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Abstract

Several well-known public key encryption schemes, including those of Alekhnovich (FOCS 2003),
Regev (STOC 2005), and Gentry, Peikert and Vaikuntanathan (STOC 2008), rely on the conjectured
intractability of inverting noisy linear encodings. These schemes are limited in that they either require
the underlying field to grow with the security parameter, or alternatively they can work over the binary
field but have a low noise entropy that gives rise to sub-exponential attacks.

Motivated by the goal of efficient public key cryptography, we study the possibility of obtaining
improved security over the binary field by using different noise distributions. Inspired by an abstract
encryption scheme of Micciancio (PKC 2010), we consider an abstract encryption scheme that unifies
all the three schemes mentioned above and allows for arbitrary choices of the underlying field and noise
distributions.

Our main result establishes an unexpected connection between the power of such encryption schemes
and additive combinatorics. Concretely, we show that under the “approximate duality conjecture” from
additive combinatorics (Ben-Sasson and Zewi, STOC 2011), every instance of the abstract encryption
scheme over the binary field can be attacked in time 2O(

√
n), where n is the maximum of the ciphertext

size and the public key size (and where the latter excludes public randomness used for specifying the
code). On the flip side, counter examples to the above conjecture (if false) may lead to candidate public
key encryption schemes with improved security guarantees.

We also show, using a simple argument that relies on agnostic learning of parities (Kalai, Man-
sour and Verbin, STOC 2008), that any such encryption scheme can be unconditionally attacked in time
2O(n/ logn), where n is the ciphertext size. Combining this attack with the security proof of Regev’s cryp-
tosystem, we immediately obtain an algorithm that solves the learning parity with noise (LPN) problem
in time 2O(n/ log logn) using only n1+ε samples, reproducing the result of Lyubashevsky (Random 2005)
in a conceptually different way.

Finally, we study the possibility of instantiating the abstract encryption scheme over constant-size
rings to yield encryption schemes with no decryption error. We show that over the binary field decryp-
tion errors are inherent. On the positive side, building on the construction of matching vector families
(Grolmusz, Combinatorica 2000; Efremenko, STOC 2009; Dvir, Gopalan and Yekhanin, FOCS 2010),
we suggest plausible candidates for secure instances of the framework over constant-size rings that can
offer perfectly correct decryption.
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1 Introduction

Public key encryption is one of the most intriguing concepts of modern cryptography. Decades after the
introduction of the first public key encryption schemes [12, 41, 37, 30, 16], there are still only a handful of
candidate constructions. While public key encryption schemes such as RSA are widely deployed in practice,
their concrete efficiency, including the size of keys and ciphertexts, leaves much to be desired. In particular,
there is still a considerable efficiency gap between the best known public key encryption schemes and their
private key counterparts.

Motivated by the goal of finding new public key encryption schemes with attractive efficiency fea-
tures, we consider an abstract encryption scheme which captures a class of known schemes that rely on
the hardness of inverting a noisy linear encoding. This class includes the public key encryption scheme of
Alekhnovich [3], whose security is based on the conjectured intractability of the “learning parity with noise”
(LPN) problem, and the schemes of Regev [39] and of Gentry, Peikert and Vaikuntanathan (GPV) [17],
whose security is based on the conjectured intractability of the “learning with errors” (LWE) problem.

In all of the above schemes, there is a publicly known linear code which is typically chosen at random,
and the public keys and ciphertexts are generated by picking a secret uniform random codeword and adding
a secret random noise vector, or alternatively by computing the syndrome of such a noisy codeword. Among
other differences, the schemes differ in the choice of the underlying field and the distribution from which
the noise is picked. In the schemes proposed by Regev and GPV, the field size grows polynomially with
the security parameter and the noise distribution is a discrete Guassian. The scheme of Alekhnovich has the
advantage of working over the binary field, but its noise distribution is restricted to noise patterns whose
Hamming weight is smaller than the square root of the ciphertext size and public key size.1

The choice of binary field made by Alekhnovich [3] is attractive because of the potential for better
concrete efficiency, especially on light-weight devices [22, 11, 36]. However, the choice of noise distribution
made in [3] has a negative impact on efficiency since the low-weight noise makes a brute-force guessing
attack possible. In particular, if we require the scheme to resist 2t time attacks then this requires the public
keys as well as the ciphertexts to be of size at least Ω(t2), even when encrypting a single bit. In contrast, the
known attacks on the schemes of Regev and GPV, using lattice algorithms, only require the public keys and
ciphertexts to be of size Θ(t log t). The main question we study is whether it is possible to obtain a similar
or better level of succinctness by using linear codes over the binary field, thus obtaining a cryptosystem that
enjoys the best of both worlds.

1.1 Overview of contribution

Towards a systematic study of the above question, we start by formalizing our abstract encryption scheme
which unifies the schemes of Regev, GPV, and Alekhnovich, and allows for arbitrary choices of the under-
lying field and noise distributions. This scheme is inspired by an abstract encryption scheme of Micciancio
described in the online talk [32], which unifies the encryption schemes of Regev and GPV.

Next, we unconditionally rule out the possibility of instantiating the abstract encryption scheme over the
binary field to yield an optimally succinct cryptosystem, in the sense that the ciphertexts and public keys
are only O(t) bits long.2 This result is obtained using a simple argument that relies on a previous result of

1We view the code specification as a global public parameter and do not count it towards the public key size. This is justified by
the possibility of picking the code pseudorandomly or using special classes of codes that can be succinctly described (cf. [29, 11]).

2Recall that we do not include global public parameters, such as the specification of a random linear code, in the public key
size. Currently, the only plausible candidates for public key encryption schemes that are optimally succinct in the above sense are
based on special families of elliptic curves. Unlike typical code-based constructions, these schemes are inherently susceptible to
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Kalai et al. on agnostic learning of parities [23]. Combining this attack with the security proof of Regev’s
cryptosystem [39] immediately yields an algorithm that solves the learning parity with noise (LPN) problem
in time 2O(n/ log logn) using only n1+ε samples, providing a conceptually different proof for the main result
of Lyubashevsky [28].

Our main result establishes an unexpected connection between the power of such encryption schemes
and additive combinatorics. We show that under a conjecture from additive combinatorics it is also impos-
sible to obtain near-optimal succinctness over the binary field in the case in which the decryption error of a
single encryption is a sufficiently small constant. More concretely, every instance of the abstract encryption
scheme over the binary field can be attacked in time 2O(

√
n), where n is the maximum of the ciphertext size

and the public key size. This suggests that the parameters of Alekhnovich’s original construction cannot be
significantly improved by choosing different noise distributions.

The high level idea behind this result is as follows. An encryption scheme in the unified framework is
parameterized by three independent noise distributions: a distribution µsk, applied during the key generation,
and distributions µ0 and µ1 that are used for encrypting the messages 0 and 1 respectively. To enable
correct decryption with high probability, it must be the case that the distributions 〈µsk, µ0〉 and 〈µsk, µ1〉
are statistically far (where 〈·, ·〉 denotes the inner product of independent random samples). On the other
hand, the security of the scheme implies that noisy linear encoding with respect to these noise distributions
must be one-way, and in particular these distributions should not satisfy certain combinatorial properties that
enable an adversary to guess the noise and solve the resulting system of linear equations. Our conditional
negative results are obtained by applying the approximate duality conjecture from [7] to establish limits on
the existence of distributions which satisfy the above. On the flip side, counter examples to the approximate
duality conjecture (if false) would give distributions µsk, µ0, µ1 that can potentially serve as a basis for
cryptosystems (over the binary field) that resist exponential time attacks.

As a secondary contribution of this work, we study the possibility of instantiating the unified framework
over constant-size rings to yield encryption schemes with no decryption error. We show that over the binary
field, a small decryption error probability is inherent. On the positive side, building on the construction
of matching vector families from [13], which builds in turn on the constructions of [20, 15], we suggest
plausible candidates for secure instances of the framework over constant-size rings that can offer perfectly
correct decryption.

Before providing a more detailed account of our results, we provide some background on the problem
of noisy linear decoding and public key encryption schemes based on its conjectured hardness.

1.2 Learning parity with noise

The learning parity with noise (LPN) problem is the problem of solving random linear equations over F2

which are corrupted by some noise. More specifically, in this problem there is an unknown vector s ∈ Fn2 ,
and one is given independent random samples of the form (ai, bi), where ai is a uniform random vector
in Fn2 , bi = 〈ai, s〉 + ei, and each noise bit ei ∈ {0, 1} is 1 with probability η < 1

2 and 0 otherwise
independently of ai (all operations are performed over F2). The goal is to recover the unknown vector s
from these samples. If the noise rate η equals 0 then this can simply be done using Gaussian elimination.
When η > 0 the problem is conjectured to be intractable. Indeed, solving LPN given m samples can

quantum attacks. The work of Sahai and Waters [42] shows that public key encryption with optimally succinct ciphertexts can be
based on indistinguishability obfuscation and an exponentially strong one-way function. However, obfuscation-based constructions
have large public keys and their known instances are currently quite far from being practical.
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be viewed as the problem of decoding a noisy codeword in a random linear code of block length m and
dimension n, a longstanding problem in coding theory.

It is known that the hardness of solving the above search version of LPN with a uniform random un-
known vector s implies the hardness of the decision version of LPN, namely distinguishing between samples
of the form (ai, bi) as above and uniformly random and independent vectors in Fn+1

2 [9, 5]. From a coding
theory perspective, this means that if it is hard to decode noisy random codewords in a random linear code,
then the joint distribution (G, b) is pseudorandom, where G is a random generator matrix of a random linear
code and b is a noisy random codeword in the code.

A naive approach for solving LPN is to search among all vectors in Fn2 to find a vector s′ which satisfies
the largest number of equations. This algorithm takes 2O(n) time and one can show, using the Chernoff
bound, that O(n) independent random samples suffice to ensure that s′ will be the correct solution with
high probability. In [10], Blum et al. showed that, quite surprisingly, one can solve the LPN problem in
time 2O(n/ logn). However, a drawback of this algorithm is that it requires 2O(n/ logn) independent random
samples. In [28] (see also [24]) it was shown that the number of samples could be reduced to n1+ε at the
price of increasing the running time to 2O(n/ log logn). More specifically, they showed that using only n1+ε

initial independent random samples one can generate additional “almost fresh” random samples by XORing
sufficiently large random subsets of the initial samples. These new samples can be used in turn as an input
to the algorithm of [10].

1.3 Alekhnovich’s public key encryption scheme

In 2003, Alekhnovich [3] proposed a public key encryption scheme whose security was based on the in-
tractability of the LPN problem. Roughly speaking, this scheme can be used to encrypt a bit σ ∈ {0, 1} as
follows. Let n be a security parameter, m = 2n, and k = n1/2−ε. The key generation proceeds by choosing
a random noise vector e ∈ Fm2 in which each entry is set to 1 with independent probability η = k/m, a
uniform random m × n matrix G over the binary field, and a uniform random w ∈ Image(G)(that is, w is
uniform in the column span ofG). The private key is the noise vector e and the public key is them× (n+1)
matrix G̃ = (G | b) obtained from G by appending the noisy codeword b = w + e to the right of the matrix
G. (As discussed above, we do not count G towards the size of the public key.)

The encryption of σ = 0 is a random vector c ∈ Fm2 of the form c = w̃ + ẽ, where w̃ is a uniform
random vector in ker(G̃T ) and ẽ ∈ Fm2 is a random noise vector distributed identically to (but independently
of) the private key e. The encryption of σ = 1 is a uniform random vector in Fm2 . In order to decrypt
a ciphertext c ∈ Fm2 , one simply outputs the inner product 〈c, e〉. It can be easily seen that this inner
product is a nearly uniform random bit when c is an encryption of 1, and is equal to the inner product
〈e, ẽ〉 when c is an encryption of 0. By the birthday paradox, the inner product 〈e, ẽ〉 is 0 with probability
1 − o(1) and consequently, by repeating the encryption process polylog(n) times, one can distinguish
between encryptions of 0 and 1 with negligible error probability.

The security of the above scheme can be based on the intractability of the LPN problem with noise rate
η. Indeed, since the matrix G̃ is indistinguishable from a uniform random matrix, the code from which
w̃ is picked is indistinguishable from a random linear code, implying that the noisy codeword c is also
pseudorandom. However, by the choice of the noise rate η, the Hamming weight of the private key e is
bounded by n1/2−ε/2 with overwhelming probability. By trying all different possibilities for such a private
key, the scheme can be attacked in time 2O(

√
n).

It is instructive to consider the abstract requirements from the noise distributions e and ẽ that are neces-
sary for the correctness and security of the above scheme. To enable correct decryption with high probability,
the inner product of e and ẽ (where the two noise vectors are independently sampled) should be statistically
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far from uniform, i.e., significantly biased towards either 0 or 1. On the other hand, a sufficient condition for
security is that the LPN decision problem be intractable with respect to both of the noise distributions e and
ẽ. The main question that motivates this work is whether there can be other choices of noise distributions
that satisfy the above correctness requirement and may provide substantially better security than the original
choice of Alekhnovich.

1.4 Learning with errors

The learning with errors (LWE) problem, introduced by Regev for the construction of his public key en-
cryption scheme [39], is a generalization of the LPN problem to arbitrary rings Zq. More specifically, in this
problem one is given independent random samples of the form (ai, bi) where now ai is a uniform random
vector in Znq , bi = 〈ai, s〉 + ei for a fixed unknown vector s ∈ Znq and ei is distributed according to some
fixed distribution χ on Zq independently of ai (all operations are performed over Zq). Concretely, the dis-
tribution χ is usually chosen to be some small discrete Gaussian.The goal is again to recover the unknown
vector s.

As was the case with LPN, assuming that the distribution χ is sufficiently far from uniform, one can
solve LWE naively in time qO(n) using O(n log q) samples, and the algorithm of Blum et al. [10] can be
adapted to solve this problem in time qO(n/ logn) using qO(n/ logn) samples. However, what is remarkable
about LWE is that its hardness can be based on the worst-case hardness of well-studied lattice problems.
This makes all cryptographic constructions based on the hardness of LWE secure under assumptions on the
worst-case hardness of these lattice problems. See the survey [40] for more details.

1.5 Public key encryption based on learning with errors

As mentioned above, Regev introduced the LWE problem as a basis for the construction of his public key
encryption scheme [39] which can be used to encrypt a bit σ ∈ {0, 1} as follows. Let n be a security
parameter, m = (1 + ε)n log q and q = poly(n). The key generation proceeds by choosing a random noise
vector e ∈ Fmq in which each coordinate is distributed independently according to a small discrete Gaussian,
a uniform random m × n matrix G over Fq, and a uniform random w ∈ Image(G). The private key is the
noise vector e and the public key is the m× (n+ 1) matrix G̃ = (G | b) obtained from G by appending the
noisy codeword b = w + e to the right of the matrix G.

The encryption of a bit σ ∈ {0, 1} is a random vector c ∈ Fn+1
q of the form c = G̃T · ẽ + vσ where ẽ

is a uniform random vector in {0, 1}m and vσ ∈ Fn+1
q is the vector all of whose coordinates equal 0 except

for the (n+ 1)-th coordinate which equals σ · b q2c. In order to decrypt a ciphertext c ∈ Fn+1
q one computes

σ′ =: cn+1 − 〈x, Pn(c)〉, where Pn : Fn+1
q → Fnq denotes the projection on the first n coordinates and x is

such that w = Gx, and outputs 0 if σ′ is closer to 0 than to b q2c and 1 otherwise. Finally, it can be verified
that σ′ = σ · b q2c+ 〈e, ẽ〉. Consequently, if one chooses the Guassian distribution of the coordinates of e to
be small enough then 〈e, ẽ〉, which is the sum of at most m such independent Gaussians, would be smaller
than b q4c in absolute value with high probability and therefore would enable one to distinguish between
encryptions of 0 and 1 with small error probability. In fact, the error here can be completely eliminated by
truncating the tail of the Gaussian noise distribution.

Inspection reveals that Regev’s encryption scheme described above has various similarities with the
Alekhnovich encryption scheme (one of the contributions of this work is establishing a formal connection
between these encryption schemes, see Section 2.1 below for more details). However, a main difference is
that, as mentioned above, Alekhnovich’s encryption scheme can be attacked in time 2O(

√
n) by enumerating

over all possible private keys while the best known attacks on Regev’s encryption scheme, using lattice
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algorithms, run in time 2O(n). This advantage of Regev’s scheme stems from the possibility to exploit the
large modulus q for picking noise distributions e and ẽ whose inner product is statistically far from uniform
and yet the noisy decoding problem corresponding to these distributions can be conjectured to have nearly
exponential hardness. Note, however, that since q is polynomial in n, the ciphertext is of size Ω(n log n)
and therefore falls slightly short of being optimally succinct.

Another related public key encryption scheme, based on the hardness of LWE, is the public key encryp-
tion scheme proposed by Gentry, Peikert and Vaiknutanathan (GPV) [17] which is described by the authors
as a “dual of Regev’s scheme in which the key generation and the encryption algorithms are swapped“
(again, one of the contributions of this work is establishing a formal connection between these schemes, see
Section 2.1 below for more details). A useful property of the encryption scheme of [17] is that it allows an
identity-based encryption in which arbitrary strings are allowed to serve as public keys.

1.6 Related work

Originating from the seminal work of Ajtai [1], there has been a large body of research on basing lattice-
based cryptosystems on the minimal possible assumptions and improving the efficiency of such provably
secure construthere exists ctions. In particular, the work of Micciancio and Mol [33] considers the possibility
of replacing the standard Gaussian noise by other noise distributions, which may admit a more efficient
sampling algorithm, while maintaining provable security under standard assumptions. In contrast, the goal
of the present work is to explore the space of constructions that might be secure, in the sense that they resist
known attacks, regardless of the underlying intractability assumption or the way security may be argued.
Moreover, unlike the work on lattice-based cryptography, our main focus is on constructions that use linear
codes over the binary field.

As noted above, our unified framework is inspired by the abstract encryption scheme described in Mic-
ciancio’s online talk [32] which generalizes the encryption schemes of Regev and GPV. In particular, as is
the case in [32], our unifying approach relies on duality between noisy codeword encoding and syndrome
encoding. This duality has also been noticed and used in other settings in the context of lattice-based public
key encryption, for example in [33, 43]. However, we are not aware of any formal statement in the litera-
ture relating the encryption schemes of Regev and GPV to that of Alekhnovich via duality. Such a formal
relation is given by our unified framework.3

Finally, one should note that our unified framework does not capture all of the code-based and lattice-
based public key encryption schemes from the literature. For instance, it does not capture the code-based
McEliece cryptosystem and its variants [30, 35], as well as lattice- and LWE-based cryptosystems such
as [2, 18, 21, 38, 29, 4, 34, 31]. However, these alternative constructions do not seem well suited to the
goal of obtaining near-optimal succinctness over binary fields. The former code-based schemes require the
public key size to grow quadratically with the security parameter, whereas the latter lattice-based schemes
do not admit a “native” implementation over binary fields.

3A different unified view of the schemes of Regev and Alekhnovich was previously given by Lindner and Peikert [25] who
suggested to add an additional noise vector in the encryption process of Regev’s scheme. This allowed them to argue about the
security of Regev’s scheme using Alekhnovich-style security proof and consequently reduce key sizes in Regev’s scheme.
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2 Our results in more detail

2.1 Unified framework

We start by defining a unified framework that captures the public key encryption schemes of Alekhnovich
[3], Regev [39] and Gentry, Peikert and Vaikuntanathan (GPV) [17]. More specifically, for each of the
schemes [3, 39, 17] we define an abstract version that we call ΠAlek,ΠReg,ΠGPV, respectively, in which the
field size as well as the noise distributions used in the key generation and encryption processes are allowed
to be arbitrary.

We further show that for an identical choice of parameters all the abstract schemes are equivalent to each
other in terms of security: Given a pair of schemes E,E′ ∈ {ΠAlek,ΠReg,ΠGPV}, there exists an efficiently
computable randomized mapping which for every bit σ ∈ {0, 1}maps the joint distribution of the public key
pk and the encryption of σ using pk in E to the joint distribution of the public key pk′ and the encryption
of σ using pk′ in E′. 4 We note that the above equivalence was previously observed by Micciancio in the
online talk [32] for the special case of Regev and GPV. Since we could not find a formal statement and proof
of this argument in the literature we added such a formal treatment in this paper. We further observe that
this equivalence holds also when considering the abstract versions ΠReg of [39] and ΠGPV of [17], as well
as the abstract version ΠAlek of [3].

At a high level, all the abstract schemes work as follows (see Table 1 for more details). Each of the
schemes is parametrized by integers n < m, a field Fq (whose size may depend on n), a distribution µsk

over Fmq and a pair of distributions µ0, µ1 over Fm+1
q . In all three schemes the private key is a random noise

vector e ∼ µsk. The public key consists of two parts: A random linear code C : Fnq → Fmq , specified by
either a uniform random generator matrix GT ∈ Fn×mq (in ΠAlek and ΠReg) or a uniform random parity-

check matrix HT ∈ F(m−n)×m
q (in ΠGPV), together with either a noisy codeword b = w + e where w is a

random codeword in C (in ΠAlek and ΠReg) or its syndrome u = HT · e (in ΠGPV).
The encryption process is similar: Let C̃ : Fm−nq → Fm+1

q be the code specified by the parity-check
matrix

G̃T =

(
G b
0Tn −1

)T
,

where G̃ is the (m + 1) × (n + 1) matrix obtained by appending the column b to the right of the matrix G
and adding below a row whose first n entries equal zero and whose last entry equals −1. Let

H̃ =

(
H
uT

)
be the (m+ 1)× (m− n) matrix obtained by adding the row uT below the matrix H , and note that H̃T is
a generator matrix for the code C̃. In order to encrypt a bit σ ∈ {0, 1} one chooses a random noise vector
ẽ ∼ µσ. The encryption of σ is either a noisy codeword b = w̃ + ẽ where w̃ is a uniform random codeword
in C̃ (in ΠAlek and ΠGPV) or its syndrome G̃T · ẽ (in ΠReg).

Finally, in all the three schemes using the private key e one can obtain the inner product 〈e ◦ (−1), ẽ〉,
where e ◦ (−1) denotes the vector obtained from e by adding −1 below the vector e. To enable decryption
one has to choose noise distributions µsk, µ0 and µ1 such that it is possible to distinguish between the
distributions 〈µsk ◦ (−1), µ0〉 and 〈µsk ◦ (−1), µ1〉 efficiently.

4Note that we do not claim that the original encryption schemes of Alekhnovich, Regev and GPV are equivalent to each other
in terms of security but rather that for each pair of schemes E,E′ ∈ {Alekhnovich, Regev, GPV} one can change the field size and
noise distributions in E (but not the syntactics of E!) to obtain an encryption scheme that is equivalent to E′ in terms of security.
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2.2 Unconditional negative result

Our first negative result shows a simple unconditional attack running in time 2O(n/ logn) on any instance
of the abstract encryption scheme over the binary field. The attack uses a simple argument based on the
algorithm for agnostic learning of parities of Kalai et al. [23], a powerful algorithm that learns parities with
noise from arbitrary distributions. More specifically, this algorithm is given independent random samples
of the form (ai, bi), where bi = 〈ai, s〉 + ei for a fixed unknown vector s ∈ Fn2 and (ai, ei) are distributed
according to an arbitrary distribution over Fn2×F2 (In particular, the ei’s may depend on the ai’s). Assuming
that the noise bit ei is non-zero with probability at most η (or alternatively, bi 6= 〈ai, s〉 with probability at
most η), the algorithm returns a circuit h : Fn2 → F2 that errs with probability at most η on future examples,
that is Pr(ai,bi)[h(ai) 6= bi] ≤ η. The running time and number of samples used by this algorithm is
2O(n/ logn) which matches the performance of the original LPN algorithm of [10]. Note that though quite
powerful, this algorithm is not a proper learner since it returns an arbitrary circuit which is not necessarily a
parity function. For simplicity, assume for now that the algorithm returns the original vector s.

By the equivalence of the abstract encryption schemes ΠAlek, ΠReg and ΠGPV it suffices to show an
attack on the encryption scheme ΠReg. The property of this scheme that we shall use for the attack is that
the decryption of a ciphertext c ∈ Fn+1

2 is cn+1 − 〈s, Pn(c)〉 where Pn : Fn+1
2 → Fn2 denotes the projection

on the first n bits and s ∈ Fn2 is such that w = Gs. Using the public key we generate 2O(n/ logn) samples of
the form (Pn(c′), c′n+1−ξ) where ξ ∈ {0, 1} is a uniform random bit and c′ is a random encryption of ξ and
feed them to the algorithm for agnostic learning of parities described above. Assuming that the decryption
algorithm has low error probability we have that c′n+1 − 〈s, Pn(c′)〉 = ξ with probability at least 1 − η, or
alternatively, 〈s, Pn(c′)〉 6= c′n+1 − ξ with probability at most η. Hence the algorithm of [23] will recover
the vector s and consequently we can recover the private key e = b−Gs.

The attack described above has also some positive consequences to learning, where it can be used for
learning parities corrupted by arbitrary noise distributions in sub-exponential time using a relatively small
number of samples. More specifically, we observe that Regev’s security proof [39], which shows that his
original encryption scheme is secure assuming the hardness of LWE, can be generalized to show the security
of the abstract encryption scheme under similar assumptions. In more detail, one can show that any instance
of the abstract encryption scheme over an arbitrary field Fq, using an arbitrary noise distribution µsk and
noise distributions µ0, µ1 of sufficiently high min-entropy, is secure assuming the hardness of learning linear
functions over Fq corrupted by noise coming from the distribution µsk. We further observe that this security
guarantee holds even assuming the hardness of learning such functions using a relatively small number of
samples.

Stated positively, the above says that any attack on an instance of the abstract encryption scheme as
above can be turned into an algorithm that learns linear functions over Fq corrupted by noise coming from
the distribution µsk using a relatively small number of samples. In particular, the attack described above
can be turned into such an algorithm. We further observe that an instance of this latter algorithm solves the
LPN problem in time 2O(n/ log logn) using n1+ε samples, reproducing the result of [28] (see also [24]) in a
conceptually different way.

2.3 Conditional negative results

Our main result is a (non-uniform) attack running in time 2O(
√
m) on any instance of the abstract encryption

scheme over the binary field in the case in which the decryption error of a single encryption is a sufficiently
small constant, assuming the ’approximate duality conjecture’ of [7]. For the attacks we first formulate
combinatorial properties of the distributions µsk, µ0 and µ1 that imply an attack on the abstract encryption
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scheme and then show that these combinatorial properties are satisfied assuming the approximate duality
conjecture or its variant. We elaborate on these two parts below.

Attacks based on combinatorial properties of µsk, µ0, µ1. The main combinatorial property we shall use
for the attacks is sparsity. More precisely, we say that a distribution µ over Fm2 form ≥ n is (n, k, ρ)-sparse
if there exist k subsets A1, . . . , Ak ⊆ Fm2 (not necessarily distinct) and k full rank linear transformations
L1, . . . , Lk : Fm2 → Fn2 (not necessarily distinct) such that Prµ

(⋃k
i=1Ai

)
≥ ρ and Li(Ai) is constant

for every i ∈ [k]. In other words, this means that there exist k affine subspaces V1, . . . , Vk ⊆ Fm2 , of co-
dimension n each, such that with probability at least ρ a random vector sampled from µ falls into the union
of these subspaces.

We show that if an instance of the abstract encryption scheme over the binary field satisfies that the
distribution µsk is (n, k, ρ)-sparse or one of the distributions µ0 or µ1 is (m+1−n+log k+log(1/ρ), k, ρ)-
sparse, and the decryption error of a single encryption is relatively small compared to ρ, then one can attack
this instance in time O(k). To illustrate the idea behind our attacks assume that we are attacking ΠAlek

and that the distribution µsk is (n, k, ρ)-sparse. In this case one can search for a ’good’ private key e′

by enumerating over all i ∈ [k] and solving a corresponding system of linear equations to find a vector
e′ ∈

⋃k
i=1 Vi and a vector x′ ∈ Fn2 such that b = Gx′+ e′. We can further test whether e′ is a ’good’ private

key by generating random encryptions of 0 and 1 using the public key and computing the success probability
of e′ in decrypting these encryptions. Since the distribution µsk is (n, k, ρ)-sparse, with probability at least ρ
we will succeed in finding a ’good’ private key e′ which can be used in turn in order to decrypt the ciphertext.

The case in which one of the distributions µ0 or µ1 is (m+ 1− n+ log k + log(1/ρ), k, ρ)-sparse is a
bit more tricky. In this case it will be convenient to attack the scheme ΠGPV and by symmetry it suffices to
show such an attack in the case in which µ0 is (m + 1 − n + log k + log(1/ρ), k, ρ)-sparse. As in the µsk

case, we can still search in time O(k) for e′ ∈
⋃k
i=1 Vi and a vector x′ ∈ Fm−n2 such that c = H̃ · x′ + e′.

Our main observation is that since
⋃k
i=1 Vi is not too large, with high probability over the choice of the

matrix H̃ , there is no e′ 6= ẽ such that e′ ∈
⋃k
i=1 Vi and c = H̃x′ + e′ for some x′ ∈ Fm−n2 . This implies in

turn that by enumerating over all i ∈ [k] and solving a corresponding system of linear equations, with high
probability one can verify whether ẽ ∈

⋃k
i=1 Vi and if this is the case one can also find ẽ. It thus suffices to

be able to distinguish between ẽ ∼ µ0 and ẽ ∼ µ1, conditioned on the event that ẽ ∈
⋃k
i=1 Vi. Assuming

that the decryption error is sufficiently small compared to ρ, this can be done by computing the inner product
〈e(sk) ◦ (−1), ẽ〉 with a random e(sk) ∼ µsk.

Attacks based on the approximate duality conjecture. For a pair of subsets A,B ⊆ Fm2 their duality
measure is given by

D(A,B) = Ea∈A,b∈B
[
(−1)〈a,b〉

]
. (1)

Note thatD(A,B) = 1 implies that 〈a, b〉 is constant. The question is what can be said about the structure of
A,B when D(A,B) is sufficiently large but strictly smaller than 1. The approximate duality conjecture of
[7] (cf., also Conjecture 1.7.2 in [26]) postulates that in this case there exist large subsets A′ ⊆ A, B′ ⊆ B,
of density at least 2−O(

√
m) inside A, B respectively, with D(A′, B′) = 1.

We note that the bound of 2−O(
√
m) in the approximate duality conjecture is tight, and to see this take

A = B =
(
m√
m

)
to be the set of vectors that have

√
m ones. The birthday paradox shows that D(A,B) is a

fixed positive constant, independent ofm (in fact, taking vectors of weight α
√
m for α approaching 0 makes

D(A,B) approach 1). But it can be verified that for any pairA′ ⊂ A andB′ ⊂ B satisfyingD(A′, B′) = 1,
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the size of one of the sets A′ or B′ is a 2−
√
m fraction of |A|. Such a pair is obtained by taking A′ (B′

respectively) to contain all vectors supported on the first (last, respectively) m/2 coordinates.
In [6] it was shown that assuming the well-known polynomial Freiman-Ruzsa conjecture from additive

combinatorics (cf., [19]), the approximate duality conjecture holds when replacing the lower bound 2−O(
√
m)

on the ratios |A′|/|A| and |B′|/B| with the weaker bound of 2−O(m/ logm). Furthermore, in [27] a version
of the approximate duality conjecture over the reals was shown to hold (unconditionally) with the stronger
bound of 2−O(

√
m). The approximate duality conjecture has found so far various applications in complexity

theory: To the construction of two-source extractors [7], to relating rank to communication complexity [6]
and to lower bounds on matching vector codes [8].

We show that the approximate duality conjecture implies that in any instance of the abstract encryption
scheme over the binary field one of the distributions µsk, µ0 or µ1 is sparse which by the above implies
an attack on this instance. To see this suppose that Π is an instance of the abstract encryption scheme
over the binary field in which µsk ◦ (−1), µ0, µ1 are distributed uniformly over subsets A,B0, B1 ⊆ Fm+1

2

respectively. Then by correctness of the decryption algorithm we have that either D(A,B0) ≥ 1 − ε or
D(A,B1) ≤ −(1− ε) for some constant ε < 1. Without loss of generality assume that D(A,B0) ≥ 1− ε
and note that in this case the approximate duality conjecture implies that there exist subsets A′ ⊆ A, B′ ⊆
B0, of density at least 2−c

√
m inside A, B0 respectively, with D(A′, B′) = 1. The latter implies in turn

that dim(span (A′)) + dim(span (B′)) ≤ m + 2. Consequently, we have that either dim(span (A′)) ≤
m+2−n+2c

√
m in which case A′ is contained in the union of 22c

√
m+1 affine subspaces of co-dimension

n and so µsk ◦ (−1) is (n, 22c
√
m+1, 2−c

√
m)-sparse or that dim(span (B′)) ≤ n− 2c

√
m in which case µ0

is (m− n+ 2c
√
m, 1, 2−c

√
m)-sparse. This implies in turn an attack running in time 2O(

√
m) in the case in

which the decryption error is 2−Ω(
√
m). Note that the attack is non-uniform since the attacker needs to know

the subsets A′ and B′.
In order to show such an attack in the case in which µsk, µ0, µ1 are general distributions, not necessarily

uniform over a subset, we prove that the standard formulation of the approximate duality conjecture implies
a generalized version of it that holds also when the expectation in (1) is taken over arbitrary distributions.
In order to handle larger decryption errors we apply the approximate duality conjecture iteratively to obtain
t = 2O(

√
m) pairs of subsets A1, B1, . . . , At, Bt such that D(Ai, Bi) = 1 for all 1 ≤ i ≤ t and such that

the probability of being contained in the union of Ω(t) such subsets is Ω(1 − ε). This implies that either
µsk ◦(−1) is (n, 23c

√
m+1,Ω(1−ε))-sparse or µ0 is (m−n+2c

√
m, 2c

√
m,Ω(1−ε))-sparse which implies

in turn an attack that runs in time 2O(
√
m) in the case in which the decryption error is a sufficiently small

constant.
Finally, we note that if the approximate duality conjecture is false, then a counter example to this con-

jecture would be a pair of sets A,B ⊆ Fm2 such that D(A,B) is high but no large pair of subsets A′, B′

of A,B respectively are dual. In this case, if we let Π be a (possibly non-uniform) instance of the unified
scheme in which µsk, µ0, µ1 are distributed uniformly over the sets A,B ◦ 0, B ◦ 1 respectively, then the
fact that D(A,B) is high implies that the advantage of the decryption algorithm in Π is high. On the other
hand, the lack of linear structure in the above distributions makes them secure against our brute-force linear
algebra attacks which could potentially make Π secure against sub-exponential time attacks.

2.4 Perfectly correct decryption

Our last collection of results is concerned with the possibility of achieving perfectly correct decryption in the
abstract encryption scheme over constant-size rings. As mentioned above, when the field size is polynomial
in n, one can truncate the tail of the Gaussian noise distribution used in Regev’s original encryption scheme
[39] to achieve a perfectly correct decryption. We investigate whether one can achieve perfect decryption
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also over constant-size rings.
Our first result in this regard is negative, showing that over the binary field any instance of the abstract

encryption scheme with perfectly correct decryption can be attacked in time poly(m). On the positive side,
we propose to use the construction of matching vector families from [13], which builds on the constructions
of [20, 15], to obtain candidates for instances of the abstract encryption scheme over constant-size rings that
achieve perfectly correct decryption but resist poly(m)-time attacks.

It should be noted that Dwork et al. [14] provide a general method for eliminating decryption errors in
public key encryption schemes. However, applying their method has a high toll on efficiency and it only
guarantees perfectly correct decryption with high probability over the randomness of the key generation.

2.5 Open problems

We end this section by highlighting several open problems for future research.

The approximate duality conjecture and its implications to public key encryption. This work presents
a new connection between additive combinatorics and public key encryption by showing non-trivial attacks
on any binary instance of an abstract public key encryption scheme that captures the schemes of Alekhnovich
[3], Regev [39] and Gentry, Peikert and Vaikuntanathan [17], assuming the approximate duality conjecture
from additive combinatorics. On the positive side, if the approximate duality conjecture is false then counter
examples to this conjecture may lead to candidate binary instances of the abstract encryption scheme with
improved security guarantees. This motivates further study of the connection between public key encryption
from noisy codewords and additive combinatorics in general and the approximate duality conjecture in
particular.

Handling larger decryption errors. Our conditional attacks only apply to encryption schemes whose
error probability is bounded by a sufficiently small constant.5 While the error probability of any scheme
can be decreased via repetition, the resulting scheme is no longer an instance of our general framework. We
leave open the question of extending our negative results to the case of encryption schemes with an arbitrary
(nontrivial) constant error.

Perfect decryption. We have shown that, over the binary field, our general framework cannot be instanti-
ated to yield an encryption scheme with perfect decryption. We proposed a plausible approach for obtaining
perfect decryption over constant-size rings by using matching vectors. The security of this construction, as
well as the possibility of obtaining perfect security over constant-size fields, remain to be further studied.

2.6 Paper organization

The rest of this paper is organized as follows. In Section 3 we fix some notation and terminology. In Section
4 we present our unified view of the encryption schemes [3, 39, 17] by providing the formal definitions of the
abstract encryption schemes ΠAlek, ΠReg and ΠGPV and proving their equivalence in terms of security. In
Section 5 we present our unconditional attack, running in time 2O(n/ logn), on the abstract encryption scheme

5 Note that in the original variant of Alekhnovich’s scheme, the decryption algorithm has a one-sided error probability of 1/2.
However, there is a natural variant of this scheme in which the error probability is much smaller: in the distribution µsk each entry
is set to 1 independently with probability n−1/2−ε and the distributions µ0, µ1 are similar to µsk except that the last entry in µ0 is
always 0 and the last entry in µ1 is always 1. It can be verified that a single encryption using this variant gives decryption error of
o(1).
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over the binary field and consequences of this attack to learning. In Section 6 we present combinatorial
properties of the distributions µsk, µ0 and µ1 that imply an attack on the abstract encryption scheme over the
binary field. In Section 7 we show that these latter properties are satisfied assuming the approximate duality
conjecture which implies an attack on the abstract encryption scheme over the binary field running in time
2O(
√
m). Finally, in Section 8 we discuss the possibility of achieving perfectly correct decryption together

with super-polynomial security in the abstract encryption scheme over constant-size rings.

3 Preliminaries

We start with fixing some notation. For a prime power q let Fq denote the finite field with q elements. All
operations below are performed over Fq and all vectors are assumed to be column vectors unless otherwise
stated. For integers m ≥ n letM∗m×n(q) denote the set of all m × n full rank matrices over Fq. For an
integer m let Pm : Fm+1

q → Fmq denote the projection on the first m coordinates. Let 0m, 1m denote the
all-zeros and all-ones vectors of length m, respectively. For a pair of vectors u, v let u ◦ v denote their
concatenation.

Let µ be a distribution over Fmq . For an element a ∈ Fmq let Prµ(a) = Pre∼µ[e = a]. The support
supp(µ) of µ is the set containing all elements a ∈ Fmq for which Prµ(a) > 0. For a subset A ⊆ Fmq we let
Prµ(A) = Pre∼µ[e ∈ A] and we denote by µ|A the distribution µ conditioned on the event that e ∈ A. For
a pair of distributions µ, µ′ over Fmq we denote by 〈µ, µ′〉 the distribution of 〈e, e′〉 where e ∼ µ and e′ ∼ µ′
independently. Finally, we write that a ∈R A if a is chosen uniformly at random from the set A.

For the attacks we shall use the following well-known Chernoff-type tail bound for sampling, see e.g.
[44].

Lemma 3.1 (Hoeffding bound for sampling). IfX is a random variable with | X |≤ 1 and µ̂ is the empirical
average obtained from t samples, then

Pr[| E[X]− µ̂ |≥ γ] ≤ 2 exp(−2γ2t).

3.1 Public key encryption

A public key encryption scheme Π consists of three randomized polynomial time algorithms: the key gener-
ation algorithm Gen, the encryption algorithm Enc and the decryption algorithm Dec, which satisfy:

1. The key generation algorithm Gen takes as input the security parameter 1n and outputs a pair of keys
(sk,pk) where sk is the private key and pk is the public key. We write this as (sk,pk)← Gen(1n).

2. The encryption algorithm Enc takes as input a public key pk and a message bit σ ∈ {0, 1} and outputs
a ciphertext c. We write this as c← Encpk(σ).

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext c and outputs a bit
σ′ ∈ {0, 1}. We assume without loss of generality that Dec is deterministic and write this as σ′ :=
Decsk(c).

The advantage of the decryption algorithm is given by

AdvDec(n) = Pr[Decsk(Encpk(1)) = 1]− Pr[Decsk(Encpk(0)) = 1], (2)

where the probabilities in (2) are taken over the internal coin tosses of the algorithms Gen and Enc. We say
that the decryption algorithm is perfectly correct if AdvDec(n) = 1.
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A typical choice of parameters in public key encryption schemes is that AdvDec(n) = 1 − η(n) for
η(n) which is a negligible function in n. However, in the case where AdvDec(n) is a fixed constant one
can achieve (1− η(n))-advantage in the decryption process by repeating the key generation and encryption
processes polylog(n) times. In this work we are interested in negative results and our unconditional results
hold even when AdvDec(n) is negligible in n. Our conditional results, on the other hand, hold only if a
single encryption (without repetitions) achieves advantage AdvDec(n) = 1− ε where ε > 0 is a sufficiently
small constant.

A (uniform) attackA on a public key encryption scheme Π is a randomized algorithm that takes as input
a public key pk and a ciphertext c and outputs a bit σ′ ∈ {0, 1} and we write this as σ′ ← A(pk, c). The
advantage of the attack A is given by

AdvA(n) = Pr[A(pk,Encpk(1)) = 1]− Pr[A(pk,Encpk(0)) = 1], (3)

where the probabilities in (3) are taken over the internal coin tosses of the algorithms Gen and Enc as well
as the attack A. A non-uniform attack A is defined similarly to the above except that it is modeled as a
non-uniform Boolean circuit and we say that it has running time t(n) if the associated circuit family has size
t(n).

4 Unified framework

In what follows we present the formal definitions of the abstract encryption schemes ΠAlek, ΠReg and
ΠGPV (see also summary in Table 1 below). For each of the abstract schemes ΠAlek, ΠReg and ΠGPV we
also discuss the choice of parameters made in the original corresponding scheme [3, 39, 17], respectively.
For completeness, in Section 4.1 we provide a formal proof that these schemes are equivalent in terms of
security.

General Parameters: Integers m > n, field Fq (q may depend on n), efficiently samplable distribu-
tion µsk over Fmq , a pair of efficiently samplable distributions µ0, µ1 over Fm+1

q , efficiently computable
decryption function g : Fq → {0, 1}.

ΠAlek scheme:

• Private key: Choose a random vector e ∈ Fmq according to the distribution µsk. The private key is e.

• Public key: Choose a uniform random matrix G ∈ M∗m×n(q) and a uniform random vector w ∈

Image(G) and let b = w + e. The public key is G̃ =

(
G b
0Tn −1

)
.

• Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector ẽ ∈ Fm+1
q according to the

distribution µσ and a uniform random vector w̃ ∈ ker(G̃T ). The encryption of σ is w̃ + ẽ.

• Decryption: The decryption of a vector c ∈ Fm+1
q is g(〈e ◦ (−1), c〉).

Original setting of parameters in [3]: m = 2n, q = 2, µsk is the uniform distribution over all vectors
in Fm2 of hamming weight n1/2−ε. The distribution µ0 is the uniform distribution over all vectors of the form
y ◦ 0 where y ∈ Fm2 has hamming weight n1/2−ε and the distribution µ1 is the uniform distribution over all
vectors of the form z ◦ 0 where z ∈ Fm2 is arbitrary. The decryption function g is the identity function over
F2.
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Remark 4.1. In the original encryption scheme [3] the encryption algorithm was slightly different, namely
the vector w̃ was chosen to be a uniform random vector among all vectors in ker(G̃T ) which satisfy that
w̃m+1 = 0. We note however that choosing w̃ to be a uniform random vector in ker(G̃T ) does not weaken
the security of the scheme. To see this it suffices to show an efficiently computable randomized mapping
ϕ : Fm+1

q → Fm+1
q which for every vector ẽ maps the distribution w′ + ẽ where w′ is a uniform random

vector in ker(G̃T ) with w′m+1 = 0 to the distribution w′′ + ẽ where w′′ is a uniform random vector in
ker(G̃T ). It can be verified that the function ϕ(x) = x + v where v ∈R ker(G̃T ) satisfies the required
properties.

ΠReg scheme:

• Private key: Choose a random vector e ∈ Fmq according to the distribution µsk. The private key is e.

• Public key: Choose a uniform random matrix G ∈M∗m×n(q) and a uniform random w ∈ Image(G)

and let b = w + e. The public key is G̃ =

(
G b
0Tn −1

)
.

• Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector ẽ ∈ Fm+1
q according to the

distribution µσ. The encryption of σ is G̃T · ẽ.

• Decryption: The decryption of a vector c ∈ Fn+1
q is g(−〈x ◦ (−1), c〉) where x ∈ Fnq is such that

b = Gx+ e.

Original setting of parameters in [39]: m = (1 + ε)(n+ 1) log q, q is a prime number between n2 and
2n2, the coordinates of µsk are i.i.d according to a discrete Gaussian Ψα(n) for α(n) = o(1/(

√
n log n)).

The distribution µ0 is the uniform distribution over all vectors of the form y ◦ 0 and µ1 is the uniform
distribution over all vectors of the form y ◦(−b q2c) where y is an arbitrary vector in {0, 1}m. The decryption
function g is given by

g(i) =

{
1, b q4c ≤ i ≤ b

3q
4 c

0, otherwise.

ΠGPV scheme:

• Private key: Choose a random vector e ∈ Fmq according to the distribution µsk. The private key is e.

• Public key: Choose a uniform random matrix H ∈ M∗m×(m−n)(q) and let u = HT · e. The public

key is H̃ =

(
H
uT

)
.

• Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector ẽ ∈ Fm+1
q according to the

distribution µσ and a uniform random vector w̃ ∈ Image(H̃). The encryption of σ is w̃ + ẽ.

• Decryption: The decryption of a vector c ∈ Fm+1
q is g(〈e ◦ (−1), c〉).

Original setting of parameters in [17]: m ≥ 2(m− n) log q, q ≥ 5r(m+ 1) for r = ω(
√

logm), the
coordinates of µsk are i.i.d according to a discrete GaussianDZm,r. The coordinates of µ0 are i.i.d according
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to a discrete Gaussian Ψα(m) for α(m) = o(1/(r
√
m logm)) and µ1 is distributed according to y + 0m◦b q2c

where the coordinates of y are i.i.d according to Ψα(m). The decryption function g is given by

g(i) =

{
1, b q4c ≤ i ≤ b

3q
4 c

0, otherwise.

For convenience, we summarize the definitions above in the following table.

Table 1
ΠAlek ΠReg ΠGPV

sk e ∼ µsk e ∼ µsk e ∼ µsk

sk = e sk = e sk = e

pk G ∈RM∗m×n(q)
w ∈R Image(G)

b = w + e

G ∈RM∗m×n(q)
w ∈R Image(G)

b = w + e

H ∈RM∗m×(m−n)(q)
u = HT · e

pk = G̃ =

(
G b
0Tn −1

)
pk = G̃ =

(
G b
0Tn −1

)
pk = H̃ =

(
H
uT

)

Encpk(σ) ẽ ∼ µσ
w̃ ∈R ker

(
G̃T
) ẽ ∼ µσ ẽ ∼ µσ

w̃ ∈R Image(H̃)

Encpk(σ) = w̃ + ẽ Encpk(σ) = G̃T · ẽ Encpk(σ) = w̃ + ẽ

Decsk(c) Decsk(c) =
g (〈e ◦ (−1), c〉)

Decsk(c) =
g
(
−〈G−1(b− e) ◦ (−1), c〉

) Decsk(c) =
g (〈e ◦ (−1), c〉)

A straightforward computation gives the following.

Claim 4.2 (Advantage of decryption). For every Π ∈ {ΠAlek, ΠReg, ΠGPV},

AdvDec(n) = Pr[g(〈µsk ◦ (−1), µ1〉) = 1]− Pr[g(〈µsk ◦ (−1), µ0〉) = 1].

Corollary 4.3 (Necessary and sufficient conditions for decryption). Let Π ∈ {ΠAlek, ΠReg, ΠGPV} and
suppose that AdvDec(n) ≥ ε. Then the statistical distance between the distributions 〈µsk ◦ (−1), µ0〉 and
〈µsk◦(−1), µ1〉 is at least ε. Conversely, if q is constant and µsk, µ0, µ1 are such that the statistical distance
between the distributions 〈µsk ◦ (−1), µ0〉 and 〈µsk ◦ (−1), µ1〉 is at least ε then there exists an efficiently
computable decryption function g for which AdvDec(n) ≥ ε.

4.1 Equivalence of abstract encryption schemes

The following claim shows that for an identical setting of parameters all the abstract encryption schemes
defined above are equivalent in terms of security. For completeness, we provide a proof of this claim below.
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For an encryption scheme Π and a bit σ ∈ {0, 1} let (pkΠ,EncΠ
pk(σ)) denote the joint distribution of the

public key and the encryption of the bit σ using this public key in Π.

Claim 4.4 (Equivalence of abstract encryption schemes). For every Π,Π′ ∈ {ΠAlek,ΠReg,ΠGPV} there
exists a randomized mapping ϕΠ→Π′ , computable in time poly(m, q), such that for every bit σ ∈ {0, 1} the
distributions ϕΠ→Π′(pkΠ,EncΠ

pk(σ)) and (pkΠ′ ,EncΠ′
pk(σ)) are identical.

Proof. It suffices to show the existence of three mappings ϕ1 = ϕΠAlek→ΠReg
, ϕ2 = ϕΠReg→ΠGPV

and
ϕ3 = ϕΠGPV→ΠAlek

.
The mapping ϕ1: Let ϕ1(G̃, c) = (G̃, G̃T c) and note that c = w̃ + ẽ for w̃ ∈ ker(G̃T ) and so

G̃T c = G̃T (w̃ + ẽ) = G̃T ẽ.

The mapping ϕ2: Let ϕ2(G̃, c) = (H̃, c′), where H̃ =

(
H
uT

)
, H is a uniform random matrix in

M∗m×(m−n)(q) which satisfies HT ·G ≡ 0, u = HT b and c′ ∈ Fm+1
q is a uniform random solution for the

system of linear equations G̃T · c′ = c.
Since the matrix G is distributed uniformly over M∗m×n(q), by duality we have that the matrix H is

distributed uniformly overM∗m×(m−n)(q). Furthermore, we have that b = w+ e for w ∈ Image(G) and so

u = HT b = HT (w + e) = HT e. Finally, we also have that c = G̃T · ẽ and so c′ is of the form c′ = w̃ + ẽ
where w̃ is a uniform random element in ker(G̃T ). Since G̃T · H̃ ≡ 0 and both H̃ and G̃ are full rank, we
have that Image(H̃) = ker(G̃T ) and so w̃ is a uniform random element in Image(H̃).

The mapping ϕ3: Let ϕ3(H̃, c) = (G̃, c), where G̃ =

(
G b
0Tn −1

)
, G is a uniform random matrix in

M∗m×n(q) which satisfies HT · G ≡ 0 and b ∈ Fmq is a uniform random solution for the system of linear
equations u = HT · b.

SinceH is distributed uniformly overM∗m×(m−n)(q), by duality we have thatG is distributed uniformly
overM∗m×n(q). Furthermore, we have that u = HT · e and so b is of the form b = w + e where w is a
uniform random element in ker(HT ). Since HT · G ≡ 0 and both H and G are full rank we have that
Image(G) = ker(HT ) and so w is a uniform random element in Image(G).

5 Unconditional attack

In this section we show an unconditional simple attack, running in time 2O(n/ logn), on any instance of
the abstract encryption scheme over the binary field. The attack is based on the following algorithm for
agnostic learning of parities (The theorem below is given as Theorem 2 in [23] for the special case in which
a = log n/1000, b = n/a, ε = 2−n

0.99
and the success probability is 0.99. The general parameters can be

deduced from the proof of this theorem).

Theorem 5.1 (Agnostic learning of parities, [23]). For any integers a, b such that ab ≥ n and for any ε > 0
there exists a randomized algorithm running in time poly

(
ε−2a , 2b

)
which satisfies the following guarantees

for every distributionD over (x, y) ∈ Fn2 ×F2. With probability at least 1−exp(−n), given poly
(
ε−2a , 2b

)
independent random samples from D, the algorithm outputs a circuit computing h : Fn2 → F2 such that

Pr(x,y)∼D[h(x) 6= y] ≤ min
s∈Fn2

Pr(x,y)∼D[〈x, s〉 6= y] + ε.

Our main result in this section is the following.
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Theorem 5.2. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ ε. Then for any integers
a, b such that ab ≥ n and for any γ > 0 there exists a (uniform) attack Aagnost on Π running in time
poly

(
γ−2a , 2b,m

)
with AdvAagnost(n) ≥ ε− γ − exp(−n).

By setting a = log n/1000, b = n/a and γ = 2−n
0.99

in the above theorem we obtain the following
corollary.

Corollary 5.3. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ ε. Then there exists
a (uniform) attack Aagnost on Π running in time poly(2n/ logn,m) with AdvAagnost(n) ≥ ε − 2−n

0.99 −
exp(−n),

Proof of Theorem 5.2. By Claim 4.4 it suffices to prove the theorem for Π =ΠReg and without loss of
generality we may assume that the decryption function g is the identity function over F2. Let D be the
distribution over (x, y) ∈ Fn2 × F2 where x = GT · Pm(e′) and y = 〈b ◦ (−1), e′〉 − ξ for ξ ∈R {0, 1}
and e′ ∼ µξ. Note that D can be generated efficiently using the public key G̃. The attack Aagnost runs the
algorithm guaranteed by Theorem 5.1 with the parameters a, b and γ/2 on the distribution D and outputs
cn+1−h(Pn(c)). By Theorem 5.1 we clearly have that the attack runs in time poly

(
γ−2a , 2b,m

)
. It remains

to analyze the advantage of the attack in guessing the message bit σ.
For a vector y ∈ Fm2 let

ε(y) := Pr[〈y ◦ (−1), µ1〉 = 1]− Pr[〈y ◦ (−1), µ0〉 = 1],

and note that by Claim 4.2 we have that AdvDec(n) = E[ε(µsk)]. Let s ∈ Fn2 be such that w = Gs. Then
we have that

Pr(x,y)∼D[〈x, s〉 6= y]

=
1

2
· Pr
[
〈GT · Pm(µ1), s〉 = 〈b ◦ (−1), µ1〉

]
+

1

2
· Pr
[
〈GT · Pm(µ0), s〉 = 1 + 〈b ◦ (−1), µ0〉

]
=

1

2
· Pr
[
〈Pm(µ1), Gs〉 = 〈b ◦ (−1), µ1〉

]
+

1

2
· Pr
[
〈Pm(µ0), Gs〉 = 1 + 〈b ◦ (−1), µ0〉

]
=

1

2
· Pr[〈µ1, (b− w) ◦ (−1)〉 = 0] +

1

2
· Pr[〈µ0, (b− w) ◦ (−1)〉 = 1]

=
1

2
· Pr[〈µ1, e ◦ (−1)〉 = 0] +

1

2
· Pr[〈µ0, e ◦ (−1)〉 = 1]

=
1

2
− 1

2
·
(

Pr[〈µ1, e ◦ (−1)〉 = 1]− Pr[〈µ0, e ◦ (−1)〉 = 1]

)
=

1− ε(e)
2

.

Consequently, with probability at least 1− exp(−n), the circuit h satisfies

Pr(x,y)∼D[h(x) 6= y] ≤ 1− ε(e)
2

+
γ

2
=

1− (ε(e)− γ)

2
.

Suppose that c is an encryption of a bit σ ∈ {0, 1}. Conditioned on the above, we have that

Pr[cn+1 − h(Pn(c)) = 1 | σ = 1]− Pr[cn+1 − h(Pn(c)) = 1 | σ = 0]

= Pr
[
〈b ◦ (−1), µ1〉 − h(GT · Pm(µ1)) = 1

]
− Pr

[
〈b ◦ (−1), µ0〉 − h(GT · Pm(µ0)) = 1

]
= 1− Pr

[
h(GT · Pm(µ1)) 6= 1 + 〈b ◦ (−1), µ1〉

]
− Pr

[
h(GT · Pm(µ0)) 6= 〈b ◦ (−1), µ0〉

]
= 1− 2Pr(x,y)∼D[h(x) 6= y]

≥ ε(e)− γ.
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Averaging over all e ∼ µsk we obtain that the advantage of the attack is at least

E[ε(µsk)]− γ − exp(−n) = AdvDec(n)− γ − exp(−n) ≥ ε− γ − exp(−n).

5.1 Consequences to learning

In this section we use a generalized form of Regev’s security proof (Lemma 5.4 below) to show that our
unconditional attack Theorem 5.2 above can be turned into a sub-exponential algorithm that learns parities
corrupted by arbitrary noise distributions using a relatively small number of samples. We then show that
an instance of this latter algorithm solves the LPN problem in time 2O(n/ log logn) using n1+ε samples,
reproducing the result of [28] (see also [24]) in a conceptually different way.

To state Lemma 5.4 we start with a couple of definitions. First, since in the LPN problem one is interested
in learning parities from uniform random linear equations which are not necessarily linearly independent,
in this section we consider a variant of the generalized encryption scheme ΠReg that we denote Π′Reg. The
encryption scheme Π′Reg is defined similarly to ΠReg except that the matrix G is chosen to be a uniform
random m × n matrix over Fq and we do not require it to be full rank. It can be verified that Theorem 5.2
holds also for Π′Reg.

We shall also need slightly more refined definitions for the advantage of the decryption algorithm and the
advantage of an attack. More specifically, we say that the decryption algorithm achieves an (ε, δ)-advantage,
and denote this AdvDec

δ (n) ≥ ε if, with probability at least 1 − δ over the internal coin tosses of Gen, it
holds that

Pr[Decsk(Encpk(1)) = 1]− Pr[Decsk(Encpk(0)) = 1] ≥ ε, (4)

where the probabilities in (4) are taken over the internal coin tosses of the algorithm Enc. Similarly, we
say that an attack A achieves an (ε, δ)-advantage, and denote this AdvAδ (n) ≥ ε if, with probability at least
1− δ over the internal coin tosses of Gen, it holds that

Pr[A(pk,Encpk(1)) = 1]− Pr[A(pk,Encpk(0)) = 1] ≥ ε, (5)

where the probabilities in (5) are taken over the internal coin tosses of the algorithm Enc as well as the
attackA. It can be verified that the proof of Theorem 5.2 gives AdvAagnost

δ (n) ≥ ε−γ− exp(−n) assuming
that AdvDec

δ (n) ≥ ε.
Finally, let µ be a distribution over Fmq . The min-entropy H∞(µ) of µ is the smallest integer k such that

Prµ(a) ≤ 2−k for every a ∈ Fmq . For integer n ≤ m and a vector s ∈ Fnq let Ds,µ denote the distribution
(G, b) where G is a uniform random m× n matrix over Fq and b = Gs+ e for e ∼ µ.

Lemma 5.4 (Security of Π′Reg). Let Π be an instance of Π′Reg in which q is some prime and the distributions
µ0 and µ1 have min-entropy at least (1+α)(n+1) log q each for some constant α > 0. Suppose furthermore
that there exists an attack A on Π, running in time t(n), with AdvAδ (n) ≥ ε for ε ≥ 4 · 2−α(n+1) log q/4.
Then for any integer ` there exists a randomized algorithm W , running in time (t(n)`/ε2) · poly(m, q),
which for every s ∈ Fnq , given ` independent random samples from Ds,µsk , outputs s with probability at
least 1− nq(δ` + ` exp(−n)).

The above lemma follows from Lemmas 5.4, 4.1 and 4.2 in [39] for the special case in which m ≥
(1 + α)(n + 1) log q, µsk is i.i.d in each coordinate, µ0 is the uniform distribution over all vectors of the
form y ◦ 0 and µ1 is the uniform distribution over all vectors of the form y ◦ (−b q2c) where y is an arbitrary
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vector in {0, 1}m, t(n) = poly(n), ε ≥ n−c1 and δ ≤ 1 − n−c2 . For completeness we provide a full proof
for Lemma 5.4 in Appendix A. Combining this lemma with our unconditional attack Theorem 5.2 we obtain
the following corollary.

Corollary 5.5. Let Π be an instance of Π′Reg in which q = 2 and the distributions µ0 and µ1 have min-
entropy at least (1 + α)(n + 1) each for some constant α > 0. Suppose furthermore that AdvDec

δ (n) ≥ ε
for ε ≥ 8 · 2−α(n+1)/4 + exp(−n). Then for any integers a, b, ` such that ab ≥ n there exists a randomized
algorithm W , running in time poly

(
ε−2a , 2b,m

)
· `, which for every s ∈ Fn2 , given ` independent random

samples from Ds,µsk , outputs s with probability at least 1− 2n(δ` + ` exp(−n)).

An immediate consequence of the above corollary is the following result due to Lyubashevsky [28] (see
also [24]).

Theorem 5.6. For any constants ε > 0 and δ < 1 and for any η < 1
2 − 2−(logn)δ , there exists a randomized

algorithm W , running in time 2O(n/ log logn), which satisfies the following guarantees for every s ∈ Fn2 .
Given n1+ε independent random samples of the form (ai, bi), where ai is a uniform random vector in Fn2 ,
bi = 〈ai, s〉+ ei and ei ∈ {0, 1} is 1 with probability η and 0 otherwise independently of ai, the algorithm
W outputs s with probability at least 1− exp(−n).

Proof. Let Π be an instance of Π′Reg in which q = 2, m = n1+ε and the coordinates of µsk are i.i.d where
each coordinate equals 1 with probability η and 0 otherwise. Let µ0 be the uniform distribution over all
vectors of the form y ◦ 0 and let µ1 be the uniform distribution over all vectors of the form y ◦ 1 where
y ∈ Fm2 has hamming weight 2n

ε logn . Finally, let the decryption function g be the identity function over F2.
With the above setting of parameters, the algorithm W is given a single sample from Ds,µsk and its goal

is to recover s. It therefore suffices to show that the conditions of Corollary 5.5 hold. For this note first that

H∞(µ0) = H∞(µ1) = log

(
n1+ε

2n
ε logn

)
≥ 2n

ε log n
· log

(
n1+ε

2n
ε logn

)
> 2n. (6)

Let ξ = 1
2 − η and note that our assumption implies that ξ > 2−(logn)δ . Next we show that

AdvDec
2−n(n) ≥

(
ξ

2

) 2n
ε logn

. (7)

By Claim 4.2 we need to show that

Pr
e∼µsk

[
Pr[〈e ◦ (−1), µ1〉 = 1]− Pr[〈e ◦ (−1), µ0〉 = 1] ≥

(
ξ

2

) 2n
ε logn

]
≥ 1− 2−n.

By the Hoeffding bound for sampling (Lemma 3.1) , a vector e ∼ µsk will have at least m(1 + ξ)/2 zeros
with probability at least

1− 2 exp(−2m(ξ/2)2) ≥ 1− 2 exp
(
− 2n1+ε

(
2−(logn)δ/2

)2)� 1− 2−n.

Conditioned on the above, Claim 5.7 below implies that

Pr[〈e ◦ (−1), µ1〉 = 1]− Pr[〈e ◦ (−1), µ0〉 = 1]

= 2 Pr[〈e, Pm(µ0)〉 = 0]− 1

≥
(
n1+εξ − 2n

ε logn + 1

n1+ε − 2n
ε logn + 1

) 2n
ε logn

>

(
ξ

2

) 2n
ε logn
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The conclusion follows from (6) and (7) by applying Corollary 5.5 with a = γ log logn and b =
n

γ log logn for γ < 1− δ and ` = 1.

Claim 5.7 (Lemma 3 in [28]). If a bucket contains m balls, (1
2 + p)m of which are colored white, and

the rest colored black, and we select k balls at random without replacement, then the probability that we
selected an even number of black balls is at least 1

2 + 1
2

(2mp−k+1
m−k+1

)k.

6 Attacks based on combinatorial properties of µsk, µ0, µ1

In Sections 6.1 and 6.2 below we present combinatorial properties of the distribution µsk and the pair of
distributions µ0, µ1, respectively, that imply an attack on the abstract encryption scheme over the binary
field. In Section 7 we shall show that assuming the approximate duality conjecture at least one of the
distributions µsk, µ0 or µ1 satisfies these combinatorial properties. This will imply in turn an attack on the
abstract encryption scheme over the binary field assuming the approximate duality conjecture.

The main combinatorial property we shall utilize for the attacks is sparsity, defined as follows.

Definition 6.1 ((n, k, ρ)-sparse distribution). Suppose that µ is a distribution over Fm2 for m ≥ n. We say
that µ is (n, k, ρ)-sparse if there exist k subsets A1, . . . , Ak ⊆ Fm2 and k full rank linear transformations
L1, . . . , Lk : Fm2 → Fn2 such that Prµ

(⋃k
i=1Ai

)
≥ ρ and Li(Ai) is constant for every i ∈ [k].

Note that A1, . . . , Ak and L1, . . . , Lk in the definition above are not required to be distinct. At a high
level, asumming that one of the noise distributions µsk, µ0 or µ1 is sparse one can ’guess’ the noise vector
used in the key generation process (in the case in which µsk is sparse) or in the encryption process (in the
case in which µ0 or µ1 are sparse) by enumerating over all i ∈ [k] and solving a corresponding system of
linear equations.

6.1 Attack based on combinatorial properties of µsk

Lemma 6.2 (Attack based on combinatorial properties of µsk). Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2
and AdvDec(n) ≥ 1 − ε and suppose that the distribution µsk is (n, k, ρ)-sparse. Then there exists a non-
uniform attack Ask on Π running in time (k/ε) · poly(m) with AdvAsk(n) ≥ (ρ− 4

√
ε)/10.

Proof. By Claim 4.4 it suffices to prove the lemma for Π =ΠAlek and without loss of generality we may as-
sume that g is the identity function over F2. Since µsk is (n, k, ρ)-sparse there exist k subsets A1, . . . , Ak ⊆
Fm2 and k full rank linear transformations L1, . . . , Lk : Fm2 → Fn2 such that Prµsk

(⋃k
i=1Ai

)
≥ ρ and

Li(Ai) is constant for every i ∈ [k].
Our main observation is that if e′ satisfies that b = w′ + e′ for some w′ ∈ Image(G) and in addition

Pr[〈e′ ◦ (−1), µ1〉 = 1]− Pr[〈e′ ◦ (−1), µ0〉 = 1] ≥ 1− ε′ (8)

then decrypting the ciphertext using e′ as the private key achieves advantage 1 − ε′. We search for e′ that
satisfies the above by enumerating over all i ∈ [k] and solving a corresponding system of linear equations
and we test whether e′ satisfies (8) via sampling.
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Fix y ∈ Fm2 . By the Hoeffding bound for sampling (Lemma 3.1) if we draw ` = m/(
√
ε/2)2 indepen-

dent random samples e(0)
1 , . . . , e

(0)
` ∼ µ0 and ` independent random samples e(1)

1 , . . . , e
(1)
` ∼ µ1 then∣∣∣∣(Pr[〈y ◦ (−1), µ1〉 = 1]− Pr[〈y ◦ (−1), µ0〉 = 1]

)
(9)

−
(

Pr
j∈[`]

[〈y ◦ (−1), e
(1)
j 〉 = 1]− Pr

j∈[`]
[〈y ◦ (−1), e

(0)
j 〉 = 1]

)∣∣∣∣ ≤ √ε
with probability at least 1 − 4 · 2−2m. By union bound this implies in turn that (9) holds for every y ∈ Fm2
with probability at least 1 − 4 · 2−m. In particular, there exist ` vectors e(0)

1 , . . . , e
(0)
` ∈ supp(µ0) and `

vectors e(1)
1 , . . . , e

(1)
` ∈ supp(µ1) for which (9) holds for every y ∈ Fm2 .

Ask

- For every i = 1, 2, . . . , k:

- Solve the system of linear equations

Lib = LiGx
′ + Li(Ai)

in the indeterminate x′.

- If there is no solution continue to the next i.

- Else let x′ be an arbitrary solution and let e′ := b−Gx′.

- If e′ satisfies that

Pr
j∈[`]

[〈e′ ◦ (−1), e
(1)
j 〉 = 1]− Pr

j∈[`]
[〈e′ ◦ (−1), e

(0)
j 〉 = 1] ≥ 1− 2

√
ε, (10)

output 〈e′ ◦ (−1), c〉, else continue to the next i.

- Else if no e′ satisfies (10), output a random bit.

Inspection reveals that the attack above can be implemented using a non-uniform circuit of size (k/ε) ·
poly(m). Next we analyze the advantage of the attack in guessing the message bit σ. We will show that with
probability at least (ρ−

√
ε)/10 the attack finds e′ which satisfies (10) and that in this case the advantage of

guessing the correct message bit is at least 1−3
√
ε. This will imply in turn that AdvAsk(n) ≥ (ρ−4

√
ε)/10.

We start by showing a lower bound on the probability that the attack finds e′ which satisfies (10). Since
AdvDec(n) ≥ 1− ε by Claim 4.2, together with a standard probabilistic argument, we have that e satisfies

Pr[〈e ◦ (−1), µ1〉 = 1]− Pr[〈e ◦ (−1), µ0〉 = 1] ≥ 1−
√
ε

with probability at least 1 −
√
ε. By (9) this implies in turn that e satisfies (10) with probability at least

1−
√
ε. Furthermore, since µsk is (n, k, ρ)-sparse with probability at least ρ we have that e ∈

⋃k
i=1Ai. So

with probability at least ρ−
√
ε we have that e satisfies (10) and in addition e ∈ Ai for some i ∈ [k]. Finally,

the matrix LiG is non-singular with probability at least 1/10 (say), independently of the above.
Conditioned on all the above, in the i-th iteration we have that

e′ = b−Gx′ = b−G · (LiG)−1(Lib− Li(Ai)) = b−G · (LiG)−1 · (Lib− Lie) = e.
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Consequently we have that the attack finds e′ which satisfies (10) with probability at least (ρ−
√
ε)/10.

Next we show that if the attack finds e′ which satisfies (10) then the advantage of guessing the correct
message bit using e′ is high. Since e′ = b−Gx′ we have that

〈e′ ◦ (−1), c〉 = 〈(b−Gx′) ◦ (−1), w̃〉+ 〈(b−Gx′) ◦ (−1), ẽ〉
= 〈b ◦ (−1), w̃〉 − 〈x′, GT · Pm(w̃)〉+ 〈(b−Gx′) ◦ (−1), ẽ〉
= 0− 0 + 〈e′ ◦ (−1), ẽ〉
= 〈e′ ◦ (−1), ẽ〉.

Furthermore, since e′ satisfies (10), by (9) we have that

Pr[〈e′ ◦ (−1), µ1〉 = 1]− Pr[〈e′ ◦ (−1), µ0〉 = 1] ≥ 1− 3
√
ε,

so the advantage of the attack in this case is 1− 3
√
ε.

6.2 Attack based on combinatorial properties of µ0, µ1

Lemma 6.3 (Attack based on combinatorial properties of µ0, µ1). Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with
q = 2 and AdvDec(n) ≥ 1 − ε and suppose that there exists ξ ∈ {0, 1} such that the distribution µξ is
(m+ 1− n+ r, k, ρ)-sparse. Then there exists a non-uniform attack Aξ on Π running in time k · poly(m)
with AdvAξ(n) ≥ ρ/2− ε− 2k2−r.

Proof. By Claim 4.4 it suffices to prove the lemma for Π =ΠGPV and by symmetry we may further assume
that ξ = 0. Without loss of generality we may assume that g is the identity function over F2. Since µ0 is
(m+1−n+r, k, ρ)-sparse there exist k subsets A1, . . . , Ak ⊆ Fm+1

2 and k full rank linear transformations
L1, . . . , Lk : Fm+1

2 → Fm+1−n+r
2 such that Prµ0

(⋃k
i=1Ai

)
≥ ρ and Li(Ai) is constant for every i ∈ [k].

For every i ∈ [k] let Vi =
{
v ∈ Fm+1

2 | Li(v) = Li(Ai)
}

and let S =
⋃k
i=1 Vi . Since AdvDec(n) ≥ 1− ε,

by averaging there exists e(sk) ∈ supp(µsk) such that

Pr[〈e(sk) ◦ (−1), µ1〉 = 1]− Pr[〈e(sk) ◦ (−1), µ0〉 = 1] ≥ 1− ε.

Our main observation is that since S is not too large, with high probability over the choice of the matrix
H̃ , there is no e′ ∈ S \ {ẽ} such that c = H̃x′ + e′ for some x′ ∈ Fm−n2 . This implies in turn that by
enumerating over all i ∈ [k] and solving a corresponding system of linear equations, with high probability
one can verify whether ẽ ∈ S and if this is the case one can also find ẽ. It thus suffices to be able to
distinguish between ẽ ∼ µ0 and ẽ ∼ µ1, conditioned on the event that ẽ ∈ S. Assuming that ε is sufficiently
small compared to ρ, this can be done by computing the inner product 〈e(sk) ◦ (−1), ẽ〉.
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A0

- For every i = 1, 2, . . . , k:

- Solve the system of linear equations

Lic = LiH̃x
′ + Li(Ai) (11)

in the indeterminate x′.

- If there is no solution continue to the next i.

- Else let x′ be an arbitrary solution and let e′ := c− H̃x′.

- If e′ satisfies that 〈e(sk) ◦ (−1), e′〉 = 0 output 0, else continue to the next i.

- Else if no e′ satisfies the above, output a random bit.
Inspection reveals that the attack above can be implemented using a non-uniform circuit of size k ·poly(m).
Next we analyze the advantage of the attack in guessing the message bit σ.

We say that H̃ is S-good for ẽ if there is no z ∈ S \ {ẽ} such that z − ẽ ∈ Image(H̃). We will show
that for every ẽ the probability that H̃ is S-good for ẽ is at least 1− k · 2−r. Consequently, for every ẽ there
exists a collectionHẽ of S-good matrices for ẽ such that Pr[H̃ ∈ Hẽ] = 1− k · 2−r. We will then show that
conditioned on the event that H̃ ∈ Hẽ the attack outputs 0 with probability at least (1 + ρ− ε)/2 when c is
an encryption of 0 and it outputs 1 with probability at least (1− ε)/2 when c is an encryption of 1. This will
imply in turn that the advantage of the attack is at least (1− k2−r)(ρ/2− ε)− k2−r ≥ ρ/2− ε− 2k2−r.

We start by showing that for every ẽ the probability that H̃ is S-good for ẽ is at least 1 − k · 2−r. For
this note that for every i ∈ [k] the subspace Vi has co-dimension m + 1 − n + r and hence |Vi| = 2n−r

and consequently |S| ≤ k2n−r. Thus by union bound it suffices to show that for every z ∈ S \ {ẽ} it
holds that z − ẽ ∈ Image(H̃) with probability at most 2−n. To see this fix z ∈ S \ {ẽ} and suppose that

z − ẽ ∈ Image(H̃). Since H̃ =

(
H
uT

)
this implies in turn that Pm(z − ẽ) ∈ Image(H). Furthermore,

since z − ẽ 6= 0 and H is full rank we also have that Pm(z − ẽ) 6= 0. So we obtained that Pm(z − ẽ) is a
non-zero point contained in Image(H), a uniform random (m−n)-dimensional space, which happens with
probability at most 2−n.

Next we show a lower bound on the probability that the attack outputs 0 when c is an encryption of 0,
conditioned on the event that H̃ ∈ Hẽ. Since the event H̃ ∈ Hẽ is independent of the choice of ẽ, by union
bound we have that the events ẽ ∈

⋃k
i=1Ai and 〈e(sk)◦(−1), ẽ〉 = 0 hold simultaneously with probability at

least ρ− ε. We will show that if these two events hold then the attack outputs 0. This will imply in turn that
in the case in which c is an encryption of 0, conditioned on the event that H̃ ∈ Hẽ, the attack outputs 0 with
probability at least ρ− ε and it outputs a random bit otherwise. So it outputs 0 in this case with probability
at least (1 + ρ− ε)/2.

Suppose that ẽ ∈
⋃k
i=1Ai and 〈e(sk) ◦ (−1), ẽ〉 = 0. Then in this case we have that

Lic = Liw̃ + Liẽ = LiH̃x̃+ Li(Ai),

where i ∈ [k] is such that ẽ ∈ Ai and x̃ is such that w̃ = H̃x̃. Consequently, the attack will find a
solution for (11). Furthermore, we claim that if the attack finds a solution x′ to (11) for some j ∈ [k] then
e′ = c− H̃x′ = ẽ. To see this note that Lje′ = Ljc−LjH̃x′ = Lj(Aj) and therefore e′ ∈ S. Furthermore,
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we have that e′ − ẽ = (c − H̃x′) − (c − H̃x̃) = H̃(x̃ − x′) and so e′ − ẽ ∈ Image(H̃). But due to our
assumption that H̃ is S-good for ẽ this implies in turn that ẽ = e′. So we have that ẽ = e′ and due to our
assumption that 〈e(sk) ◦ (−1), ẽ〉 = 0 this implies in turn that the attack will output 0.

Finally, we show a lower bound on the probability that the attack outputs 1 when c is an encryption of
1, conditioned on the event that H̃ ∈ Hẽ. Since the event H̃ ∈ Hẽ is independent of the choice of ẽ, we
have that 〈e(sk) ◦ (−1), ẽ〉 = 1 with probability at least 1 − ε. Suppose that this latter event holds. If there
is no solution for (11) for every j ∈ [k] the attack outputs a random bit. Otherwise if the attack finds a
solution x′ for (11) for some j ∈ [k] then similarly to the above the assumption that H̃ ∈ Hẽ implies that
e′ = c− H̃x′ = ẽ. Due to our assumption that 〈e(sk) ◦ (−1), ẽ〉 = 1 this implies in turn that the attack will
output a random bit. Concluding, we obtained that in the case in which c is an encryption of 1, conditioned
on the event that H̃ ∈ Hẽ, the attack outputs 1 with probability at least (1− ε)/2.

7 Attacks based on the approximate duality conjecture

Recall the definition of the duality measure given in (1). All results presented in this section assume that the
following conjecture holds.

Conjecture 7.1 (Approximate duality conjecture [7]). For every constant ε > 0 there exists a constant c
which depends only on ε such that the following holds. If A,B ⊆ Fm2 have D(A,B) ≥ ε then there exist
subsets A′ ⊆ A and B′ ⊆ B such that |A′| ≥ 2−c

√
m|A|, |B′| ≥ 2−c

√
m|B| and D(A′, B′) = 1.

Our main result in this section is the following.

Theorem 7.2. Assuming the approximate duality conjecture (Conjecture 7.1) there exist constants ε, γ > 0
such that the following holds. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ 1 − ε. Then
there exists a non-uniform attack A on Π running in time 2O(

√
m) with AdvA(n) ≥ γ.

For the proof of the above theorem we first prove two consequences of Conjecture 7.1. The first conse-
quence is a generalized form of this conjecture that applies to arbitrary distributions, not necessarily uniform
over subsets A,B. For a pair of distributions µ1, µ2 over Fm2 we define their duality measure as

D(µ1, µ2) = E
[
(−1)〈µ1,µ2〉

]
.

Note that in the special case where µ1, µ2 are uniform distributions over subsets A,B ⊆ Fm2 respectively
then D(µ1, µ2) = D(A,B).

Lemma 7.3. Assuming Conjecture 7.1, for every constant ε > 0 there exists a constant c which depends
only on ε such that the following holds. If a pair of distributions µ1, µ2 over Fm2 have D(µ1, µ2) ≥ ε then
there exist subsets A′, B′ ⊆ Fm2 such that Prµ1(A′) ≥ 2−c

√
m, Prµ2(B′) ≥ 2−c

√
m and D(A′, B′) = 1.

The proof of the above lemma is given in Section 7.1. Note that the probability of being contained in
the sets A′ and B′ in the above lemma is 2−c

√
m and so using this lemma one can only obtain an attack on

the abstract encryption scheme in the case in which the decryption error of a single encryption is 2−Ω(
√
m).

However, we are interested in an attack that works in the case in which the decryption error of a single
encryption is a sufficiently small constant. For this we apply Lemma 7.3 iteratively to obtain t ≈ 2c

√
m pairs

of subsets Ai, Bi such that D(Ai, Bi) = 1 for all 1 ≤ i ≤ t and such that the probability of being contained
in the union of Ω(t) of these subsets is Ω(ε).
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Lemma 7.4. Assuming Conjecture 7.1, for every constant ε > 0 there exists a constant c which depends
only on ε such that the following holds for every integer t ≤ 2c

√
mε/4. If a pair of distributions µ1, µ2

over Fm2 have D(µ1, µ2) ≥ ε, then there exist subsets A1, . . . , At ⊆ Fm2 and B1, . . . , Bt ⊆ Fm2 such that
D(Ai, Bi) = 1 for all i ∈ [t], and in addition for every I ⊆ [t] it holds that Prµ1(

⋃
i∈I Ai) ≥ |I| · 2−c

√
m/4

and Prµ2(
⋃
i∈I Bi) ≥ |I| · 2−c

√
m/4.

Note that the setsA1, . . . , At andB1, . . . , Bt in the above lemma may have non-empty intersections and
in particular are not required to be distinct. The proof of the above lemma is given in Section 7.2.

In what follows we present the proof of our main Theorem 7.2 based on Lemma 7.4.

Proof of Theorem 7.2. We will show that assuming Conjecture 7.1 we have that the conditions of either
Lemma 6.2 or Lemma 6.3 hold. Let c be the constant guaranteed by Lemma 7.4 for the constant 1− 2ε. We
shall show that the conclusion of the theorem holds for

γ = min
{

(1− 4
√
ε)/10, ((1− 2ε)/32− 4

√
ε)/10, (1− 2ε)/64− ε− 2 · 2−c

√
m
}
.

If n ≤ 2c
√
m we clearly have that the distribution µsk is (n, 22c

√
m, 1)-sparse and consequently Lemma

6.2 implies an attack in time 2O(
√
m) with advantage (1 − 4

√
ε)/10. Hence from now on we shall assume

that n > 2c
√
m.

Let ξ ∈ {0, 1} be such that the decryption function g satisfies g(0) = ξ. Our main observation is that
the assumption that AdvDec(n) ≥ 1 − ε implies that Pr[〈µsk ◦ (−1), µξ〉 = 0] ≥ 1 − ε and consequently
D(µsk ◦ (−1), µξ) ≥ 1 − 2ε. Thus we may apply Lemma 7.4 to the distributions µsk ◦ (−1) and µξ and
conclude the existence of t = 2c

√
m(1 − 2ε)/4 subsets A1, . . . , At ⊆ Fm+1

2 and B1, . . . , Bt ⊆ Fm+1
2 such

that D(Ai, Bi) = 1 for all i ∈ [t], and in addition for every I ⊆ [t] it holds that Prµsk◦(−1)(
⋃
i∈I Ai) ≥

|I| · 2−c
√
m/4 and Prµξ(

⋃
i∈I Bi) ≥ |I| · 2−c

√
m/4.

Fix i ∈ [t]. The fact thatD(Ai, Bi) = 1 implies in turn that dim(span (Ai))+dim(span (Bi)) ≤ m+2
and in particular we have that either dim(span (Ai)) ≤ m+2−n+2c

√
m or dim(span (Bi)) ≤ n−2c

√
m.

Let I ⊆ [t] be the set of all indices i for which dim(span (Ai)) ≤ m+ 2− n+ 2c
√
m. We shall show that

if |I| ≥ t/2 the conditions of Lemma 6.2 hold while if |I| < t/2 the conditions of Lemma 6.3 hold.
We start with the case in which |I| ≥ t/2. Fix i ∈ I and let v1, . . . , vm+1 be a basis for Fm+1

2 such
that the subspace spanned by v1, . . . , vm+2−n+2c

√
m contains span (Ai). Let Li : Fm+1

2 → Fn2 be the
linear transformation which satisfies Li(

∑m+1
j=1 αjvj) = (αm−n+2, . . . , αm+1) for every α1, . . . , αm+1 ∈

F2. Then Li(Ai) is supported only on the first 2c
√
m + 1 bits and consequently |Li(Ai)| ≤ 22c

√
m+1.

Furthermore, we have that |I| ≤ t = 2c
√
m(1− 2ε)/4 and Prµsk◦(−1)(

⋃
i∈I Ai) ≥ (t/2) · 2−c

√
m/4 = (1−

2ε)/32. This implies in turn that the distribution µsk◦(−1), and consequently also µsk, are
(
n, 23c

√
m+1(1−

2ε)/4, (1 − 2ε)/32)-sparse. Lemma 6.2 implies in turn that the encryption scheme can be attacked in time
2O(
√
m) with advantage ((1− 2ε)/32− 4

√
ε)/10.

Next we deal with the case in which |I| < t/2. Similarly to the previous case for every i /∈ I there exists
a full rank linear transformation Li : Fm+1

2 → Fm+1−n+2c
√
m

2 such that Li(Bi) ≡ 0 and Prµξ(
⋃
i/∈I Bi) ≥

(1 − 2ε)/32. This implies in turn that µξ is
(
m + 1 − n + 2c

√
m, 2c

√
m(1 − 2ε)/4, (1 − 2ε)/32)-sparse.

So by Lemma 6.3 we have that the encryption scheme can be attacked in time 2O(
√
m) with advantage

(1− 2ε)/64− ε− 2 · 2−c
√
m.

7.1 From uniform to general distributions – proof of Lemma 7.3

We start with the following lemma which says that every distribution can be approximated by a distribution
which is a convex combination of not too many uniform distributions.
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Lemma 7.5. Let µ be a distribution with support S, |S| = N , and let t = log(2N/ε)/ log(1 + ε/2). Then
there exist a partition of S into at most t + 2 subsets S0, . . . , St+1 and a distribution χ which is a convex
combination of uniform distributions on S0, . . . , St such that µ is ε-close to χ.

Proof. Choose an arbitrary element β ∈ S. Let

S0 =

{
α ∈ S \ {β}

∣∣∣∣Prµ(α) ≤ ε

2N

}
,

for all 1 ≤ i ≤ t let

Si =

{
α ∈ S \ {β}

∣∣∣∣ ε2N · (1 + ε/2)i−1 < Prµ(α) ≤ ε

2N
· (1 + ε/2)i

}
and let St+1 = {β}.

Let χ be the distribution which satisfies

Prχ(α) =


0, α ∈ S0

ε
2N · (1 + ε/2)i−1, α ∈ Si for 1 ≤ i ≤ t
1−

∑
γ∈S\{β} Prχ(γ), α = β.

We clearly have that S0, . . . , St+1 is a partition of S and that χ is a convex combination of uniform
distributions on S0, . . . , St+1.

It remains to show that µ is ε-close to the distribution χ. For this we compute

|µ− χ| =
1

2

∑
α∈S
|Prµ(α)− Prχ(α)|

=
∑

α∈S\{β}

(Prµ(α)− Prχ(α))

≤
∑
α∈S0

ε

2N
+

t∑
i=1

∑
α∈Si

ε

2
Prµ(α)

≤ ε

2N
·N +

ε

2

∑
α∈S

Prµ(α)

= ε.

We shall also use the definition of the spectrum given below.

Definition 7.6 (Spectrum). For a distribution µ over Fm2 and ε ∈ [0, 1] let the ε-spectrum of µ be the set

Specε(µ) =
{
x ∈ Fm2

∣∣∣∣E[(−1)〈x,µ〉
]
≥ ε
}
. (12)

Note that if supp(µ1) ⊆ Specε(µ2) then D(µ1, µ2) ≥ ε. Conversely, a standard probabilistic argument
shows that if D(µ1, µ2) ≥ ε then Prµ1(Specε/2(µ2)) ≥ ε/2.
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Proof of Lemma 7.3. Let c′ be the constant guaranteed by Conjecture 7.1 for the constant ε/4.
Let µ′1 = µ1|Specε/2(µ2) and note that the fact that D(µ1, µ2) ≥ ε implies that Prµ1(Specε/2(µ2)) ≥

ε/2. By Lemma 7.5 there exists a partition of supp(µ′1) into t + 2 subsets A0, . . . , At+1 ⊆ Fm2 for t =
log(2 · 2m/δ)/ log(1 + δ/2) such that µ′1 is δ-close to a distribution χ1 which is a convex combination of
uniform distributions on A0, . . . , At+1. Since supp(µ′1) ⊆ Specε/2(µ2) we have that Ai ⊆ Specε/2(µ2) for
all 0 ≤ i ≤ t+ 1 and so D(Ai, µ2) ≥ ε/2 for all 0 ≤ i ≤ t+ 1.

Fix 0 ≤ i ≤ t + 1. Similarly to the above, let µ(i)
2 = µ2|Specε/4(Ai) and note that the fact that

D(Ai, µ2) ≥ ε/2 implies that Prµ2(Specε/4(Ai)) ≥ ε/4. By Lemma 7.5 there exists a partition of

supp(µ
(i)
2 ) into t+ 2 subsets B(i)

0 , . . . , B
(i)
t+1 ⊆ Fm2 for t = log(2 · 2m/δ)/ log(1 + δ/2) such that µ(i)

2 is δ-

close to a distribution χ(i)
2 which is a convex combination of uniform distributions on B(i)

0 , . . . , B
(i)
t+1. Since

supp(µ
(i)
2 ) ⊆ Specε/4(Ai) we have thatB(i)

j ⊆ Specε/4(Ai) for all 0 ≤ j ≤ t+1 and soD(Ai, B
(i)
j ) ≥ ε/4

for all 0 ≤ j ≤ t+ 1.
Summarizing, so far we found a collection of subsets {Ai}0≤i≤t+1 and a collection {B(i)

j }0≤i,j≤t+1

such that:

• µ′1 = µ1|Specε/2(µ2) is close to a convex combination of uniform distributions on A0, . . . , At+1.

• µ(i)
2 = µ2|Specε/4(Ai) is close to a convex combination of uniform distributions on B(i)

0 , . . . , B
(i)
t+1

for all 0 ≤ i ≤ t+ 1.

• D(Ai, B
(i)
j ) ≥ ε/4 for all 0 ≤ i, j ≤ t+ 1.

For every 0 ≤ i, j ≤ t + 1 we can apply Conjecture 7.1 to the sets Ai, B
(i)
j and conclude the ex-

istence of subsets Ã(i)
j ⊆ Ai, B̃

(i)
j ⊆ B

(i)
j such that D(Ã

(i)
j , B̃

(i)
j ) = 1 and |Ã(i)

j | ≥ 2−c
′√m|Ai|,

|B̃(i)
j | ≥ 2−c

′√m|B(i)
j |. So in order to prove the lemma it suffices to show the existence of a constant c

and indices 0 ≤ k, ` ≤ t+ 1 for which Prµ1(Ã
(k)
` ) ≥ 2−c

√
m and Prµ2(B̃

(k)
` ) ≥ 2−c

√
m.

By the pigeonhole principle, for every 0 ≤ i ≤ t+ 1 there exists an index 0 ≤ ji ≤ t+ 1 such that

Prµ2

(
B̃

(i)
ji

)
≥

Prµ2

(⋃t+1
j=0 B̃

(i)
j

)
t + 2

.

Similarly, there exists 0 ≤ k ≤ t+ 1 such that

Prµ1

(
Ã

(k)
jk

)
≥

Prµ1

(⋃t+1
i=0 Ã

(i)
ji

)
t + 2

.

Let A′ = Ã
(k)
jk

and B′ = B̃
(k)
jk

. Then we have that D(A′, B′) = 1 and in order to bound the prob-

abilities Prµ1(A′) and Prµ2(B′) from below it suffices to bound the probabilities Prµ2

(⋃t+1
j=0 B̃

(k)
j

)
and

26



Prµ1

(⋃t+1
i=0 Ã

(i)
ji

)
from below. For this we compute

Prµ2

( t+1⋃
j=0

B̃
(k)
j

)
≥ ε

4
· Pr

µ
(k)
2

( t+1⋃
j=0

B̃
(k)
j

)
(Since Prµ2(Specε/4(Ak)) ≥ ε/4)

≥ ε

4
·
(

Pr
χ
(k)
2

( t+1⋃
j=0

B̃
(k)
j

)
− δ
)

(Since µ(k)
2 and χ(k)

2 are δ-close)

≥ ε

4
·
(
2−c

′√m − δ
)
,

where the last inequality follows since χ(k)
2 is a convex combination of uniform distributions onB(k)

0 , . . . , B
(k)
t+1

and |B̃(k)
j | ≥ 2−c

′√m|B(k)
j | for all 0 ≤ j ≤ t+ 1.

Similarly, we have that

Prµ1

( t+1⋃
i=0

Ã
(i)
ji

)
≥ ε

2
· Prµ′1

( t+1⋃
i=0

Ã
(i)
ji

)

≥ ε

2
·
(

Prχ′1

( t+1⋃
i=0

Ã
(i)
ji

)
− δ
)

≥ ε

2
·
(
2−c

′√m − δ
)
.

Concluding, we have found subsets A′, B′ such that D(A′, B′) = 1 and such that both Prµ1(A′) and
Prµ2(B′) are bounded from below by ε

4(t+2) ·
(
2−c

′√m−δ
)
. The proof is completed by letting δ = 2−c

′√m/2

and t = log(2·2m/δ)
log(1+δ/2) and noting that with this setting of parameters there exists a constant c which depends

only on ε such that ε
4(t+2) ·

(
2−c

′√m − δ
)
≥ 2−c

√
m for a sufficiently large m.

7.2 Iterative application – proof of Lemma 7.4

In what follows we prove Lemma 7.4 based on Lemma 7.3.

Proof of Lemma 7.4. Let c be the constant guaranteed by Lemma 7.3 for the constant ε/2. For ease of
notations let γ := 2−c

√
m.

We shall apply Lemma 7.3 iteratively to obtain at each step a new pair of sets Ai, Bi. Let µ(1)
1 := µ1,

µ
(1)
2 := µ2. For i = 1, 2, . . ., as long as D(µ

(i)
1 , µ

(i)
2 ) ≥ ε/2 apply Lemma 7.3 to the distributions µ(i)

1 and
µ

(i)
2 to obtain minimal subsets Ai, Bi such that D(Ai, Bi) = 1 and Pr

µ
(i)
1

(Ai) ≥ γ, Pr
µ
(i)
2

(Bi) ≥ γ.

By minimality of Ai, Bi there exist elements ai ∈ Ai and bi ∈ Bi such that Pr
µ
(i)
1

(Ai \ {ai}) < γ and

Pr
µ
(i)
2

(Bi \ {bi}) < γ. Continue to the next step with the distributions µ(i+1)
1 , µ(i+1)

2 given by

Pr
µ
(i+1)
1

(a) =


0, a ∈ Ai \ {ai}
Pr
µ
(i)
1

(Ai)−γ

1−γ , a = ai
Pr
µ
(i)
1

(a)

1−γ , Otherwise,
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and

Pr
µ
(i+1)
2

(b) =


0, b ∈ Bi \ {bi}
Pr
µ
(i)
2

(Bi)−γ

1−γ , b = bi
Pr
µ
(i)
2

(b)

1−γ , Otherwise.

Note that at the i-th step we have

D(µ
(i+1)
1 , µ

(i+1)
2 ) > D(µ

(i)
1 , µ

(i)
2 )− 2γ,

and so
D(µ

(i)
1 , µ

(i)
2 ) > D(µ

(1)
1 , µ

(1)
2 )− 2(i− 1)γ ≥ ε− 2(i− 1)γ.

Thus the process continues as long as i ≤ ε/(4γ).
It remains to bound the probabilities Prµ1(

⋃
i∈I Ai) and Prµ2(

⋃
i∈I Bi) from below for I ⊆ [ε/(4γ)],

and by symmetry it suffices to bound Prµ1(
⋃
i∈I Ai) from below. So we compute

Prµ1

(⋃
i∈I

Ai

)
≥
∑
i∈I

(1− γ)i−1 · γ ≥ |I|γ(1− γ)1/γ ≥ |I|γ/4,

where the last inequality holds for a sufficiently large m recalling that γ = 2−c
√
m.

8 Perfectly correct decryption

We end this paper by discussing the possibility of achieving perfectly correct decryption in the abstract
encryption scheme over constant-size rings. We first prove that when q = 2 any instance of the abstract
encryption scheme with perfectly correct decryption can be attacked in time poly(m). Then we propose to
use the construction of matching vector families from [13], which builds on the constructions of [20, 15], to
achieve an instance of the abstract encryption scheme with perfectly correct decryption over constant-size
rings that cannot be attacked in time poly(m).

8.1 Insecurity over the binary field

Claim 8.1. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) = 1. Then there exists a non-
uniform attack Aper on Π running in time poly(m) with AdvAper(n) = 1.

Proof. By Claim 4.4 it suffices to prove the claim for Π =ΠAlek and without loss of generality we may
assume that the decryption function g is the identity function over F2. By Claim 4.2 and the assumption that
AdvDec(n) = 1 we have that 〈µsk ◦ (−1), µξ〉 ≡ ξ for every ξ ∈ {0, 1}. Let ê be an arbitrary element in
supp(µsk) and note that ê ◦ (−1) + supp(µsk ◦ (−1)) ⊆ (supp(µξ))

⊥ for every ξ ∈ {0, 1}.
Our main observation is that if e′ satisfies that b = w′ + e′ for some w′ ∈ Image(G) and in addition

ê◦(−1)+e′◦(−1) ∈ (supp(µξ))
⊥ for every ξ ∈ {0, 1} then decrypting the ciphertext using e′ as the private

key achieves advantage 1. We find e′ which satisfies the above by solving a system of linear equations.
Fix ξ ∈ {0, 1}. Let dξ = dim((supp(µξ))

⊥) and let v(ξ)
1 , . . . , v

(ξ)
m+1 be a basis for Fm+1

2 such that

v
(ξ)
1 , . . . , v

(ξ)
dξ

is a basis for (supp(µξ))
⊥. Let Lξ : Fm+1

2 → Fm+1−dξ
2 be the linear transformation which
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satisfies

Lξ(
m+1∑
i=1

αiv
(ξ)
i ) = (αdξ+1, . . . , αm+1)

for every α1, . . . , αm+1 ∈ F2. Note that Lξ(µsk ◦ (−1)) ≡ Lξ(ê ◦ (−1)). Let b′ = b ◦ (−1) and

G′ =

(
G
0Tn

)
.

Aper

- Let x′ be an arbitrary joint solution of the systems of linear equations

L0b
′ = L0G

′x′ + L0(ê ◦ (−1)) (13)

and
L1b
′ = L1G

′x′ + L1(ê ◦ (−1)). (14)

- Let e′ := Pm(b′ −G′x′).

- Output 〈e′ ◦ (−1), c〉.

We first show that the systems of linear equations (13) and (14) have a joint solution. Let x ∈ Fn2 be
such that w = Gx. Then for every ξ ∈ {0, 1} we have that

LξG
′x+ Lξ(ê ◦ (−1)) = Lξ(b

′ − e ◦ (−1)) + Lξ(ê ◦ (−1)) = Lξb
′.

It remains to show that if c is an encryption of a bit σ ∈ {0, 1} then 〈e′ ◦ (−1), c〉 = σ. To see this note
first thatLσ(b′−G′x′) = Lσ(ê◦(−1)) and so b′−G′x′ = ê◦(−1)+y for some y ∈ ker(Lσ) = (supp(µσ))⊥.
So we have

〈e′ ◦ (−1), c〉 = 〈b′ −G′x′, w̃〉+ 〈b′ −G′x′, ẽ〉
= 〈b′, w̃〉 − 〈x′, (G′)T w̃〉+ 〈y + ê ◦ (−1), ẽ〉
= 0− 0 + 〈y + ê ◦ (−1), ẽ〉
= 〈ê ◦ (−1), ẽ〉
= σ.

8.2 Candidate over constant-size rings

In what follows we consider a generalization of the encryption scheme ΠGPV to arbitrary rings Zq. Over a
general ring Zq the standard notions of matrix rank and Gaussian elimination do not apply. However, the
formal definition of the encryption scheme ΠGPV still makes sense in this setting if we choose H to be a
uniform random m× (m−n) matrix over Zq (so we do not require it to be full rank) and we generate w̃ by
choosing a uniform random vector x̃ ∈ Zm−nq and letting w̃ = H̃x̃.

Over sufficiently large constant-size rings, we propose to use the construction of matching vector fam-
ilies from [13], which builds on the constructions of [20, 15], as the noise distributions used in the key
generation and encryption processes in order to obtain an instance of the abstract encryption scheme with
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perfectly correct decryption that cannot be attacked in time poly(m). We start with the definition of a
matching vector family.

Definition 8.2 (Matching vector family). Let S ⊆ Zq \ {0}. A pair of subsets U = {u1, . . . , uk} ,V =
{v1, . . . , vk} ⊆ Zmq forms an S-matching vector family of size k if the following two conditions are satisfied:

• For all i ∈ [k], 〈ui, vi〉 = 0.

• For all i 6= j ∈ [k], 〈ui, vj〉 ∈ S.

We say that an S-matching vector family is b-bounded if s < b for every s ∈ S (where we identify Zq
with the set of integers {0, 1, . . . , q − 1} and define the relation < over Zq according to the corresponding
ordering on the integers).

The following theorem is a consequence of Lemma 13 in [13] with the setting of parameters described
in the proof of Lemma 16 in [13]. It shows that for every constant integer t there is a fixed integer q such
that there is a bounded matching vector family with k = 2polylog(m) vectors over Zmq , where the power in
the polylog grows with t.

Theorem 8.3. For every integer t ≥ 2 there exist integers q = q(t) and k0 = k0(t) such that for every
k ≥ k0 there exists an O(q/ log log q)-bounded matching vector family U (t)

k ,V(t)
k ⊆ Zmq of size k for

m = exp((log k)1/t(log log k)1−1/tt ln t). Moreover, the uniform distribution over each of the subsets U (t)
k

and V(t)
k is efficiently samplable.

Fix t ≥ 2 and let q = q(t), k0 = k0(t) be the integers guaranteed by Theorem 8.3. For every integer
k ≥ k0 let Π

(t)
k be the instance of ΠGPV over Zq in which m = exp((log k)1/t(log log k)1−1/tt ln t),

n = m/(1 + ε), the distribution µsk is the uniform distribution over U (t)
k , the distribution µ0 is the uniform

distribution over all vectors of the form v ◦ 0 and the distribution µ1 is the uniform distribution over all
vectors of the form v ◦ (−b q2c) where v ∈ V(t)

k and the decryption function g is given by

g(i) =

{
1, b q4c ≤ i ≤ b

3q
4 c

0, otherwise.

Since the matching vector family U (t)
k ,V(t)

k is O(q/ log log q)-bounded, for sufficiently large q we have
that AdvDec(n) = 1. Furthermore, we suggest that the ’non-linear’ structure of matching vector families
makes them resistance to polynomial time attacks.

Question 8.4. Does it hold for any integers t ≥ 2 and k ≥ k0(t) that any attack on Π
(t)
k running in time

poly(m) will only be able to achieve a negligible advantage in n?
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A Security of abstract encryption scheme – proof of Lemma 5.4

For the proof of Lemma 5.4 we shall use the following decision to search reduction which shows that
in order to find the vector s it suffices to be able to distinguish the distribution Ds,µsk from the uniform
distribution. Lemma 4.2 in [39] shows such a reduction for the case in which µsk is i.i.d in each coordinate
and we observe that the same holds also when µsk is arbitrary.
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Lemma A.1 (Decision to search). Let n ≤ m be integers, q a prime and µ an arbitrary distribution over Fmq .
Suppose that there exists a randomized procedureW ′, running in time t(n), which is given as input ` samples
of the form

(
G(i), b(i)

)
whereG(i) ∈ Fm×nq and b(i) ∈ Fmq for all 1 ≤ i ≤ ` and which satisfies the following

guarantees. For all s ∈ Fnq , the procedure W ′ accepts with probability at least 1 − δ if all
(
G(i), b(i)

)
are

independent random samples from Ds,µ and the procedure W ′ rejects with probability at least 1 − δ if all
G(i) are independent uniform random m×n matrices over Fq and all b(i) are independent uniform random
vectors in Fmq . Then there exists a randomized algorithm W , running in time t(n) · poly(m, q), which for
every s ∈ Fnq , given ` independent random samples from Ds,µ, outputs s with probability at least 1− qnδ.

Proof. The algorithm W draws ` independent uniform random vectors r(1),. . .,r(`) in Fmq and for every
i ∈ [`] and j ∈ [n] lets R(i,j) denote the m × n matrix which is all zero except for its j-th column which
equals r(i). In order to find the j-th coordinate sj of s, for any η ∈ Fq the algorithm W runs the proedure
W ′ on the samples

(
G(1) +R(1,j), b(1) +η · r(1)

)
, . . . ,

(
G(`) +R(`,j), b(`) +η · r(`)

)
. If W ′ accepts for some

η ∈ Fq the algorithm W sets sj = η. Otherwise, it sets sj to an arbitrary value.
By union bound, it suffices to show that for every j ∈ [n] the algorithm W succeeds in finding sj with

probability at least 1 − qδ. For this note that if sj = η then
(
G(1) + R(1,j), b(1) + η · r(1)

)
, . . . ,

(
G(`) +

R(`,j), b(`)+η ·r(`)
)

are ` independent random samples fromDs,µ and soW ′ accepts with probability at least
1−δ. On the other hand, if sj 6= η, we have that

(
G(1)+R(1,j), b(1)+η·r(1)

)
, . . . ,

(
G(`)+R(`,j), b(`)+η·r(`)

)
are ` independent uniform random samples and soW ′ rejects with probability at least 1−δ. By union bound
over all η ∈ Fq this implies in turn that W outputs sj with probability at least 1 − qδ which concludes the
proof of the lemma.

For the proof of Lemma 5.4 we shall also need the following version of the leftover hash lemma which
can be found for example in [45] (Theorem 6.18). We say that a familyH of hash functions from X to Y is
universal if Prh∈RH[h(x1) = h(x2)] ≤ 1/|Y | for all x1 6= x2 ∈ X .

Lemma A.2 (Leftover hash lemma). Let H ⊆ {h : X → Y } be a universal family of hash functions from
X to Y and let µ be a distribution over X with H∞(µ) ≥ k. Then for all but a 4

√
|Y |2−k-fraction of h ∈ H

it holds that the distribution h(µ) is 4
√
|Y |2−k-close to the uniform distribution over Y .

We proceed to the proof of Lemma 5.4. f

Proof of Lemma 5.4. By Lemma A.1 it suffices to show a randomized procedure W ′, running in time
(t(n)`/ε2) · poly(m, q), which given as input ` samples of the form

(
G(1), b(1)

)
, . . . ,

(
G(`), b(`)

)
, for all

s ∈ Fnq , accepts with probability at least 1− δ`− ` exp(−n) if all
(
G(i), b(i)

)
are independent random sam-

ples from Ds,µsk and rejects with probability at least 1 − δ` − ` exp(−n) if all
(
G(i), b(i)

)
are independent

uniform random samples.
The idea of the proof is as follows. Using the samples

(
G(1), b(1)

)
,. . .,

(
G(`), b(`)

)
the procedure W ′

will generate ` public keys G̃(1), . . . , G̃(`) and for each of these keys it will generate `′ ≈ n/ε2 independent
random encryptions of 0 and 1 using the key. The procedure W ′ will then run the attack A on each of
the public keys and corresponding ciphertexts and estimate the advantage of the attack A in guessing the
message bit. The procedure W ′ will accept if and only if this advantage is sufficiently high. The main
observation is that if the samples

(
G(i), b(i)

)
are drawn from the distribution Ds,µsk then the attack A will

be able to distinguish between encryptions of 0 and 1, while if the samples
(
G(i), b(i)

)
are uniform random

the public keys and corresponding encryptions would be almost uniform random (thanks to the leftover hash
lemma) and therefore A will not be able to distinguish between encryptions of 0 and 1. Details follow.
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W ′
((
G(1), b(1)

)
, . . . ,

(
G(`), b(`)

))
- For i = 1, . . . , `:

- Draw a uniform random vector y ∈ Fnq and let

G̃(i) =

(
G(i) b(i) +G(i)y
0Tn −1

)
.

- For `′ = n/(ε/8)2:

- Draw `′ independent random samples e(o)
1 , . . . , e

(0)
`′ ∼ µ0.

- Draw `′ independent random samples e(1)
1 , . . . , e

(1)
`′ ∼ µ1.

- For every ξ ∈ {0, 1} and j ∈ [`′] run the attack A with the public key G̃(i) and the ciphertext(
G̃(i)

)T · e(ξ)
j .

- If

Pr
j∈[`′]

[
A
(
G̃(i),

(
G̃(i)

)T · e(1)
j

)
= 1

]
− Pr
j∈[`′]

[
A
(
G̃(i),

(
G̃(i)

)T · e(0)
j

)
= 1

]
≥ 3ε

4
, (15)

output accept.

- Else if (15) does not hold for every i = 1, . . . , `, output reject.

Inspection reveals that the running time of W ′ is (t(n)`/ε2) · poly(m, q). It remains to analyze the
acceptance probability of W ′ on samples from Ds,µsk and the rejection probability on uniform random
samples.

We start with analyzing the acceptance probability on samples from Ds,µsk . Observe that in this case
G̃(1), . . . , G̃(`) are independent random public keys in Π′Reg. Since AdvAδ (n) ≥ ε this implies in turn that
with probability at least 1− δ` there exists i ∈ [`] such that

Pr[A(G̃(i),EncG̃(i)(1)) = 1]− Pr[A(G̃(i),EncG̃(i)(0)) = 1] ≥ ε.

Conditioned on this, the Hoeffding bound for sampling (Lemma 3.1) implies that (15) holds with probability
at least 1− 4 · 2−2n. So in this case the procedure W ′ accepts with probability at least 1− δ` − 4 · 2−2n =
1− δ` − exp(−n).

Next we analyze the rejection probability on independent uniform random samples. Fix i ∈ [`]. Apply-
ing the leftover hash lemma (Lemma A.2) with X = Fm+1

q , Y = Fn+1
q ,

H =

{
G̃T ∈ F(n+1)×(m+1)

q

∣∣ G̃ =

(
G b
0Tn −1

)
for G ∈ Fm×nq and b ∈ Fmq

}
and µ = µ0 we obtain that with probability at least 1 − 2−α(n+1) log q/4, the distribution

(
G̃(i)

)T · µ0

is 2−α(n+1) log q/4-close to the uniform distribution over Fn+1
q . Similarly, with probability at least 1 −

2−α(n+1) log q/4, the distribution
(
G̃(i)

)T · µ1 is 2−α(n+1) log q/4-close to the uniform distribution over Fn+1
q .
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So with probability at least 1 − 2 · 2−α(n+1) log q/4 the distributions
(
G̃(i)

)T · µ0 and
(
G̃(i)

)T · µ1 are
2 ·2−α(n+1) log q/4-close. Conditioned on this, the Hoeffding bound for sampling implies that (15) holds with
probability at most 4 ·2−2n due to our assumption that 2 ·2−α(n+1) log q/4 ≤ ε/2. So by union bound over all
i ∈ [`], in this case the procedure W ′ rejects with probability at least 1− `(2 · 2−α(n+1) log q/4 + 4 · 2−2n) =
1− ` exp(−n).
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