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Abstract. The Diffie-Hellman problem as a cryptographic primitive plays an
important role in modern cryptology. The Bit Security or Hard-Core Bits of
Diffie-Hellman problem in arbitrary finite cyclic group is a long-standing open
problem in cryptography. Until now, only few groups have been studied. Hy-
perelliptic curve cryptography is an alternative to elliptic curve cryptography.
Due to the recent cryptanalytic results that the best known algorithms to at-
tack hyperelliptic curve cryptosystems of genus g < 3 are the generic methods
and the recent implementation results that hyperelliptic curve cryptography in
genus 2 has the potential to be competitive with its elliptic curve cryptography
counterpart. In this paper, we generalize Boneh and Shparlinksi’s method and
result about elliptic curve to the case of Jacobians of hyperelliptic curves. We
prove that the least significant bit of each coordinate of hyperelliptic curves
Diffie-Hellman secret value in genus 2 is hard as the entire Diffie-Hellman value,
and then we also show that any bit is hard as the entire Diffie-Hellman val-
ue. Finally, we extend our techniques and results to hyperelliptic curves of any
genus.
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1 Introduction

The discrete logarithm problem(DLP) and Diffie-Hellman problem(DHP) are
basic cryptographic primitives, they play important role in modern cryptology.
For example the Diffie-Hellman key exchange [16], the ElGamal encryption
[18], the official U.S. Digital Signature Algorithm (DSA) [19], and the BLS
short signature scheme [10], etc. Due to Pohlig and Hellman attack [39], it is
restricted to groups of prime order p in this paper, where the DLP is the problem
to compute x ∈ Z

∗
p given (g, gx), and the DHP or computational Diffie-Hellman

problem(CDHP) is the problem to compute gab given (g, ga, gb), here g ∈ G is
a generator of group G. Maurer and Wolf [36, 37] have proved that, for every
cyclic group G with prime order p, there exists polynomial time algorithm that
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reduces the computation of DLP in G to the computation of CDHP in G if we
are able to find an elliptic curve, called auxiliary elliptic curve, over Fp with
smooth order.

From many cryptographic applications, we know it is very important that
partial information of the secret key is not computable or predictable with any
significant advantage over a random guess. This is related to Bit Security or
Hard-Core Bits problem. Informally speaking, the Bit Security or Hard-Core
Bits for DLP can be described as follows: given (g, gx), if an adversary can
compute certain bits(or more generally, certain predicates) of x? Blum and
Micali[6] introduced the concept of hard-core bits for one-way functions and
showed the existence of a hard-core predicate for the discrete logarithm function
in any group G.

However, for the case of the DHP there is no such result has been proven.
Informally speaking, the Bit Security or Hard-Core Bits for DHP or CDHP can
be described as follows: given (g, ga, gb), if an adversary can compute certain
bits(or more generally, certain predicates) of K = gab? In another word, if the
hardness of CDH bits and the entire CDH is same? This is a long-standing
open problem in cryptography. Until now, only few groups have been studied:
Boneh and Venkatesan [9] formulated the hidden number problem (HNP) and
showed that in the multiplicative group of finite field Fp computing approxi-
mately (log p)1/2 of the bits of the Diffie-Hellman secret is as hard as computing
the entire secret. This result is improved in [25] and [7]. Boneh and Shparlinksi
in [8] achieved a breakthrough for the elliptic curve Diffie-Hellman problem(i.e.,
the CDH problem defined over the group of points of an elliptic curve). By using
certain twists of the given curve they showed that predicting the least signif-
icant bit of the elliptic curve Diffie-Hellman secret in a family of curves is as
hard as computing the entire secret. Alternatively, if one looks for a polynomial
time reduction of the DHP to the problem of predicting partial information
on the same short Weierstrass model, some results have been established using
Gröbner bases[29]. Fazio et al. modified Boneh and Shparlinski’s idea and ap-
plied it to the case of finite fields Fp2 , they proved the unpredictability of every
single bit of one of the coordinates of the secret Diffie-Hellman value over finite
fields Fp2. Wang, Zhan and Zhang [40] generalised this work to extension field-
s Fpm , where m is polynomial in log p. Li, Näslund and Shparlinski [34] have
studied the bit security of CDHP in LUC and XTR. Galbraith, Hopkins and
Shparlinski [22] have studied the bit security of bilinear Diffie-Hellman problem
in blinear pairing group. About the DHP and its bit security, the Chapter 21
in Galbraith’s book[21] is a good reference.

Hyperelliptic curves are a natural generalisation of elliptic curves, and Jaco-
bians of hyperelliptic curves was suggested by Koblitz [32] that they also been
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considered for cryptographic applications. The main advantage of genus g over
elliptic curve(genus 1) is that a much smaller base field(about g times fewer
bits) with same security level. However, for large genus there are subexponen-
tial time attacks on the DLP[1]. For genus 2 curves, just as with their elliptic
curve counterpart, the best known algorithms to solve the discrete logarithm in
such groups are the generic attacks such as Pollard rho mehtod[24]. The prac-
tical potential of genus 2 curves in public-key cryptography has recently been
highlighted by the fast performance numbers presented. Especially, Gaudry[23]
showed that scalar multiplication on the Kummer surface associated with the
Jacobian of a genus 2 curve can be more efficient than scalar multiplication
on the Jacobian itself. After that, many papers[5, 11] showed that hyperelliptic
curve cryptography in genus 2 has the potential to be competitive with its genus
1 elliptic curve cryptography counterpart.

Our Contributions. In this paper, we study the bit security of CDHP in
Jacobian group of hyperelliptic curves. The contribution of the paper is as the
following.

1. We firstly generalize Boneh and Shparlinksi’s method to the case of Jaco-
bians for genus 2 hyperelliptic curves. We prove that the least significant
bit of any coordinate of hyperelliptic Diffie-Hellman value with genus 2 over
finite fields is unpredictable.

2. We extend the least significant bit to very bit case, show that for genus 2
hyperelliptic curves, to compute any bit of any coordinate of Diffie-Hellman
value is hard as for computing the entire Diffie-Hellman value.

3. We also generalize these results from genus 2 hyperelliptic curves to any
genus hyperelliptic curves.

Organization. The rest of this paper is organized as follows. Section 2 in-
troduces some mathematical preliminaries, including hyperelliptic curves and
hyperelliptic curve Diffie-Hellman problem, twisting hyperelliptic curves and
hidden number problem with chosen multiplier. Section 3 gives the main results
and proofs about the the unpredictability of least significant bit of hyperelliptic
Diffie-Hellman value with genus 2. Section 4 extends the least significant bit to
very bit case. Section 5 generalizes the results of hyperelliptic Diffie-Hellman
value with genus 2 to the case of any genus hyperelliptic curves. Section 6 gives
the conclusions.
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2 Mathematical Preliminaries

2.1 Hyperelliptic Curves and Hyperelliptic Curve Diffie-Hellman
Problem

We first introduce the definition and operations of hyperelliptic curves over
finite field, more details can be found in references[4, 21]. Let K be the algebraic
closure of the field K. A hyperelliptic curve C of genus g ≥ 1 over K is given by

C : y2 + h(x)y = f(x) (1)

where f(x) is a monic polynomial of degree 2g + 1, h(x) is a polynomial of
degree at most g, and there are no solutions (x, y) ∈ K × K simultaneously
satisfying the equation (1) and the partial derivative equations 2y + h(x) = 0
and h′(x)y − f ′(x) = 0. Let P = (x, y) be a finite point on hyperelliptic curve
C, the opposite of P is defined as −P = (x,−y − h(x)).

A divisor on C is a finite formal sum D = ΣPmPP , where mP are integers
that are 0 for almost all P . The degree of D is defined by degD = ΣPmP . The
set of all the divisors defined over K forms an abelian group with the set of
divisors of degree 0 as its subgroup, that is Div0C ⊂ DivC . The function field of
C over K, denoted K(C), is the field of fraction of the polynomail ring K[C] =
K[x, y]/(y2+h(x)y−f(x)). To every rational function F ∈ K(C), it can associate
a divisor via the valuations at all points of the curve: div(F ) = ΣP∈C(K)vP (F )P .
These so called principal divisors are of degree zero and form a subgroup of
Div0C . We denote the group of principal divisors as PrincC . The Jacobian or
the divisor class group of the curve C is given by JC = Div0C/PrincC .

From the work of Cantor[12] and Koblitz[32], the element D = ΣmiPi −
(Σmi)P∞ (here Σmi ≤ g, Pi = (xi, yi), P∞ is the point at infinity) of JC
has a Mumford representation, D can be only determined by two polynomails
u and v in K[x] , where u(x) = Π(x − xi)

mi , and u, v satisfy: 1) deg v <
deg u ≤ g; 2) v(xi) = yi, for all the i that made mi 6= 0; 3) v2 + vh − f ≡ 0
(mod u). In general we write D = (u(x), v(x)), it can be represented by 2g-tuple
(ug−1, ..., u1, u0, vg−1, ..., v1, v0).

We will focus on the most cryptographically common case of genus 2 curves,
where C is an imaginary hyperelliptic curve over a large prime field Fp. A
hyperelliptic curve C over Fp with genus 2 is defined by

C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0 (2)

In this case, any element D = (u(x), v(x)) of the Jacobian group JC(Fp) will
satisfy: u(x) is monic, deg v < deg u ≤ 2 and ui|v

2
i − f . When deg u = 0, this

is the zero element O; When deg u = 1, this is the element of (x− u0, v0); The
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general case is D = (u(x), v(x)) = (x2+u1x+u0, v1x+ v0), we call the element
with this form a general element. When we randomly choose an element D from
JC(Fp), D is a general element with the probability about 1 − 1

p . We also use
(u1, u0, v1, v0) to represent a general element D = (u(x), v(x)).

Cantor’s algorithm can perform addition and doubling operations in Jaco-
bian group. In this paper, we will need the explicit formulas for the group oper-
ations. Harley[26] optimized Cantor’s algorithm and obtained the first practical
explicit formulas in genus 2, and then Lange [33] extended it and got signifi-
cant improvements. The formulas were subsequently improved by Costello and
Lauter[13] through a more direct geometric interpretation of the group law.
Diao and Joye[17] presented efficient unified addition formule for hyperellip-
tic curve cryptography. Very recently, Hisil and Costello[28] combines several
techniques to arrive at explicit formulas in Jacobian coordinates that are sig-
nificantly faster than those in previous works. For the genus 2 curves over large
prime field Fp, let D1 = (u11, u10, v11, v10) and D2 = (u21, u20, v21, v20) be two
general elements of the Jacobian group. Table 1 and 2 in Appendix A are the
explicit affine formulas for general point addition and general point doubling
which derived from the results in [13, 28].

Let D ∈ JC(Fp) be an element of prime order q. The DLP in JC(Fp) is: given
another element D′ ∈< D >, to determine the integer m such that D′ = mD.
We define the hyperelliptic curve Diffie-Hellman function as

DHJ,D(aD, bD) = abD

where a, b are in Fq. The hyperelliptic curve DHP is to compute DHJ,D(D1,D2)
given (C, JC (Fp),D,D1,D2).

2.2 Twisting Hyperelliptic Curves

Let C be a curve with genus g defined over a field K. A curve C ′ defined over
K that is isomorphic to C over K, is called a twist of C.

For a hyperelliptic curve C of genus 2 over Fp given by the equation

C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0

For any λ ∈ F
∗
p, we define φλ(C) to be a twist of C:

φλ(C) : y2 = x5 + λ4f3x
3 + λ6f2x

2 + λ8f1x+ λ10f0

For any point P = (x, y) ∈ C, φλ(P ) = (λ2x, λ5y) ∈ φλ(C). This curve isomor-
phism can endow an isomorphism between JC(Fp) and Jφλ(C)(Fp), we denote
this group isomorphism as φ∗

λ : JC(Fp) → Jφλ(C)(Fp).
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The explicit formulas for φ∗
λ is:

φ∗
λ : JC(Fp) → Jφλ(C)(Fp)

O(= P∞ − P∞) → O′(= P ′
∞ − P ′

∞)

(x1, y1) → (λ2x1, λ
5y1)

(u1, u0, v1, v0) → (λ2u1, λ
4u0, λ

3v1, λ
5v0)

Therefore, we have

DHφ∗

λ
(J),φ∗

λ
(D)(φ

∗
λ(D1), φ

∗
λ(D2)) = φ∗

λ(DHJ,D(D1,D2)).

In this paper, we are working with the family of curves {φλ(C)}λ∈F∗

p
and

their Jacobians {Jφλ(C)(Fp)}λ∈F∗

p
associated with a given curve C and its Ja-

cobians JC(Fp). Hence, if the hyperelliptic DHP is hard to compute in JC(Fp),
then it is also hard to compute for all {Jφλ(C)(Fp)}λ∈F∗

p
.

2.3 HNP-CM Problem and HNP-CMd Problems

The Hidden Number Problem with Chosen Multiplier(HNP-CM) is a variant
of the Hidden Number Problem(HNP) which proposed by Boneh and Shparlin-
ski[8].

We denote by LSB(z) the least significant bit of an integer z > 0.

Definition 1 (HNP-CM[8]). Fix an ε > 0. Let p be a prime. For an α ∈ Fp

let L : Fp∗ → {0, 1} be a function satisfying

Prt∈Fp∗[L(t) = LSB(α · t mod p)] ≥
1

2
+ ǫ

The HNP-CM problem is: given an oracle for L(t), find α in polynomial time.
For small ǫ there might be multiple α satisfying the above condition. In this case
the list-HNP-CM problem is to find the list of all such α ∈ F ∗

p . Due to Alexi,
Chor, Goldreich and Schnorr[1], there is an algorithm to solve the list-HNP-CM
for any ǫ > 0.

Theorem 1. [8] Let p be a n− bit prime and let ǫ > 0. Then, given ǫ, the list
HNP-CM problem can be solved in expected polynomial time in n and 1/ǫ.

Informally speaking, suppose one has an oracle A such that A(t) = LSB(α ·t
mod p), then one can compute α using O(log2(p)) oracle queries.

The HNP-CMd problem is a variant of HNP-CM problem, it is defined as
follows:
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Definition 2 (HNP-CMd[8]). Fix an ε > 0. Let p be a prime. For an α ∈ Fp

let L : Fp∗ → {0, 1} be a function satisfying

Prt∈Fp∗[L
d(t) = LSB(td · α mod p)] ≥

1

2
+ ǫ

The HNP-CMd problem is: given an oracle for Ld(t), find α in polynomial time.
For small ǫ there might be multiple α satisfying the condition. In this case the
list-HNP-CMd problem is to find all such α ∈ F ∗

p . We will use it for d = 2,

d = 3, d = 4 and d = 5 in this paper. About the HNP-CMd problem, Boneh
and Shparlinski gave the following theorem:

Theorem 2. [8] Fix an integer d > 1. Let p be a n− bit prime and let ǫ > 0.
Then, given ǫ, the HNP-CMd problem can be solved in expected polynomial time
in log p and d/ǫ.

3 Our Results for Least Significant Bit

For any general element D = (u1, u0, v1, v0) of JC(Fp), we use u1(D) to denote
the u1− coordinate of D, similarly for u0(D), v1(D) and v0(D). The main result
for the least significant bit of hyperelliptic curve DHP is the following theorem.

Theorem 3. Let p be a prime, and let C be a hyperelliptic curve with genus 2
over Fp. Let D ∈ JC(Fp) be an element of prime order. Given (C, JC(Fp),D, aD, bD),
if there is an efficient algorithm for predicting the least significant bit of any
coordinate of abD, then there is an efficient algorithm for computing the DHP
on JC(Fp).

Let Au1
(C, JC (Fp),D, aD, bD) be an oracle that returns LSB(u1(abD)) where

D ∈ JC(Fp). Similarly, let Au0
(C, JC (Fp),D, aD, bD) be an oracle that returns

LSB(u0(abD)),Av1(C, JC(Fp),D, aD, bD) returns LSB(v1(abD)) andAv0(C, JC(Fp),
D, aD, bD) returns LSB(v0(abD)), respectively. To prove the above theorem, we
need the following lemma.

Lemma 1. Given (C, JC (Fp),D, aD, bD), to compute any one coordinate of
abD is hard as the entire abD.

Proof. Let aD = (ua,1, ua,0, va,1, va,0) , bD = (ub,1, ub,0, vb,1, vb,0) and j(aD) =
(uja,1, uja,0, vja,1, vja,0). Assume that abD = (uab,1, uab,0, vab,1, vab,0).

Now, we prove that computing u1−coordinate of abD is hard as the entire
abD. Similar method can be used to prove other coordinate cases.
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Assume that there is an oracle B that given (C, JC (Fp),D, aD, bD) and
returns u1(abD), that is

B(C, JC(Fp),D, aD, bD) = u1(abD) = uab,1.

We rewrite abD = (uab,1,uab,0,vab,1,vab,0), and by the oracle B, uab,1 is al-
ready known. Now we show how to find out uab,0,vab,1 and vab,0, therefore
the entire abD.

From the Mumford representation of the element in Jacobian group of hy-
perelliptic curve with genus 2, for abD = (uab,1, uab,0, vab,1, vab,0) = (x2+uab,1x+
uab,0, vab,1x+ vab,0), we have

(vab,1x+ vab,0)
2 − (x5 + f3x

3 + f2x
2 + f1x+ f0) ≡ 0 mod (x2 + uab,1x+ uab,0).

Replacing x2 with −(uab,1x+ uab,0) on the left side,

(vab,1x+vab,0)
2−(uab,1x+uab,0)

2x+f3(uab,1x+uab,0)x+f2(uab,1x+uab,0)−f1x−f0 = 0.

Comparing the coefficients of xi for i = 1 and 0, we get the following equations
about uab,0,vab,1,vab,0.

vab,0
2 − v2

ab,1uab,0 + 2uab,1u
2

ab,0 + (f2 − uab,1f3 − u3ab,1)uab,0 − f0 = 0 (3)

2vab,0vab,1−u2

ab,0−uab,1v
2

ab,1+(f3+3u2ab,1)uab,0+f2uab,1−f3u
2
ab,1−u4ab,1−f1 = 0

(4)
We now call B one more time as follows:

B(C, JC(Fp),D, aD, bD +D) = u1(abD + aD) = uab+a,1

From the explicit formula of general point addition in Jacobian group of
hyperelliptic curve with genus 2, we know that uab+a,1 is also a function about
uab,0,vab,1,vab,0:

uab+a,1 = uab,1 − ua,1

+2
(vab,0−va,0)(ua,1(uab,1−ua,1)−(uab,0−ua,0))−ua,0(uab,1−ua,1)(vab,1−va,1)

(uab,1−ua,1)(vab,0−va,0)−(uab,0−ua,0)(vab,1−va,1)

−
((uab,0−ua,0)(ua,1(uab,1−ua,1)−(uab,0−ua,0))−ua,0(uab,1−ua,1)2)2

((uab,1−ua,1)(vab,0−va,0)−(uab,0−ua,0)(vab,1−va,1))2

This is:
((uab,1−ua,1)(vab,0−va,0)−(uab,0−ua,0)(vab,1−va,1))

2(uab+a,1−uab,1+ua,1)
−2((vab,0 − va,0)(ua,1(uab,1 − ua,1)− (uab,0 − ua,0))− ua,0(uab,1 − ua,1)(vab,1 −
va,1))((uab,1 − ua,1)(vab,0 − va,0) − (uab,0 − ua,0)(vab,1 − va,1)) +((uab,0 −
ua,0)(ua,1(uab,1 − ua,1)− (uab,0 − ua,0))− ua,0(uab,1 − ua,1)

2)2 = 0 (5)
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The equations (3), (4) and (5) form a 3-variates polynomial system. This
multivariate polynomial system has total degree 3× 2× 4 = 24. So, due to the
Bézou Theorem, the number of the solution does not exceed 24. We solve this
3-variates polynomial system and obtain uab,0, vab,1, vab,0 of abD, so the entire
abD.

A detailed Magma[35] implementation for such 3-variates polynomial system
according to a genus 2 curve over GF (2127 − 1) which used in [11] is provided
in Appendix B.

According to our experiments, most cases we can obtain one solution, there-
fore the entire abD is obtained. However, sometimes, this 3-variates polynomial
system will output more than one solutions. In this case, we can find the correct
solution for abD up to at most 24 times testings. In order to avoid these test-
ing operations, we can construct an over-defined systems to obtain the unique
solution. To do this, we can call B more times

B(C, JC(Fp),D, aD, bD + jD) = u1(abD + jaD) = uab+ja,1, for j=2 to t,

and construct an over-defined systems of multivariate polynomial equations
about uab,0,vab,1,vab,0. The number of solutions of an over-defined system
will be generally one. Using Courtois et al.’s [14] algorithm, we can efficiently
solve this over-defined systems of multivariate polynomial equations and obtain
uab,0, vab,1, vab,0 of abD. �

Before proving the Theorem 3, we can consider a special case of this theorem:
p = 2 mod 3. In such case, we have a very simple proof for Theorem 3.

Theorem 4. Suppose p = 2 mod 3. Then the hardness of the least significant
bit of any coordinate of abD which given (C, JC (Fp),D, aD, bD) is same as the
entire abD.

Proof. Firstly, we prove that “Predicting LSB(v1(abD)) is hard as v1(abD)”.
Assume that there is an efficient algorithm Av1 for predicting the the least
significant bit of v1−coordinate of abD, i.e., given (C, JC (Fp),D, aD, bD),

Av1(C, JC(Fp),D, aD, bD) = LSB(v1(abD)).

Now, we choose a random number λ ∈ F
∗
p and call the oracle

Av1(φλ(C), φ∗
λ(JC(Fp)), φ

∗
λ(D), φ∗

λ(aD), φ∗
λ(bD))

to get LSB(v1(φ
∗
λ(abD))) = LSB(λ3v1(abD)). Since gcd(3, p − 1) = 1 it follows

that cubing is a permutation of F∗
p. This is an HNP-CM problem(here t = λ3
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and α = v1(abD)). So, in this case, we can get v1 from LSB(v1) using the solving
algorithm of HNP-CM.

Then combining this with Lemma 1, we can get the entire abD. So Theorem
4 is proved. �

For the general case, similar to Boneh and Shparlinski ’s[8] approach on ellip-
tic curve case, we will use the method of Alexi, Chor, Goldreich and Schnorr[3]
to deal with it. When λ2, λ3, λ4and λ5 are all not permutation of F∗

p, we can
not get vi from LSB(vi) or ui from LSB(ui) using HNP-CM directly. We may
only use some δ−fraction of the λ ∈ F

∗
p. Therefore, to prove the Theorem 1, we

will also use the following lemma.

Lemma 2. Let ǫ, δ ∈ (0, 1). Let p be a prime, and let C be a hyperelliptic curve
with genus 2 over Fp. Let D ∈ JC(Fp) be an element of prime order n. Suppose
there is a t−time algorithm Au1

such that

|Prλ[Au1
(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) = LSB(λ2u1(abD))]−

1

2
| > ǫ

for at least a δ−fraction of the λ ∈ F
∗
p.

Then there is an algorithm B for all λ ∈ F
∗
p satisfying

Prλ[B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) = LSB(λ2u1(abD))] >
1

2
+
ǫδ

8

is true with probability at least ǫδ
8 over the choice of a, b in [1, n − 1].

Proof. This lemma is the hyperelliptic curve with genus 2 case of Lemma 1 and
Lemma 2 in Boneh and Shparlinski ’s[8] paper. Here we will give a sketch of the
proof which mostly same as Boneh and Shparlinski ’s proof. For more details
to see Boneh and Shparlinski ’s[8] original proof.

According to Boneh and Shparlinski ’s proof, the algorithm B can be con-
structed as follows:

Input: C, JC (Fp),D,D1,D2.
Output: Au1

(C, JC (Fp),D,D1,D2).

1. Pick u = (4/ǫδ)3 random pairs a, b from [1, n− 1] and run Au1
on all tuples

< C, JC (Fp),D, aD, bD >;

2. Let v be the number of runs in which Au1
correctly outputs LSB(u1(abD));

3. If v > u/2 then B outputs Au1
(C, JC(Fp),D,D1,D2);

4. Otherwise outputs the complement of Au1
(C, JC (Fp),D,D1,D2).
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As same as Boneh and Shparlinski ’s[8] discussion, for at least δ−fraction
of the λ ∈ F ∗

p , we have

Pra,b[B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) = LSB(λ2u1(abD))] >
1

2
+
ǫ

2

and for the remaining λ ∈ F ∗
p , we have:

Pra,b[B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) = LSB(λ2u1(abD))] >
1

2
−
ǫδ

4

Then using a standard counting argument, we have

Prλ[B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) = LSB(λ2u1(abD))] >
1

2
+
ǫδ

8

is true with probability at least ǫδ
8 over the choice of a, b in [1, n − 1] for all

λ ∈ F
∗
p.

�

Now, we give the proof of Theorem 3.
The proof of Theorem 3: Let p be a prime, and let C be a hyperelliptic curve
with genus 2 over Fp. Let D ∈ JC(Fp) be an element of prime order. Suppose
there is an efficient algorithm A for predicting the LSB of any coordinate of
abD given (C, JC (Fp),D, aD, bD), formally, we assume that there is an expected
t−time algorithm A such that

|Prλ[Au1
(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) = LSB(λ2u1(abD))]−

1

2
| > ǫ

for at least a δ−fraction of the λ ∈ F
∗
p.

To use the above Lemma 2, we first randomize the hyperelliptic curve DHP
(C, JC (Fp),D, aD, bD) by computing D′ = a0aD and D′′ = b0bD for random
a0, b0 ∈ [1, n−1]. Then applying Lemma 2, there is an algorithm B for all λ ∈ F

∗
p

satisfying

Prλ[B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(D
′), φλ(D

′′)) = LSB(λ2u1(a0b0abD))] >
1

2
+
ǫδ

8

is true with probability at least ǫδ
8 over the choice of a0, b0 in [1, n− 1].

Define

L2(λ) = B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(D
′), φλ(D

′′).
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From the knowledge of probability theory, when we repeat choosing a0, b0
in [1, n − 1] randomly ⌈ 8

ǫδ⌉ times, then there is at least one time we have

Prλ[L
2(λ) = LSB(λ2u1(a0b0abD))] >

1

2
+

ǫδ

8

with probability 1 − (1 − ǫδ
8 )

⌈ 8

ǫδ
⌉. This is an HNP − CM2 problem where

u1(a0b0abD) is the hidden number. Therefore, we can use the solving algorithm
of Theorem 2 for all ⌈ 8

ǫδ ⌉ cases to find a list of candidates {(ai, bi), u1(aibiabD)}
for i from 1 to ⌈ 8

ǫδ⌉.
For any candidates, applying Lemma 1, we can get a candidate value aibiabD.

There is at least one correct aibiabD with probability 1− (1− ǫδ
8 )

⌈ 8

ǫδ
⌉, and then

using ((aibi)
−1 mod n)aibiabD, we obtain the entire abD. �

4 Extention to Any Bit

For any z =
∑n

i=0 zi2
i, biti(z) denotes the i−th bit of the binary representation

of z, so LSB(z) = bit0(z). In this section, we will show that if the hyperelliptic
curve Diffie-hellman problem is hard, then not only the least significant bit,
but also every bit (i.e., biti(z)) of the hyperelliptic curve Diffie-hellman value is
unpredictable.

We have two approaches to achieve this goal.
One approach is from LSB-HNP-CM to biti-HNP-CM. As generalized by

J.Hȧstad, M. Näslund [27] and E. Kiltz[31], HNP-CM can also be defined for
every bit of z, and the related theorems also hold, i.e., Fix an ε > 0. Let p be
a prime. For an α ∈ Fp let L : Fp∗ → {0, 1} be a function satisfying

Prt∈Fp∗[L(t) = biti(α · t mod p)] ≥
1

2
+ ǫ

The biti-NH problem is: given an oracle for L(t), find α in polynomial time. As
claimed in Theorem 5 of [31], for all odd primes p, the biti-HNP-CM is efficently
solvable for all bits. Therefore, similar to the discussion for LSB case, it is not
hard to extend the results of LSB to the case of any i−th bit.

Another approach is AGS-list decoding method. The list decoding ap-
proach for hard-core predicates is developed by Akavia, Goldwasser, and Safra[2]
and extended by Morillo and Rafols[38]. A predicate will correspond to some
error correcting code, predicting a predicate will correspond to access to a cor-
rupted codeword, and the task of inverting one-way functions will correspond to
the task of list decoding a corrupted codeword. The framework of [2] is: First-
ly, Construct a codeword Cf , and such that the following properties hold for
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Cf : Accessibility, Concentration and Recoverability, then using Lemma
1 and Theorem 6 of [2], it can be proved that the predicate is hard-core.

Following Akavia et al.’s framework, we can generalize the result of Fazio
et al. in [20] for every bit of the elliptic curve DHP is hard-core to hyperelliptic
curve DHP as follows:

Let p be a prime, and let C be a hyperelliptic curve with genus 2 over Fp.
Let D ∈ JC(Fp) be an element of prime order. The Q = abD is the Diffie-
Hellman secret value of (C, JC(Fp),D, aD, bD). For any λ ∈ F

∗
p, φλ(C) is the

twist of C, Jφλ(C)(Fp) = φ∗
λ(JC(Fp)). Let biti : Fp → {0, 1} denote the i − th

bit predicate(In [20], they use {±1}, it is just the convention that a 0 bit is
encoded as −1).

Consider the codeword:

CQ : Fp → {0, 1} defined as CQ(λ) = biti(λu1(Q)).

Similar to the proof in [20] for elliptic curve case, it can be proven that the
codeword CQ satisfies the properties of Accessibility, Concentration and
Recoverability. Using Theorem 6 and the learning algorithm of [2] , it can be
proved that this predicate is hard-core. For more detail, refer to [2] and [20] .

From above discussion, we give the following claim without proof:
Claim 1. Let p be a prime, and let C be a hyperelliptic curve with genus 2
over Fp. Let D ∈ JC(Fp) be an element of prime order. If there is an ef-
ficient algorithm for predicting the any bit of any coordinate of abD given
(C, JC (Fp),D, aD, bD), then there is an efficient algorithm for computing the
DHP on JC(Fp).

5 Generalization to General Hyperelliptic Curves

Let C : y2 + h(x)y = f(x) be a hyperelliptic curve of genus g ≥ 1 over
Fq, J(C;Fq) be the Jacobian of C defined over Fq. Let D = (ug−1, ..., u1, u0,
vg−1, ..., v1, v0) be an element of J(C;Fq) with order n. Costello and Lauter[13]
gave an explicit formulas for addition and doubling for any genus hyperelliptic
Jacobian group. So, we can define the hyperelliptic DHP on any genus hyper-
elliptic Jacobian group as same as genus 2 case: given C, JC (Fp),D, aD, bD, to
compute abD.

For a hyperelliptic curve with genus g over Fp(Similar discussion can be
applied to non-prime fields),

C : y2 = x2g+1 + f2g−1x
2g−1 + f2g−2x

2g−2 + · · ·+ f1x+ f0

Let C ′ be another hyperelliptic curves with genus g over Fp with equation:

C ′ : y2 = x2g+1 + f ′
2g−1x

2g−1 + f ′
2g−2x

2g−2 + · · ·+ f ′
1x+ f ′

0
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We say that C is isomorphic to C ′ if there exists λ ∈ Fp such that f ′
i =

λ4g+2−2ifi mod p. The isomorphisms that preserve hyperelliptic curves given
by above equations are all of the form (x, y) → (λ2x, λ2g+1y) for some λ ∈ F

∗
p.

We define φλ : (x, y) → (λ2x, λ2g+1y), then C ′ = φλ(C) is a twist of C. This
curves isomorphism can reduce an isomorphism between JC(Fp) and JC′(Fp), we
denote this group isomorphism as φ∗

λ : JC(Fp) → Jφλ(C)(Fp). Now, we can define
the explicit formulas for φ∗

λ as follows: φ∗
λ(O) = O′, φ∗

λ(x1, y1) = (λ2x1, λ
2g+1y1),

φ∗
λ(u(x), v(x)) = φ∗

λ(ug−1, ..., u1, u0, vg−1, ..., v1, v0)

= φ∗
λ(P1 + P2 + ...+ Pg − gP∞)

(here Pi = (xi, yi), v(xi) = yi)

= φ∗
λ((x1, y1) + (x2, y2) + ...+ (xg, yg)− gP∞)

= (λ2x1, λ
2g+1y1) + (λ2x2, λ

2g+1y2) + ...+ (λ2xg, λ
2g+1yg)− gP ′

∞)

= (

g∏

i=1

(x− λ2xi), v
′
g−1x

g−1 + ...+ v′1x+ v′0)

(here v′(λ2xi) = λ2g+1yi)

= (λ2ug−1, ..., λ
2(g−1)u1, λ

2gu0, λ
3vg−1, ..., λ

2g−1v1, λ
2g+1v0)

Therefore, we have DHφ∗

λ
(J),φ∗

λ
(D)(φ

∗
λ(D1), φ

∗
λ(D2)) = φ∗

λ(DHJ,D(D1,D2)).
So if the hyperelliptic DHP is hard to compute in JC(Fp), then it is also hard
to compute for all {Jφλ(C)(Fp)}λ∈F∗

p
. Similar to the case of g = 2, we can use

HNP-CMd to study the bit security of hyperelliptic curve DHP with any genus.
From above discussion, we give the following claim without proof:

Claim 2. Let p be a prime, and let C be a hyperelliptic curve with genus g over
Fp. Let D ∈ JC(Fp) be an element of prime order. Given (C, JC (Fp),D, aD, bD),
if there is an efficient algorithm for predicting any one bit of any coordinate of
abD, then there is an efficient algorithm for computing the DHP on JC(Fp).

6 Conclusions and Further Works

Hyperelliptic curve cryptography is an alternative to elliptic curve cryptog-
raphy. Due to the recent many research work on genus 2 hyperelliptic curve
cryptography, especially for their cryptanalysis and fast implementation, that
hyperelliptic curve cryptography in genus 2 has the potential to be competi-
tive with its elliptic curve cryptography counterpart. In this paper, we studied
the bit security of hyperelliptic Curves DHP, we show that the least significant
bit of each coordinate of hyperelliptic Curves Diffie-Hellman secret value K in
genus 2 is hard-core, and then we show that any bit is hard-core. Finally, we
extend our techniques and results to any genus hyperelliptic curve.
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There are some further works at this topic. Similar to elliptic curve case,
we can also define a function whose domain is a subgroup of JC(Fp), such
as hyperelliptic pairing. When we consider the one-way function defined over
the Jacobian of hyperelliptic curve, we call such function “hypereelliptic curve
based one-way function”, following the approach of Duc and Jetchev[17] for
elliptic curve case, it seems that all the bits of hyperelliptic curve based one
way functions are hard to compute too.

Jetchev and Venkatesan[30] studied the bits security of elliptic curve Diffie-
Hellman secret keys using elliptic curves isogeny theory. The hyperelliptic Ja-
cobians also have explicit isogenies, there are some research work on them. An
natural question is if we can study the bits security of hyperelliptic curve Diffie-
Hellman secret keys using hyperelliptic curves isogeny theory. It seems this can
also be done.
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Appendix A: Explicit formulas for addition and doubling in

genus 2

Input:D1 = (u11, u10, v11, v10), D2 = (u21, u20, v21, v20))
Output:D3 = D1 +D2 = (u31, u30, v31, v30)

Step Expression

1 A = (v10 − v20)(u21(u11 − u21)− (u10 − u20))− u20(u11 − u21)(v11 − v21)
B = (u10 − u20)(u21(u11 − u21)− (u10 − u20))− u20(u11 − u21)

2

C = (u11 − u21)(v10 − v20)− (u10 − u20)(v11 − v21)

2 u31 = (u11 − u21) + 2A
C
−

B2

C2

u30 = (u11 − u21)
A
C
+ A2

C2 + (u11 + u21)
B2

C2 − (v11 + v21)
B
C

v31 = (u10 − u30)
C
B

− u31(u11 − u31)
C
B

+ (u11 − u31)
A
B

− v11
v30 = (u10 − u30)

A
B

− u30(u11 − u31)
C
B

− v10
3 Output : (u31, u30, v31, v30)

Table 1. Addition in genus 2

From above explicit formulas, the coordinates u3i or v3i for i = 0, 1 of D3

can be regarded as a rational function of u11, u10, v11, v10, u21, u20, v21 and v20.

Appendix B: Magma program

p:=2^127-1; K := GF(p);

P<x> := PolynomialRing(GF(p));

f3:= 34744234758245218589390329770704207149;

f2:= 132713617209345335075125059444256188021;
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Input:D1 = (u11, u10, v11, v10)
Output:D3 = 2D1 = (u31, u30, v31, v30)

Step Expression

1 A = ((u2

11 − 4u10 + f3)u11 − f2 + v211)(u11v11 − v10) + (3u2

11 − 2u10 + f3)(u10v11)
B = 2(u11v11)− v10)v10 − 2u10v

2

11

C = ((u2

11 − 4u10 + f3)u11 − f2 + v211)v11 + (3u2

11 − 2u10 + f3)v10

2 u31 = 2A
C

−
B2

C2

u30 = A2

C2 + 2u11
B2

C2 − 2v11
B
C

v31 = (u10 − u30)
C
B

− u31(u11 − u31)
C
B

+ (u11 − u31)
A
B

− v11
v30 = (u10 − u30)

A
B

− u30(u11 − u31)
C
B

− v10

3 Output : (u31, u30, v31, v30)

Table 2. Doubling in genus 2

f1:= 90907655901711006083734360528442376758;

f0:= 6667986622173728337823560857179992816;

C := HyperellipticCurve(x^5+f3*x^3+f2*x^2+f1*x+f0);

J := Jacobian(C); D:=Random(J);

n:=28948022309329048848169239995659025138451177973091551374

101475732892580332259;

a:=Random(1,n); b:=Random(1,n);

A:=a*D;

ua1:=Coefficient(A[1], 1); ua0:=Coefficient(A[1], 0);

va1:=Coefficient(A[2], 1); va0:=Coefficient(A[2], 0);

B:=b*D; C:=a*B;

M:=(b+1)*A;

uab1:=Coefficient(C[1], 1);

uaba1:=Coefficient(M[1], 1);

P3<x,y,z> := PolynomialRing(K, 3);

g1:=z^2-y^2*x+2*uab1*x^2+(f2-uab1*f3-uab1^3)*x-f0;

g2:=2*z*y-x^2-uab1*y^2+(f3 +3*uab1^2)*x+f2*uab1-f3*uab1^2-uab1^4-f1;

g3:=((uab1-ua1) *(z-va0) - (x- ua0)* (y-va1))^2*(uaba1- uab1+ua1)

-2*((z-va0)*(ua1*(uab1-ua1)- (x- ua0)) - ua0*(uab1-ua1)*(y-va1))

*((uab1-ua1)*(z-va0) - (x- ua0)* (y-va1))+((x- ua0)* (ua1*(uab1-ua1)

- (x- ua0))- ua0*(uab1-ua1)^2 )^2;

I := ideal<P3 | g1, g2, g3>;

v := Variety(I, K);

v;


