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Abstract A new systematic authentication scheme based on the Gray map
over Galois rings is introduced. The Gray map determines an isometry be-
tween the Galois ring and a vector space over a Galois field. The introduced
code attains optimal impersonation and substitution probabilities.
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1 Introduction

Resilient maps were introduced in 1985 by Chor et al. [4] and independently by
Bennettet al. [1], in the context of key distribution and quantum cryptography
protocols. Resilient maps have been used also in the generation of random
sequences aimed to stream ciphering [10].

We introduce a new authentication systematic code with the purpose to
optimally reduce the success probabilities of impersonation and substitution
attacks.

In a former construction [7], two codes on Galois rings were introduced
based on resilient maps, in a similar manner as in [3].
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The current code construction is based mainly on the Gray map and it is
in line with previously constructed codes using rational, non-degenerated and
bent functions on Galois rings and also with other codes that use compositions
of maps and the generalized Gray map on Galois rings [6,8,9].

Here, through the generalized Gray map and resilient maps on Galois rings
we obtain minimal upper bounds for the attack probabilities, improving in
this way former codes. Indeed, the obtained impersonation and substitution
are optimal. However, the introduced code diminishes the source sate space
with respect to the tag and key spaces. We introduce precise characteristics
on Galois rings of the notions of resilient maps and generalized Gray function.
The introduced construction over Galois rings is translated into finite fields
via the Gray map, providing thus similar codes on Galois fields as those in [7].

The paper is organized as follows: In Section 2 we recall the basic con-
struction of the Gray map. Then in Section 3 we introduce a new systematic
authentication code based on the Gray map. At Subsection 3.1 we recall the
general construction of a systematic authentication code, at Subsection 3.2 we
give a precise definition of the new code and at Subsection 3.3 we show its
main properties, in a rather long but exhaustive way we prove that the key
space is in a bijective correspondence with the set of encoding maps.

2 The Gray map

Let p be a prime number and r, `,m ∈ Z+. Let us write q = p`. Let A =
GR (pr, `) and B = GR (pr, `m) be the corresponding Galois rings, A is an
extension of Zpr and B is an extension of A. Let TB/A : B → A, TB/Zpr : B →
Zpr and TA/Zpr : A → Zpr be the corresponding trace maps, and let pA and
pB denote the sets of zero divisors of A and B respectively.

Firstly, let us recall well known facts [9]:

Lemma 1 Let u ∈ A. Then the following assertions hold:

1.
∑
x∈A

e
2π
pr i TA/Zpr (ux) =

{
qr if u = 0
0 if u 6= 0

2.
∑
x∈pA

e
2π
pr i TA/Zpr (ux) =

{
qr−1 if u ∈ pr−1A

0 if u /∈ pr−1A

3.
∑

x∈A−pA
e

2π
pr i TA/Zpr (ux) =

 qr − qr−1 if u = 0
−qr−1 if u ∈ pr−1A− {0}

0 if u /∈ pr−1A

Let us assume, from now on, that r ≥ 2. The homogeneous weight on the
ring A is the map [6]

wh : A→ N , u 7→ wh(u) =
(
qr−1 − qr−2

)
− 1

q

∑
x∈A−pA

e
2π
pr i TA/Zpr (ux) (1)
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and according to Lemma 1,

∀u ∈ A : wh(u) =

0 if u = 0
qr−1 if u ∈ pr−1A− {0}
qr−1 − qr−2 if u ∈ A− pr−1A

(2)

Indeed the map dh : A × A → Z+, (u, v) 7→ dh(u, v) = wh(u − v), is a metric
on A. The ring A can be considered as well as the metric space (A, dh).

Let us define the Gray map which relates Galois rings and Galois fields. Let
Fqq be the q-dimensional vector space over the Galois field Fq. Let ⊗ denote
the Kroenecker product

Fmq × Fnq → Fmnq ,
(

(ui)i , (vj)j

)
7→ (ui)i ⊗ (vj)j = (win+j = uivj)i,j ,

and let us iterate this product “by the right”:

n⊗
k=0

vk =

(
n−1⊗
k=0

vk

)
⊗ vn.

Let ej = (δij)
q−1
i=0 be the j-th vector in the canonical basis of Fqq, where δij

is the Kroenecker delta, 1(q) = (1, . . . , 1) =
∑q−1
j=0 ej ∈ Fqq, the vector with

constant entries equal to 1, and ρ : A→ Fp the reduction modulus p map. Let

T (A) = {0} ∪
(
ξjA

)q−2
j=0

be a set of Teichmüller representatives at A and let

Ξ = (0, ρ(ξA), . . . , ρ(ξq−2A ), ρ(ξq−1A )) ∈ Fqq.

For each index i = 0, . . . , r − 2 let

φi =

r−2⊗
k=0

(
1(q) + δik(Ξ − 1(q))

)
=
(
1(q)

)⊗i
⊗Ξ ⊗

(
1(q)

)⊗(r−2−i)
∈ Fq

r−1

q (3)

(here, for any v ∈ Fqq, v⊗0 = [1] and v⊗(k+1) = v⊗k ⊗ v).

For each k ∈ Z+ let [y]k = y1(k) = (y, . . . , y︸ ︷︷ ︸
k-times

).

From relation (3) we see that the vector φi is the concatenation of qi blocks,
each one consisting of the concatenation of blocks of the form [ρj ]qr−2−i , where
ρj is the j-th coordinate of Ξ, for j = 0, . . . , q − 1.

Then, the vector φi can be efficiently constructed: given an index k, with
0 ≤ k ≤ qr−1 − 1, let k0 = k mod qr−1−i and let ki = b k0

qr−2−i c. Then φi(k) is
the ki-th coordinate of Ξ.
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In summary, for each i = 0, . . . , r − 2, φi defined by (3) can be expressed
as:

φi =

[
[0]qr−2−i , [ρ(ξA)]qr−2−i , . . . ,

[
ρ(ξq−2A )

]
qr−2−i

,
[
ρ(ξq−1A )

]
qr−2−i

]
qi
, (4)

where we are using the notation introduced immediately after the relation (3).
As a last vector, let us define

φr−1 = [1]qr−1

The Gray map is defined as follows

Φ : GR (pr, `) = A → Fq
r−1

q

r−1∑
i=0

rip
i 7→ Φ

(
r−1∑
i=0

rip
i

)
=

r−1∑
i=0

ρ(ri)φi (5)

where the elements of A are represented in their p-adic form.
In particular, for the special case of r = 2, we have

φ0 = (0, ρ(ξA), . . . , ρ(ξq−2A ), ρ(ξq−1A )) , φ1 = (1, 1, . . . , 1, 1) ∈ Fqq.

Then the Gray map, as defined by (5), equals, for any r0 + r1p ∈ GR
(
p2, `

)
:

Φ (r0 + r1p) = ρ(r0)φ0 + ρ(r1)φ1

= ρ(r0) (0, ρ(ξA), . . . , ρ(ξq−2A ), ρ(ξq−1A )) + ρ(r1) (1, 1, . . . , 1, 1)

=
(

(ρ(r1), ρ(r1 + r0ξA), . . . , ρ(r1 + r0ξ
q−2
A ), ρ(r1 + r0ξ

q−1
A )

)
which coincides with the definition given at [9].

The vector space Fqr−1

q can be endowed of a structure of metric space with
the Hamming distance dH : the distance between two vectors is the number of
entries at which they differ.

Two important properties of the Gray map are stated by the following two
propositions:

Proposition 1 The following assertions hold:

1. Isometry [6]. The Gray map is an isometry between the Galois ring A

and the vector space Fqr−1

q :

∀u, v ∈ A : dh(u, v) = dH(Φ(u), Φ(v)).

2. The Gray map preserves addition [8]:

∀(u, v) ∈ A× pr−1A : Φ(u+ v) = Φ(u) + Φ(v).
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3 A systematic authentication code based on the Gray map

3.1 General systematic authentication codes

We recall that a systematic authentication code without secrecy [5] is a structure
(S, T,K,E) where S is the source state space, T is the tag space, K is the key
space and E = (ek)k∈K is a sequence of encoding rules S → T .

A transmitter and a receiver agree a secret key k ∈ K. Whenever a source
s ∈ S should be sent, the participants proceed according to the following
protocol:

Transmitter Receiver
evaluates t = ek(s) ∈ T
forms the pair m = (s, t)

m−→ receives m′ = (s′, t′),
evaluates t′′ = ek(s′) ∈ T
if t′ = t′′ then he/she accepts
s′, otherwise the message m′ is
rejected

The communicating channel is public, thus it can be eavesdropped by an
intruder that is able to perform either impersonation or substitution attacks
through the public channel. The intruder’s success probabilities for imperson-
ation and substitution are, respectively

pI = max
(s,t)∈S×T

|{k ∈ K| ek(s) = t}|
|K|

(6)

pS = max
(s,t)∈S×T

max
(s′,t′)∈(S−{s})×T

|{k ∈ K| ek(s) = t & ek(s′) = t′}|
|{k ∈ K| ek(s) = t}|

(7)

3.2 A new systematic authentication code

In the context of finite fields of characteristic 2, for n ∈ Z+ and t ≤ n, let
J = {j0, . . . , jt−1} ⊂ {0, . . . , n− 1} be an index t-subset. The affine J-variety
determined by a = (a0, . . . , at−1) ∈ Ft2 is

VJ,a,n = {x ∈ Fn2 | ∀k ∈ {0, . . . , t− 1} : xjk = ak}.

A map f : Fn2 → Fm2 , m ≤ n, is J-resilient if ∀a ∈ Ft2, the map f |VJ,a,n is

balanced, namely, ∀y ∈ Fm2 ,
∣∣VJ,a,n ∩ f−1(y)

∣∣ = 2n−t−m. The map f : Fn2 →
Fm2 is t-resilient if it is J-resilient for any set J such that |J | = t.

The notion of t-resilient maps has been studied by several authors in the
context of Galois rings, assumed as the last property of the above paragraph,
and well known wider classes of t-resilient maps have been provided. For in-
stance, from Theorem 1 in [2], we have that for any n ∈ Z+, if B is a Galois
ring and f0 : Bn → Bn is a map such that any element at its image f0(Bn)
has more than t entries which are units in B and f1 : Bn → B is any map,
then the map f : B2n → B, (x, y) 7→ x · f0(y) + f1(y) is a t-resilient map.
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Let us build in this section a systematic authentication code using Gray
maps.

Let p > 2 be a prime number, r, `,m ∈ Z+, and q = p`. Let us assume the
same setting as in the first paragraph of Section 2.

Let us denote by U(B) = (B − pB)∪{0} the set of elements at the Galois
ring B that are either units or zero.

Let n ∈ Z+ be another positive integer, and let f : Bn → B be a t-resilient
map. The following assertions hold:

– For a ∈ B − pB, the map Bn → B, x 7→ a f(x), is t-resilient, hence it is
also balanced.

– For a ∈ B − pB, the map Bn → B, x 7→ TB/Zpr (a f(x)), is balanced (as
composition of balanced maps).

– As a more general result than Corollary 2 of [11], we have that the map

γabf : Bn → A , γabf : x 7→ TB/A(a f(x) + b · x). (8)

is balanced whenever wh(b) ≤ t and either (a, b) ∈ U(B)× (U(B))n, with
(a, b) 6= (0, 0), or (a, b) ∈ (B − pB)×Bn.

– Let us recall that the Fourier transform of af is the map B → C,

b 7→ ζaf (b) =
∑
x∈Bn

e
2π
pr i TB/Zpr (a f(x)−b·x).

As shown in [2], ζaf (b) = 0 under the same conditions as the above asser-
tion, just because the map x 7→ TB/Zpr (af(x) + b · x) is balanced.

Let T (A) and T (B) be sets of the Teichmüller representatives of A and B
respectively. Let us remark that the principal ideal generated by pr−1 within
A can be expressed as pr−1A = {a pr−1| a ∈ T (A)}.

Let n ∈ Z+ and t ≤ n. For any i < n, let ei = (δij)
n−1
j=0 be the i-th vector

in the canonical basis of Bn. For any b ∈ T (B)n, let

Xb,t = {
t−2∑
j=0

bjej , bt−1et−1, . . . , bn−1en−1} ⊂ Bn,

then |Xb,t| = n− t+ 1. Let

N =
⋃

b∈T (B)n

Xb,t, (9)

thus |N | = qm(t−1) + (n− (t− 1))qm. Let

L =

{
r−2∑
i=0

rip
i| (r0, . . . , rr−2) ∈ T (A)r−1

}
. (10)

Then, |L| = qr−1, L ⊂ (A− pr−1A) ∪ {0} and also

∀u, v ∈ L : u− v ∈ (A− pr−1A) ∪ {0}.
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Let η = {ηk}(r−1)n−1k=0 be an (r − 1)n-subset of T (A)− {0, 1}, and let

Dη =
{

(η(i−1)n+j , p
iej)| 1 ≤ i ≤ r − 1 , 0 ≤ j ≤ n− 1

}
. (11)

Then Dη ⊂ A×Bn, and |Dη| = (r − 1)n.

Let us assume that T (B) = {0} ∪
(
ξkB
)qm−2
k=0

and let

G(T (B)) = {ξkB | gcd(k, qm − 1) = 1}
be the set of powers of ξB with exponent relatively prime with qm − 1. Let
θ = {θj}n−1j=0 be an n-sequence of G(T (B)) (repetitions are allowed), and let

ζ ∈ T (B)− {0}. For each integer index k, with 0 ≤ k ≤ qm − (r − 1)n− 2 let

Tθζk =
{

(θij , (ζ + θij p
1+(k mod (r−1)))ej)| 0 ≤ i ≤ qm − 2 , 0 ≤ j ≤ n− 1

}
.

Then Tθζk ⊂ B ×Bn, and |Tθζk| = (qm − 1)n.

Now, let ζ = {ζk}q
m−(r−1)n−2
k=0 be a (qm − 1 − (r − 1)n − 1)-subset of

T (B)− {0} such that ζ ∩ η = ∅, and let

Tηθζ = Dη ∪
qm−(r−1)n−2⋃

k=0

Tθζkk. (12)

Then Tηθζ ⊂ B ×Bn, and

|Tηθζ | = (r − 1)n+ (qm − 1− (r − 1)n)(qm − 1)n

= [(r − 1) + [(qm − 1)− (r − 1)n] (qm − 1)]n

Let
S = {0} × (N − {0})× L ∪

Tηθζ × L ∪
(T (B)− ({0} ∪ η))× {0} × L

T = Fq
K = Zqr(mn+1)

(13)

Certainly, at this point the definition of the source set S is quite un-
natural. However, defined in this way, it guarantees a distance between el-
ements of special form (see Proposition 2 below) leading to optimality re-
sults (see Proposition 4 below), while preserving the balancedness of the maps
x 7→ TB/Zpr (af(x) + b · x), for a t-resilient map f . The special form of S also
allows to prove that the correspondence between keys and encoding maps is
one-to-one (see Proposition 3 below).

From relations (13) we have S ⊂ B ×Bn ×A, and

|S| =
((
qm(t−1) + (n− (t− 1))qm − 1

)
+

((r − 1) + ((qm − 1)− (r − 1)n) (qm − 1))n+
(qm − ((r − 1)n+ 1))) qr−1

=
( (

qm(qm(t−2) − t) + 2(qm − 1)
)

+ n (qm(qm − 1) + 1)
− n2(qm − 1)(r − 1)

)
qr−1

|T | = q (14)

|K| = qr(mn+1).
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The introduced construction imposes the supplementary condition

(r − 1)(n+ 1) < pm − 1.

3.3 Main characteristics of the new code

Let Φ : A→ Fqr−1

q be the Gray map on A as defined by (5).

We observe that for any y =
∑r−2
i=0 aip

i ∈ L, with (a0, . . . , ar−2) ∈ T (A)r−1

(see (10)), the evaluation of Φ at y, according with (5), is

Φ (y) =

r−2∑
i=0

ρ(ai)φi.

We remark also that, since q − 1 is even, for any ξ generating TA, either
−ξ ∈ TA or −1 ∈ TA, thus the following implication holds:

∀z ∈ A ∀d ∈ {1, . . . , q − 1} :
[
zd ∈ TA =⇒ −zd ∈ TA

]
.

Hence, if the p-adic form of an element in A is z =
∑s−1
k=0 zkp

k then the p-adic

form of −z is −z =
∑s−1
k=0(−zk)pk.

Let f : Bn → B be a t-resilient map. For each s = (s0, s1, s2) ∈ S and each
w ∈ pr−1A let us consider the map

vs,w : Bn → A

x 7→ vs,w(x) = TB/A(s0 f(x) + s1 · x) + s2 + w
= γs0s1f (x) + s2 + w

(15)

(see relation (8) above). Let us define the following arrays:

us,w = (Φ (vs,w(x)))x∈Bn ∈
(
Fq

r−1

q

)qrmn
us = (us,w)w∈pr−1A ∈

(
Fq

r−1

q

)qrmn+1

. (16)

Since
∣∣pr−1A∣∣ = q, we have

(
Fqr−1

q

)qrmn+1

' Fqr(mn+1)

q , thus we may assume

us ∈ Fqr(mn+1)

q .

Proposition 2 Let dH be the Hamming distance on the vector space Fqr(mn+1)

q

and let f : Bn → B be a t-resilient map.
For any two points s0 = (s00, s10, s20), s1 = (s01, s11, s21) ∈ S, with s0 6=

s1, and any two w0, w1 ∈ pr−1A, the following equation holds:

dH(us0,w0 , us1,w1) = qrmn(qr−1 − qr−2).
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Proof Let s2 = s0 − s1 and w2 = w0 − w1. Then:

dH(us0,w0 , us1,w1) =
∑
x∈Bn

dH (Φ (vs0,w0(x)) , Φ (vs1,w1(x)))

(i)
=

∑
x∈Bn

dh (vs0,w0
(x), vs1,w1

(x))

=
∑
x∈Bn

wh (vs0,w0(x)− vs1,w1(x))

=
∑
x∈Bn

wh (vs2,w2
(x))

(ii)
=

∑
x∈Bn

(qr−1 − qr−2)− 1

q

∑
r0∈A−pA

e
2π
pr i TA/Zpr (r0 vs2,w2

(x))


= qrmn

(
qr−1 − qr−2

)
−1

q

∑
x∈Bn

∑
r0∈A−pA

e
2π
pr i TA/Zpr (r0 vs2,w2 (x))

(iii)
= qrmn

(
qr−1 − qr−2

)
−1

q

∑
r0∈A−pA

e
2π
pr i TA/Zpr (r0 w2)e

2π
pr i TA/Zpr (r0 s22)

∑
x∈Bn

e
2π
pr i TB/Zpr (r0 s02f(x)+r0 s12·x) (17)

(equality (i) holds because Φ is an isometry, equality (ii) follows from the
defining relation (1), and equality (iii) is due to relation (15)).

If (s02, s12) 6= (0, 0), since f is t-resilient and x 7→ TB/Zpr (r s12 · x)) is a
balanced map, from (17) the claim follows:

dH(us0,w0
, us1,w1

) = qrmn(qr−1 − qr−2).

If (s02, s12) = (0, 0), also from (17) we obtain

dH(us0,w0 , us1,w1) =
∑
x∈Bn

wh (vs2,w2(x))

=
∑
x∈Bn

wh (s22 + w2)

= qrmn(qr−1 − qr−2)

because s22 + w2 ∈ A− pr−1A. �

For each k ∈ K = Zqr(mn+1) , let ek : S → T be the map

s 7→ ek(s) = πk(us) : the k-th entry of the array us. (18)

The set of encoding rules in the proposed systematic authentication code is
thus E = (ek)k∈K .
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Proposition 3 The map K → E, k 7→ ek, is one-to-one.

Proof The proposition is clearly equivalent to the following statement:

∀k0, k1 ∈ K : [k0 6= k1 =⇒ ∃s ∈ S : πk0(us) 6= πk1(us)] (19)

where us is given by the relation (16).

According to (16), each array us, s ∈ S, is the concatenation of q arrays
us,w, each of length qrmn. The index range {0, . . . , qr(mn+1) − 1} of the array
us can be split as the concatenation of qrmn+1 integer intervals

Kx,w = {indexes of entries with the value Φ (vs,w(x))}

with (x,w) ∈ Bn × pr−1A, and each integer interval Kx,w has length qr−1.

We recall at this point that∣∣Bn × pr−1A∣∣ = qrmnq = qrmn+1.

Let αb : Bn → {0, . . . , qrmn−1}, αa : pr−1A→ {0, . . . , q−1} be corresponding
natural bijections. Then, up to these enumerations and the representation
sketched at relation (4), we may identify

Kx,w ≈ {k ∈ K| kx,wqr−1 ≤ k ≤ kx,wqr−1 + (qr−1 − 1)},

where

kx,w = αb(x)q + αa(w) , ∀(x,w) ∈ Bn × pr−1A. (20)

Let k0, k1 ∈ K ≈ {0, . . . , qr(mn+1) − 1} be two keys such that k0 6= k1.
Depending on the intervals Kx,w in which these keys fall, we may consider
four cases.

– Case I: ∃w ∈ pr−1A ∃x ∈ Bn: k0 ∈ Kx,w & k1 ∈ Kx,w.
– Case II: ∃w ∈ pr−1A ∃x, y ∈ Bn: x 6= y & k0 ∈ Kx,w & k1 ∈ Ky,w.
– Case III: ∃w0, w1 ∈ pr−1A∃x ∈ Bn: w0 6= w1 & k0 ∈ Kx,w0 & k1 ∈ Kx,w1 .
– Case IV: ∃w0, w1 ∈ pr−1A∃x, y ∈ Bn:

w0 6= w1 & x 6= y & k0 ∈ Kx,w0 & k1 ∈ Ky,w1 .

The analysis of these cases, providing a full proof of the proposition, is
rather extensive, thus we postpone it to the appendix. ut

Proposition 4 For the authentication scheme defined by the relations (13)
and (18) the following equations hold:

pI =
1

q
, pS =

1

q
. (21)
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Proof Let s = (s0, s1, s2) ∈ S and x ∈ Bn be fixed, then the map

pr−1A→ Fq
r−1

q , w 7→ Φ
(
TB/A(s0f(x) + s1 · x) + s2 + w

)
is one-to-one. Then, for any t ∈ T = Fq, we have

|{k ∈ K| πk(us) = t}| = qr(mn+1)−1. (22)

where us is defined by relation (16). Since |K| = qr(mn+1), we have, from (6),
pI = 1

q .

Now, we consider s0 = (s00, s10, s20), s1 = (s01, s11, s21) ∈ S such that
s0 6= s1. For each t0, t1 ∈ T , and each k ∈ K, let w ∈ pr−1A and x ∈ Bn be
such that k ∈ Kx,w. Then,

ek(s0) = t0
ek(s1) = t1

}
⇐⇒

{
πk(us0) = t0 &
πk(us1) = t1

⇐⇒
{

πk ◦ Φ(vs0,w(x)) = t0 &
πk ◦ Φ(vs1,w(x))− πk ◦ Φ(vs0,w(x)) = t1 − t0

⇐⇒
{

πk ◦ Φ(vs0,w(x)) = t0 &
πk ◦ Φ(vs1,w(x))− πk ◦ Φ(vs0,w(x)) = t1 − t0

Prop. 1⇐⇒


πk ◦ Φ(TB/A(s00 f(x) + s10 · x) + s20 + w) = t0 &

πk ◦ Φ(TB/A(s01 f(x) + s11 · x) + s21)
−πk(TB/A(s00 f(x) + s10 · x) + s20) = t1 − t0

From here, it can be seen that

|{k ∈ K|(ek(s0) = t0)&(ek(s1) = t1)}| = qr(mn+1)−1 − dH(us0,w, us1,w).

Now, from (7), (22), we have:

pS =
qr(mn+1)−1 − dH(us0,w, us1,w)

qr(mn+1)−1

≤ qr(mn+1)−1 − qrmn(qr−1 − qr−2)

qr(mn+1)−1

=
qrmn+r−2

qrmn+r−1

=
1

q

�

Observe at this point that it is possible to take, instead of N at (13), the
set N ′ = {b ∈ Bn| wh(b) ≤ t

2} in order to produce a new systematic authen-
ticatication code with the same impersonation and substitution probabilities
as in (21).
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4 Conclusions

We have constructed an authentication code using the trace and the Gray
maps. In this regard, the current construction is similar to former construc-
tions [8,9]. In order to diminish the substitution and impersonation probabil-
ities, we used here resilient maps on Galois rings of general characteristic pr,
with p a prime number and r an integer greater or equal than 2, in contrast
with the former approach based either on non-degenerate and rational maps
on Galois rings of general characteristic [9], or on bent maps at Galois rings of
characteristic p2 [8]. The current construction provides optimal substitution
and impersonation probabilities, at the cost of cardinalities growth and an
elaborated space structure.
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A Proof of Proposition 3

Let us present in full detail the proof of Proposition 3. The plan of the proof is sketched as
Plan 1. The referenced lemmas appear immediately after.

Lemma 2 Under the condition arriving at statement I in Plan 2, the implication 19 holds.
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if Case I holds then
I. See Lemma 2

else
if Case II holds then

let k00 = k0 − kx,w and k10 = k1 − ky,w ;
if k00 = k10 then

proceed as in Plan 2
else

proceed as in Plan 3
end

else
if Case III holds then

let k00 = k0 − kx,w0 and k10 = k1 − kx,w1 , according to (20) ;
if k00 = k10 then

III.0 See Lemma 12
else

pick (s0, s1) ∈ {0} × (N − {0}) arbitrarily ;

if πk00 ◦ Φ
(
TB/A(s0 f(x) + s1 · x) + w0

)
=

πk10 ◦ Φ
(
TB/A(s0 f(x) + s1 · x) + w1

)
then

III.1.0 See Lemma 13
else

III.1.1 See Lemma 14
end

end

else
(at this point, Case IV necessarily does hold )
let k00 = k0 − kx,w0 and k10 = k1 − kx,w1 , according to (20) ;

if πk00 ◦ Φ
(
TB/A(f(x))

)
= πk10 ◦ Φ

(
TB/A(f(y))

)
then

IV.0 See Lemma 15
else

IV.1 See Lemma 16
end

end

end

end

Plan 1 Plan of the proof of Proposition 3.

Proof Let (s0, s1) ∈ {0} × (N − {0}) (see relation (13)). Let us write in p-adic form

TB/A(s0f(x) + s1 · x) =

r−2∑
i=0

aip
i + ar−1p

r−1.

For each k ∈ {0, . . . , r − 2}, there exists y(k) =
∑r−2
i=0 yikp

i ∈ L such that

TB/A(s0f(x) + s1 · x) + y(k) =

{
akp

k + ar−1pr−1 if ak 6= 0
ykkp

k + ar−1pr−1 if ak = 0 & ykk 6= 0

Thus,

Φ
(
TB/A(s0f(x) + s1 · x) + y(k) + w

)

=

{
Φ
(
akp

k
)

+ Φ
(
ar−1pr−1 + w

)
if ak 6= 0

Φ
(
ykkp

k
)

+ Φ
(
ar−1pr−1 + w

)
if ak = 0 & ykk 6= 0
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choose j ∈ {0, . . . , n− 1} such that the j-th entry of x− y is not zero, namely
xj − yj 6= 0 ;

if xj − yj ∈ pr−1B − {0} then
II.0.0 See Lemma 3

else
there are θ ∈ TB − TA, and t ≤ r − 1 such that
TB/A(θpt(xj − yj)) ∈ pr−1A− {0} ;

if TB/A(xj) = TB/A(yj) then

let ζ ∈ TA − {0} be such that (θ, (ζ + θpt)ej) ∈
⋃qm−(r−1)n−2
k=0 Tθζkk as

defined at (12) ;
we have

TB/A(ζxj) =

r−1∑
k=0

dkp
k = TB/A(ζyj)

TB/A(θptxj) =

r−2∑
k=0

akp
k + ar−1p

r−1

TB/A(θptyj) =

r−2∑
k=0

akp
k + br−1p

r−1

with ar−1 6= br−1 ;
let (s0, s1) = (θ, (ζ + θpt)ej) ;

if πk00 ◦ Φ
(
TB/A(θf(x))

)
= πk10 ◦ Φ

(
TB/A(θf(y))

)
then

II.0.1.0.0 See Lemma 4
else

II.0.1.0.1 See Lemma 5
end

else
II.0.1.1 if πk00 ◦ Φ

(
TB/A(f(x))

)
= πk10 ◦ Φ

(
TB/A(f(y))

)
then

There is a t, 0 ≤ t ≤ r − 1, such that
TB/A(pt(xj − yj)) ∈ pr−1A− {0} (here the hypothesis

TB/A(xj) 6= TB/A(yj) is very important) ;

if t = 0 then
II.0.1.1.0.0 See Lemma 6

else
II.0.1.1.0.1 See Lemma 7

end

else
II.0.1.1.1 See Lemma 8

end

end

end

Plan 2 First branch of Case II.

Last expressions can be evaluated by relation (5). We have that (s0, s1, y(k)) ∈ S and
w ∈ pr−1A.

Now, let k00 = k0 − kx,w and k10 = k1 − kx,w. Let us consider several possibilities:

– q 6 |(k10 − k00): By taking ar−2 6= 0, all other coefficients zero, and s = (s0, s1, s2),
we have that the k00-projection of us,w (see (16)) differs to its k10-projection, thus
πk0 (us) 6= πk1 (us).
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let j ∈ {0, . . . , n− 1} be such that xj − yj 6= 0 ;

if xj − yj ∈ pr−1B − {0} then
II.1.0 See Lemma 9

else
there exist θ ∈ (TB − TA) ∪ {1} and t ∈ {1, · · · , r − 1} such that
TB/A(θpt(xj − yj)) ∈ pr−1A− {0} ;

if TB/A(xj) = TB/A(yj) then
let ζ ∈ TA − {0} be such that the pair (s0, s1) = (θ, (ζ + θpt)ej) is

included in the set
⋃qm−(r−1)n−2
k=0 Tθζkk as defined at (12) ;

if Φ
(
TB/A(θf(x))

)
= Φ

(
TB/A(θf(y))

)
then

II.1.1.0.0 See Lemma 10
else

II.1.1.0.1 See Lemma 11
end

else
proceed as in statement II.0.1.1 of Plan 2

end

end

Plan 3 Second branch of Case II.

– q|(k10 − k00) and (∃d: 1 ≤ d ≤ r − 1 & qd−1 ≤ k10 − k00 < qd): By taking ar−2−d 6= 0
and all other coefficients zero, and s = (s0, s1, s2), we have that the k00-projection of
us,w differs to its k10-projection, thus πk0 (us) 6= πk1 (us).

ut

Lemma 3 Under the condition arriving at statement II.0.0 in Plan 2, the implication 19
holds.

Proof There is a θ ∈ TB such that TB/A(θ(xj − yj)) ∈ pr−1B − {0}. We express in their
p-adic forms TB/A(θxj) and TB/A(θyj), namely

TB/A(θxj) =

r−1∑
k=0

akp
k , TB/A(θyj) =

r−1∑
k=0

bkp
k. (23)

Thus
r−1∑
k=0

(ak − bk)pk = (a0 − b0) +

r−1∑
k=1

(ak − bk)pk ∈ pr−1A− {0}

and consequently a0 − b0 = 0. Also

r−1∑
k=1

(ak − bk)pk−1 = (a1 − b1) +

r−1∑
k=2

(ak − bk)pk ∈ pr−2A− {0}

and consequently a1−b1 = 0. Successively, we get ∀k ≤ r−2, ak = bk, and (ar−1−br−1)p ∈
pA− {0}. Hence ar−1 6= br−1. And consequently:

Φ
(
TB/A(θxj)

)
6= Φ

(
TB/A(θyj)

)
.

Let s0 = 0, s1 = θej , s2 = 0 and s = (s0, s1, s2) ∈ S. Then, according to (15),

Φ (vs,w(x)) = Φ
(
TB/A(s0 f(x) + s1 · x) + s2 + w

)
= Φ

(
TB/A(θxj)

)
+ Φ (w)

6= Φ
(
TB/A(θyj)

)
+ Φ (w)

= Φ
(
TB/A(s0 f(y) + s1 · y) + s2 + w

)
= Φ (vs,w(y))
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And, in particular,
πk00 ◦ Φ (vs,w(x)) 6= πk10 ◦ Φ (vs,w(x)) .

Thus, implication (19) holds on these conditions. ut

Lemma 4 Under the condition arriving at statement II.0.1.0.0 in Plan 2, the implica-
tion 19 holds.

Proof Choose

s2 = dr−1p
r−1 + ar−1p

r−1 − TB/A((ζ + θpt)xj)

= dr−1p
r−1 + br−1p

r−1 − TB/A((ζ + θpt)yj).

Then,

Φ (vs,w(x)) = Φ
(
TB/A(s0 f(x) + s1 · x) + s2 + w

)
= Φ

(
TB/A(θf(x) + (ζ + θpt)xj) + s2 + w

)
= Φ

(
TB/A(θf(x)) + dr−1p

r−1 + ar−1p
r−1 + w

)
= Φ

(
TB/A(θf(x))

)
+ Φ

(
dr−1p

r−1
)

+ Φ
(
ar−1p

r−1
)

+ Φ (w)

Mutatis mutandis we get

Φ (vs,w(y)) = Φ
(
TB/A(θf(y))

)
+ Φ

(
dr−1p

r−1
)

+ Φ
(
br−1p

r−1
)

+ Φ (w) ,

hence Φ (vs,w(x)) 6= Φ (vs,w(y)). And, in particular,

πk00 ◦ Φ (vs,w(x)) 6= πk10 ◦ Φ (vs,w(x)) .

Thus, implication (19) holds on these conditions. ut

Lemma 5 Under the condition arriving at statement II.0.1.0.1 in Plan 2, the implica-
tion 19 holds.

Proof Let θ ∈ TB be as in Lemma 3 above and (s0, s1, s2) = (θ, 0, 0). Then,

Φ (vs,w(x)) = Φ
(
TB/A(θf(x)

)
+ Φ (w) and

Φ (vs,w(y)) = Φ
(
TB/A(θf(y)

)
+ Φ (w)

hence πk00 ◦ Φ (vs,w(x)) 6= πk10 ◦ Φ (vs,w(y)). ut

Lemma 6 Under the condition arriving at statement II.0.1.1.0.0 in Plan 2, the implica-
tion 19 holds.

Proof Let s0 = 0, s1 = ej , s2 = 0 and s = (s0, s1, s2) ∈ S. Then as in Lemma 3 we conclude
that πk00 ◦ Φ (vs,w(x)) 6= πk10 ◦ Φ (vs,w(y)). ut

Lemma 7 Under the condition arriving at statement II.0.1.1.0.1 in Plan 2, the implica-
tion 19 holds.

Proof There is a pair (s0, s1) = (θ, pt ej) in the set Dη , as defined at (11), such that

Φ
(
TB/A(θf(x))

)
= Φ

(
TB/A(θf(y))

)
since θ ∈ TA − {0}. We write in p-adic form

TB/A(ptxj) =

r−2∑
i=0

aip
i + ar−1p

r−1 & TB/A(ptyj) =

r−2∑
i=0

aip
i + br−1p

r−1
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with ar−1 6= br−1. An adequate selection of s2 gives

Φ (vs,w(x)) = Φ
(
TB/A(θf(x) + TB/A(ptxj) + s2 + w

)
= Φ

(
TB/A(θf(x) + ar−1p

r−1 + w
)

= Φ
(
TB/A(θf(x)

)
+ Φ

(
ar−1p

r−1
)

+ Φ (w) .

Similarly,
Φ (vs,w(y)) = Φ

(
TB/A(θf(y)

)
+ Φ

(
br−1p

r−1
)

+ Φ (w) ,

and the right sides of the above identities are different, thus the implication (19) holds on
this case. ut

Lemma 8 Under the condition arriving at statement II.0.1.1.1 in Plan 2, the implica-
tion 19 holds.

Proof In this case, πk00 ◦Φ
(
TB/A(η(r−1)nf(x))

)
6= πk10 ◦Φ

(
η(r−1)nTB/A(f(y))

)
and there

exists a value η(r−1)n ∈ T (A) − {0} such that η(r−1)n does not appear at η, just because
(r− 1)(n+ 1) < pm− 1. Now, we choose s1 = 0 ∈ Bn, s2 = 0 and s = (η(r−1)n, 0, 0). Then,

πk00 ◦ Φ (vs,w(x)) = πk00 ◦ Φ
(
TB/A(s0 f(x) + s1 · x) + s2 + w

)
= πk00 ◦ Φ

(
TB/A(η(r−1)nf(x)) + w

)
6= πk10 ◦ Φ

(
TB/A(η(r−1)nf(y)) + w

)
= πk10 ◦ Φ (vs,w(y))

and, consequently, the implication (19) holds. ut

Lemma 9 Under the condition arriving at statement II.1.0 in Plan 3, the implication 19
holds.

Proof There is a θ ∈ TB such that TB/A(θ(xj−yj))j ∈ pr−1A−{0}. By writing TB/A(θxj)
and TB/A(θyj) in p-adic form as in (23) we have that, as in Lemma 3, for any i ≤ r − 2,

ai = bi and ar−1 − br−1 ∈ pr−1B − {0}. Let (s0, s1, s2) =
(

0, θej ,−
∑r−2
i=0 aip

i
)

. Then

Φ (vs,w(x)) = Φ
(
TB/A(ar−1p

r−1
)

+ Φ (w) and

Φ (vs,w(y)) = Φ
(
TB/A(br−1p

r−1
)

+ Φ (w)

hence πk00 ◦ Φ (vs,w(x)) 6= πk10 ◦ Φ (vs,w(y)). ut

Lemma 10 Under the condition arriving at statement II.1.1.0.0 in Plan 3, the implica-
tion 19 holds.

Proof There is a s2 such that

Φ (vs,w(x)) = Φ
(
TB/A(s0 f(x) + s1 · x) + s2 + w

)
= Φ

(
TB/A(θf(x) + (ζ + θpt)xj) + s2 + w

)
= Φ

(
TB/A(θf(x)) + TB/A(ζxj) + s2 + TB/A(θptxj) + w

)
= Φ

(
TB/A(θf(x)) + cr−1p

r−1 + ar−1p
r−1 + w

)
= Φ

(
TB/A(θf(x))

)
+ Φ

(
cr−1p

r−1
)

+ Φ
(
ar−1p

r−1
)

+ Φ (w)

where we have used the p-adic forms displayed at Plan 2.
Mutatis mutandis we get

Φ (vs,w(y)) = Φ
(
TB/A(θf(y))

)
+ Φ

(
cr−1p

r−1
)

+ Φ
(
br−1p

r−1
)

+ Φ (w) ,

hence Φ (vs,w(x)) 6= Φ (vs,w(y)). And, in particular,

πk00 ◦ Φ (vs,w(x)) 6= πk10 ◦ Φ (vs,w(x)) .

Thus, implication (19) holds on these conditions. ut
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Lemma 11 Under the condition arriving at statement II.1.1.0.1 in Plan 3, the implica-
tion 19 holds.

Proof We may proceed as in Lemma 5 to show that implication (19) holds on these condi-
tions. ut

Lemma 12 Under the condition arriving at statement III.0 in Plan 1, the implication 19
holds.

Proof For any s = (s0, s1, s2) ∈ S we have

Φ(vs,w0 (x))− Φ(vs,w1 (x)) = Φ
(
TB/A(s0f(x) + s1 · x) + s2 + w0

)
−Φ

(
TB/A(s0f(x) + s1 · x) + s2 + w1

)
= Φ (w0)− Φ (w1)

6= 0

In particular,
πk00 ◦ Φ(vs,w0 (x)) 6= πk00 ◦ Φ(vs,w1 (x)).

Thus, implication (19) holds in this case as well. ut

Lemma 13 Under the condition arriving at statement III.1.0 in Plan 1, the implication 19
holds.

Proof If, written in its p-adic form, TB/A(s0 f(x) + s1 · x) =
∑r−1
i=0 aip

i, then let s2 =

−
∑r−2
i=0 aip

i. As in Lemma 9, we will have

πk00 ◦ Φ(vs,w0 (x)) 6= πk10 ◦ Φ(vs,w1 (x)).

ut

Lemma 14 Under the condition arriving at statement III.1.1 in Plan 1, the implication 19
holds.

Proof Let s2 = 0. We will have πk00 ◦ Φ(vs,w0 (x)) 6= πk10 ◦ Φ(vs,w1 (x)). ut

Lemma 15 Under the condition arriving at statement IV.0 in Plan 1, the implication 19
holds.

Proof In this case, πk00 ◦ Φ
(
TB/A(η(r−1)nf(x))

)
= πk10 ◦ Φ

(
TB/A(η(r−1)nf(y))

)
with

η(r−1)n ∈ T (A)− {0} such that η(r−1)n 6∈ η.
Let (s0, s1, s2) = (η(r−1)n, 0, 0). Then πk00 ◦ Φ(vs,w0 (x)) 6= πk10 ◦ Φ(vs,w1 (x)). ut

Lemma 16 Under the condition arriving at statement IV.1 in Plan 1, the implication 19
holds.

Proof Let η ∈ T (A). Then,

πk00 ◦ Φ
(
ηTB/A(f(x))

)
= ηπk10 ◦ Φ

(
TB/A(f(x))

)
and

πk00 ◦ Φ
(
ηTB/A(f(y))

)
= ηπk10 ◦ Φ

(
TB/A(f(y))

)
,

and then if there is η ∈ T (A) such that

πk00 ◦ Φ (w0) + πk00 ◦ Φ
(
ηTB/A(f(x))

)
= πk10 ◦ Φ (w1) + πk10 ◦ Φ

(
ηTB/A(f(y))

)
then this element is unique.

Let us choose ζ = {ζk}
qm−(r−1)n−2
k=0 , as was done in the relation (12). Thus, either

πk00 ◦ Φ (w0) + πk00 ◦ Φ
(
ζkTB/A(f(x))

)
6= πk10 ◦ Φ (w1) + πk10 ◦ Φ

(
ζkTB/A(f(y))

)
or

πk00 ◦ Φ (w0) + πk00 ◦ Φ
(
ζk′TB/A(f(x))

)
6= πk10 ◦ Φ (w1) + πk10 ◦ Φ

(
ζk′TB/A(f(y))

)
,

where ζk, ζk′ ∈ T (A) ∩ ζ, k 6= k′. Let j be an index witnessing the relations above. Let
(s0, s1, s2) = (ηj , 0, 0). Then πk00 ◦ Φ(vs,w0 (x)) 6= πk10 ◦ Φ(vs,w1 (x)). ut


