
Fair and Robust Multi-Party Computation

using a Global Transaction Ledger

Aggelos Kiayias
aggelos@di.uoa.gr

Hong-Sheng Zhou
hszhou@vcu.edu

Vassilis Zikas
vzikas@inf.ethz.edu

June 10, 2015

Abstract

Classical results on secure multi-party computation (MPC) imply that fully secure com-
putation, including fairness (either all parties get output or none) and robustness (output
delivery is guaranteed), is impossible unless a majority of the parties is honest. Recently,
cryptocurrencies like Bitcoin where utilized to leverage the fairness loss in MPC against a
dishonest majority. The idea is that when the protocol aborts in an unfair manner (i.e., af-
ter the adversary receives output) then honest parties get compensated by the adversarially
controlled parties.

Our contribution is three-fold. First, we put forth a new formal model of secure MPC
with compensation and we show how the introduction of suitable ledger and synchronization
functionalities makes it possible to express completely such protocols using standard inter-
active Turing machines (ITM) circumventing the need for the use of extra features that are
outside the standard model as in previous works. Second, our model, is expressed in the
universal composition setting with global setup and is equipped with a composition theorem
that enables the design of protocols that compose safely with each other and within larger
environments where other protocols with compensation take place; a composition theorem
for MPC protocols with compensation was not known before. Third, we introduce the first
robust MPC protocol with compensation, i.e., an MPC protocol where not only fairness is
guaranteed (via compensation) but additionally the protocol is guaranteed to deliver out-
put to the parties that get engaged and therefore the adversary, after an initial round of
deposits, is not even able to mount a denial of service attack without having to suffer a
monetary penalty. Importantly, our robust MPC protocol requires only a constant number
of (coin-transfer and communication) rounds.

Keywords: Bitcoin, MPC, Fairness, Robustness

1 Introduction

Secure multiparty computation (MPC) enables a set of parties to evaluate the output of a
known function f(·) on inputs they privately contribute to the protocol execution. The design
of secure MPC protocols, initiated with the seminal works of Yao [Yao82] and Goldreich et
al. [GMW87] has evolved to a major effort in computer security engineering. Beyond privacy, a
secure MPC protocol is highly desirable to be fair (either all parties learn the output or none)
and robust (the delivery of the output is guaranteed and the adversary cannot mount a “denial
of service” against the protocol). Achieving fairness and robustness in a setting where there
is an arbitrary number of corruptions, as desirable as it may appear, is prohibited by strong
impossibility results stemming from the work of Cleve [Cle86] who showed that coin-flipping
is infeasible in any setting where there is no honest majority among parties that execute the
protocol. These impossibility results, combined with the importance of the properties that they
prevent, strongly motivate the exploration of alternate – yet still realistic – models that would
enable fair and robust MPC protocols.

With the advent of Bitcoin [Nak08] and other decentralized cryptocurrencies, the works
of [ADMM14a, ADMM14b, BK14, KB14] showed a new direction for circumvention of the im-
possibility results regarding the fairness property: enforcing fairness could be achieved through
imposing monetary penalties. In this setting a breach of fairness by the adversary is still possible
but it results in the honest parties collecting a compensation in a way that is determined by the
protocol execution. At the same time, in case fairness is not breached, it is guaranteed that no
party loses any money (despite the fact that currency transfers may have taken place between
the parties). The rationale here is that a suitable monetary penalty suffices in most practical
scenarios to force the adversary to operate in the protocol fairly.

While the main idea of fairness with penalties sounds simple enough, its implementation
proves to be quite challenging. The main reason is that the way a crypto-currency operates does
not readily provide a trusted party that will collect money from all participants and then either
return it or redistribute it according to the pre-agreed penalty structure. This is because crypto-
currencies are decentralized and hence no single party is ever in control of a money transfer
beyond the owner of a set of coins. The mechanism used in [ADMM14a,ADMM14b,BK14,KB14]
to circumvent the above problem is the capability1 of the Bitcoin network to issue transactions
that are “time-locked”, i.e., become valid only after a specific time and prior to that time may be
superseded by other transactions that are posted in the public ledger. Superseded time-locked
transactions become invalid and remain in the ledger without ever being redeemed.

While the above works are an important step for the design of MPC protocols with properties
that circumvent the classical impossibility results, several critical open questions remain to be
tackled; those we address herein are as follows.

Our Results. Our contribution is three-fold. First, we put forth a new formal model
of secure MPC with compensation and we show how the introduction of suitable ledger and
synchronization functionalities makes it possible to express completely such protocols using
standard interactive Turing machines (ITM) circumventing the need for the use of extra features
that are outside the standard model (in comparison, the only previous model [BK14] resorted to
specialized ITM’s that utilize resources outside the computational model2). Second, our model

1Note that this feature is currently not fully supported.
2An ITM with the special features of “wallet” and “safe” was introduced in [BK14] to express the ability of

ITM’s to store and transfer “coins.” Such coins were treated as physical quantities that were moved between
players but also locked in safes in a way that parties were then prevented to use them in certain ways (in other
words such safes were not local but were affected from external events).

1

is equipped with a composition theorem that enables the design of protocols that compose
safely with each other and within larger environments where other protocols with compensation
take place; a composition theorem for this class of protocols was not known before. Third, we
introduce the first robust MPC protocol with compensation, i.e., an MPC protocol where not
only fairness is guaranteed (via compensation) but additionally the protocol is guaranteed to
deliver output to the parties that get engaged and therefore the adversary is not even able to
mount a denial of service attack without having to suffer a monetary penalty. In more details
we have the following.

• We put forth a new model that utilizes two ideal functionalities and express the ledger
of transactions and a clock in the sense of [KMTZ13] that is connected to the ledger and
enables parties to synchronize their protocol interactions. Our ledger functionality enable
us to abstract all the necessary features of the underlying cryptocurrency. Contrary to
the only previous formalization approach [BK14, KB14], our modeling allows the entities
that participate in an MPC execution to be regular interactive Turing machines (ITM)
and there is no need to equip them with additional physical features such as “safes”
and “locks.” Furthermore the explicit inclusion of the clock functionality (which is only
alluded to in [BK14, KB14]) reveal the exact dependencies between the ledger and the
clock functionality that are necessary in order for MPC with compensation protocols to
be properly described. We express our model within a general framework that we call
Q-fairness and may be of independent interest as it can express meaningful relaxations of
fairness in the presence of a global ideal functionality.

• We prove a composition theorem that establishes that protocols in our framework are
secure in a universally composable fashion. Our composition proof treats the clock and
ledger functionalities as global setups in the sense of [CDPW07, CJS14]. We emphasize
that this is a critical design choice: the fact that the ledger is a global functionality ensures
that any penalties that are incurred to the adversary that result to credits towards the
honest parties will be globally recognized. This should be contrasted to an approach that
utilizes regular ideal functionalities which may be only accessible within the scope of a
single protocol instance and hence any penalty bookkeeping they account may vanish with
the completion of the protocol. Providing a composition theorem for MPC protocols with
compensation was left as an open question in [BK14].

• We finally present a new protocol for fair and robust secure MPC with compensation.
The robustness property we prove guarantees that once the protocol passes an initial
round of deposits, parties are guaranteed to obtain output or be compensated. This is
in contrast to fair MPC with compensation [ADMM14a, ADMM14b, BK14, KB14] where
the guarantee is that compensation takes place only in case the adversary obtains output
while an honest party does not. To put it differently, it is feasible for the adversary to
lead the protocol to a deadlock where no party receives output however the honest parties
have wasted resources by introducing transactions in the ledger. We remark that it is in
principle possible to upgrade the protocols of [ADMM14a,ADMM14b,BK14,KB14] to the
robust MPC setting by having them perform an MPC with identifiable abort, cf. [GMW87,
IOZ14], (in such protocol the party that causes the abort can be identified and excluded
from future executions). However even using such protocol the resulting robust MPC
with compensation will need in the worst case a linear number of deposit/communication
rounds in the number of malicious parties. Contrary to that, our robust protocol can
be instantiated so that it requires a constant number of deposit/communication rounds

2

independently of the number of parties that are running the protocol. Our construction
uses time-locked transactions in a novel way to ensure that parties do progress in the
MPC protocol or otherwise transactions are suitably revertible to a compensation for the
remaining parties. The structure of our transactions is quite more complex than what can
be presently supported by bitcoin; we provide a high level overview of how our protocol
can be implemented via Ethereum3 contracts.

Related work. Beyond the previous works [ADMM14a,ADMM14b,BK14,KB14] in fair MPC
with compensation there is a number of other works that attempted to circumvent the impos-
sibility results for fairness in the setting of dishonest majority by considering alternate models.
Contrary to the approach based on cryptocurrencies these works give an advantage to the proto-
col designer with respect to the adversarial strategy for corruption. For instance, in [GKM+13]
a rational adversary is proposed and the protocol designer is privy to the utility function of the
adversary. In [ALZ13] a reputation system is used and the protocol designer has the availabil-
ity of the reputation information of the parties that will be engaged in the protocol. Finally
in [GGJ+15] a two tiered model is proposed where the protocol designer is capable of distin-
guishing two distinct sets of servers at the onset of the computation that differ in terms of their
corruptibility.

Global setups were first put forth in [CDPW07] motivated by notion of deniability in cryp-
tographic protocols. In our work we utilize global functionalities for universal composition
(without the deniability aspect) as in [CJS14] where a similar approach was taken for the case
of the use of the random oracle as a global setup functionality for MPC.

Fairness can also be considered from the resource perspective, cf. [BN00, Pin03, GMPY06],
where it is guaranteed due to the investment of proportional resources between the parties
running the protocol, and the optimistic perspective, cf. [ASW97,ASW98,CC00], where a trusted
mediator can be invoked in the case of an abort. We finally note that without any additional
assumptions, due to the impossibility results mentioned above, one can provide fairness only
with certain high probability that will be affecting the complexity of the resulting protocol, see,
e.g., [GK09] and references therein.

2 Model

In this section, we lay down a formal framework for designing composable fair protocols in the
presence of globally available trusted resources. In the first two subsections, we introduce shared
(in the sense of the GUC model [CDPW07]) functionalities Ḡclock and Ḡledger respectively to
formulate the trust resources that provided by Bitcoin-like systems. Then in subsection 2.3, we
put forth a new formal model of secure MPC with compensation: we introduce the notion of
Q-fairness, and formulate it via a wrapper functionality; we then consider the realization of such
wrapper functionality, and further provide a composition theorem. In the end of this section, a
sampling functionality for producing correlated randomness is also described. This will be used
as setup in our protocol design.

2.1 Global Clock Functionality and Synchronous Protocol Executions

We here first define a shared clock functionality Ḡclock. This functionality can be viewed as
an extension of the clock functionality that was defined by Katz et al. [KMTZ13]. The main
intuition behind the clock functionality is that when all honest parties agree to move to the

3http://www.ethereum.org.

3

http://www.ethereum.org

next “clock tick”, then the clock functionality will increase its state, τ , by 1. We remark that
there are differences between our formulation and that by Katz et al. [KMTZ13]: there, the
clock is for a single protocol; however, here we intend to have the clock to be accessed globally.
In addition, in [KMTZ13], the functionality state is binary while here, in our formulation, the
state τ is a positive integer. The detailed description of the clock functionality can be found in
Figure 1.

Functionality Ḡclock

Shared functionality Ḡclock is globally available to all participants. The shared functionality
is parameterized with variables τ and P.

Initially, τ := 0 and P := ∅.

• Upon receiving (register, sid) from some party P , then set P := P ∪{P} and initialize
dP := 0.

• Upon receiving (clock-update, sid) from some party P ∈ P, then set dP := 1.

At any moment, if dP = 1 for all P ∈ H, where H denotes the set of honest parties, then
set τ := τ + 1, and reset dP := 0 for all P ∈ P.

• Upon receiving (clock-read, sid) from some participant, return (clock-read, sid, τ)
to the requestor.

Figure 1: The clock functionality.

Next, we elaborate and explain how to use the global clock to design synchronous protocols.
To capture synchronous protocol execution in the global Ḡclock model we use the compiler
idea from [KMTZ13]. First, as is the case in real-life synchronous protocols we assume that
the protocol participants have agreed on the starting time τ0 of their protocol and also on the
duration of each round. We abstract this knowledge by assuming the parties know a function
Round2Time : Z → Z which maps protocol rounds to time (according to the global clock). In
particular, Round2Time(0) is the time τ0 in which a common reference string may be included
in the ledger. For ρ ∈ Z+, Round2Time(ρ) is the time in which the ρth round of the protocol
should be completed. That is, if at time Round2Time(ρ) + 1 a party Pi has not received Pj ’s
ρ-round message, then it takes this message to be a default message ⊥. To make sure that no
party proceeds to round ρ+ 1 of the protocol before all honest parties have completed round ρ,
we require that any two protocol rounds are at least two clock-ticks apart (see [KMTZ13] for a
discussion); formally, for all ρ ≥ 0, it holds that Round2Time(ρ+ 1) ≥ Round2Time(ρ) + 2.

A synchronous protocol in the above setting proceeds as follows:

Upon receiving any activation , party Pi first queries the clock (i.e., send Ḡclock the message
(read, sid)) to find out the current time. Denote by τ the time reported by Ḡclock.

Pi checks that τ ≥ Round2Time(0), and halts if this is not the case. Otherwise, Pi checks
whether it has completed its protocol instructions for rounds 0, . . . , ρc, where
ρc = max{ρ s.t. Round2Time(ρ) ≤ τ}. If this is not the case, Pi executes its next pending
instruction (for round ρc);

4 otherwise, Pi sends (clock-update, sid) to the clock.5

4Note that in (G)UC the parties lose activation whenever the send or output a message; thus it might be the
case that they need to be activated (receive messages) multiple times in any given round in order to complete
their protocol.

5Recall that clock-update signals to the clock that, according to the current view of the party the clock
should proceed.

4

2.2 Global Ledger Functionality

Functionality Ḡledger provides the abstraction of a public ledger in Bitcoin-like systems (e.g.,
Bitcoin, Litecoin, Namecoin, Ethereum, etc). Intuitively, the public ledger could be accessed
globally by protocol parties or other entities including the environment Z. Protocol parties or
the environment can generate transactions; and these valid transactions will be gathered by a
set of ledger maintainers (e.g., miners in Bitcoin-like systems) in certain order as the state of
the ledger. More concretely, whenever the ledger maintainers receive a vector of transactions ~tx,
they first add the transactions in a buffer, assuming they are valid with respect to the existing
transactions and the state of the ledger; thus, in this way a vector of transactions is formed in
the buffer. After certain amount of time, denoted by T, all transactions in the buffer will be
“glued” into the ledger state in the form of a block. In Bitcoin, T is 10 minutes (approximately);
thus in about every 10 minutes, a new block of transactions will be included into the ledger, and
the ledger state will be updated correspondingly.

Functionality Ḡledger

Shared functionality Ḡledger is globally available to all participants. The shared functionality
is parameterized with a predicate Validate, a constant T, and variables state, buffer and counter.

Initially, state := ∅, buffer := ∅, and counter := 0.

• Upon receiving (submit, sid, ~tx) from some participant, send (clock-read, sid) to
Ḡclock and receive (clock-read, sid, τ) from Ḡclock. If Validate(state, (buffer, ~tx)) =
1, then set buffer := buffer|| ~tx. If |τ − T · counter| > T, then set state :=
state||Blockify(τ, buffer) and buffer := ∅ and counter := counter + 1.

• Upon receiving (read, sid) from some participant, return (read, sid, state) to the re-
questor.

Figure 2: The public ledger functionality.

To enable the ledger to be aware of time, the ledger maintainers are allowed to “read” the
state of another publicly available functionality Ḡclock defined above.

We remark that all gathered transactions should be “valid” which is defined by a predicate
Validate. In different systems, predicate Validate will take different forms. For example, in the
Bitcoin system, the predicate Validate should make sure that for each newly received transaction
that transfers v coins from the original wallet address addresso to the destination wallet address
addressd, the original wallet address addresso should have v or more than v coins, and the
transaction should be generated by the original wallet holder (as shown by the issuance of a
digital signature). Furthermore, prior to each vector of transactions becoming block, the vector
is passed through a function Blockify(·) that homogenizes the sequence of transactions in the
form of a block. Moreover, in some systems like Bitcoin, it may add a special transaction called
a “coinbase” transaction that implements a reward mechanism for the ledger maintainers.

In Figure 2 we provide the details of the ledger functionality.

2.3 Q-fairness and Secure Computation with Fair Compensation

In this subsection, we provide a formal framework for secure computation with fair compen-
sation. In the spirit of [GMPY06], our main tool is a wrapper functionality. Our wrapper

5

functionality is equipped with a predicate6 QḠ which can be used to “monitor” the state of the
global setup Ḡ. If certain “bad” event occurs (such as an abort), then the predicate QḠ will be
triggered, and the functionality will halt. With foresight Q will ensure that parties that abort
are compensated. Any implementation of the wrapped functionality should ensure that such a
halt event is not triggered with non-negligible probability. We will call such an implementation
a Q-fair implementation.

Our framework can be defined with respect to any global setup that upon receiving a read
symbol it returns its public state trans. Let Ḡ be such a global ideal functionality and let QḠ
a predicate with respect to such Ḡ. Let F be a secure function evaluation (SFE) functionality
which is fair in the sense of [GMPY06]: it returns output in two different ways: (i) delayed
delivery: (deliver, sid,m, P) signifying delayed output delivery7 of m to party P , (ii) fair de-
livery: (fair-deliver, sid, (m,Pi1), . . . , (m,Pik), (mS ,S)) that results in simultaneous8 delivery
of outputs mi1 , . . .mik to parties Pi1 , . . . , Pik and output mS to S.

The wrapper functionalityW that will be used in the definition of Q-fair secure computation
is given in Figure 3. The intuition is that the Q predicate will be applied on the public state
of Ḡ whenever the wrapper “breaks” the fair delivery of the inner functionality F . We are now
ready to define Q-fairness with respect to a global functionality.

Definition 2.1. We say protocol π realizes functionality F with QḠ-fairness with respect to
global functionality Ḡ, provided the following statement is true. For all adversaries A, there is
a simulator S so that for all environments Z it holds:

ExecḠπ,A,Z ≈ Exec
Ḡ,W(F ,QḠ)

S,Z

The following lemma captures the intuition that computing the inner functionality is at least
as strong as computing it with Q-fairness.

Lemma 2.2. Let Ḡ be a global ideal functionality. Let QḠ be any predicate with respect to Ḡ.
Then for all adversaries A, there is a simulator S so that for all environments Z, it holds:

ExecḠ,Fσ,A,Z ≈ Exec
Ḡ,W(F ,QḠ)

σ,S,Z

The above lemma can be easily proved, because the simulator S by returning (fair-deliver, sid,mid)
to the wrapper functionality, can avoid the predicate QḠ be triggered.

More generally, the protocol σ realizes H with Q′Ḡ fairness using a functionality F with
fairness QḠ provided that for all adversaries A, there is a simulator S so that for all environments
Z, it holds:

Exec
Ḡ,W(F ,QḠ)

π,A,Z ≈ Exec
Ḡ,W(H,Q′Ḡ)

S,Z

We note that, both protocol π and the functionality (W(F ,QḠ), Ḡ) are with respect to the
global functionality Ḡ9. By following the very similar proof idea of proving UC/GUC composi-
tion [Can01,CDPW07], we can prove the following:

6Whenever it is clear from the context we may drop the subscript Ḡ.
7Delayed output delivery is a standard (G)UC mechanism where the adversary is allowed to schedule the

output at a time of its choosing.
8Given that in the (G)UC framework no simultaneous message delivery is supported, the term “simultaneous”

will refer to “fetch mode delivery” as defined in [KMTZ13].
9In GUC framework [CDPW07], this is also called, Ḡ-subroutine respecting.

6

Wrapper Functionality W(F ,QḠ)

Functionality W(F ,QḠ) interacts with a set of parties P = {P1, . . . , Pn}, the adversary S and
the environment Z, as well as shared functionality Ḡ. The functionality is parameterized with
an n-party functionality F and a predicate QḠ .

• Submitting an input. Upon receiving (label, sid, x) from a party P , it forwards
(label, sid, x) to F . In case F produces a message µ for S it forwards ((label, sid, P), µ)
to S.

• Associating a label to a party. On input (label, sid, P, L) from S it records Lsid,P = L
and returns (label, sid, P, L) to P .

• Generating delayed output. On input a message from F marked (deliver, sid,m, P) it
forwards m to party P via delayed output.

• Registering fair output. On input a message from F that is marked for
fair delivery (fair-deliver, sid,mid, (m1, Pi1), . . . , (mk, Pik), (mS ,S)), it forwards
(mid, Pi1 , . . . , Pik ,mS) to S.

• Delayed fair output delivery. Upon receiving (fair-deliver, sid,mid) from S then pro-
vided that a message (mid, . . .) has been delivered to the adversary, all pairs (mj , Pj)’s
associated with mid are sent to Pj ’s simultaneously.

• QḠ-fair delivery. Upon receiving (Q-deliver, sid,mid) from S then provided that
a message (mid, . . .) has been delivered to the adversary operate as follows. For each
pair of the form (m,P) associated with mid where P is corrupted, the adversary S
receives (m,P). For each party P that is corrupted the pair (m,P) in mid is marked as
delivered. Every other pair in mid is marked undelivered. Subsequently perform the
following.

– On input a message (deliver, sid,mid, P) from S, provided that the record mid
contains the pair (m,P) that is undelivered then send read to Ḡ, denote the
responce by trans and if ¬QḠ(sid, Lsid,P , 1, trans) then halt. Else, the party P will
receive m and the pair (m,P) in mid is marked delivered.

– On input a message (abort, sid,mid, P) from S, provided that the record mid
contains the pair (m,P) that is undelivered then send read to Ḡ, denote the
responce by trans and if ¬QḠ(sid, Lsid,P , 0, trans) then halt. Else, the party P will
receive ⊥ and the pair (m,P) in mid is marked aborted.

Figure 3: The wrapper functionality.

Lemma 2.3. Let QḠ be a predicate with respect to global functionality Ḡ. Let π be a protocol
that realizes the functionality F with QḠ-fairness. Let σ be a protocol in (W(F ,QḠ), Ḡ)-hybrid
world. Then for all adversaries A, there is a simulator S so that for all environments Z, it
holds

ExecḠσπ ,A,Z ≈ Exec
Ḡ,W(F ,QḠ)

σ,S,Z

Theorem 2.4. Let QḠ and Q′Ḡ be predicates with respect to global functionality Ḡ. Let π be a

protocol that realizes the functionality F with QḠ-fairness. Let σ be a protocol in (W(F ,QḠ), Ḡ)-
hybrid world that realizes the functionality H with Q′Ḡ-fairness. Then for all adversaries A, there
is a simulator S so that for all environments Z it holds:

ExecḠσπ ,A,Z ≈ Exec
Ḡ,W(H,Q′Ḡ)

S,Z

7

Please see appendix for the proof.
We are now ready to instantiate the notion of Q-fairness with a compensation mechanism.

Computation with Fair Compensation. For the case when Ḡ implements the Bitcoin-like
ledger and QḠ provides compensation of c bitcoin, where c > 0, in the case of an abort the
predicate QḠ(sid, L, bit, trans) operates as follows: it parses L as a pair of (address, sk) where
address is a bitcoin address and sk is the corresponding secret-key. Then it parses trans as
a bitcoin ledger that contains transactions. Transactions in trans can also be marked with
metadata. The following hold :

• If bit = 1, then QḠ outputs true if and only if the balance of all transactions (both incoming
and outgoing) that concern address in trans and carry the meta-data sid is greater equal
to 0.

• If bit = 0, then QḠ outputs true if and only if the balance of all transactions (both incoming
and outgoing) that concern address in trans and carry the meta-data sid is greater equal
to c.

2.4 Correlated Randomness as a Sampling Functionality

Our protocols are in the correlated randomness model, i.e., they assume that the parties initially,
before receiving their inputs, receive appropriately correlated random strings. In particular, the
parties jointly hold a vector ~R = (R1, . . . , Rn) ∈ ({0, 1}∗)n, where Pi holds Ri, drawn from a
given efficiently samplable distribution D. This is, as usual, captured by giving the parties initial
access to an ideal functionality FDcorr, known as a sampling functionality, which, upon receiving
a default input from any party, samples ~R from D and distributes it to the parties. Hence, a
protocol in the correlated randomness model is formally an FDcorr-hybrid protocol. Formally, a
sampling functionality FDcorr is parameterized by an efficiently computable sampling distribution
D and the (ID’s of the parties in) the player set P.

Functionality FD
corr

Functionality FD
corr interacts with a set of parties P = {P1, . . . , Pn}, the adversary S and the

environment Z. The functionality is parameterized with a distribution sampler D.

• Upon receiving (request, sid) from any party or the adversary, set ~R = (R1, . . . , Rn)←
D and for each Pi ∈ P send (request, sid, Ri) to Pi (or to the adversary if Pi is
corrupted).

Figure 4: The correlated randomness functionality.

3 Our fair protocol compiler

In this section we present our fair protocol compiler. Our compiler compiles a synchronous
protocol πsh which is secure (i.e., private) against a corrupted majority in the semi-honest corre-
lated randomness model (e.g, an OT-hybrid protocol where the OT’s have been pre-computed)
into a protocol π which is secure with fair-compensation in the malicious correlated randomness
model. The high-level idea is the following: We first compile πsh into a protocol in the malicious
correlated randomness model, which is executed over a broadcast channel and is secure with

8

publicly identifiable abort. (Roughly, this means that someone observing the protocol execution
can decide, upon abort, which party is not executing its code.) This protocol is then transformed
into a protocol with fair compensation as follows: Every party (after receiving his correlated
randomness setup) posts to the ledger transactions that the other parties can claim only if they,
later, post transactions that prove that they follow their protocol. Transactions that are not
claimed this way are returned to the source address; thus, if some party does not post such a
proof it will not be able to claim the corresponding transaction, and will therefore leave the
honest parties with a positive balance as their transactions will be refunded. Observe that these
are not standard Bitcoin transactions, but they have a special format which is described in the
following.

Importantly, the protocol we describe is guaranteed to either produce output in as many
(Bitcoin) rounds are the rounds of the original malicious protocol, or to compensate all honest
parties. This robustness property is achieved by a novel technique which ensures that as soon as
the honest parties make their initial transaction, the adversary has no way of preventing them
from either computing their output or being compensated. Informally, our technique consists of
splitting the parties into “islands” depending on the transactions they post (so that all honest
parties are on the same island) and then allowing them either compute the function within their
island, or if they abort to get compensated. (The adversary has the option of being included or
not in the honest parties’ island.)

3.1 MPC with Publicly Identifiable Abort

As a first step in our compiler we invoke the semi-honest to malicious with identifiable abort
compiler of Ishai, Ostrovsky, and Zikas [IOZ14] (hereafter referred to as the IOZ compiler). This
compiler takes a semi-honest protocol πsh in the correlated randomness model and transforms it
to a protocol in the malicious correlated randomness model (for an appropriate setup) which is
secure with identifiable abort, i.e., when it aborts, every party learns the identity of a corrupted
party. The compiler in [IOZ14] follows the so called GMW paradigm [GMW87], which in a
nutshell has every party commit to its input and randomness for executing the semi-honest
protocol πsh and then has every party run πsh over a broadcast channel, where in each round ρ
every party broadcast his round ρ messages and proves in zero-knowledge that the broadcasted
message is correct, i.e., that he knows input and randomness that are consistent with the initial
commitments and the (public) view of the protocol so far. The main difference of the IOZ
compiler and the GMW compiler is that the parties are not only committed to their randomness,
but they are also committed to their entire setup string, i.e., their private component of the
correlated randomness. More concretely, the resulting malicious protocol πm (which is based on
the compiler in [IOZ14]) has the following properties:

Every party is committed to his setup, i.e., the part of the correlated randomness it holds.
That is, every party Pi receives from the setup his randomness (which we refer to as Pi’s
private component of the setup) along with one-to-many commitments10 on the private
components of all parties. Wlog, we also assume that a common-reference string (CRS) and
a public-key infrastructure (PKI) are included in every party’s local randomess.

The malicious protocol uses only the broadcast channel for communication.

Given the correlated randomness setup, the malicious protocol is completely deterministic.
This is achieved in [IOZ14] by ensuring that all the randomness used in the protocol, even the

10These are commitments that can be opened so that every party agrees on whether or not the opening
succeeded.

9

one needed for the zero-knowledge proofs, is part of the correlated randomness distributed
by the sampling functionality.11

πm starts off by having every party broadcast a one-time pad encryption of its input with its
(committed) randomness and a NIZK that it knows the input and randomness corresponding
to the broadcasted message.

By convention, the next-message function of the malicious protocol is such that if in any
round the transcript seen by a party is an aborting transcript, i.e., is not consistent with
an accepting run of the semi-honest protocol, then the party outputs ⊥ (see below for a
detailed formulation).

There is a (known) upper bound on the number ρm of rounds of πm.

We also stress that, given appropriate setup, the IOZ-compiler achieve information-theoretic
security, and needs therefore to build information-theoretic commitments and zero-knowledge
proofs. As in this work we are only after computational security, we modify the IOZ com-
piler so that we use (computationally) UC secure one-to-many commitments [CLOS02] and
computationally UC secure non-interactive zero-knowledge proofs (NIZKs) instead if their i.t.
instantiation suggested in [IOZ14]. Both the UC commitment and the NIZKs can be built in the
CRS model. Moreover, the use of UC secure instantiations of zero-knowledge and commitments
ensures that the resulting protocol will be (computationally) secure.

Using the setup within a subset of parties. A standard property of many protocols in the
correlated-randomness model is that once the parties in P have received the setup, any subset
P ′ ⊂ P is able to use it to perform a computation of a |P ′|-party function amongst them while
ignoring parties in P \ P ′. More concretely, assume the parties in P have been handed a setup
distributed allowing them to execute some protocol π for computing any |P|-party function f ;
then for any P ′ ⊆ P, the parties in P can use their setup within a protocol π|P ′ to compute any
|P ′|-party function f ||P ′|. This property which will prove very useful for obtaining computation
with robustness or compensation, is also satisfied by the IOZ protocol, as the parties in P ′ can
simply ignore the commitments (public setup component) corresponding to parties in P \ P ′.

Making Identifiability Public. The general idea of our protocol is to have every party
issue transactions by which he commits to transferring a certain amount of bitcoin per party
for each protocol round. All these transactions are issued at the beginning of the protocol
execution, but every party can claim the “committed” coins transferred to him associated to
some protocol round ρ only under the following conditions: (1) the claim is posted in the
time-interval corresponding to round ρ; (2) the party has claimed all his transferred bitcoins
associated to the previous rounds; and (3) the party has posted a transaction which includes his
valid message for round ρ.

In order to ensure that a party cannot claim his bitcoins unless he follows the protocol, the
ledger (more concretely the validation predicate) should be able to check that the party is indeed
posting a message corresponding to its next protocol message. In other words, in each round ρ,
Pi’s round-ρ message acts a witness for Pi claiming all the bitcoins transferred to him associated
with this round ρ. To this direction we make the following modification to the protocol: Let
f(x1, . . . , xn) = (y1, . . . , yn) denote the n-party function we wish to compute, and let F+1 be
the (n + 1)-party function which takes input xi from each Pi, i ∈ [n], and no input from Pn+1

and outputs yi to each Pi and a special symbol (e.g., 0) to Pn+1. Clearly, if πsh is a semi-honest
n-party protocol for computing f over broadcast, then the n+ 1 protocol π′sh in which every Pi

11As an example, the challenge for the zero-knowledge proofs is generated by the parties opening appropriate
parts of their committed random strings.

10

with i ∈ [n] executes πsh and Pn+1 simply listens to the broadcast channel is a secure protocol
for F+1.

Now if π′m denotes the (n+ 1)-party malicious protocol which results by applying the above
modified IOZ compiler on the (n + 1)-party semi-honest protocol for computing the function
F+1, then, by construction this protocol computes function F+1 with identifiable abort and has
the following properties:

Party Pn+1 does not make any use of his private randomness whatsoever; this is true because
he broadcasts no messages and simply verifies the broadcasted NIZKs.

If some party Pi, i ∈ [n] deviates from running πsh with the correlated (committed) ran-
domness as distributed from the sampling functionality, then this is detected by all parties,
including Pn+1 (and protocol π′m aborts with this party). This follows by the soundness of
the NIZK which Pi needs to provide proving that he is executing πsh in every round.

Due to Pn+1’s role as an observer who gets to decide if the protocol is successful (Pn+1

outputs 0) or some party deviated (Pn+1 observes that the corresponding NIZK verification
failed) in the following we will refer to Pn+1 in the above protocol as the judge. The code
of the judge can be used by anyone who has the public setup and wants to follow the protocol
execution and decide whether it should abort or not given the parties’ messages. Looking ahead,
the judge’s code in the protocol will be used by the ledger to decide wether or not a transaction
that claims some committed coins is valid.

3.2 Special Transactions supported by our Ledger

In this section we specify the Validate and the Blockify predicates that are used for achieving
our protocol’s properties. More specifically, our protocol uses the following type of transactions
which transfer v coins from wallet addressi to wallet addressj conditioned on a statement Σ:

Bv,addressi,addressj ,Σ,aux,σi,τ (1)

where σi is a signature of the transaction, which can be verified under wallet addressi; τ is the
time-stamp, i.e., the current value of the clock when this transaction is posted by the ledger—
note that this timestamp is added by the ledger and not by the users,—aux ∈ {0, 1}∗ is an
arbitrary string12; and the statement Σ consists of three arguments, i.e., Σ = (arg1, arg2, arg3),
which are processed by the validate predicate in order to decide if the transaction is valid (i.e.,
if it will be included in the ledger’s next block). The validation happens by processing the
arguments of Σ in a sequential order, where if while processing of some argument the validation
rejects, algorithm Validate stops processing at that point and this transaction is dropped. The
arguments are defined/processed as follows:

Time-Restrictions: The first argument is a pair arg1 = (τ−, τ+) ∈ Z × (Z+ ∪ {∞}) of
points in time. If τ− > τ+ then the transaction is invalid (i.e., it will be dropped by
the ledger). Otherwise, before time τ− the coins in the transaction “remain” blocked, i.e.,
no party can spend them; from time τ− until time τ+, the money can be spent by the
owner of wallet addressj provided that the spending statement satisfies also the rest of the
requirements/arguments in statement Σ (listed below). After time τ+ the money can be
spent by the owner of wallet addressi without any additional restrictions (i.e., the rest of
the arguments in Σ are not parsed and the transaction is dealt with as a standard Bitcoin
transaction with receiver addressi). As a special case, if τ+ =∞ then the transferred coins

12This string will be included to the Ledger’s state as soon as the transaction is posted and can be, therefore,
referred to by other spending statements.

11

can be spent from addressj at any point (provided the spending statement is satisfied); we
say then that the transaction is time-unrestricted,13 otherwise we say that the transaction
is time restricted.

Spending Link: Provided that the processing of the first argument, as above, was not re-
jecting, the validate predicate proceeds to the second argument, which is a unique anchor,
arg2 = α ∈ {0, 1}∗. Informally, this serves as a unique identifier for linked transactions;
that is, when α 6=⊥, then the Validate algorithm of the ledger looks in the ledger’s state
and buffer to confirm that the balance of transactions to/from the wallet address addressi
with this anchor arg2 is at least v′ > v coins. That is, the sum of bitcoins in existing valid
transaction (in the state of in the buffer) with receiver address addressi and anchor arg2
minus the sum of bitcoins in existing valid transaction (in the state or in the buffer) with
sender address addressi and anchor arg2 is greater than v. If this is not the case then the
transaction is rendered invalid; otherwise the validation of this argument succeeds and the
algorithm proceeds to the next argument. To spice up the terminology, we call a transaction
which has a non-⊥ anchor argument a linked transaction.

State-Dependent Condition: The last argument to be validated is arg3, which is a relation
R : S ×B×T → {0, 1}, where S, B, and T are the domains of possible ledger-states, ledger-
buffers, and transactions, respectively (in a given encoding). This argument defines which
type of transactions can spend the coins transferred in the current transaction. That is,
in order to spend the coins, the receiver needs to submit a transaction tx ∈ T such that
R(state, buffer, tx) = 1.

We point out that as with standard Bitcoin transactions, the validation predicate will always also
check validity of the signature σi with respect to the wallet addressi. Moreover, the standard
Bitcoin transactions can trivially be casted as transactions of the above type by setting α =⊥
and Σ = ((0,∞),⊥,R∅), where R∅ denotes the relation which is always true.

The Blockify algorithm groups transactions in the current buffer and adds a timestamp.14

3.3 The protocol

Let π′m denote the above described malicious protocol. Consistently to our terminology, let
Round2Time(1) denote the time in which the parties have agreed to start the protocol execution.
Wlog, assume that Round2Time(1) > 2T+2. 15 Furthermore, for simplicity, we assume that each
party Pi receives its input xi with its first activation from the environment at time Round2Time(1)
(if some honest party does not have an input by that time it will execute the protocol with a
default input, e.g., 0).

Informally, the protocol proceeds as follows: In a pre-processing step, before the parties
receive input, the parties invoke the sampling functionality for π′m to receive their correlated
randomness.16 The public component of this randomness includes their protocol-associated
wallet addressi which they output (to the environment). The environment is then expected to
submit ρm special (as above) coin-transfers for each pair of parties Pi ∈ P and pj ∈ P; the source
wallet-address for each such transaction is Pi’s, i.e., addressi and the target wallet-address

13This is the case with standard Bitcoin transactions.
14This is the absratction needed for our protocol; in actual crypto-currencies Blockify would have a more

complicated functionality (cf. Section 2.2).
15That is we assume that at least four Bitcoin rounds (recall that T denotes the duration of a Bitcoin round)

plus four extra clock-ticks have passed from the begging of the experiment.
16In an actual application, the parties will use an unfair protocol for computing the correlated randomness. As

this protocol has no inputs, an abort will not be unfair (i.e., the simulator can always simulate the view of the
adversary in an aborting execution.)

12

for is Pj ’s, i.e., addressj , and the corresponding anchors are as follows: αi,j,ρ = (pid, i, j, ρ),
for (i, j, ρ) ∈ [n]2 × [ρm], where17 pid is the GUC protocol ID for π′m. Since by assumption,
Round2Time(1) > 2T+2, the environment has sufficient time to submit these transaction so that
by the time the protocol strarts they have been posted on the ledger.

At time Round2Time(1)− T the parties receive their inputs and initiate the protocol execu-
tion by first checking that sufficient funds are allocated to their wallets linked to the protocol
executions by appropriate anchors, as above. If some party does not have sufficient funds then it
broadcast an aborting message and all parties abort. (Note that this is a fair abort and no party
has spent any time into making transactions.) Otherwise, parties make the special transactions
that commit them (see below) into executing the protocol, and then proceed into claiming them
one-by-one by executing their protocol in a round-by-round fashion.

Note that the protocol is executed in Bitcoin rounds so that the parties have enough time
to claim their transaction. In fact, every protocol round is stretched to a Bitcoin rounds, i.e.,
Round2Time(i + 1) − Round2Time(i) ≥ T, which will guarantee that any transaction submitted
for round ρ, ρ = 1, . . . , ρm − 1, of the protocol, has been posted on the ledger by the beginning
of round ρ + 1. By using a constant round malicious protocol π′m (e.g., the modified compiled
protocol from [IOZ14] instantiated with a constant round semi-honest protocol) we can ensure
that our protocol will terminate in a constant number of Bitcoin rounds and every honest party
will either receive its input, or will have a positive balance in its wallet. As already mentioned,
achieving such a robustness property with known protocols would require a linear (in the number
of corrupted parties) number of rounds which for large player sets is unrealistic.

Remark 3.1 (On availability of funds). Unlike existing works, we choose to explicitly treat the
issue of how funds become available to the protocol by making the off-line transfers external to the
protocol itself (i.e., the environment takes care of them). However, the fact that the environment
is in charge of “pouring” money into the wallets that are used for the protocol does not exclude
that the parties might be actually the ones having done so. Indeed, the environment’s goal is
to capture everything that is done on the side of, before, or after the protocol, including other
protocols that the parties might have participated in. By giving the environment enough time to
ensure these transactions are posted we ensure that some honest party not having enough funds
corresponds to an environment that makes the computation abort (in a fair way and only in the
pre-processing phase, before the parties have invested time into posting protocol transactions).

Another issue to be discussed, is how we arrange that the balance of honest parties is positive
in case of an abort. This is achieved as follows by exploiting the power of our special transactions:
we require that the auxiliary string of a transaction of a party Pj which claims a committed
transaction for some round ρ includes his ρ-round protocol message. We then have the relation
of this transaction be such that it evaluates to 1 if only if this is indeed Pj ’s next message.
Thus, effectively the validate predicate implements the judge and can, therefore, decide if some
party aborted: if some party broadcasts a message that would make the judge abort, then the
validate predicate drops the corresponding transaction and all claims for committed transactions
corresponding to future rounds, thus, all other parties are allowed to reclaim their committed
bitcoins starting from the next round.

The last question is: how is the ledger able to know which parties should participate in the
protocol? Here is the problem: The adversary might post in the first round (as part of the
committing transaction for the first round) a fake, maliciously generated setup. Since the ledger
is not part of the correlated randomness sampling, it would be impossible to decide which is

17Recall that we assume |P| = n.

13

the good setup. We solve this issue by a the following technique that is inspired by [BCL+05]:
The ledger18 groups together parties that post the same setup; these parties form “islands”, i.e,
subsets of P. For each such subset P ′ ⊆ P ∪ {Pn+1} which includes the judge Pn+1, the ledger
acts as if the parties in P ′ are executing the protocol π′m|P ′ (which, recall, is the restriction
of π′m to the parties in P ′) for computing the |P ′|-party function F+1|P ′(~x) defined as follows:
let the function to be computed be f(~x), where ~x = (x1, . . . , xn), and F+1 be as above, then
F+1|P ′(~x) = F+1(~xP ′) where ~xP ′ = (x′1, . . . , x

′
n) with x′i = xi for Pi ∈ P ′ and x′i being a default

value for every Pi 6∈ P ′. This solves the problem as all honest parties will be in the same island
P ′ ⊂ P (as they will all post the same value for public randomness); thus if the adversary chooses
not to post this value on behalf of some corrupted party, he is effectively setting this party’s
input to a default value, a strategy which is easily simulatable. (Of course, the above solution
will allow the adversary to also have “islands” of only corrupted parties that might execute the
protocol, but this is also a fully simulatable strategy and has not effect on fair-compensation
whatsoever—corrupted parties are not required to have a positive balance upon abort).

The final protocol πBm is detailed in the following. The protocol ID is sid. The function to be
computed is f(x1, . . . , xn). The protocol participants are P = {P1, . . . , Pn}. We assume that all
parties have registered with the clock functionality in advance and are therefore synchronized
once the following steps start.

Setup Generation
Time τ−2 = Round2Time(1)− 2T− 2:

The parties invoke the sampling functionality, i.e., every party Pi ∈ P starts off by send-
ing the sampling functionality a message (request); the sampling functionality returns
(R

priv
i , Rpub) to Pi where R

priv
i is Pi’s private component (including all random coins he

needs to run the protocol, along his signing key ski) of the setup and Rpub is the public
component (the same for every party Pj) which includes the vector of UC commitments

(Com1, . . . ,Comn), where for j ∈ [n], Comj is a commitment to R
priv
j , along with a vector

of public (verification) keys (vk1, . . . , vkn) corresponding to the signing keys (sk1, . . . , skn)
and a common reference string CRS. Every party outputs its own public key, as its wallet
address for the protocol, i.e., addressi = vki.

Check Availability of Funds
Time τ−1 = Round2Time(1)− T− 2:

Every party Pi ∈ P does the following: Pi reads the current state from the ledger. If the state
does not include for each (i, j, ρ) ∈ [n]2 × [ρm] a transaction Bc,address,addressi,Σ0

i,j,ρ,aux
0
i,j,ρ,σ,τ

,

where Σ0
i,j,ρ = ((0,∞), (sid, i, j, ρ),R∅) then Pi broadcasts ⊥ and every party aborts the

protocol execution.

Input and Committing Transactions
Time τ0 = Round2Time(1)− T:

Every party Pi receives its input xi (xi = 0 if no input is received in the first activation
of Pi for time Round2Time(1) − T) and submits to the ledger the following “commitment”
transactions:19

1. For each Pj ∈ P : Bc,addressi,addressj ,Σi,j,1,auxi,j,1,σ,τ , where auxi,j,1 = Rpub and Σi,j,1 =
(arg1

i,j,1, arg2
i,j,1, arg3

i,j,1) with

18Throughout the following description, we say that the ledger does some check to refer to the process of
checking a corresponding relation, as part of validating a special transaction.

19Recall that, by definition of the clock, every party has as much time as it needs to complete all the steps
below before the clock advances time.

14

arg1
i,j,1 = (Round2Time(1), Round2Time(1) + 1)

arg2
i,j,1 = (sid, i, j, 1)

arg3
i,j,1 = Ri,j,1 defined as follows: Let P ′ = P ∪ {Pn+1}, where Pn+1 denotes

the judge, be the player set implicit in Rpub, 20 and let P ′i ⊆ P ′ denote the set of
parties (wallets), such that in the first block posted after time Round2Time(1) − T

all parties Pk ∈ P ′i had exactly one transaction for every Pj ∈ P with arg1
k,j,1 =

(Round2Time(1), Round2Time(1) + 1), arg2
k,j,1 = (sid, k, j, 1), and aux1

k,j,1 = Rpub.

Furthermore, let P ′′i = P ′i ∪ {Pn+1}, and let π′m|P ′′i be the protocol with public

identifiability for computing F+1|P ′i , described above and denote by Rpub|P ′′i the

restriction of the public setup to the parties in P ′′i. Then Ri,j,1(state, buffer, tx) = 1
if and only if the protocol of the judge with public setup Rpub|P ′′i accepts the
auxiliary string auxtx in tx as Pi’s next message in π′m|P ′′i (and does not abort).

2. For each round ρ = 2, . . . , ρm and each Pj ∈ P : Bc,addressi,addressj ,Σi,j,ρ,aux1
i,j,ρ,σ,τ

, where

aux1
i,j,ρ = Rpub and Σi,j,ρ = (arg1, arg2, arg3) with

arg1 = (Round2Time(ρ), Round2Time(ρ+ 1) + 1)

arg2 = (sid, i, j, ρ).

arg3 = Ri,j,ρ defined as follows: Let P ′i,P ′′i, π′m|P ′′i be defined as above (and denote
P ′i = {Pi1 , . . . , Pim}. Then Ri,j,ρ(state, buffer, tx) = 1 if and only if, for each
r = 1, . . . , ρ − 1 and each party Pik ∈ P ′i, the state state includes transactions in
which the auxiliary input is auxik,r such that the protocol of the judge with public
setup Rpub|P ′′i , and transcript (auxi1,1, . . . , auxim,1), . . . , (auxi1,ρ−1, . . . , auxim,ρ−1),
accepts the auxiliary string auxtx in tx as Pi’s next (ρ-round) message in π′m|P ′′i
(and does not abort).

Claiming Committed Transactions/Executing the Protocol
Time τ ≥ Round2Time(1):

For each ρ = 1, . . . , ρm + 1, every Pi does the following at time Round2Time(ρ),:

1. If τ = Round2Time(ρm + 1) then go to Step 4; otherwise do the following:

2. Read the ledger’s state, and compute P ′i,P ′′i, π′m|P ′′i as above.

3. If the state state is not aborting, i.e, it includes for each r = 1, . . . , ρ − 1 and each
party Pik ∈ P ′i in which the auxiliary input is auxik,r such that Pi executing π′m|P ′′i
with public setup Rpub|P ′′i , private setup R

priv
i , and transcript

(auxi1,1, . . . , auxim,1), . . . , (auxi1,ρ−1, . . . , auxim,ρ−1) for the first r − 1 rounds does not
abort, then compute Pi’s message for round ρ, denoted as mρ, and submit to the ledger
for each Pk ∈ P ′′i a transaction Bc,addressk,addressi,Σ′k,i,ρ,auxρk,i,ρ,σ,τ , where aux

ρ
k,i,1 = mρ

and Σ′k,i,ρ = (arg1, arg2, arg3) with

arg1 = (0,∞)

arg2 = (sid, k, i, ρ)

arg3 = R∅.
4. Otherwise, i.e., if the state state is aborting, then submit to the ledger for each round
r = 1, . . . , ρ − 1, and each Pk ∈ P a transaction by which the committed trans-

20Recall that Rpub includes commitments to all parties’ private randomness (including the judge’s Pd) used for
running the protocol, which is an implicit representation of the player set.

15

action towards Pk corresponding to round r is claimed back to addressi,
21 i.e.,

Bc,addressk,addressi,Σ,aux,σ,τ , where aux =⊥ and Σ = (arg1, arg2, arg3) with

arg1 = (0,∞)

arg2 = (sid, i, k, r)

arg3 = R∅.
This completes the description of the protocol. The protocol terminates in O(ρm) (Bitcoin)

rounds; thus by using a constant-round protocol πm [IOZ14], we obtain a protocol with con-
stantly many Bitcoin rounds. Furthermore, as soon as an honest party posts a protocol-related
transaction, he is guaranteed to either receive his output or have a positive balance (of at least
c coins) after O(ρm) Bitcoin rounds. The following theorem states the achieved security.

Theorem 3.2. Let Ḡ = (Ḡledger, Ḡclock). The above protocol in the (Ḡ,FDcorr)-hybrid world
realizes F with fair compensation.

Proof (sketch). We first prove that the above protocol is simulatable, by sketching the corre-
sponding simulator S. If the protocol aborts already before the parties make their transactions,
then the simulator can trivially simulate such an abort, as he needs to just receive the state of
the ledger and see if all wallets corresponding to honest parties have sufficient funds to play the
protocol. In the following we show that the rest of the protocol (including the ledger’s contents)
can be simulated so that if there is an abort, honest parties’ wallets have a positive balance as
required by Q fairness. First we observe that the simulator S can easily decide the islands in
which the parties are split, as he internally simulates the sampling functionality. Any island
other than the one of honest parties (all honest parties will be in the same island because they
will post transactions including the same public setup-component) is trivially simulatable as it
only consists of adversarial parties and no guarantee is given about their wallets by Q-fairness.
Therefore, it suffices to provide a simulator for the honest parties’ island. To this direction, the
simulator uses the simulator Sπ′m which is guaranteed to exist from the security of π′m to decide
which messages to embed in the transactions of honest parties (the messages corresponding to
corrupted parties are provided by the adversary). If Sπ′m would abort, then S interacts the ideal
functionality to abort and continues by claiming back all the committed transactions to the
honest parties’ wallets, as the protocol would. The soundness of the simulation of Sπ′m ensure
that the output of the parties and the contents of the ledger in the real and the ideal world are
indistinguishable.

To complete the proof, we argue that when the protocol aborts, then honest parties have
a positive balance of at least c coins as required by predicate Q. This is argued as follows:
The parties that are not in the honest parties’ islands cannot claim any transaction that honest
parties make towards them as the ledger will see they as not in the island and reject them. Thus
by the last round every honest party will have re-claimed all transactions towards parties not in
his island. As fas as parties in the honest island are concerned, if no abort occurs then every party
will have posted all his transactions, and therefore the balance will be 0. Otherwise, assume that
the protocol aborts because some (corrupted) Pi broadcasts an inconsistent message in some
round ρ. By inspection of the protocol one can verify that honest parties will be able to claim all
transaction-commitments done to them up to round ρ (as they honestly execute their protocol)
plus all committed transactions that they made for rounds ρ + 1 . . . , ρm. Additionally, because
Pi broadcasts an inconsistent message in rounds ρ, he will be unable to claim transactions of

21For simplicity in case of an abort we have the parties claim-back all committed transactions up to that round;
the second time these claims are made, they will be of course rejected.

16

honest parties done for round ρ; these bitcoins will be reclaimed by the honest parties, thus
giving their wallets a positive balance of at least c.

4 Using Ethereum contracts

In this section we comment on the feasibility of implementing our construction using Ethereum
contracts. Ethereum is a type of virtual machine that operates over a blockchain protocol and
enables the execution of complex transactions, [Woo14]. Transactions in Ethereum contain the
recipient of the message, a signature identifying the sender, the amount of ether and the data to
send, as well as two values called startgas and gasprice. These two values signify that in order for
transactions to be processed “gas” needs to be spent that will be collected by the miner running
the transaction. Gas can be funded with ether.

Transaction recipients are regular accounts as well as “smart” contracts. A contract is a
special account that has its own code that is executed whenever it receives a transaction or
a message. Contracts are stateful in the sense that they can maintain data in local (virtual)
memory that has 2256 entries. A contract when executed can change its local state as well as
generate new transactions.

The contract is executed by the miner that processes an incoming transaction for the contract.
The decision to execute the contract depends also on the investment made by the transaction
that is incoming; contract code may be expensive to run and thus a miner may refuse to execute
the code of the contract if it is not sufficiently funded.

When a contract is executed by a miner, the code of the contract has access to various
contextual information such as the current block timestamp, the current block number and so
on. Using the current block timestamp, in particular, the contract is able to make time-sensitive
decisions. For instance, in this way, a party may generate a contract that conditionally transfers
some funds to someone that provides a specific type of data in a transaction. The funds may
be locked in the contract while after a certain time the funds in the contract may be withdrawn
back by the entity that initiated the contract.

Unfortunately Ethereum contracts are not able to inspect the blockchain when they are
executed. It follows that they cannot directly implement the type of conditional transactions
that our protocol requires as single contracts.

Nevertheless, it is feasible to obtain an implementation of our protocol within Ethereum as
follows. First recall the type of transactions required by our protocol.

(Bv,addressi,addressj ,Σ=(τ−,τ+),α,R),aux,σ)

Instead of handling those as transactions, the parties initiate a contract for each protocol
instance that accepts messages that encode the above transactions. In more detail, in order to
implement the above transaction, an Ethereum transaction is generated from the sender directed
to the account of the contract that includes v ether and passes as values tx.data[i], i = 0, 1, 2, . . .
the transaction elements v, addressi, addressj , τ−, τ+, α,R, aux, σ.

The contract when executed with such transaction it uses its contract.storage[.] local state
to store the data of the transaction. The contract is credited itself the value v that is put on
hold by the transaction.

When a transaction is stored, the contract can accept withdrawing transactions as spec-
ified in our protocol description. Given any such withdrawing transaction the corresponding
transaction via the anchor α will be recovered and it will be marked as spent if all the accompa-
nying information is acceptable. Note that the contract has access to the current time via the
block.timestamp and thus can make decisions with respect to the time parameters τ− and τ+.

17

Note that in order for a smart contract to process a transaction some additional ether is
needed to be spent for using the Ethereum virtual machine (such ether is transformed to gas
and is spent when the contract is executed by the miners). In our treatment such costs are
considered negligible (while the amount of minimum compensation c is not negligible).

References

[ADMM14a] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Fair two-party computations via the bitcoin deposits. In 1st Work-
shop on Bitcoin Research 2014 (in Assocation with Financial Crypto), 2014.
http://eprint.iacr.org/2013/837.

[ADMM14b] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 443–458. IEEE Computer Society Press, May 2014.

[ALZ13] Gilad Asharov, Yehuda Lindell, and Hila Zarosim. Fair and efficient secure multi-
party computation with reputation systems. In Kazue Sako and Palash Sarkar, ed-
itors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 201–220. Springer,
December 2013.

[ASW97] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In ACM CCS 97, pages 7–17. ACM Press, April 1997.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of dig-
ital signatures (extended abstract). In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 591–606. Springer, May / June 1998.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure
computation without authentication. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 361–377. Springer, August 2005.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 421–439. Springer, August 2014.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 236–254. Springer, August 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CC00] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 93–111. Springer,
August 2000.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, February 2007.

18

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with
a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 14, pages 597–608. ACM Press, November 2014.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In Juris Hartmanis, editor, STOC, pages 364–369.
ACM, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

[GGJ+15] Juan A. Garay, Ran Gelles, David S. Johnson, Aggelos Kiayias, and Moti Yung.
A little honesty goes a long way - the two-tier model for secure multiparty com-
putation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I,
volume 9014 of LNCS, pages 134–158. Springer, March 2015.

[GK09] S. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation
without an honest majority. In Omer Reingold, editor, TCC 2009, volume 5444
of LNCS, pages 19–35. Springer, March 2009.

[GKM+13] Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.
Rational protocol design: Cryptography against incentive-driven adversaries. In
54th FOCS, pages 648–657. IEEE Computer Society Press, October 2013.

[GMPY06] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource
fairness and composability of cryptographic protocols. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 404–428. Springer, March
2006.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computa-
tion with identifiable abort. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer, August
2014.

[KB14] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct
computations. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS
14, pages 30–41. ACM Press, November 2014.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, March 2013.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2008.

[Pin03] Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 87–105. Springer, May 2003.

19

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger. 2014.
http://gavwood.com/paper.pdf.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

A Proofs

Proof of Theorem 2.4

Proof. The proof idea is similar to that for composition theorem in [Can01]. Here we need to
show that for all PPT real world adversary A there exists PPT simulator S so that for all PPT
environment Z, the following holds:

Exec
Ḡ,W(H,Q′Ḡ)

S,Z
c
≈ ExecḠσπ ,A,Z (2)

By the condition that π realizes F with QḠ-fairness with respect to global functionality Ḡ, we

have: ∀A′′ ∃S ′′ so that ∀Z ′′

Exec
Ḡ,W(F ,QḠ)

S′′ ,Z′′
c
≈ ExecḠ

π,A′′ ,Z′′ (3)

By the condition that σ realizes H with Q′Ḡ-fairness with respect to global functionality Ḡ, in
the W(F ,QḠ)-hybrid world, we have: ∀A′ ∃S ′ so that ∀Z ′,

Exec
Ḡ,W(H,Q′Ḡ)

S′,Z′
c
≈ Exec

Ḡ,W(F ,QḠ)

σ,A′,Z′ (4)

We next prove the theorem.

We first describe the real execution ExecḠσπ ,A,Z . Let K be a polynomial upper bound on the
number of instances of π that are invoked by σ, and let π[k] denote the k-th copy of protocol
π. Here let the adversary A =

(
Aσ,Aπ[1],Aπ[2], . . . ,Aπ[K]

)
, where each Aπ[k] is interacting with

the k-th instance of π. Note that, as in the UC framework, the environment provides inputs
to (and receives outputs from) the “father” protocol σ, and the protocol σ provides inputs to
(and receives outputs from) its own subroutines π[k]’s. We remark that, different from the UC
framework, here all protocol instances (including the father protocol and the subroutines) are
allowed to access to the global functionality Ḡ.

We then describe the W(F ,QḠ)-hybrid execution Exec
Ḡ,W(F ,QḠ)

σ,Ã,Z
. Now we let W(F ,QḠ)[k]

denote the k-th copy of functionalityW(F ,QḠ) that invoked by protocol σ. Similarly, we define

the adversary Ã =
(
Aσ,Sπ[1],Sπ[2], . . . ,Sπ[K]

)
, where each Sπ[k] is interacting with the k-th

instance of W(F ,QḠ). As mentioned before, here the environment provides inputs to protocol
σ, and protocol σ provides input to its own subroutines, functionality copies W(F ,QḠ)[k]’s; all
protocol instances are allowed to access to the global functionality Ḡ.

Based on the above description, we next show the two worlds are indistinguishable through
a hybrid argument, as follows:

Lemma A.1. For all PPT A, there exists PPT Ã so that for all PPT Z, ExecḠσπ ,A,Z
c
≈

Exec
Ḡ,W(F ,QḠ)

σ,Ã,Z
.

Proof. To prove the lemma, we define hybrids Hybk as follows:

20

• Let σk denote the following protocol instances:

– an instance of σ;

– k − 1 instances of π, denoted π[1], . . . , π[k − 1];

– K − k + 1 instances of W(F ,QḠ), denoted W(F ,QḠ)[k], . . . ,W(F ,QḠ)[K];

• Let Ak denote the following adversary copies:

– Aσ;

– k − 1 instances of Aπ, denoted Aπ[1], . . . ,Aπ[k−1];

– K − k + 1 instances of Sπ, denoted Sπ[k], . . . ,Sπ[K];

Define B, which consists of K copies of adversaries, and K copies of protocol/functionality
instances. Define D, which consists of the k-th copy of adversary A, and the k-th copy of
protocol/functionality instance π. If A = Sπ[k] and π = W(F ,QḠ)[k], then B is identical to

Hybk. If A = Aπ[k] and π = π[k], then B is identical to Hybk+1. We next show that adjacent
hybrids are indistinguishable.

Claim A.2. For k ∈ {1, . . . ,K}, the hybrids Hybk and Hybk+1 are indistinguishable to any
PPT Z.

Proof of Claim A.2. By contradiction, assume there is a PPT Z who can tell the difference

between Hybk and Hybk+1. That means, ExecḠ
σk,Ak,Z 6

c
≈ ExecḠ

σk+1,Ak+1,Z . Based on such Z,

we can define Zk to simulate the interaction of all the rest of the network except the k-th place
of the subroutine.

Based on the definition of coercion hybrid Hybk above, we can easily see that Exec
Ḡ,W(F ,QḠ)

Sπ[k],Zk

is the representation of ExecḠ
σk,Ak,Z . Similarly, we can easily see that ExecḠ

π,Aπ[k],Zk is the

representation of ExecḠ
σk+1,Ak+1,Z .

Based on the assumption that ExecḠ
σk,Ak,Z 6

c
≈ ExecḠ

σk+1,Ak+1,Z , we immediately have

Exec
Ḡ,W(F ,QḠ)

Sπ[k],Zk 6
c
≈ ExecḠ

π,Aπ[k],Zk . However, this contradicts to the premise in Equation 3. That

means, our assumption that ExecḠ
σk,Ak,Z 6

c
≈ ExecḠ

σk+1,Ak+1,Z is not true. This completes our

proof of the claim that Hybk and Hybk+1 are indistinguishable for k ∈ {1, . . . ,K}.

Finally, we note that hybrid Hyb1 is identical to Exec
Ḡ,W(F ,QḠ)

σ,Ã,Z
, and the hybrid HybK+1

is identical to ExecḠσπ ,A,Z . Based on the claim above, we can see that Hyb1 c
≈ Hyb2 c

≈ · · ·
c
≈

HybK
c
≈ HybK+1. This implies that ExecḠσπ ,A,Z

c
≈ Exec

Ḡ,W(F ,QḠ)

σ,Ã,Z
, which completes the proof

of the lemma.

We then consider the ideal world and theW(F ,QḠ)-hybrid world. Recall the fact that σ realizes
W(H,Q′Ḡ) with Q′Ḡ-fairness in the W(F ,QḠ)-hybrid world. We immediately have Equation 4
and the following lemma.

Lemma A.3. For all PPT Ã, there exists PPT S so that for all PPT Z, Exec
Ḡ,W(H,Q′Ḡ)

S ,Z
c
≈

Exec
Ḡ,W(F ,QḠ)

σ,Ã,Z

21

Based on the two lemmas above, we now have: for all A, there exists S so that for all Z,

ExecḠσπ ,A,Z
c
≈ Exec

Ḡ,W(H,Q′Ḡ)

S ,Z . This completes the first part of the proof.

22

	Introduction
	Model
	Global Clock Functionality and Synchronous Protocol Executions
	Global Ledger Functionality
	Q-fairness and Secure Computation with Fair Compensation
	Correlated Randomness as a Sampling Functionality

	Our fair protocol compiler
	MPC with Publicly Identifiable Abort
	Special Transactions supported by our Ledger
	The protocol

	Using Ethereum contracts
	Proofs

