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Abstract We consider how to perform privacy-preserving analyses on
private data from different data providers and containing personal in-
formation of many different individuals. We combine differential privacy
and secret sharing in the same system to protect the privacy of both the
data providers and the individuals. We have implemented a prototype
of this combination and the overhead of adding differential privacy to
secret sharing is small enough to be usable in practice.

1 Introduction

Many organizations maintain registries that contain private data on the same
individuals. Important insights might be gained by these organizations, or by the
society, if the data in these registries could be combined and analyzed. The exe-
cution of such combination and analysis brings several kinds of privacy problems
with it. One of them is computational privacy — one must perform computations
on data that must be kept private and there is no single entity that is allowed
to see the entire dataset on which the analysis is run. Another issue is output
privacy — it is not a priori clear whether the analysis results contain sensitive
information tracable back to particular individuals. Kamm [20, Sec. 6.7.1] has
presented evidence that the second kind of issues is no less serious than the first
kind — even after the computational privacy of data in a study was ensured,
one of the data providers (the tax office) was worried about the leaks through
the results of the study.

Secure Multiparty Computation (SMC) [33, 16] is a possible method for
ensuring the computational privacy of a study. It allows the entity executing
the study to be replaced with several entities that perform the computations
in distributed manner, while each of them alone or in small coalitions remains
oblivious to the input data and the intermediate results. To achieve output
privacy, the analysis mechanism itself must be designed with privacy in mind [25].
A commonly targeted privacy property is differential privacy (DP) [11, 28], which
has both well-understood properties [19] and supports simple arguments, due to
its composability.

A statistical analysis mechanism can be designed from ground up with dif-
ferential privacy in mind. Alternatively, a mechanism, treated as a black-box
functionality, can be modified to make it differentially private, albeit with some



loss of accuracy. Laplace and exponential mechanisms are basic tools to add dif-
ferential privacy to a sufficiently smooth mechanism [11]. For many statistical
functions, other mechanisms may provide better accuracy for the same level of
privacy. In this paper, we will consider the sample-and-aggregate method [29],
smoothening the function, such that less noise has to be added in order to obtain
the same level of privacy.

Differential privacy introduces a generic mechanism for responding to queries
about a database containing private data. The mechanism for answering each
query has a certain level of privacy loss associated with it; for different queries
the levels may be different. There is an overall privacy budget associated with
the database. Each given response lowers the available budget by the amount of
privacy loss of the mechanism used to construct it. A query is accepted only if
its privacy loss does not exceed the remaining budget.

Differential privacy has been generalized to take into account that different
records or columns of a database may have different sensitivity [7]. As an instance
of generalized definitions, personalized differential privacy (PDP) [13] assigns a
privacy budget not to the entire database, but to each record separately. The
responses to queries may depend only on a subset of all records, and only the
budgets of these records will be lowered. This gives more freedom to the data
analyst in formulating the queries.

In real applications and database systems, we would like to use both SMC
and DP, in order to achieve both computational and output privacy, and to
protect the interests of both data owners and data subjects. Alone, both of them
have been demonstrated to work with reasonable efficiency, being applicable for
realistically sized databases.

In this paper, our main contribution is to show that fast methods for
SMC and precise methods for DP can be combined, and still provide reasonable
performance. We report on the experience that we have obtained with the imple-
mentations of GUPT’s sample-and-aggregate method [28] and the provenance
for PDP method [13] on top of the Sharemind SMC framework. We have imple-
mented a number of statistical functions in this framework, and compared their
performance with and without DP mechanisms. Our results show that the extra
overhead of implementing DP mechanisms on top of SMC is not prohibitive.

While implementing the DP mechanisms on top of the SMC framework, we
had to come up with novel SMC protocols for some subtasks. These subtasks are
related to reading the elements of an array according to private indices; there
are no cheap SMC protocols for that and hence the algorithms with a lot of
data-dependent accesses incur very significant overhead when straightforwardly
converted to run on top of an SMC framework. The subtasks with novel protocols
are the following:

– Inner join of two tables. This operation is needed when tracking the prove-
nance of records in queries complying with PDP.

– Counting the number of equal values in an array. This operation is needed
for updating the privacy budgets of records. Also, a novel form of updating



the elements of an array (where the writing locations are private) is needed
for writing back the updated budgets.

The Sharemind SMC framework [4, 5] that we are using employs protocols
working on data secret-shared between several computing parties. This gives
our databases and queries the greatest flexibility, as we do not have to restrict
how the database is stored, and who can make the queries. Indeed, we can
just state that the database is secret-shared between the computing parties,
and so are the parameters of the query. The answer will be similarly secret-
shared. In an actual deployment, the entity making the query will share it among
the computing parties. The shares of the answer will be sent back to it, to be
recombined. Alternatively, the answer to a query may be an input to further
secure computations. In this case it will not be recombined and no party will
ever learn it.

2 Related Work

PINQ [26] is one of the best-known implementations of differentially private
queries against sensitive datasets. It provides an API for performing such queries,
maintaining and updating the privacy budget for a queryable data source.

Rmind [3] is a tool for statistical analysis, preserving computational privacy.
It implements a number of statistical operations and functionalities on top of
Sharemind, including quantiles, covariance, detection of outliers, various sta-
tistical tests and linear regression. The implementations are packaged as a tool
resembling the statistics package R.

The combination of SMC and DP has been explored in PrivaDA [14]. They
consider the problem of releasing aggregated data collected from many sources.
The aggregation (only addition of individual values is considered) is performed
using SMC. Afterwards, a perturbation mechanism providing DP is applied to
the aggregated data and the perturbed data is made public.

Differentially private data aggregation has received a lot of interest [12, 1, 18],
but typically without employing SMC. In this case, each data source itself has
to add some noise to its outputs, which will be summed during aggregation.
Typically, the noise level in the aggregated result will be larger, compared to
adding the noise after aggregation.

Privacy-preserving joins in databases have been considered before in [23].
They obliviously apply a pseudo-random permutation on the key columns of
both joined tables, and declassify the results, after which the actual join can be
performed in public. Their approach leaks the counts of records that have equal
keys.

The reading and updating of arrays according to private indices has been
considered before, mostly by implementing the techniques of Oblivious RAM [17]
on top of SMC [9, 24]. Our methods have similarities to parallel oblivious array
access [22], but differently from them, we do not have to perform computations
on stored values.



In our implementation, we had to choose which aggregation functions to
implement for queries. We concentrated on count, arithmetic average, median,
and linear correlation coefficient. Count has been considered in [11, 26], median
in [29, 26]. Arithmetic average has been considered in [26] and is used as the final
step in the Sample-and-Aggregate algorithm in [28]. Linear correlation coefficient
we chose as an example of a multivariable aggregation function. We have also
implemented sum, which is considered in [1], but we do not consider it further
in this paper because it is similar to the average.

An alternative to the Sample-and-Aggregate mechanism is the exponential
mechanism [27], as an example of which we have implemented a differentially
private quantile computation algorithm from [32]. We have not optimized it and
thus we do not consider it further in this paper.

3 Differential Privacy

Definition 1. A (probabilistic) algorithm that takes a set of data records as an
input, is ε-differentially private if the removal of any single record from the input
changes the probability of any predicate on the output being true at most by a
factor of eε.

To achieve differential privacy, one usually adds random noise to the computed
result. This noise must have high enough variance to mask the possible variation
in the output due to removing or changing one record. This noise is usually from
a Laplace distribution, which fits perfectly to the statement of Def. 1.

An alternative would be to use noise from the uniform distribution. This
would not satisfy Def. 1 but would instead satisfy the following property:

Definition 2. A (probabilistic) algorithm that takes a set of data records as an
input, is additively δ-differentially private if the removal of any single record
from the input changes the probability of any predicate on the output being true
at most by δ.

This has the advantage that the amount of noise is bounded and the average
absolute deviation is half of that needed for the Laplace noise, to achieve the same
level of indistinguishability for the adversary (a probability of 1

2 may change to at
most 1

2 +δ by changing one input record). The disadvantage is that a probability
of 0 may change to δ by changing one record, which is not possible with Laplace
noise. Thus in the following, we will consider only Laplace noise and Def. 1,
which is the mainstream practice.

Suppose we have an algorithm for computing a function f , whose input is
a set of data records. To determine how much noise must be added we need to
know the sensitivity of f , i.e. how much the value of f can change if we remove
one record from its input.

Definition 3. The sensitivity of a function f : 2Records → R is

max
T⊆Records,r∈T

|f(T )− f(T \ {r})|



If the sensitivity of the function is s then adding noise from the distribution
Laplace( sε ) (this has the average absolute deviation s

ε and standard deviation
s
√
2
ε ) to the value of f guarantees ε-differential privacy.

For example, if f is the arithmetic mean of n values from the range [a, b] then
its sensitivity is b−a

n . Here it is important that the inputs of f are bounded, i.e.
in the range [a, b] for some a and b, otherwise the sensitivity of f would also be
unbounded.

In practical analysis, the input values (e.g. salaries) may be from a very
wide range. Because the data is private, we may not know the maximum and
the minimum of the values. Revealing the exact minimum and the maximum
would breach the privacy of the individuals who have those values. Thus we
need to guess some values a and b and then clip the input values to the range
[a, b] (replacing values smaller than a with a, and values larger than b with b).
The range [a, b] must be chosen carefully. If it is too wide, then the added noise
(which is proportional to b− a) distorts the result too much. If it is too narrow,
then the clipping of inputs distorts the result too much.

If several queries are made where the ith query is εi-differentially private then
the composition of the queries is (

∑
εi)-differentially private. We can define a

(global) privacy budget B and require
∑
εi ≤ B. Thus every query consumes a

part of the privacy budget and when a query has a higher ε than the amount
of budget remaining then this query cannot be executed or the accuracy will be
reduced.

4 The Sample-and-Aggregate Mechanism

Let us have a dataset T that can be interpreted as the result of |T | times sampling
a probability distribution D over Records (different samples are independent
of each other). By processing T , we want to learn some statistical characteristic
f(D) — a vector of values — of the distribution D. We have two conflicting
goals — we want to learn this characteristic as precisely as possible, but at the
same time we want our processing to be ε-differentially private.

A robust method for differentially privately computing the function f is
the Sample-and-Aggregate mechanism proposed and investigated by Nissim et
al. [29] and Smith [32], and further refined in the GUPT framework [28]. The
basic mechanism is given in Alg. 1. Beside the dataset T and the privacy pa-
rameter ε, Alg. 1 receives as an input a subroutine for computing the function
f (without privacy considerations). This subroutine is called by Alg. 1 ` times
in a black-box manner.

Alg. 1 is clearly differentially private due to the noise added at the end. At
the same time, Smith [32] shows that if f is generically asymptotically normal,
then the output distribution of Alg. 1, and the output distribution of f on the
same dataset T converge to the same distribution as the size n of T grows (and
` grows with it). The convergence holds even if the output dimensionality and
clipping range of f , as well as 1/ε grow together with n, as long as the growth



Algorithm 1 The Sample-and-Aggregate algorithm [28]

Input: Dataset T , length of the dataset n, number of blocks `, privacy parameter ε,
clipping range [left, right]

Randomly partition T into ` disjoint subsets T1, . . . , T` of (almost) equal size
for i ∈ {1, . . . , `} do

Oi ← output of the black box on dataset Ti
if Oi < left then Oi ← left
if Oi > right then Oi ← right

return 1
`

∑`
i=1Oi + Laplace

(
right−left

`·ε

)

is at most polynomial. A statistic is generically asymptotically normal, if its
moments are sufficiently bounded; we refer to [32] for the precise definition.

As an example of the Sample-and-Aggregate algorithm, we can compute dif-
ferentially privately the linear correlation coefficient. The black box in this case
takes a dataset as input and computes the non-differentially private linear cor-
relation coefficient of the dataset. We can compute other functions differentially
privately by just replacing the black box.

The optimal value of ` may be different for different functions f . For com-
puting the arithmetic mean, we can take ` = n and use one-element blocks with
the identity function as the black box. This gives the highest accuracy because
the amount of added noise is inversely proportional to `. In our implementa-
tion, we use this differentially private arithmetic mean as a subroutine of the
Sample-and-Aggregate algorithm.

For computing the median, we could use the Sample-and-Aggregate algo-
rithm, with the black box returning ` elements of the dataset, close to the me-
dian. In our implementation, we improve on this by skipping the black box and
just taking the ` or `+ 1 (depending on the parities of ` and n) elements closest
to the median (i.e. the elements on positions dn+1−`

2 e to bn+1+`
2 c (1-based) in

the sorted order).

5 Personalized Differential Privacy

We have also implemented a mechanism for Personalized Differential Privacy
[13]. This uses a more general form of Def. 1, which we give in Def. 4.

Definition 4. Let E : Records → R. A (probabilistic) algorithm that takes a
set of data records as an input, is E-differentially private if the removal of any
single record r from the input changes the probability of any predicate on the
output being true at most by a factor of eE(r).

Thus a query can provide a different level of privacy for each record. If E(r) = ε
for all r then we get ε-differential privacy as a special case.

We can consider two different methods for enforcing Personalized Differential
Privacy. In the simpler case, this means that instead of the global privacy budget,
each row in the database has a separate privacy budget. When an ε-differentially



private query is made, then only the rows participating in the query have their
budgets reduced (by ε). Thus we have E-differential privacy with E(r) = ε if the
row r participates in the query and E(r) = 0 otherwise. This allows performing
more queries using the same privacy budget.

In the more complicated case, each row in the database has a provenance,
each provenance (not each row) has a privacy budget, and there can be several
rows with the same provenance. Thus if an ε-differentially private query uses r
rows with some provenance p then the budget of this provenance p is reduced
by rε. Here we have E(p) = rε. Here the domain of E is the set of provenances,
not the set of actual records but, as in [13], we can instead consider provenances
themselves to be records and take the composed query Q ◦ F where F is a
union-preserving function that maps each provenance to a set of records with
that provenance and Q is the actual query on the chosen records. If Q is ε-
differentially private then Q◦F is E-differentially private with E(p) = |F ({p})|·ε.

6 Secure Multiparty Computation

Secure multiparty computation (SMC) is the universal cryptographic function-
ality, allowing any function to be computed obliviously by a group of mutually
distrustful parties. There exist a number of different techniques for SMC, includ-
ing garbled circuits [33] and homomorphic encryption [8]. In this work, we have
considered SMC based on secret sharing.

In secret sharing there are n parties (n > 1), and every private value x is
split into shares x1, . . . , xn such that party i has the share xi. The private value
can be recovered if at least k parties out of n provide their shares. For a number
of operations, there exist more or less efficient protocols that receive the shares
of the operands as input, and deliver the shares of the result of the operation
as output to the parties. A number of different protocol sets exist, including the
GMW protocol [16], protocols for data shared using Shamir’s secret sharing [31,
15], Sharemind’s protocol set [5] or protocols based on predistributed correlated
randomness [2, 10]. The protocols are composable, meaning that they can be
combined to solve large computational tasks in privacy-preserving manner. Also,
they are input private, meaning that no party or a tolerated coalition of parties
learns anything new during these protocols, except for the final output.

The framework underlying our implementation is Sharemind, which pro-
vides protocols for three parties, and is secure against a passive adversary that
corrupts at most one party. Compared to other frameworks, it offers proto-
cols for a large set of operations over integers, fixed- and floating-point values,
thereby simplifying our implementations and comparisons. The offered proto-
cols are efficient compared to other frameworks, but performing computations
on secret-shared private data is still considerably slower than performing the
same computations on public data. The difference is especially large for floating-
point operations. Thus it is often better to convert private floating-point data
to fixed-point data, which can be simulated using integers, and is much faster.
When implementing this, we must be careful to avoid overflows. This is espe-



cially important for differentially private computations, because an overflow can
change the result so much that no reasonable amount of added noise can mask
this. Similarly, we must avoid exceptions, e.g. division by zero, since these can-
not be masked by noise. Instead, it is necessary to remove the exceptional or
overflown values or replace them with default values. This will change the result
by a very small amount, because we use ε-differentially private algorithms.

Even if we can perform most operations using fixed-point arithmetic, we may
still perform a constant number of floating-point operations, e.g. the division
when computing an average or the generation of a Laplace random value (which
uses one logarithm operation and a uniform random value).

Because protocols on secret-shared data have a much better performance
when a single operation is applied to a large number of values in parallel rather
than sequentially (due to the network latency), we may have to structure our
differentially private algorithms differently than in the non-secret-shared case.
In the Sample-and-Aggregate algorithm (Alg. 1), the set of n inputs is randomly
partitioned into ` samples, the black box computing f is applied to each of
the samples, and the results are combined. It is easy to run the black box on
each sample sequentially, but in the secret-shared context we may need to run
many copies of the black box in parallel, which would complicate the realization.
The sequential algorithm would also work but it would be slower, especially for
small values of n/`. For large n/`, each sample would be large enough to fully
take advantage of the parallelizability of vector operations, and the difference in
performance would diminish.

When implementing an algorithm in privacy-preserving manner, it is gener-
ally not possible to branch on a private condition, because the control flow of the
algorithm is visible to all parties. Instead, we must use evaluate both branches
and combine them using oblivious choice. If b is private then if b then c else d
must be replaced with b · c + (1 − b) · d, where the boolean b is used as an in-
teger (true = 1, false = 0). This can be further optimized to d + b · (c − d),
which uses only one multiplication instead of two. Three-way oblivious choice
if b1 then c else if b2 then d else e where b1 and b2 are never true at the same
time can then be implemented using two multiplications: e+b1 ·(c−e)+b2 ·(d−e).
The three-way oblivious choice is used to implement the computation of each Oi
in Alg. 1.

To get better performance in the secret-shared setting, the ` invocations of
the black box in Alg. 1 are done in parallel in single invocation. The input
of the black box in this case is a list of datasets and the output is a list of
values of f for each dataset. For example, in differentially private computation
of the linear correlation coefficient, the black box takes any number of datasets
and computes the non-differentially private linear correlation coefficient of each
dataset in parallel. For computing other functions differentially privately, we
need to replace only the black box.

In privacy-preserving statistics applications, before applying an aggregating
function, the dataset is usually filtered by some predicate [3, Sec 3]. In a non-
secret-shared setting, the trusted party can then create a new dataset containing



only those rows that matched the predicate and apply the aggregating function
to this new dataset. In the secret-shared setting, we cannot create a new dataset
this way because it would leak the number of rows that matched the predicate.
Instead, we must use a mask vector, which contains for each row a boolean
that specifies whether this row matched the predicate (and therefore should be
used in aggregation) or not. Therefore, all aggregating functions (including the
non-differentially private ones used as black boxes in the Sample-and-Aggregate
algorithm) receive this mask vector in addition to the dataset and must aggregate
only the subset of the dataset denoted by the mask vector.

In most cases, it is not difficult to modify the aggregating function to use
a mask vector, but in some cases, there can be complications. For example, for
computing the median, we replace half of the values excluded by the filter with
a very small value, and the other half with a very large value. This will keep the
median roughly (exactly if the number of excluded values is even) the same.

When using mask vectors, filtering will not reduce the size of a table. To
improve performance, we can reduce the size of the filtered table using a cut
operation. This requires an upper bound k on the number of records. The re-
sulting table will have exactly k records (some of which may still be disabled by
the mask vector). If there were more than k records, then some elements will
be thrown away (uniformly randomly). This distorts the result of the analysis
similarly to the clip operation described above, thus the upper bound must be
chosen carefully.

The data used in the analysis is in a secret-shared database. Because the
data comes from different providers, it will be in different tables. For making
the more complex queries, we may need a database join operation to combine
two tables. This can be done on secret-shared data in O(n log n) time (where
n is the total number of records in the tables) provided that only one of the
two joined tables may have non-unique values in the column used for joining
(actually, the other may also contain non-unique values but in this case, for each
set of rows with the same key, only one row, chosen uniformly randomly, will be
used in the join; this may be acceptable for some applications).

In order to make a query in the system, one may have to provide a range
[a, b] (for clipping initial or intermediate values), a number k (for cutting the
number of records in an intermediate table), and a value ε. These parameters
represent the tradeoff between privacy, accuracy, and performance. If we do not
know enough about the private data then we can make some preliminary queries
to obtain rough estimates for the parameters. These queries should use as small
ε as possible, to avoid excessive consumption of the privacy budget.

7 Asymptotic Overhead of Differential Privacy

Adding differential privacy to a secret-shared aggregation introduces some over-
head. In Alg. 2, we give an algorithm for computing (non-differentially privately)
in parallel the correlation coefficients of ` datasets. It implements the following



formula:

ci =

∑
j xijyij√

(
∑
j x

2
ij)(
∑
j y

2
ij)

where the values have been normalized by subtracting the corresponding row
averages and the values excluded by the mask vector have been replaced with
zeros.

Algorithm 2 Parallelized masked correlation algorithm

Input: Dataset matrices X and Y (fixed-point numbers) and mask matrix M (each `
rows by k columns), number of blocks `, number of elements in each block k.
Output: For each row i ∈ {1, . . . , `}, the correlation ci of the ith row of X with the
ith row of Y .

for each i ∈ {1, . . . , `} (in parallel) do
ri ←

∑
jMij

r′i ← 1
ri

si ← r′i ·
∑
j XijMij

ti ← r′i ·
∑
j YijMij

for each j ∈ {1, . . . , k} (in parallel) do
xij ← (Xij − si) ·Mij

yij ← (Yij − ti) ·Mij

ai ←
∑
j xijyij

bi ←
∑
j x

2
ij

di ←
∑
j y

2
ij

ci ← ai√
bidi

return c

In Alg. 2, we first compute ri, the number of elements in each row i. This
is a local operation, so parallelization is not required. Then we compute the
inverses r′i, which are used to compute si and ti, the row averages of X and Y .
We do one inverse and two multiplications for each row, which is faster than
doing two divisions. When computing the si, we can do all ` · k multiplications
XijMij in parallel. The next five sets of ` ·k multiplications each (for computing
xij , yij , ai, bi, di) are handled in the same way. Finally, we compute the ci by
doing ` multiplications, divisions, and square roots. Divisions and square roots
are expensive operations, so it is important to do them in parallel, even though
we only do ` of each, not ` · k. If k is small then the divisions and square roots
dominate the computation time. If k gets larger then the O(` ·k) multiplications
begin to dominate.

If we compare the computation of the correlation of ` samples in parallel to
the computation of the correlation of the whole dataset as a single sample then
we see that the number of multiplications is almost the same (7`k+` vs 7`k+1).
The number of divisions increases from 2 to 2` and that of square roots from 1
to `.



When computing correlation differentially privately, we use Alg. 1 with Alg. 2
as a subroutine that is called only once. In addition to the operations done in the
subroutine, the algorithm in Alg. 1 does 2` comparisons, 2` multiplications, 1 di-
vision (the operations in the argument of Laplace are public), and one generation
of a Laplace random value (which uses one division and one logarithm).

We keep our data (the matrices X and Y in Alg. 2) in the database in fixed-
point form. The multiplications in Alg. 1 and Alg. 2 are integer multiplications
but we need to do 2`k+2` (or 2`k+2 in the non-differentially private case) shift
rights to avoid overflow.

In addition, we need to convert ri,
∑
j XijMij ,

∑
j YijMij , ai, bi, di in Alg. 2

and
∑
iOi in Alg. 1 from integer or fixed-point form to floating point for a total

of 6`+ 1 conversions. We also need to do 3` conversions to convert si, ti, and ci
in Alg. 2 from floating point to integer.

We summarize the number of (non-local) operations in both cases:

operation non-diff. private diff. private
int multiplication 7`k + 1 7`k + 3`
shift right 2`k + 2 2`k + 2`
float multiplication 2 2`
int to float 6 6`+ 1
float to int 2 3`
division 2 2`+ 2
square root 1 `
comparison 0 2`
logarithm 0 1

As we see, for large k, the multiplications and shift rights dominate the
running time, and if k →∞ then the ratios 7`k+3`

7`k+1 → 1 and 2`k+2`
2`k+2 → 1, i.e. the

overhead of differential privacy is negligible for large block size k. For small k,
the O(`) overhead may be important.

8 Algorithm for Join

Sometimes the values needed for performing a query are in more than one table
(e.g. in Sec. 9). Then we need to join those tables. In this section, we describe
an algorithm (Alg. 3) for this. In the following, we call the columns by which
the tables are joined, the provenance columns but actually any columns can be
used in this role.

Suppose we have matrices V (with rV rows and cV columns) and B (with
rB rows and cB columns). Also assume that different rows in B have different
provenances, and all provenances in V also occur in B. This assumption holds
in Sec. 9. We create a bigger matrix

A =

(
V 0

0 B

)
with rV +rB rows and cV +cB columns. Then we add to it two extra columns to
the left, the first of which contains the provenance of the row of V or B contained



Algorithm 3 Joining two tables

Input: Matrices V and B

s← the provenance column from V
t← the provenance column from B
A←

(
s 0 V 0
t 1 0 B

)
A← sort A by the first (provenance) column, breaking ties by the second column
the last cB columns of A ← propagateValuesBack(the last cB columns of A, the first
column of A) using Alg. 4
randomly shuffle the rows of A
declassify the second column of A
V ′ ← the rows corresponding to V (0 in the second column) from A
return V ′ without the first two columns

in this row of A. The second column contains 0 or 1 depending on whether the
corresponding row of A contains values from V or B, respectively.

Now we sort A by the first column, breaking ties by the second column. Then
rows with the same provenance will appear sequentially in A, with the rows from
V appearing before the rows from B with the same provenance.

Now we apply the algorithm in Alg. 4 to the last cB columns of A. This

Algorithm 4 Propagating values back

Input: An n by c matrix M , an n-element vector p containing the provenance of each
row of M
propagateValuesBack(M ,p):

j ← 1
while j < n do

for each i ∈ {1, . . . , n− j} (in parallel) do
Mi ← if pi = pi+j then Mi+j else Mi

j ← j · 2
return M

algorithm takes a matrix M with rows sorted by provenance, and copies the
last row of each provenance to the previous rows of the same provenance. The
while loop does approximately log n iterations. After the first iteration, there are
up to two copies of a value. After the second, up to 2, then 4, 8, and so on.
The algorithm makes approximately n log n equality tests. This technique can
be used also for other tasks where we have a matrix sorted by a certain column
(provenance) and we want to do something with each group of rows with the
same provenance. We will see an example later (Alg. 7).

If the provenance of each row of B is different then after applying Alg. 4 to
the right part of A, the rows of A with 0 in the second column contain the join
of V and B. We may extract the join using a (linear-time) cut operation. This
operation is also described towards the end of Alg. 3, starting from the shuffling
of the rows of A. The declassification that follows the shuffle does not increase



an adversary’s knowledge. Indeed, it produces a randomly ordered vector of rV
zeroes and rB ones, where both rV and rB are public information.

9 Implementing Personalized Differential Privacy

Our implementation supports both cases introduced in Sec. 5 but the overhead
is much higher in the second case.

We first consider the simpler case. Here we add to the database table an
extra column, where we store the privacy budget of each row. There is another
column that contains the mask vector that shows which rows participate in the
query. When performing an ε-differentially private query, we check that each
of the rows participating in the query has at least ε left in its privacy budget.
The rows that do not have enough budget are silently excluded from the query.
The other participating rows have their budgets reduced by ε. Then the query is
executed, using a modified mask vector, where some rows may have been silently
excluded. This algorithm is given in Alg. 5. The overhead here is n comparisons
(and n multiplications and n boolean operations, which are much cheaper than
comparisons).

Algorithm 5 Personalized Differential Privacy with in-place budgets

Input: The number of rows n in the table, privacy parameter ε, an ε-differentially
private query Q

m← the mask column read from the database
b← the budget column read from the database
for each i ∈ {1, . . . , n} (in parallel) do

ai ← mi ∧ bi ≥ ε
b′i ← bi − ai · ε

write b′ to the database as the new budget column
r ← output of Q with a as the mask vector
return r

Now we consider the more complicated case. Here we have in the database
a separate table (the budget table) that contains the privacy budget for each
provenance. The table containing the analyzed values (the value table) has an
extra column that now contains the provenance of that row instead of the budget.
Now the data needed for performing a differentially private query is in two
separate tables, thus before the query, we need to join those two tables by the
provenance columns, and after the query, we need to extract the updated budgets
from the joined table and write them to the budget table. Because there may
be r rows with a provenance p, the budget of the provenance p must be at least
rε, otherwise all the r rows are silently dropped. If the provenance has enough
budget, the budget is reduced by rε. Thus the reduction may be different for
different provenances. We use Alg. 6 for this case.



Algorithm 6 Personalized Differential Privacy with provenances

Input: Privacy parameter ε, an ε-differentially private query Q

V ← the value table read from the database
B ← the budget table read from the database
s← the provenance column from V
t← the provenance column from B
A←

(
s 0 V 0
t 1 0 B

)
A← sort A by the first (provenance) column, breaking ties by the second column
m← the mask column from A
b← the budget column from A
p← the provenance (first) column from A
f ← the frequency table of p using Alg. 7
n← the number of rows in A
for each i ∈ {1, . . . , n} (in parallel) do

hi ← bi ≥ fi · ε
b′i ← bi − hi · fi · ε

h← propagateValuesBack(h (as a 1-column matrix), p) using Alg. 4
for each i ∈ {1, . . . , n} (in parallel) do

ai ← mi ∧ hi
randomly shuffle the rows of A
declassify the second column of A
B′ ← the rows corresponding to B (1 in the second column of A) from (p, b′)
write B′ to the database as the new budget table
(V ′,m′)← the rows corresponding to V (0 in the second column of A) from (A, a)
r ← output of Q on V ′ with m′ as the mask vector
return r

Algorithm 7 Frequency table

Input: A sorted vector v of length n
Output: A vector f , where fi is the number of values equal to vi before the ith position
in v

initialize f with zeros
j ← 1
while j < n do

for each i ∈ {j + 1, . . . , n} (in parallel) do
fi ← if vi = vi−j then fi−j + j else fi

j ← j · 2
return f

It uses the same elements as the join algorithm (Alg. 3)—the big sorted ma-
trix A, propagating values back, and cut (extracting certain rows of a matrix)—
but in a modified way, so we cannot use the join algorithm as a black box. In
addition, it computes (Alg. 7, which uses the same technique as Alg. 4) the
frequency table (the number of rows with each provenance) to determine how
much budget is needed for each provenance and which provenances have enough
budget (the vector h). Then the booleans in h are propagated back from the



rows corresponding B to the rows corresponding to V to find the rows whose
provenance has enough budget.

Let nv and nb be the number of rows in the value table and the budget table,
respectively, and n = nv+nb. Then Alg. 6 uses O(n log n) comparisons for sorting
A (using quicksort) and at most a total of 2n log n equality checks for computing
the frequency table and propagating values back (actually, the comparison results
from computing the frequency table could be reused for propagating values back,
thus we only need n log n equality checks instead of 2n log n). The rest of the
algorithm is linear-time.

If we need to make several queries in a row on the same value table and
the same mask vector (but with possibly different aggregation functions) then
we can reuse (if we modify Alg. 6 slightly) the results of the O(n log n) part of
the algorithm and need to repeat only the linear-time part for each query. If the
next query uses the same value table but a different mask vector then we need to
recompute the frequency table and propagating values back. Sorting (the most
time-consuming part of Alg. 6) needs to be redone only when the next query
uses a different value table.

10 Benchmarking Results

In Fig. 1, we give benchmarking results of our implemention for various ag-
gregation functions and for various forms of differential privacy (global budgets,
Personalized Differential Privacy with in-place budgets and provenance budgets)
and also for a non-differentially private (but still secret-shared) version. We have
skipped some of the larger tests whose running time would be predictable from
the running times of other (performed) tests. All tests were performed on a clus-
ter of three computers with 48 GB of RAM and a 12-core 3 GHz CPU with
Hyper Threading running Linux (kernel v.3.2.0-3-amd64), connected by an Eth-
ernet local area network with link speed of 1 Gbps.

If we compare the non-differentially private and the global-budget version
of count, the overhead is roughly constant (around 360 ms) independent of n
(the number of rows). This overhead is due to the floating-point operations of
generating a Laplace random value that is added to the final result.

When comparing the non-differentially private and the global-budget version
of average, we have in addition to generating a Laplace random value, the over-
head of 2n comparisons and 3n multiplications. For n = 200000, the overhead
is 3427 ms, of which 2638 ms are comparisons, 368 ms are multiplications, and
395 ms are floating-point operations (mostly for the Laplace random value).

When comparing the non-differentially private and the global-budget version
of correlation, we see that the overhead depends mostly on ` and not much
on n because the number of slow floating-point operations is proportional to `.
For ` = 1000 the running time is about 8000 ms larger than for ` = 100. This
extra overhead is used mostly (7000 ms) for floating-point operations (square
root, division, etc.).



function num. rows non-diff. private
budgets:

global in-place provenance

count

10000 392 759 1124 6096
20000 405 768 1241 10672
50000 460 827 1587

100000 594 962 2257
200000 866 1184 3452
500000 7234

1000000 13871

average

10000 443 1099 1475 6598
20000 461 1285 1753 11051
50000 532 1774 2531

100000 694 2625 3873
200000 999 4426 6483
500000 15118

1000000 28995

correlation (` = 100)

10000 822 2455 2826 7663
20000 1001 2665 3157 12693
50000 1556 3278 4092 26833

100000 2473 4312 5525 54767
200000 4443 6359 8548 112300
500000 9721 12218 17895

1000000 19414 22608 33530

correlation (` = 1000)
500000 9850 20115 25961

1000000 19380 30657 41363
2000000 37643 51381 72436

median (` = 100)

10000 851 1332 1708 6548
20000 1327 1737 2131 11786
50000 2318 2137 3502

100000 4620 4075 5312
200000 6498 5559 9198
500000 24175

1000000 34583

Figure 1. Benchmarking results (in milliseconds)

When comparing the non-differentially private and the global-budget version
of median, we see that the differentially private version is often the faster one.
This is due to the high variance of the running time of the selection algorithm
(for choosing the ith ranked element from a set of n elements), and we made only
one run for each of the larger input sizes. The distribution of the running time
does not depend on the actual input, which is randomly shuffled before running
the selection algorithm. In the differentially private version, we do need to choose
roughly ` middle-ranked elements instead of only 1 or 2 but the running time of
the selection algorithm in this case is only 1 + `

n times higher on average, and
usually ` is much less than n.



When comparing the global-budget version of differential privacy with in-
place budgets, we see that the extra overhead depends mostly on n, not on the
aggregating function. This is because we use the same ε-differentially private
aggregating functions in both cases but in the latter case we also need to check
which rows have enough budget and to reduce the budgets.

Similarly, the extra overhead of the provenance-budgets version of differential
privacy compared to the in-place-budgets version depends on n and not on the
aggregating function.

We have also measured which operations take most of the running time. For
example, for correlation with provenance budgets, n = 200000, and ` = 100,
the total running time was 112300 ms, of which 58168 ms is sorting (mostly
comparisons), 32949 ms (of which 19697 ms are equality checks and 11707 ms
multiplications) is computing the frequency table and propagating values back
(Algorithms 7 and 4 but reusing the results of equality checks instead of com-
puting them twice). As discussed in Sec. 9, if the query is performed on the same
value table as the previous query then it is not necessary to redo the sorting and
the running time would be 54132 ms. If also the mask vector is the same as in
the previous query, we can also leave out Algorithms 7 and 4 and the running
time would be 21183 ms, which is 2.5 times slower than with in-place budgets
but 5.3 times faster than the full provenance-budgets version.

Now we consider correlation with in-place budgets, n = 2000000, and ` =
1000. Here the overhead compared to global budgets is about 21000 ms, of which
13237 ms are comparisons, 1943 ms are multiplications, and 4345 ms is spent on
writing the new budgets to database (a local operation). This overhead would
be almost the same for other aggregating functions instead of correlation.

Thus the most important operations for our implementation of differential
privacy are integer comparisons, followed by equality checks and multiplications.
For larger ratios of `

n (and thus smaller n), also floating-point operations are
important.

11 Discussion

We have implemented our system on Sharemind which provides security against
a passive attacker (but also privacy against an active one [30]). We may wonder
what the overheads of differential privacy would have been on an SMC platform
that provides security also against active adversaries. One of the most efficient
actively secure protocol sets is (the online phase of) SPDZ [21]. They use an ex-
pensive offline preprocessing phase, which in the online phase allows multiplying
two integers with each party sending only two values to every other party (as op-
posed to five in Sharemind, which does not use preprocessing). Thus (integer)
multiplications would be faster on SPDZ but they are only a small part of our
algorithms. In the following, we discuss the expected overheads of our protocols,
if implemented on top of the online phase of SPDZ.

More important than multiplications for us are integer comparisons, which
in our tests (using 64-bit integers) took about 6.5 s per million elements. Mul-



tiplications took 0.5 s per million elements and equality tests 3 s per million
elements. As SPDZ multiplications use 2.5 times less communication, these may
take 0.2 s per million elements on our hardware. According to [21], 64-bit integer
comparisons in SPDZ are about 90 times slower than multiplications, i.e. these
may take 18 s per million elements, about 3 times slower than on Sharemind.
Equality tests are not considered in [21] but the best equality-checking protocol
in [6] makes 8 openings of secret values for 64-bit integers in the online phase
(and much more in the precomputing phase), i.e. 4 times more than multiplica-
tion. If this could be implemented on SPDZ then it may take 0.8 s per million
elements, about 4 times faster than on Sharemind. Thus we guess the that the
communication costs of the online phase of an implementation on SPDZ would
not differ from our implementation by more than a couple of times.

12 Conclusion

We have presented efficient algorithms for performing differentially private sta-
tistical analyses on secret-shared data. We have implemented them on the SMC
platform Sharemind. The current implementation supports the aggregation
functions count, sum, arithmetic average, median, and linear correlation co-
efficent but it can easily be extended to other functions using the Sample-and-
Aggregate mechanism. We have implemented three different kinds of budgets for
differential privacy and compared their performance. We can conclude that non-
trivial queries using various forms of differential privacy can be performed on an
SMC platform based on secret sharing, and the performance is good enough to
be usable in practice.
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