1(Z)’ hm(WIZ)7 o hm(wgez)) and sp= L.

OLTT(l (B))

Gen(pp,sp) : It picks a < Z;’;Xl and outputs mpk = (pp, e(g, h) and msk = a.

Ext(msk, mpk, ID) : It first sets S = {2i — ID;|i € [¢]} where ID; € {0, 1} is the i-th bit of ID € {0, 1},
Then it picks random r <~ Z2*! and returns

skip = (K = ho+Ties mWIZr gy — p-m (@)
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Enc(mpk, ID, M) : It first sets S = {2i — ID;|i € [¢]}. Then it picks random s < 22*" and returns

CT = <C'1 = gm(B)S, Cy = gziesﬂl(wiB)S7 Cy = e(g’ h)aTm(B)s . M) )

Dec(skip, CT) : It parses the ciphertext CT as CT — (C1, Cy, Cs3). It then computes

e(C1,K1)e(Ca, Ka) = e(g™ B3 potlies mWI2)r) . ¢(g¥ies m(WiB)s p=m(Z)r)

— (g, h)S BT (@ i (W D)) s T (B) (Sics w1 (W] Z)r)

= e(g,n)> m®

Finally, it recovers the message by Cs/e(g, h)® ™ (B)s = M.

H.4 Description of IBE Scheme pPrime

slp
Let the message space be M = G7. We also let £; and /5 be integers such that ¢1/5 > 2¢.

Par(1%,¢) : Ttfirstruns (p, G1, Ga, G, g, h, e(-)) < Gprime(1%). Thenit picks B &~ GlL4(Z,), Uy, ..., Uy,
Vv, U, ... ,U’z1 VW & Zﬁx‘l and a random full-rank diagonal matrix D € Z§X4 with the entries
(3,3) and (4,4) being 1. Finally, it sets Z = B~ D and outputs

g, g7r1(B), g™ (U1B)’ ., g™ (U, B)’ gﬂ'l(VB)’ g™ (WB)
gm (U'B) g™ (U, B) s (V'B) :
PP = h, R )’ ! (Ul z) hﬂ'l(UZl Z) hﬂ,l(VTZ)7 L (WTZ) and sp= 1.

B (U'/,z) pr(V''2Z)

Gen(pp,sp) : It picks o <~ Z2** outputs mpk = (pp, e(g, h)® ™ (B)) and msk = a.

Ext(msk, mpk, ID) : It first sets S = {2i — ID;]i € [¢]} where ID; € {0, 1} is the i-th bit of ID € {0, 1}, It
then defines S; for j € [¢2] as Equation (33). Finally, it picks r1, ..., Ty, < 22*" and outputs skjp =

VTZ+iY . o Ul'Z)r;
Ky = h™! jes; Uj BIri
Ky = ot Siete W ) g, prm@r T
1 ’ 2, ) AV AT uTz
K}, =hm WV B es, U B

3y i€[ls)]

Enc(mpk, ID, M) : It first sets S for j € [no] as above. Then, it picks s,t1,. .., te,, t7,. .., t) & 22*" and

outputs CT =
Cy = g (BJs { Cyi = gm(WB)erm (VB+i ¥ g, UjB)titm (VB+i Y. U;B)t;}
Y N2
T T ; T 4
Cy=e(g,h)* MBS M, | Cyy=gm B 0y, = gmB i€lto]

Dec(skip, CT) : It parses the ciphertext CT as CT — (C1,{C2, Cs 4, C{,,’i}ie[@ﬂ, C4). Observe that

e(Cai, Ka4) - e(Csi, K3;) - e(Cy 4, K3 ;)

e(gm (WB)s+7m1(VB+i Z;‘esi U;B)t;+m1(V'B+i ZjESi U;B)t; ! (Z)ri)
)

e(gﬂ'l (B)ti’ hﬂ'l (VTZ+7, ZjESi UJTZ)rl) X e(gﬂ-l(B)t;7 hﬂ'l (V/TZ+’L ZjESi U/;—Z)I‘l)
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h)—sTwl(WB)Tﬂ'l(Z)ri _ 6( h)—STﬂ'l(B)Tﬂ'l(WTZ)I‘i

= elg, g,

for i € [¢3]. It computes

e(Cy, Ky) H (e(Cay, Kay) - e(Csi, K34) - €(Cy 4, K3 ;)
1€[02]
_ €(g7r1(B)S, ha+zie[42] ﬂl(WTZ)ri) . H e(g, h)*STﬂ'l(B)TTrl(WTZ)I'i
i€[0a]

T

— e(g, h)a 7r1(B)s_

Finally, it recovers the message by Cy/e(g, h)® ™ ®B)s = M.
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