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Abstract. The protection of cryptographic implementations against
higher-order attacks has risen to an important topic in the side-channel
community after the advent of enhanced measurement equipment that
enables the capture of millions of power traces in reasonably short time.
However, the preprocessing of multi-million traces for such an attack is
still challenging, in particular when in the case of (multivariate) higher-
order attacks all traces need to be parsed at least two times. Even worse,
partitioning the captured traces into smaller groups to parallelize com-
putations is hardly possible with current techniques.
In this work we introduce procedures that allow iterative computation
of correlation in a side-channel analysis attack at any arbitrary order in
both univariate and multivariate settings. The advantages of our pro-
posed solutions are manifold: i) they provide stable results, i.e., by in-
creasing the number of used traces high accuracy of the estimations is
still maintained, ii) each trace needs to be processed only once and at
any time the result of the attack can be obtained (without requiring to
reparse the whole trace pool when adding more traces), iii) the com-
putations can be efficiently parallelized, e.g., by splitting the trace pool
into smaller subsets and processing each by a single thread on a multi-
threading or cloud-computing platform, and iv) the computations can
be run in parallel to the measurement phase. In short, our constructions
allow efficiently performing higher-order side-channel analysis attacks
(e.g., on hundreds of million traces) which is of crucial importance when
practical evaluation of the masking schemes need to be performed.

1 Introduction

Side-channel analysis (SCA) poses a major threat for security-sensitive applica-
tions. This becomes particularly critical when the cryptographic device – par-
ticularly in pervasive applications – is delivered to the end user, where it is
operated in a hostile environment (cf. [17, 22]). For such a case the integration
of appropriate countermeasures against SCA attacks has become essential in the
design of the device. In this context, masking as a countermeasure obtained the
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most attraction from both academia and industry due to its sound theoretical
basis as well as its practical efficiency to mitigate the attacks. Masking counter-
measures are based on the principle of secret sharing for which many different
forms including Boolean, arithmetic, multiplicative, polynomial base, etc. have
been proposed [5, 6, 19].

Since the efficiency of a masking schemes strongly depends on its implementa-
tion, a practical evaluation of the final product (or a prototype) is inevitable. For
this situation, techniques such as the test vector leakage assessment [9] (known as
t-test) have been developed to practically examine the vulnerability of a crypto-
graphic design. However, such an evaluation scheme can only report the existence
of a leakage in a product, but it does not provide any indication whether this
leakage is indeed exploitable by an attack. In reply to the question if a leakage
is in fact exploitable for key recovery, one needs to mount different SCA attacks
and examine their success. Depending on the definition and settings of the mask-
ing scheme, it can provide security against SCA attacks up to a certain order
d. Consequently, all tests and attacks need to take all particular orders ranging
from 1 up to d+ 1 into account.

The most common SCA attack, Correlation Power Analysis (CPA) [4], is
based on a hypothetical leakage model and the estimation of correlation (com-
monly by Pearson’s correlation coefficient) between the hypothetical leakages
and the SCA traces. In its simplest setting, the attack runs independently at
each sample point of the SCA traces. This univariate first-order CPA can be ex-
tended to higher orders d > 1 by introducing a preprocessing stage for the traces
at each sample point. This preprocessing involves the computation of mean-free
values which are then squared (for a univariate d = 2nd-order CPA), cubed
(for a univariate d = 3rd-order CPA), or any corresponding power for larger d.
Prior to the attack d different sample points of each trace are combined into a
centered product for the multivariate case at order d > 1. In other words, first
mean-free representations are calculated of which d sample points of each trace
are multiplied. It is noteworthy that finding such d points of interest is another
challenging task which has been well studied in [8, 18].

By increasing the order of the underlying masking scheme the correspond-
ing higher-order CPA becomes more susceptible to noise. Indeed the number of
required traces to mount a successful attack increases exponentially in d with
respect to the noise standard deviation. Therefore, a higher-order attack typ-
ically requires several (hundreds of) millions of traces to be successful [1, 13].
The conventional strategy for preprocessing (known as “three-pass”) parses all
traces three times to i) obtain the means, ii) combine the desired points by their
mean-free product, and iii) estimate the correlation1. This procedure has many
shortcomings as by adding more traces to the trace pool, the entire last two steps
need to be repeated. Hence, it is not easily possible to parallelize the computa-
tions by splitting the trace pool into smaller sets. We should emphasize that, in
case of univariate attacks, the parallelization can be trivially done by splitting
each trace into smaller subtraces with a lower number of sample points.

1 In some particular cases, e.g., univariate, the last two steps can be combined.



3

Alternatively as shown in [3] for first-order and second-order CPA, the for-
mulas for preprocessing and the estimation of the correlation can be combined
by following the displacement law. This procedure (so-called “Raw-Moment”)
solves all the shortcomings of the three-pass approach. In fact:

– When increasing the trace pool, the estimated raw moments are easily up-
dated by only processing the given new traces.

– The attack can be started before the measurement phase is completed. This
helps to further increase the performance of the attacks.

– The result of the attack can be obtained without introducing any overhead
to the process of the further traces at any time during the measurement
phase.

– The trace pool can be easily split into smaller sets and each set can be
processed independently by different threads. Due to the nature of the raw
moments, the result of different threads (at any time) can be easily combined
to derive the result of the attack.

Note, however, that this procedure was only presented for first-order and bivari-
ate second-order CPA using 10,000,000 traces and may suffer from numerical
instabilities as the raw moments become pretty large values by increasing the
number of traces. Hence, it can lead to serious accuracy loss due to the lim-
ited fraction significand of floating point formats (e.g., IEEE 754). This issue
becomes extremely problematic for higher-order (d > 2) attacks.

The instability in formulas that are based on raw moments has been previ-
ously studied to come up for appropriate solutions. For example, in [15] robust
iterative formulas for centralized and standardized moments at any arbitrary
order as well as for correlation are given that avoid such instabilities by increas-
ing the number of samples. Furthermore, iterative formulas for the t-test at any
arbitrary order are given in [20].
Our Contribution: In this work, we present an approach based on centralized
and standardized moments to cover univariate as well as multivariate CPA at-
tacks at any arbitrary order. Our solution benefits from all the aforementioned
advantages of the raw-moment approach while it maintains the accuracy (as for
the three-pass approach) regardless of the order of the attack and the number
of traces. This work not only covers CPA attacks but also Moments-Correlating
DPA [14] where moments are correlated to the (preprocessed) traces with the
goal of avoiding the necessity of a hypothetical leakage model (that is unavoid-
able in CPA attacks).

Prior to the description of our solution we define two terms iterative and
incremental which are frequently used in the rest of the paper. Suppose that
after finishing all the required processes on the trace pool Q, a new trace y is
added to the trace pool Q′ = Q ∪ {y}. We provide incremental formulas that
allow updating the previously computed terms by only processing the new trace
y. In addition to that, we suppose that the trace pool Q is divided into two
groups as Q = Q1 ∪ Q2, and each group is independently processed using the
given incremental formulas. We provide (two-pair) iterative formulas that enable
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the combination of results computed over each group Q1 and Q2 to derive the
result of the full trace pool Q.

2 Notations

We use capital letters for random variables, and lower-case letters for their real-
izations. Vectors are denoted with bold notations, functions with sans serif fonts,
and sets with calligraphic ones.

Suppose that in a side-channel attack, with respect to n queries with associ-
ated data (e.g., plaintext or ciphertext) di∈{1,...,n}, n side-channel measurements
(so-called traces) are collected. Let us denote each trace by ti∈{1,...,n} containing

m sample points {t(1)i , . . . , t
(m)
i }.

Following the divide-and-conquer principle, one objective of a side-channel
attack is to recover a part k of the secret key k, which contributed to the process-
ing of the entire associated data di∈{1,...,n}. Prior to the attack an intermediate
value V is selected, which given the associated data and a key guess k is pre-
dictable, i.e., vi = F (di, k). In a CPA attack a hypothetical leakage model L̃(.) is
applied on the chosen intermediate value which should be (sufficiently) linearly
proportional to the actual leakage of the target device, i.e., L(.). As a common
and straightforward example, the Hamming weight of an Sbox output during the
first round of an encryption function is employed when attacking an exemplary
micro-processor based implementation, i.e., li = L̃(vi) = HW (S (di ⊕ k)), where
di denotes a necessary part of di to predict vi.

Let us denote the dth-order raw statistical moment of a random variable X by
Md = E(Xd), with µ = M1 the mean and E(.) the expectation operator. We also

denote the dth-order (d > 1) central moment by CMd = E
(

(X − µ)
d
)

, with

s2 = CM2 the variance. Finally, the dth-order (d > 2) standardized moment

is denoted by SMd = E

((
X−µ
s

)d)
, with SM3 the skewness and SM4 the

kurtosis.

3 Univariate CPA

For a univariate CPA attack the correlation between the traces T and the hy-
pothetical leakage values L is estimated. Due to the univariate nature of the at-
tack, such a process is performed at each sample point (1, . . . ,m) independently.
Therefore, below – for simplicity – we omit the upper index of the sample points
and denote a sample point of the ith trace by ti.

The estimation of the correlation with Pearson correlation coefficient (as the
normalized covariance) is defined as

ρ =
cov(T, L)

st sl
=

E
(

(T − µt) (L− µl)
)

st sl
, (1)
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where µt (resp. µl) denotes the estimated mean of the traces (resp. of the hypo-
thetical leakages). st (resp. sl) also stands for standard deviation.

In the discrete domain we can write

ρ =

1

n

n∑
i=1

(ti − µt)(li − µl)√
1

n

n∑
i=1

(ti − µt)2
1

n

n∑
i=1

(li − µl)2
(2)

Based on the way followed in [3] one can write

ρ =

1

n

n∑
i=1

ti li − µt µl√(
1

n

n∑
i=1

ti
2 − µt2

)(
1

n

n∑
i=1

li
2 − µl2

) =
M1,T ·L −M1,T M1,L√(

M2,T −M1,T
2
) (
M2,L −M1,L

2
) ,

(3)

which are based on dth-order raw moments, i.e., Md,X = 1
n

n∑
i=1

xi
d. However, as

stated in [20], such constructions can lead to numerically unstable situations [10].
During the computation of the raw moments the intermediate values tend to
become very large which can lead to a loss in accuracy. Further, M2 and M1

2

can be large values, and the result of M2 −M1
2 can also lead to a significant

accuracy loss due to the limited fraction significand of floating point formats
(e.g., IEEE 754).

Iterative. We can alternatively write

ρ =

1

n

n∑
i=1

(ti − µt)(li − µl)√
1

n

n∑
i=1

(ti − µt)2
1

n

n∑
i=1

(li − µl)2
=

1

n
ACS1√

1

n
CS2,T

1

n
CS2,L

, (4)

with CSd,X =
n∑
i=1

(xi − µx)
d

as the definition of dth-order centralized sum given

in [20]. Further, we define ACS1 as the first-order adjusted centralized sum.

Suppose that M1,Q1
(resp. M1,Q2

) denotes the first raw moment (sample
mean) of the given set Q1 (resp. Q2) with cardinality n1 = |Q1| and n2 = |Q2|.
M1,Q as the first raw moment of Q = Q1 ∪ Q2 can be written as [15]

M1,Q =
n1M1,Q1 + n2M1,Q2

n
, (5)

with n = n1 + n2 as the cardinality of Q.
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In the same way, such a formula can be written for the centralized sum CSd,Q
at any arbitrary order d > 1 as [15]

CSd,Q = CSd,Q1
+ CSd,Q2

+

d−2∑
p=1

(
d

p

)[(−n2
n

)p
CSd−p,Q1

+
(n1
n

)p
CSd−p,Q2

]
∆p

+
(n1 n2

n
∆
)d[( 1

n2

)d−1
−
(−1

n1

)d−1]
,

(6)

with ∆ = M1,Q2
−M1,Q1

. It is noteworthy that the calculation of CSd,Q addi-
tionally requires CSp,Q1

and CSp,Q2
for 1 < p ≤ d.

The remaining part is the first-order adjusted centralized sum ACS1. Suppose
that Q1 and Q2 denote sets of doubles (t, l) with first-order adjusted centralized
sum ACS1,Q1

and ACS1,Q2
respectively. The first-order adjusted centralized

sum of Q = Q1 ∪ Q2 can be written as

ACS1,Q = ACS1,Q1 +ACS1,Q2 +
n1 n2
n

∆t∆l, (7)

with ∆t = µt,Q2
−µt,Q1

and ∆l = µl,Q2
−µl,Q1

. For simplicity, we denote M1,T1
by µt,Q1

and M1,L1
by µl,Q1

. The sets T1 and L1 are formed respectively from
the first and second elements of the doubles in Q1 (the same holds for Q2, µt,Q2

,
and µl,Q2).

With the above given formulas the estimation of the correlation in a first-
order CPA attack can be efficiently parallelized. The traces can be split into small
sets, and with the mean, second-order centralized sum, and first-order adjusted
centralized sum of each set, the final correlation can be easily estimated.

Incremental, n2 = 1. We now optimize the computations of each set. It is
indeed enough to suppose that Q2 consists of only one element y. Hence the
update formula for the first raw moment can be written as

M1,Q = M1,Q1 +
∆

n
,

with ∆ = y −M1,Q1 . Note that Q1 and M1,Q1 are initialized with ∅ and re-
spectively zero. Similarly, we can write the same for the dth-order centralized
sum

CSd,Q = CSd,Q1+

d−2∑
p=1

(
d

p

)
CSd−p,Q1

(
−∆
n

)p
+

(
n− 1

n
∆

)d [
1−

(
−1

n− 1

)d−1]
,

(8)
where ∆ = y −M1,Q1

. For the first-order adjusted centralized sum we can also
write

ACS1,Q = ACS1,Q1
+
n− 1

n
∆t∆l, (9)

with ∆t = tn − µt,Q1 and ∆l = ln − µl,Q1 , where Q2 =
{

(tn, ln)
}

.
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Based on these formulas the correlation can be computed efficiently in one
pass. Furthermore, since the intermediate results of the central sums are mean-
free, they do not become significantly large which helps preventing the numerical
instabilities.

3.1 Univariate Higher-Order CPA

Higher-order attacks require that the sample traces are preprocessed. For the
second-order univariate CPA the preprocessing consists of making each sample
point mean-free squared:

t′i = (ti − µt)2 .

For higher orders d > 2 the traces are usually additionally standardized as
t′i
std

,

where st denotes the standard deviation. Therefore, the Pearson correlation can
be written as

ρ =

1

n

n∑
i=1

( t′i
std
− µt′

std

)
(li − µl)√

1

n

n∑
i=1

( t′i
std
− µt′

std

)2 1

n

n∑
i=1

(li − µl)2
=

1

n

n∑
i=1

(
t′i(li − µl)

)
√

1

n

n∑
i=1

(t′i − µt′)
2 1

n

n∑
i=1

(li − µl)2

(10)

The straightforward way is to first preprocess the entire trace set ti∈{1,...,n}.
Hence the measurement phase has to be completed before the preprocessing can
be started. Another drawback is the reduced efficiency as each of the prepro-
cessing and the estimation of the correlation steps needs at least one pass over
the whole trace set.

In [3], the authors propose iterative formulas for first- and second-order CPA.
Their approach is based on raw moments which can lead to numerical instability
if the values get too large [20]. Alternatively, we propose an iterative method
which is based on the centralized moments. These values are mean-free which
leads to smaller values and better accuracy for a large number of measurements.
This approach can be run in parallel to the measurements (and can be also
split into smaller threads) as the result is incrementally updated for each new
measurement. Therefore, it needs only one pass over the whole trace set. In the
following, we present all necessary iterative formulas to perform a univariate
CPA at any arbitrary order with sufficient accuracy. We divide the expressions
by the numerator and denominator of Equation (10).

3.2 Numerator

Note that even though the numerator looks similar to a raw-moment approach,
it operates with centralized (mean-free) values. Therefore, numerical instabilities
are avoided. The numerator for the d-th order correlation can be written as

1

n

n∑
i=1

(
t′i(li − µl)

)
=

1

n

n∑
i=1

(ti − µt)d (li − µl) =
1

n
ACSd, (11)
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with ACSd which we refer to as the dth-order adjusted centralized sum.
We start with a generic formula which merges the adjusted centralized sum

of two sets Q1 ∪ Q2 = Q with |Q1| = n1, |Q2| = n2 and |Q| = n. The goal is to
compute ACSd,Q given only the adjusted and centralized sums of Q1 and Q2.

Theorem 1. Let Q1 and Q2 be given sets of doubles (t, l). Suppose also T1 and
L1 as the sets of respectively the first and second elements of the doubles in Q1

(the same for T2 and L2). The dth-order adjusted centralized sum ACSd,Q of the
extended set Q = Q1 ∪ Q2 with ∆t = µt,Q2

− µt,Q1
and ∆l = µl,Q2

− µl,Q1
can

be written as

ACSd,Q = ACSd,Q1
+ACSd,Q2

+
∆l

n

(
n1 CSd,Q2

− n2 CSd,Q1

)
+

d−1∑
p=1

(
d

p

)(
∆t

n

)p [
(−n2)

p
ACSd−p,Q1 + (n1)

p
ACSd−p,Q2

+
∆l

n

(
(−n2)

p+1
CSd−p,Q1

+ (n1)
p+1

CSd−p,Q2

)]
+

(
n1 (−n2)d+1 + n2 (n1)d+1

)
nd+1

(∆t)
d
∆l (12)

The proof of Theorem 1 is given in Appendix A.

Incremental, n2 = 1. For the iterative formulas when Q2 =
{

(tn, ln)
}

Equa-
tion (12) can be simplified to

ACSd,Q =ACSd,Q1
+ CSd,Q1

(
−∆l

n

)
+

d−1∑
p=1

(
d

p

)(
−∆t

n

)p [
ACSd−p,Q1

+ CSd−p,Q1

(
−∆l

n

)]

+
(−1)

d+1
(n− 1) + (n− 1)

d+1

nd+1
(∆t)

d
∆l, (13)

with ∆t = tn − µt,Q1
and ∆l = ln − µl,Q1

.

3.3 Denominator

The denominator of Equation (10) requires the computation of two centralized

sums. For the second centralized sum
n∑
i=1

(li − µl)2 we already gave pair-wise

iterative as well as incremental formulas for CS2,Q in Equation (6) and Equa-
tion (8).

The first centralized sum
n∑
i=1

(t′i − µt′)
2

relates to the preprocessed traces.

For this, efficient formulas to compute the variance of the preprocessed traces
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are given in [20]. In order to estimate the variance (second centralized moment
CM2,T ′) of T ′ =

{
t′i∈{1,...,n}

}
as the set of preprocessed traces at any arbitrary

order d > 1 we can write [20]

1

n

n∑
i=1

(t′i − µt′)
2

= CM2,T ′ = CM2d,T − (CMd,T )
2

=
CS2d,T

n
−
(
CSd,T
n

)2

,

where T denotes the traces without preprocessing. Therefore, given the iterative
and incremental formulas for CSd,Q in Equation (6) and Equation (8) we can
efficiently as well as in parallel estimate both centralized sums of the denomi-
nator of Equation (10). Further, having the formulas given in Section 3.2 the
correlation of a univariate CPA at any arbitrary order d can be easily derived.

4 Multivariate CPA

In the following we give iterative formula for multivariate higher-order CPA
with the optimum combination function, i.e., centered product [16,21]. Given d
sample point indices J = {j1, ..., jd} as the points to be combined and a set of

sample vectors Q = {Vi∈{1,...,n}} with Vi =
(
t
(j)
i | j ∈ J

)
, the centered product

of the ith trace is defined as

ci =
∏
j∈J

(
t
(j)
i − µ

(j)
Q

)
, (14)

where µ
(j)
Q denotes the mean at sample point j over set Q.

The authors of [3] proposed an iterative formula for the Pearson correlation
coefficient in the bivariate case, i.e., d = 2. However, during the computation

they calculate the sum
n∑
i=1

(
t
(j1)
i t

(j2)
i

)2
for the two point indices j1 and j2 (cf. s11

of Table 5 in [3]). Their method is basically equivalent to using the raw moments
to derive higher-order statistical moments. Given a high number of traces this
value can grow very large, and can cause numerical instability.

We instead provide iterative formulas based on mean-free values. In our ap-
proach, the formula for the multivariate Pearson correlation coefficient is first
simplified using Equation (10) to

ρ =

1

n

n∑
i=1

(
ci − µc

)(
li − µl

)
√

1

n

n∑
i=1

(
ci − µc

)2 1

n

n∑
i=1

(
li − µl

)2 =

1

n

n∑
i=1

(
ci
(
li − µl

))
√

1

n

n∑
i=1

(
ci − µc

)2 1

n

n∑
i=1

(
li − µl

)2 .
(15)
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4.1 Numerator

The way of computing the numerator of Equation (15)

1

n

n∑
i=1

(
ci
(
li − µl

))
=

1

n

n∑
i=1

( ∏
j∈J

(
t
(j)
i − µ

(j)
Q

) (
li − µl

))
(16)

is similar to the iterative computation of the first parameter for the multivariate
t-test as presented in [20]. We indeed can write Equation (16) as

1

n

n∑
i=1

(
ci
(
li − µl

))
=

1

n

n∑
i=1

∏
j∈J ′

(
t
(j)
i − µ

(j)
Q

)
, (17)

with J ′ = J ∪{j∗}, t(j∗)i = li and µ
(j∗)
Q = µl. With this, we define the term sum

of centered products as

SCPd+1,Q,J ′ =
∑
Vi∈Q

∏
j∈J ′

(
t
(j)
i − µ

(j)
Q

)
. (18)

In addition, we define the b-th order power set of J ′ as

Pb = {S | S ∈ P(J ′), |S| = b}, (19)

where P(J ′) refers to the power set of the indices of the points of interest J ′. The
given formulas in [20] are for the incremental case when set Q2 has a cardinality
of 1. Hence, the sum of the centered products SCPd+1,Q,J ′ of the extended set

Q = Q1 ∪
{

(t
(j1)
n , ..., t

(jd)
n , t

(j∗)
n )

}
with t

(j∗)
n = ln and |Q| = n can be computed

as [20]

SCPd+1,Q,J ′ = SCPd+1,Q1,J ′ +

 d∑
b=2

∑
S∈Pb

SCPb,Q1,S
∏

j∈J ′\S

(
∆(j)

−n

)
+

 (−1)d+1(n− 1) + (n− 1)d+1

nd+1

∏
j∈J ′

∆(j)

 ,

(20)

where ∆(j∈J ′) = t
(j)
n − µ(j)

Q1
. Below we present a generalization of this method

to arbitrary sized Q2.

Generalization of [20]

Theorem 2. Let J ′ be a given set of indices (of d + 1 points of interest)
and two sets of sample vectors Q1 = {Vi∈{1,...,n1}}, Q2 = {Vi∈{1,...,n2}} with
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Vi =
(
t
(j)
i | j ∈ J ′

)
. The sum of the centered products SCPd+1,Q,J ′ of the ex-

tended set Q = Q1∪Q2 with ∆(j∈J ′) = µ
(j)
Q2
−µ(j)
Q1

and |Q| = n can be computed
as:

SCPd+1,Q,J ′ = SCPd+1,Q1,J ′ + SCPd+1,Q2,J ′

+

d∑
b=2

∑
S∈Pb

(
(−n2)

d+1−b
SCPb,Q1,S + nd+1−b

1 SCPb,Q2,S

) ∏
j∈J ′\S

∆(j)

n

+
(−n2)

d+1
n1 + nd+1

1 n2
nd+1

∏
j∈J ′

∆(j). (21)

The proof of Theorem 2 is given in Appendix B.

4.2 Denominator

Similar to the expressions given in Section 3.3 the denominator of Equation (15)

consists of two centralized sums. The second one
n∑
i=1

(li − µl)2 is the same as

that of the univariate CPA and Equation (6) and Equation (8) are still valid.

For the first centralized sum
n∑
i=1

(
ci−µc

)2
we recall the formulas given in [20]

which deal with the estimation of the variance of the preprocessed traces in a
multivariate setting. It means that we can write

n∑
i=1

(
ci − µc

)2
=
∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

)
− SCPd,Q,J

n

2

= SCP2d,Q,J ′′ −
(SCPd,Q,J )

2

n
, (22)

with multiset J ′′ = {j1, ..., jd, j1, ..., jd}. It is noteworthy that in contrast to the
computation of the numerator, where the set J ′ with d+ 1 indices is used, here
for the denominator the set J and its extension J ′′ with respectively d and 2d
indices are applied.

5 Moments-Correlating DPA

Moments-Correlating DPA (MC-DPA) [14] as a successor of Correlation-Enhanced
Power Analysis Collision Attack [12] solves its shortcomings and is based on
correlating the moments to the traces [7, 8, 11]. It relaxes the necessity of a
hypothetical leakage model which is essential in the case of a CPA.

The most general form of MC-DPA is Moments-Correlating Profiling DPA

(MCP-DPA). In such a scenario, the traces used to build the model t
(M)

i∈{1,...,n(M)}
(and trivially their number n(M)) are not necessarily the same as the traces used
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in the attack ti∈{1,...,n}. An MC-DPA in a multivariate settings uses two sets
of sample point indices JM and Jt related to the sample points of the model
and the attack respectively. Such sample points are taken based on the time in-
stances when a certain function (e.g., an Sbox) operates on an intermediate value

v
(M)

i∈{1,...,n(M)} to form the model and on another intermediate value v
(t)
i∈{1,...,n} to

perform the attack. In a simple scenario, such intermediate values can be differ-
ent Sbox inputs. Optionally a leakage function can be considered as L̃(.) over the
targeted intermediate values. Note that in the most general form such a leakage
function can be the identity mapping, i.e., L̃(v) = v. Following the original MC-

DPA scheme [14], v
(M)
i = d

(M)
i ⊕ k(M) and v

(t)
i = d

(t)
i ⊕ k(t) with d(M) and d(t)

e.g., plaintext portions (bytes) respectively of the model and the attack. Hence,
due to the linear relations such a setting turns into a linear collision attack [2]

with L̃(v
(M)
i ) = d

(M)
i and L̃(v

(t)
i ) = d

(t)
i ⊕∆k, which is referred to as Moments-

Correlating Collision DPA (MCC-DPA), where the traces for the model and the
attack are the same and n(M) = n. However, in the following expressions we
consider the profiling one which can be easily simplified to the collision one.

Let us denote L as a set of all possible outputs of the leakage function with
cardinality of nL is defined as

L = {l(1), . . . , l(nL)} = {l | ∃v, L̃(v) = l}. (23)

Correspondingly we define nL subsets I(M)

l(a∈{1,...,nL})

I(M)

l(a) = {i ∈ {1, . . . , n(M)} |L̃(v
(M)
i ) = l(a)} (24)

as the trace indices with particular leakage value l(a) on the model’s intermediate

values v
(M)
i with cardinality of n

(M)

l(a) . The same subsets are also defined with

respect to the attack’s intermediate values v
(t)
i as

I(t)
l(a) = {i ∈ {1, . . . , n} |L̃(v

(t)
i ) = l(a)}, (25)

with |I(t)
l(a) | = n

(t)

l(a) .
Depending on the type of the attack (univariate vs. multivariate) the sam-

ple points at JM are first combined using a combining function, e.g., centered
product, split into the subsets depending the leakage model L̃(.) and then used
to estimate the statistical moments of a given order d. Depending on the order
of the attack, prior preprocessing is also necessary. We denote these moments as
the model by

∀l(a) ∈ L, Ml(a)

preprocessing,
(centralized/standardized)

dth-order moment←−−−−−−−−−−−−−−−− {t(M)
i , i ∈ I(M)

l(a) ,JM}. (26)

On the other hand, the traces at the sample points Jt need also to be prepro-
cessed according to the variate of the attack (univariate vs. multivariate) as well
as the given order d.
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The correlation between the moments Ml(a∈{1,...,nL}) and the preprocessed
traces t′i∈{1,...,n} is defined as

ρ =

1

n

n∑
i=1

(t′i − µt′)(Mli − µM )√
1

n

n∑
i=1

(t′i − µt′)
2 1

n

n∑
i=1

(Mli − µM )
2

, (27)

where Mli∈{1,...,n} = Ml(a) , l(a) = L̃(v
(t)
i ) ∈ L.

5.1 Numerator

To compute the numerator of Equation (27) it is first simplified to

1

n

n∑
i=1

(t′i − µt′)(Mli − µM ) =

nL∑
a=1

(Ml(a) − µM )
1

n

∑
i∈I(t)

l(a)

t′i. (28)

The preprocessing of the MC-DPA requires the sum of Equation (28)
SUMI(t)

l(a)

=
∑

i∈I(t)
l(a)

t′i to be processed independently. Otherwise, it is not trivially

possible to provide iterative formulas as the mean and variance of subgroup of

the traces ∈ I(t)
l(a) change. Since nL is limited, we store a sum for each value of set

L and merge them only at the end when the value of the estimated correlation
is desired. In the multivariate higher-order d > 1 scenario, we store nL sums of
the traces as

SUMI(t)
l(a)

=
∑

i∈I(t)
l(a)

t′i =
∑

i∈I(t)
l(a)

∏
j∈Jt

(
t
(j)
i − µ

(j)

I(t)
l(a)

)
= SCP

d,I(t)
l(a)

,Jt
, (29)

and in case of the univariate higher-order d > 2 as

SUMI(t)
l(a)

=
∑

i∈I(t)
l(a)

t′i =
1(

sI(t)
l(a)

)d ∑
i∈I(t)

l(a)

(
ti − µI(t)

l(i)

)d
=

1(
sI(t)

l(i)

)dCSd,I(t)
l(i)

.

(30)
Note that for d = 2 the denominator of Equation (30) is omitted. For a univariate
first-order attack the means are used to derive the latter term of Equation (28)
as

1

n
SUMI(t)

l(a)

=
1

n

∑
i∈I(t)

l(a)

ti =
n
(t)

l(a)

n
µI(t)

l(a)

. (31)

We should here emphasize that – in contrast to the methods of the prior
sections – in case of MC-DPA when a new trace is added to the set of traces
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following the incremental formulas only the sum and the moments which corre-
spond to the leakage value l(a) related to the new trace are updated.

In order to calculate the whole numerator it is necessary to store the moments
Ml(a) ,∀l(a) ∈ L. This procedure is similar to before, and for the multivariate
higher-order case it can be done by computing

Ml(a) =
1

n
(M)

l(a)

∑
i∈I(M)

l(a)

∏
j∈JM

(
t
(j)
i − µ

(j)

I(M)

l(a)

)
=
SCP

d,I(M)

l(a)
,JM

n
(M)

l(a)

. (32)

For the univariate case Equation (32) changes analog Equation (30). In a uni-
variate first-order attack there is no preprocessing, and Ml(a) simply represents
the mean µI(M)

l(a)

.

The mean µM in Equation (27) is

µM =
1

n

nL∑
a=1

n
(t)

l(a) Ml(a) , (33)

and as an example in case of a multivariate higher-order attack can be written
as

µM =
1

n

nL∑
a=1

SCP
d,I(t)

l(i)
,JM

. (34)

Since the iterative formulas (for both pair-wise and incremental cases) to com-
pute SCPd,... and CSd,... as well as other necessary moments are given in previous
sections, the numerator of Equation (27) can be easily derived.

5.2 Denominator

The first part of the denominator can be written as

1

n

n∑
i=1

(t′i − µt′)
2

=
1

n

n∑
i=1

t′i
2 − (µt′)

2
=

1

n

nL∑
a=1

 ∑
i∈I(t)

l(a)

t′i
2

− (µt′)
2
. (35)

Therefore, we additionally need to compute the sums of the squared preprocessed
traces SUM2

I(t)
l(a)

=
∑

i∈I(t)
l(a)

t′i
2
. For a multivariate higher-order case, this can be

written as SCP
2d,I(t)

l(a)
,{Jt,Jt}

similar to Equation (29) or similar to Equation (30)

and Equation (31) for the univariate cases. Further, the sums SUMI(t)
l(a)

com-

puted by Equation (29), Equation (30), or Equation (31) can be used to derive
µt′ following the same principle of Equation (33).

The second part of the denominator of Equation (27) can be obtained from
the values that are already used to compute the numerator:

1

n

n∑
i=1

(Mli − µM )
2

=
1

n

nL∑
a=1

n
(t)

l(a)(Ml(a) − µM )
2
. (36)
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Fig. 1. Difference between the result of correlation estimations (raw-moment versus
three-pass)

Since nL is limited, the above expression can be computed at the end when all
traces are processed to estimate the correlation.

In the aforementioned approach the sums SUMI(t)
l(a)

are grouped based on the

output of the leakage function, i.e., l(a), which is also key dependent. Hence, the
traces have to be regrouped for each key candidate as well as for each selected
leakage function L̃(.).

6 Evaluation

We evaluate the accuracy (convergence) of our presented approaches, and com-
pare it to the corresponding results of the raw-moment and three-pass ap-
proaches. To this end, we generate 100 million simulated leakages by ∼ N (100+
HW(x), 3), where x is drawn uniformly from {0, 1}4. Hence, the correlation be-
tween the leakages and HW(x) is estimated. Following the concept of higher-
order attacks, the leakages are also preprocessed (up to fifth order) to allow an
emulation of a higher-order univariate CPA. Note that the performance results
are still valid in the multivariate case given additional leakage points with a sim-
ilar leakage structure and the normalized product as combination function. This
can be easily seen as both type of attacks require the estimation of centralized
values up to a power of 2d (with an additional standardization for univariate
higher-order attacks). The results based on our incremental approaches are ex-
actly the same to the three-pass ones, i.e., with absolute 0 difference. As [3] only
includes the formulas for first-order and second-order bivariate CPA, we further
had to derive the necessary formulas for the univariate correlation up to the fifth
order. The formulas can be found in Appendix E.

With these formulas we computed the correlation up to the fifth order on
an Intel Xeon X5670 using a single thread, and examined the differences with
respect to the results of the three-pass approach. Figure 1 presents the corre-
sponding results. As expected, in the first-order setting the results are exactly
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the same, but the differences start to be obvious at higher orders particularly for
higher number of traces. It is noteworthy that in the cases where no difference
is shown for the fifth-order correlation, one of the variances of the denominator
in the raw-moment approach turned to a negative value which indicates the in-
stability of such formulas. With respect to the execution time of each approach,
although it depends on the optimization level of the underlying computer code,
we report 43 s, 17.8 s, and 11.6 s for three-pass, our incremental, and raw-moment
approach respectively to estimate all five correlations at the same time on 100
million leakage points. Obviously, the raw-moment approach is faster than the
others due to its lower amount of computations compared to our incremental
one.
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A Proof of Theorem 1

Proof. We start with the definition of ACSd,Q based on Equation (11) and write

ACSd,Q =
∑

(ti,li)∈Q

(ti − µt,Q)
d

(li − µl,Q)

=
∑

(ti,li)∈Q1

(ti − µt,Q)
d

(li − µl,Q) +
∑

(ti,li)∈Q2

(ti − µt,Q)
d

(li − µl,Q).

(37)

We first find iterative formulas for each sum separately and combine them
in the end. Starting with the first sum of Equation (37) we use the definition of
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M1,Q given in Equation (5) for µt,Q as well as µl,Q and write

∑
(ti,li)∈Q1

(ti − µt,Q)
d

(li − µl,Q) =

∑
(ti,li)∈Q1

(
ti −

n1 µt,Q1
+ n2 µt,Q2

n

)d(
li −

n1 µl,Q1
+ n2 µl,Q2

n

)
=

∑
(ti,li)∈Q1

(
ti − µt,Q1

− n2
n
∆t

)d (
li − µl,Q1

− n2
n
∆l

)
(38)

Following [15] we write the first term of the product of Equation (38) as

(
ti − µt,Q1 −

n2
n
∆t

)d
= (ti − µt,Q1)

d
+

d−1∑
p=1

(
d

p

)
(ti − µt,Q1)

d−p
(
−n2
n
∆t

)p
+
(
−n2
n
∆t

)d
(39)

By combining Equation (38) and Equation (39) we derive

∑
(ti,li)∈Q1

(ti − µt,Q)
d

(li − µl,Q) =

ACSd,Q1 +

d−1∑
p=1

(
d

p

)
ACSd−p,Q1

(
−n2
n
∆t

)p
+ CSd,Q1

(
−n2
n
∆l

)

+

d−2∑
p=1

(
d

p

)
CSd−p,Q1

(
−n2
n
∆t

)p (
−n2
n
∆l

)
+ n1

(
−n2
n
∆t

)d (
−n2
n
∆l

)
(40)

This can be simplified to

ACSd,Q1
+ CSd,Q1

(
−n2
n
∆l

)
+

d−1∑
p=1

(
d

p

)(
−n2
n
∆t

)p [
ACSd−p,Q1

+ CSd−p,Q1

(
−n2
n
∆l

)]
+ n1

(
−n2
n

)d+1

(∆t)
d
∆l (41)

It is noteworthy that CS1,Q1 is always zero and is ignored in the above expres-
sion.
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This procedure is repeated for the second sum of Equation (37), and we
derive∑
(ti,li)∈Q2

(ti − µt,Q)
d

(li − µl,Q) = ACSd,Q2 + CSd,Q2

(n1
n
∆l

)

+

d−1∑
p=1

(
d

p

)(n1
n
∆t

)p [
ACSd−p,Q2

+ CSd−p,Q2

(n1
n
∆l

)]
+ n2

(n1
n

)d+1

(∆t)
d
∆l (42)

By combining Equation (41) and Equation (42) we obtain Equation (12). ut

B Proof of Theorem 2

Proof. We start with the definition of the sum of the centralized product.

SCPd+1,Q,J ′ =
∑
V ∈Q

∏
j∈J ′

(
t(j) − µ(j)

Q

)
=
∑

V ∈Q1

∏
j∈J ′

(
t(j) − µ(j)

Q

)
+
∑

V ∈Q2

∏
j∈J ′

(
t(j) − µ(j)

Q

)
(43)

Using µ
(j)
Q =

n1µ
(j)
Q1

+ n2µ
(j)
Q2

n
and ∆(j∈J ′) = µ

(j)
Q2
−µ(j)
Q1

, we rewrite the first sum

of Equation (43) as

∑
V ∈Q1

∏
j∈J ′

(
t(j) − µ(j)

Q

)
=
∑

V ∈Q1

∏
j∈J ′

(
t(j) −

n1µ
(j)
Q1

+ n2µ
(j)
Q2

n

)

=
∑

V ∈Q1

∏
j∈J ′

(
t(j) − µ(j)

Q1
− n2

n
∆(j)

)

=

 ∑
V ∈Q1

∏
j∈J ′

(
t(j) − µ(j)

Q1

)
+

 d∑
b=1

∑
S∈Pb

∑
V ∈Q1

∏
s∈S

(
t(s) − µ(s)

Q1

) ∏
j∈J ′\S

n2∆
(j)

−n


+

 ∑
V ∈Q1

∏
j∈J ′

n2∆
(j)

−n

 . (44)
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With Equation (18) and the fact that ∀ j ∈ J ′,
∑

V ∈Q1

(
t(j) − µ(j)

Q

)
= 0, we

can simplify Equation (44) to

∑
V ∈Q1

∏
j∈J ′

(
t(j) − µ(j)

Q

)
= SCPd+1,Q1,J ′ +

 d∑
b=2

∑
S∈Pb

SCPb,Q1,S
∏

j∈J ′\S

n2∆
(j)

−n


+

(−n2)
d+1

n1
nd+1

∏
j∈J ′

∆(j). (45)

By following the same procedure we can write the second sum of Equa-
tion (43) as

∑
V ∈Q2

∏
j∈J ′

(
t(j) − µ(j)

Q

)
= SCPd+1,Q2,J ′ +

 d∑
b=2

∑
S∈Pb

SCPb,Q2,S
∏

j∈J ′\S

n1∆
(j)

n


+

nd+1
1 n2
nd+1

∏
j∈J ′

∆(j). (46)

The combination of (45) and (46) results in the iterative formula given in
Equation (21). ut
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C Essential formulas for univariate CPA for up to
5th-order

C.1 Two-Pair Iterative

Below we consider ∆t = µt,Q2
− µt,Q1

and ∆l = µl,Q2
− µl,Q1

with |Q1| = n1
and |Q2| = n2. The extended set is defined as Q = Q1 ∪Q2 with the cardinality
of n. The computations related to the sample points should be repeated at each
sample point separately.

Centralized Sums

CS2,L =CS2,L1
+ CS2,L2

+ n1 n2

(∆l

n

)2(
n1 + n2

)
(see Equation (4)) (47)

CS2,Q =CS2,Q1 + CS2,Q2 + n1 n2

(∆
n

)2(
n1 + n2

)
(48)

CS3,Q =CS3,Q1
+ CS3,Q2

+
3∆

n

(
− n2 CS2,Q1

+ n1 CS2,Q2

)
+ n1 n2

(∆
n

)3(
n1

2 − n22
)

(49)

CS4,Q =CS4,Q1
+ CS4,Q2

+
4∆

n

(
− n2 CS3,Q1

+ n1 CS3,Q2

)
+ 6
(∆
n

)2(
n2

2 CS2,Q1 + n1
2 CS2,Q2

)
+ n1 n2

(∆
n

)4(
n1

3 + n2
3
)

(50)

CS5,Q =CS5,Q1 + CS5,Q2 +
5∆

n

(
− n2 CS4,Q1 + n1 CS4,Q2

)
+ 10

(∆
n

)2(
n2

2 CS3,Q1
+ n1

2 CS3,Q2

)
+ 10

(∆
n

)3(
− n23 CS2,Q1 + n1

3 CS2,Q2

)
+ n1 n2

(∆
n

)5(
n1

4 − n24
)

(51)

CS6,Q =CS6,Q1
+ CS6,Q2

+
6∆

n

(
− n2 CS5,Q1 + n1 CS5,Q2

)
+ 15

(∆
n

)2(
n2

2 CS4,Q1
+ n1

2 CS4,Q2

)
+ 20

(∆
n

)3(
− n23 CS3,Q1

+ n1
3 CS3,Q2

)
+ 15

(∆
n

)4(
n2

4 CS2,Q1
+ n1

4 CS2,Q2

)
+ n1 n2

(∆
n

)6(
n1

5 + n2
5
)

(52)
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CS7,Q =CS7,Q1 + CS7,Q2 +
7∆

n

(
− n2 CS6,Q1 + n1 CS6,Q2

)
+ 21

(∆
n

)2(
n2

2 CS5,Q1
+ n1

2 CS5,Q2

)
+ 35

(∆
n

)3(
− n23 CS4,Q1 + n1

3 CS4,Q2

)
+ 35

(∆
n

)4(
n2

4 CS3,Q1
+ n1

4 CS3,Q2

)
+ 21

(∆
n

)5(
− n25 CS2,Q1 + n1

5 CS2,Q2

)
+ n1 n2

(∆
n

)7(
n1

6 − n26
)

(53)

CS8,Q =CS8,Q1
+ CS8,Q2

+
8∆

n

(
− n2 CS7,Q1

+ n1 CS7,Q2

)
+ 28

(∆
n

)2(
n2

2 CS6,Q1
+ n1

2 CS6,Q2

)
+ 56

(∆
n

)3(
− n23 CS5,Q1

+ n1
3 CS5,Q2

)
+ 70

(∆
n

)4(
n2

4 CS4,Q1
+ n1

4 CS4,Q2

)
+ 56

(∆
n

)5(
− n25 CS3,Q1

+ n1
5 CS3,Q2

)
+ 28

(∆
n

)6(
n2

6 CS2,Q1
+ n1

6 CS2,Q2

)
+ n1 n2

(∆
n

)8(
n1

7 + n2
7
)

(54)

CS9,Q =CS9,Q1 + CS9,Q2 +
9∆

n

(
− n2 CS8,Q1 + n1 CS8,Q2

)
+ 36

(∆
n

)2(
n2

2 CS7,Q1
+ n1

2 CS7,Q2

)
+ 84

(∆
n

)3(
− n23 CS6,Q1 + n1

3 CS6,Q2

)
+ 126

(∆
n

)4(
n2

4 CS5,Q1
+ n1

4 CS5,Q2

)
+ 126

(∆
n

)5(
− n25 CS4,Q1 + n1

5 CS4,Q2

)
+ 84

(∆
n

)6(
n2

6 CS3,Q1
+ n1

6 CS3,Q2

)
+ 36

(∆
n

)7(
− n27 CS2,Q1 + n1

7 CS2,Q2

)
+ n1 n2

(∆
n

)9(
n1

8 − n28
)

(55)
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CS10,Q =CS10,Q1 + CS10,Q2 +
10∆

n

(
− n2 CS9,Q1 + n1 CS9,Q2

)
+ 45

(∆
n

)2(
n2

2 CS8,Q1
+ n1

2 CS8,Q2

)
+ 120

(∆
n

)3(
− n23 CS7,Q1 + n1

3 CS7,Q2

)
+ 210

(∆
n

)4(
n2

4 CS6,Q1
+ n1

4 CS6,Q2

)
+ 252

(∆
n

)5(
− n25 CS5,Q1 + n1

5 CS5,Q2

)
+ 210

(∆
n

)6(
n2

6 CS4,Q1
+ n1

6 CS4,Q2

)
+ 120

(∆
n

)7(
− n27 CS3,Q1

+ n1
7 CS3,Q2

)
+ 45

(∆
n

)8(
n2

8 CS2,Q1
+ n1

8 CS2,Q2

)
+ n1 n2

(∆
n

)10(
n1

9 + n2
9
)

(56)

Adjusted Centralized Sums

ACS1,Q = ACS1,Q1
+ACS1,Q2

+
n2 (n1)

2
+ n1 (n2)

2

n2
∆t∆l (57)

ACS2,Q = ACS2,Q1
+ACS2,Q2

+
∆l

n
(n1CS2,Q2

− n2CS2,Q1
)

+ 2

(
∆t

n

)
(n1ACS1,Q2

− n2ACS1,Q1
)

+
n2 (n1)

3 − n1 (n2)
3

n3
(∆t)

2
∆l (58)

ACS3,Q = ACS3,Q1
+ACS3,Q2

+
∆l

n
(n1CS3,Q2

− n2CS3,Q1
)

+3

(
∆t

n

)(
n1ACS2,Q2 − n2ACS2,Q1 +

∆l

n

(
(n1)

2
CS2,Q2

+ (n2)
2
CS2,Q1

))
+3

(
∆t

n

)2 (
(n1)

2
ACS1,Q2 + (n2)

2
ACS1,Q1

)
+
n2 (n1)

4
+ n1 (n2)

4

n4
(∆t)

3
∆l (59)
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ACS4,Q = ACS4,Q1 +ACS4,Q2 +
∆l

n
(n1CS4,Q2 − n2CS4,Q1)

+4

(
∆t

n

)(
n1ACS3,Q2 − n2ACS3,Q1 +

∆l

n

(
(n1)

2
CS3,Q2 + (n2)

2
CS3,Q1

))
+6

(
∆t

n

)2(
(n1)

2
ACS2,Q2

+ (n2)
2
ACS2,Q1

+
∆l

n

(
(n1)

3
CS2,Q2

− (n2)
3
CS2,Q1

))
+4

(
∆t

n

)3 (
(n1)

3
ACS1,Q2

− (n2)
3
ACS1,Q1

)
+
n2 (n1)

5 − n1 (n2)
5

n5
(∆t)

4
∆l (60)

ACS5,Q = ACS5,Q1
+ACS5,Q2

+
∆l

n
(n1CS5,Q2

− n2CS5,Q1
)

+5

(
∆t

n

)(
n1ACS4,Q2

− n2ACS4,Q1
+
∆l

n

(
(n1)

2
CS4,Q2

+ (n2)
2
CS4,Q1

))
+10

(
∆t

n

)2(
(n1)

2
ACS3,Q2 + (n2)

2
ACS3,Q1 +

∆l

n

(
(n1)

3
CS3,Q2 − (n2)

3
CS3,Q1

))
+10

(
∆t

n

)3(
(n1)

3
ACS2,Q2 − (n2)

3
ACS2,Q1 +

∆l

n

(
(n1)

4
CS2,Q2 + (n2)

4
CS2,Q1

))
+5

(
∆t

n

)4 (
(n1)

4
ACS1,Q2 + (n2)

4
ACS1,Q1

)
+
n2 (n1)

6
+ n1 (n2)

6

n6
(∆t)

5
∆l (61)

C.2 Incremental, n2 = 1

Below we consider ∆t = tn − µt,Q1
and ∆l = ln − µl,Q1

with |Q1| = n− 1. The
extended set is defined as Q = Q1 ∪

{
(tn, ln)

}
with the cardinality of n. The

computations related to the sample points should be repeated at each sample
point independently.

Means and Centralized Sums

µt,Q =µt,Q1 +
∆t

n
µl,Q =µl,Q1

+
∆l

n
(62)
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CS2,L = CS2,L1
+

(∆l)
2

(n− 1)

n
(see Equation (4)) (63)

CS2,Q = CS2,Q1
+

(∆t)
2

(n− 1)

n
(64)

CS3,Q = CS3,Q1
− 3∆t

n
CS2,Q1

+
(∆t)

3
(n− 1)((n− 1)2 − 1)

n3
(65)

CS4,Q = CS4,Q1
− 4∆t

n
CS3,Q1

+
6 (∆t)

2

n2
CS2,Q1

+
(∆t)

4
(n− 1)((n− 1)3 + 1)

n4
(66)

CS5,Q = CS5,Q1 −
5∆t

n
CS4,Q1 +

10 (∆t)
2

n2
CS3,Q1 −

10 (∆t)
3

n3
CS2,Q1

+
(∆t)

5
(n− 1)((n− 1)4 − 1)

n5
(67)

CS6,Q = CS6,Q1 −
6∆t

n
CS5,Q1 +

15 (∆t)
2

n2
CS4,Q1 −

20 (∆t)
3

n3
CS3,Q1

+
15 (∆t)

4

n4
CS2,Q1 +

(∆t)
6

(n− 1)((n− 1)5 + 1)

n6
(68)

CS7,Q = CS7,Q1 −
7∆t

n
CS6,Q1 +

21 (∆t)
2

n2
CS5,Q1 −

35 (∆t)
3

n3
CS4,Q1

+
35 (∆t)

4

n4
CS3,Q1 −

21 (∆t)
5

n5
CS2,Q1 +

(∆t)
7

(n− 1)((n− 1)6 − 1)

n7
(69)

CS8,Q = CS8,Q1
− 8∆t

n
CS7,Q1

+
28 (∆t)

2

n2
CS6,Q1

− 56 (∆t)
3

n3
CS5,Q1

+
70 (∆t)

4

n4
CS4,Q1

− 56 (∆t)
5

n5
CS3,Q1

+
28 (∆t)

6

n6
CS2,Q1

+
(∆t)

8
(n− 1)((n− 1)7 + 1)

n8
(70)

CS9,Q = CS9,Q1
− 9∆t

n
CS8,Q1

+
36 (∆t)

2

n2
CS7,Q1

− 84 (∆t)
3

n3
CS6,Q1

+
126 (∆t)

4

n4
CS5,Q1

− 126 (∆t)
5

n5
CS4,Q1

+
84 (∆t)

6

n6
CS3,Q1

− 36 (∆t)
7

n7
CS2,Q1

+
(∆t)

9
(n− 1)((n− 1)8 − 1)

n9
(71)
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CS10,Q = CS10,Q1
− 10∆t

n
CS9,Q1

+
45 (∆t)

2

n2
CS8,Q1

− 120 (∆t)
3

n3
CS7,Q1

+
210 (∆t)

4

n4
CS6,Q1

− 252 (∆t)
5

n5
CS5,Q1

+
210 (∆t)

6

n6
CS4,Q1

− 120 (∆t)
7

n7
CS3,Q1

+
45 (∆t)

8

n8
CS2,Q1

+
(∆t)

10
(n− 1)((n− 1)9 + 1)

n10
(72)

Adjusted Centralized Sums

ACS1,Q = ACS1,Q1
+

(n− 1)
2

+ n− 1

n2
∆t∆l (73)

ACS2,Q = ACS2,Q1 −
∆l

n
CS2,Q1 − 2

(
∆t

n

)
ACS1,Q1

+
(n− 1)

3 − n+ 1

n3
(∆t)

2
∆l (74)

ACS3,Q = ACS3,Q1
− ∆l

n
CS3,Q1

− 3

(
∆t

n

)(
ACS2,Q1

− ∆l

n
CS2,Q1

)
+ 3

(
∆t

n

)2

ACS1,Q1
+

(n− 1)
4

+ n− 1

n4
(∆t)

3
∆l (75)

ACS4,Q = ACS4,Q1
− ∆l

n
CS4,Q1

− 4

(
∆t

n

)(
ACS3,Q1

− ∆l

n
CS3,Q1

)
+ 6

(
∆t

n

)2(
ACS2,Q1

− ∆l

n
CS2,Q1

)
− 4

(
∆t

n

)3

ACS1,Q1 +
(n− 1)

5 − n+ 1

n5
(∆t)

4
∆l (76)

ACS5,Q = ACS5,Q1
− ∆l

n
CS5,Q1

− 5

(
∆t

n

)(
ACS4,Q1

− ∆l

n
CS4,Q1

)
+ 10

(
∆t

n

)2(
ACS3,Q1

− ∆l

n
CS3,Q1

)
− 10

(
∆t

n

)3(
ACS2,Q1

− ∆l

n
CS2,Q1

)
+ 4

(
∆t

n

)4

ACS1,Q1
+

(n− 1)
6

+ n− 1

n6
(∆t)

5
∆l (77)
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At any time the correlation of a univariate CPA can be estimated as

(1st order) ρ =

1

n
ACS1√

1

n
CS2,Q

1

n
CS2,L

(78)

(2nd order) ρ =

1

n
ACS2√√√√ 1

n

(
CS4,Q −

(CS2,Q)
2

n

)
1

n
CS2,L

(79)

(3rd order) ρ =

1

n
ACS3√√√√ 1

n

(
CS6,Q −

(CS3,Q)
2

n

)
1

n
CS2,L

(80)

(4th order) ρ =

1

n
ACS4√√√√ 1

n

(
CS8,Q −

(CS4,Q)
2

n

)
1

n
CS2,L

(81)

(5th order) ρ =

1

n
ACS5√√√√ 1

n

(
CS10,Q −

(CS5,Q)
2

n

)
1

n
CS2,L

(82)

D Essential formulas for a bivariate second-order CPA

In the following we give the necessary formulas to the correlation for a bivariate
second-order CPA for exemplary sample points J = {1, 2}. Further, we con-

sider J ′ = {1, 2, ∗} with t
(∗)
i = li and t

(∗)
i = li. For the computation of the

denominator we also consider J ′′ = {1, 2, 1, 2}.

D.1 Two-Pair Iterative

We consider two sets Q1, Q2 with |Q1| = n1, |Q2| = n2 and ∆(j∈J ) = µ
(j)
Q2
−µ(j)
Q1

,

with µ
(j)
Qi

as the mean of the set Qi at sample point j. The two sets make up the
extended set Q = Q1 ∪Q2 which has a cardinality of n.
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Sum of Centered Products (Numerator)

SCP2,Q,{1,2} = SCP2,Q1,{1,2} + SCP2,Q2,{1,2}

+

(
(n1)

2
n2 + n1 (n2)

2
)
∆(1)∆(2)

n2
(83)

SCP2,Q,{1,∗} = SCP2,Q1,{1,∗} + SCP2,Q2,{1,∗}

+

(
(n1)

2
n2 + n1 (n2)

2
)
∆(1)∆(∗)

n2
(84)

SCP2,Q,{2,∗} = SCP2,Q1,{2,∗} + SCP2,Q2,{2,∗}

+

(
(n1)

2
n2 + n1 (n2)

2
)
∆(2)∆(∗)

n2
(85)

SCP3,Q,{1,2,∗} = SCP3,Q1,{1,2,∗} + SCP3,Q2,{1,2,∗}

+
(
n1SCP2,Q2,{1,2} − n2SCP2,Q1,{1,2}

) ∆(∗)

n

+
(
n1SCP2,Q2,{1,∗} − n2SCP2,Q1,{1,∗}

) ∆(2)

n

+
(
n1SCP2,Q2,{2,∗} − n2SCP2,Q1,{2,∗}

) ∆(1)

n

+

(
(n1)

3
n2 − n1 (n2)

3
)
∆(1)∆(2)∆(∗)

n3
(86)

Sum of Centered Products (Denominator)

SCP2,Q,{1,1} = SCP2,Q1,{1,1} + SCP2,Q2,{1,1}

+

(
(n1)

2
n2 + n1 (n2)

2
)
∆(1)∆(1)

n2
(87)

SCP2,Q,{1,2} = SCP2,Q1,{1,2} + SCP2,Q2,{1,2}

+

(
(n1)

2
n2 + n1 (n2)

2
)
∆(1)∆(2)

n2
(88)

SCP2,Q,{2,2} = SCP2,Q1,{2,2} + SCP2,Q2,{2,2}

+

(
(n1)

2
n2 + n1 (n2)

2
)
∆(2)∆(2)

n2
(89)
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SCP3,Q,{1,2,1} = SCP3,Q1,{1,2,1} + SCP3,Q2,{1,2,1}

+
(
n1SCP2,Q2,{1,2} − n2SCP2,Q1,{1,2}

) 2∆(1)

n

+
(
n1SCP2,Q2,{1,1} − n2SCP2,Q1,{1,1}

) ∆(2)

n

+

(
(n1)

3
n2 − n1 (n2)

3
)
∆(1)∆(2)∆(1)

n3
(90)

SCP3,Q,{1,2,2} = SCP3,Q1,{1,2,2} + SCP3,Q2,{1,2,2}

+
(
n1SCP2,Q2,{1,2} − n2SCP2,Q1,{1,2}

) 2∆(2)

n

+
(
n1SCP2,Q2,{2,2} − n2SCP2,Q1,{2,2}

) ∆(1)

n

+

(
(n1)

3
n2 − n1 (n2)

3
)
∆(1)∆(2)∆(2)

n3
(91)

SCP4,Q,{1,2,1,2} = SCP4,Q1,{1,2,1,2} + SCP4,Q2,{1,2,1,2}

+
(
n1SCP3,Q2,{1,2,1} − n2SCP3,Q1,{1,2,1}

) 2∆(2)

n

+
(
n1SCP3,Q2,{1,2,2} − n2SCP3,Q1,{1,2,2}

) 2∆(1)

n

+
(

(n1)
2
SCP2,Q2,{1,2} + (n2)

2
SCP2,Q1,{1,2}

) 2∆(1)∆(2)

n2

+
(

(n1)
2
SCP2,Q2,{1,1} + (n2)

2
SCP2,Q1,{1,1}

) ∆(2)∆(2)

n2

+
(

(n1)
2
SCP2,Q2,{2,2} + (n2)

2
SCP2,Q1,{2,2}

) ∆(1)∆(1)

n2

+

(
(n1)

4
n2 + n1 (n2)

4
)
∆(1)∆(2)∆(1)∆(2)

n4
(92)

D.2 Incremental, n2 = 1

Below we consider ∆(j∈J ) = t
(j)
n − µ(j)

Q1
with |Q1| = n − 1. The extended set is

defined as Q = Q1 ∪
{

(t
(j)
n |∀j ∈ J )

}
with the cardinality of n.

Sum of Centered Products (Numerator)

SCP2,Q,{1,2} = SCP2,Q1,{1,2} +
(n− 1)∆(1)∆(2)

n
(93)
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SCP2,Q,{1,∗} = SCP2,Q1,{1,∗} +
(n− 1)∆(1)∆(∗)

n
(94)

SCP2,Q,{2,∗} = SCP2,Q1,{2,∗} +
(n− 1)∆(2)∆(∗)

n
(95)

SCP3,Q,{1,2,∗} = SCP3,Q1,{1,2,∗} − SCP2,Q1,{1,2}
∆(∗)

n

− SCP2,Q1,{1,∗}
∆(2)

n
− SCP2,Q1,{2,∗}

∆(1)

n

+

(
n2 − 3n+ 2

)
∆(1)∆(2)∆(∗)

n2
(96)

Sum of Centered Products (Denominator)

SCP2,Q,{1,1} = SCP2,Q1,{1,1} +
(n− 1)∆(1)∆(1)

n
(97)

SCP2,Q,{1,2} = SCP2,Q1,{1,2} +
(n− 1)∆(1)∆(2)

n
(98)

SCP2,Q,{2,2} = SCP2,Q1,{2,2} +
(n− 1)∆(2)∆(2)

n
(99)

SCP3,Q,{1,2,1} = SCP3,Q1,{1,2,1} − 2SCP2,Q1,{1,2}
∆(1)

n

− SCP2,Q1,{1,1}
∆(2)

n
+
∆(1)∆(2)∆(1)

(
n2 − 3n+ 2

)
n2

(100)

SCP3,Q,{1,2,2} = SCP3,Q1,{1,2,2} − 2SCP2,Q1,{1,2}
∆(2)

n

− SCP2,Q1,{2,2}
∆(1)

n
+

(
n2 − 3n+ 2

)
∆(1)∆(2)∆(2)

n2
(101)

SCP4,Q,{1,2,1,2} = SCP4,Q1,{1,2,1,2} − 2SCP3,Q1,{1,2,1}
∆(2)

n

− 2SCP3,Q1,{1,2,2}
∆(1)

n
+ SCP2,Q1,{1,1}

∆(2)∆(2)

n2

+ 4SCP2,Q1,{1,2}
∆(1)∆(2)

n2
+ SCP2,Q1,{2,2}

∆(1)∆(1)

n2

+

(
n3 − 4n2 + 6n− 3

)
∆(1)∆(2)∆(1)∆(2)

n3
(102)

At any time the correlation of a bivariate CPA can be estimated as

ρ =

1

n
SCP3,Q,{1,2,∗}√

1

n
SCP4,Q,{1,2,1,2}

1

n
CS2,L

, (103)

where the centralized sum CS2,L is derived from Equation (47) or Equation (63).
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E Correlation from the Raw Moments

As [3] only includes the formulas for first-order and second-order bivariate CPA,
we first transform the bivariate formulas to the univariate second-order case and
extend the approach to higher orders. Recall that the correlation for the bivariate
second-order attack is computed in [3] as

ρ =
nλ1 − λ2s3√

nλ3 − λ22
√
ns9 − s32

, (104)

where n denotes the number of traces and λ{1,2,3} are derived from the sums
s{1,...,13}.

For the univariate second-order correlation, some of these sums are equiva-
lent. Therefore, in this special case it is possible to reduce the number of sums
required to be computed. For that, we first denote the d-th order sums as

S
(t)
d =

n∑
i=1

tdi , S
(l)
d =

n∑
i=1

ldi , S
(t,l)
d =

n∑
i=1

tdi l (105)

with s3 = S
(l)
1 and s9 = S

(l)
2 . The remaining parameters are then derived as

λ1 = S
(t,l)
2 − 2

S
(t)
1 S

(t,l)
1

n
+
S
(t)
1 S

(t)
1 S

(l)
1

n2
, λ2 = S

(t)
2 −

S
(t)
1 S

(t)
1

n
, (106)

λ3 = S
(t)
4 − 4

S
(t)
1 S

(t)
3

n
+ 6

S
(t)
1 S

(t)
1 S

(t)
2

n2
− 3

S
(t)
1 S

(t)
1 S

(t)
1 S

(t)
1

n3
. (107)

For the higher-order correlation the basic structure of Equation (104) stays the
same, and only the formulas for λ{1,2,3} change. We provided all necessary for-
mulas in the following subsections.

E.1 Third Order

λ1 =S
(t,l)
3 − 3

S
(t)
1 S

(t,l)
2

n
+ 3

(
S
(t)
1

)2
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1
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−

(
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(t)
1

)3
S
(l)
1

n3
, (108)

λ2 =S
(t)
3 − 3

S
(t)
1 S

(t)
2

n
+ 2

(
S
(t)
1

)3
n2

, (109)

λ3 =S
(t)
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5
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(
S
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1
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(
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S
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(110)
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E.2 Fourth Order

λ1 =S
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(113)

E.3 Fifth Order

λ1 = S
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λ2 = S
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