
Practical Round-Optimal Blind Signatures

in the Standard Model

Georg Fuchsbauer1,† Christian Hanser2,‡,§ Daniel Slamanig2,§

1 Institute of Science and Technology Austria

georg.fuchsbauer@ist.ac.at
2 IAIK, Graz University of Technology, Austria

{christian.hanser|daniel.slamanig}@iaik.tugraz.at

An extended abstract of this paper appears in the proceedings of Crypto’15. This is the full version.

Abstract

Round-optimal blind signatures are notoriously hard to construct in the stan-
dard model, especially in the malicious-signer model, where blindness must hold un-
der adversarially chosen keys. This is substantiated by several impossibility results.
The only construction that can be termed theoretically efficient, by Garg and Gupta
(Eurocrypt’14), requires complexity leveraging, inducing an exponential security
loss.

We present a construction of practically efficient round-optimal blind signatures
in the standard model. It is conceptually simple and builds on the recent structure-
preserving signatures on equivalence classes (SPS-EQ) from Asiacrypt’14. While the
traditional notion of blindness follows from standard assumptions, we prove blindness
under adversarially chosen keys under an interactive variant of DDH. However, we
neither require non-uniform assumptions nor complexity leveraging.

We then show how to extend our construction to partially blind signatures and to
blind signatures on message vectors, which yield a construction of one-show anonymous
credentials à la “anonymous credentials light” (CCS’13) in the standard model.

Furthermore, we give the first SPS-EQ construction under non-interactive assump-
tions and show how SPS-EQ schemes imply conventional structure-preserving signa-
tures, which allows us to apply optimality results for the latter to SPS-EQ.

Keywords: (Partially) Blind Signatures, Standard Model, SPS-EQ, One-Show Anony-
mous Credentials

1 Introduction

The concept of blind signatures [Cha82] dates back to the beginning of the 1980s. A blind
signature scheme is an interactive protocol where a user (or obtainer) requests a signature
on a message which the signer (or issuer) must not learn. In particular, the signer must not
be able to link a signature to the execution of the issuing protocol in which it was produced
(blindness). Furthermore, it should even for adaptive adversaries be infeasible to produce a
valid blind signature without the signing key (unforgeability). Blind signatures have proven
to be an important building block for cryptographic protocols, most prominently for e-cash,
e-voting and one-show anonymous credentials. In more than 30 years of research, many
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different (> 50) blind signature schemes have been proposed. The spectrum ranges from
RSA-based (e.g., [Cha82, CKW04]) over DL-based (e.g., [Oka92, Abe01]) and pairing-
based (e.g., [Bol03, BFPV11]) to lattice-based (e.g., [Rüc10]) constructions, as well as
constructions from general assumptions (e.g., [JLO97, HKKL07, Fis06]).

Blind signatures and their round complexity. Two distinguishing features of blind
signatures are whether they assume a common reference string (CRS) set up by a trusted
party to which everyone has access; and the number of rounds in the signing protocol.
Schemes which require only one round of interaction (two moves) are called round-optimal
[Fis06]. Besides improving efficiency, round optimality also directly yields concurrent se-
curity (which otherwise has to be dealt with explicitly; e.g., [KZ06, HKKL07]). There
are very efficient round-optimal schemes [Cha83, Bol03, BNPS03] under interactive as-
sumptions (chosen target one more RSA inversion and chosen target CDH, respectively)
in the random oracle model (ROM), as well as under the interactive LRSW [LRSW00]
assumption in the CRS model [GS12]. All these schemes are in the honest-key model,
where blindness only holds against signers whose keys are generated by the experiment.

Fischlin [Fis06] proposed a generic framework for constructing round-optimal blind
signatures in the CRS model with blindness under malicious keys: the signer signs a com-
mitment to the message and the blind signature is a non-interactive zero-knowledge (NIZK)
proof of a signed commitment which opens to the message. Using structure-preserving sig-
natures (SPS) [AFG+10] and the Groth-Sahai (GS) proof system [GS08] instead of general
NIZKs, this framework was efficiently instantiated in [AFG+10]. In [BFPV11, BPV12],
Blazy et al. gave alternative approaches to compact round-optimal blind signatures in the
CRS model which avoid including a GS proof in the final blind signature. Another round-
optimal solution with comparable computational costs was proposed by Seo and Cheon
[SC12] building on work by Meiklejohn et al. [MSF10].

Removing the CRS. Known impossibility results indicate that the design of round-
optimal blind signatures in the standard model has some limitations. Lindell [Lin03]
showed that concurrently secure (and consequently also round-optimal) blind signatures
are impossible in the standard model when using simulation-based security notions. This
can however be bypassed via game-based security notions, as shown by Hazay et al.
[HKKL07] for non-round-optimal constructions.

Fischlin and Schröder [FS10] showed that black-box reductions of blind-signature un-
forgeability to non-interactive assumptions in the standard model are impossible if the
scheme has three moves or less, blindness holds statistically (or computationally if un-
forgeability and blindness are unrelated) and protocol transcripts allow to verify whether
the user is able to derive a signature. Existing constructions [GRS+11, GG14] bypass
these results by making non-black-box use of the underlying primitives (and preventing
signature-derivation checks in [GRS+11]).

Garg et al. [GRS+11] proposed the first round-optimal generic construction in the
standard model, which can only be considered as a theoretical feasibility result. Using fully
homomorphic encryption, the user encrypts the message sent to the signer, who evaluates
the signing circuit on the ciphertext. To remove the CRS, they use two-round witness-
indistinguishable proofs (ZAPs) to let the parties prove honest behavior; to preserve round-
optimality, they include the first fixed round of the ZAP in the signer’s public key.

Garg and Gupta [GG14] proposed the first efficient round-optimal blind signature
constructions in the standard model. They build on Fischlin’s framework using SPS. To
remove a trusted setup, they use a two-CRS NIZK proof system based on GS proofs,
include the CRSs in the public key while forcing the signer to honestly generate the CRS.

2



Their construction, however, requires complexity leveraging (the reduction for unforge-
ability needs to solve a subexponential DL instance for every signing query) and is proven
secure with respect to non-uniform adversaries. Consequently, communication complexity
is in the order of hundreds of KB (even at a 80-bit security level) and the computational
costs (not considered by the authors) seem to limit their practical application even more
significantly.

Partially blind signatures. Partially blind signatures are an extension of blind signa-
tures, which additionally allow to include common information in a signature. Many non-
round-optimal partially blind signature schemes in the ROM are based on a technique by
Abe and Okamoto [AO00]. The latter [Oka06] proposed an efficient construction for non-
round-optimal blind as well as partially blind signatures in the standard model. Round-
optimal partially blind signatures in the CRS model can again be obtained from Fischlin’s
framework [Fis06]. Round-optimal partially blind signatures in the CRS model are con-
structed in [BPV12, MSF10, SC12]. To date, there is—to the best of our knowledge—no
round-optimal partially blind signature scheme that is secure in the standard model.

One-show anonymous credentials systems. Such systems allow a user to obtain
a credential on several attributes from an issuer. The user can later selectively show
attributes (or prove relations about attributes) to a verifier without revealing any infor-
mation about undisclosed attributes. No party (including the issuer) can link the issuing
of a credential to any of its showings, yet different showings of the same credential are
linkable. An efficient implementation of one-show anonymous credentials is Microsoft’s
U-Prove [BP10].

Baldimtsi and Lysyanskaya [BL13b] showed that the underlying signature scheme by
Brands [Bra00] cannot be proven secure using known techniques. To mitigate this problem,
in [BL13a] they presented a generic construction of one-show anonymous credentials in the
vein of Brands’ approach from so-called blind signatures with attributes [Bra00]. They also
present a scheme based on a non-round-optimal blind signature scheme by Abe [Abe01]
and prove their construction secure in the ROM.

Our Contribution

Blind signatures and anonymous credentials. Besides Fischlin’s generic commit-
prove paradigm [Fis06], there are other classes of schemes. For instance, RSA and BLS
blind signatures [Cha83, Bol03, BNPS03] follow a randomize-derandomize approach, which
exploits the homomorphic property of the respective signature scheme. Other approaches
follow the commit-rerandomize-transform paradigm, where a signature on a commitment
to a message can be transformed into a rerandomized (unlinkable) signature on the original
message [BFPV11, GS12]. Our construction is based on a new concept, which one may
call commit-randomize-derandomize-open approach. It does not use non-interactive proofs
at all and is solely based on the recent concept of structure-preserving signature schemes
on equivalence classes (SPS-EQ) [HS14] and commitments. As we also avoid a trusted
setup of the commitment parameters, we do not require a CRS. We do however prove our
scheme secure under interactive hardness assumptions.

In SPS-EQ the message space is partitioned into equivalence classes and given a sig-
nature on a message anyone can adapt the signature to a different representative of the
same class. SPS-EQ requires that after signing a representative a signer cannot distin-
guish between an adapted signature for a new representative of the same class and a fresh
signature on a completely random message.
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In our blind-signature scheme the obtainer combines a commitment to the message
with a normalization element yielding a representative of an equivalence class (commit).
She chooses a random representative of the same class (randomize), on which the signer
produces a signature. She then adapts the signature to the original representative contain-
ing the commitment (derandomize), which can be done without requiring the signing key.
The blind signature is the rerandomized (unlinkable) signature for the original represen-
tative plus an opening for the commitment (open). Our contributions to blind signatures
are the following:

• We propose a new approach to constructing blind signatures in the standard model
based on SPS-EQ. It yields conceptually simple and compact constructions and
does not rely on techniques such as complexity leveraging. Our blind signatures
are practical in terms of key size, signature size, communication and computational
effort (when implemented with known instantiations of SPS-EQ [FHS14], a blind
signature consists of 5 bilinear-group elements).

• We provide the first construction of round-optimal partially blind signatures in the
standard model, which follow straightforwardly from our blind signatures and are
almost as efficient.

• We generalize our blind signature scheme to message vectors, which yields one-show
anonymous credentials à la “anonymous credentials light” [BL13a]. We thus obtain
one-show anonymous credentials secure in the standard model (whereas all previous
ones have either no security proof or ones in the ROM).

SPS-EQ. We give the first structure-preserving signatures on equivalence classes satis-
fying all security notions from [HS14] under non-interactive assumptions. (Unfortunately,
the scheme does not have all the properties required for building blind signatures from it,
for which we strengthen the notions from [HS14].)

Moreover, we show how any SPS-EQ scheme can be turned into a standard structure-
preserving signature scheme. This transformation allows us to apply the optimality criteria
by Abe et al. [AGHO11, AGO11] to SPS-EQ. We conclude that the scheme from [FHS14]
is optimal in terms of signature size and verification complexity and that it cannot be
proven unforgeable under non-interactive assumptions.

Organization. Section 2 discusses preliminaries including signature schemes on equiv-
alence classes (SPS-EQ). Section 3 presents our new results for SPS-EQ. Section 4 intro-
duces our construction of round-optimal blind signatures, the extension to partially blind
signatures and discusses the implications for SPS-EQ. Finally, Section 5 shows how we
can construct anonymous one-show credentials by generalizing the blind signature scheme
to message vectors.

2 Preliminaries

A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that ε(k) < 1/kc

for all k > k0. By a←R S we denote that a is chosen uniformly at random from a set S.
Furthermore, we write A(a1, . . . , an; r) if we want to make the randomness r used by a
probabilistic algorithm A(a1, . . . , an) explicit. If G is an (additive) group, then we use G∗
to denote G \ {0G}.
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Definition 1 (Bilinear map). Let (G1,+), (G2,+), generated by P and P̂ , resp., and
(GT , ·) be cyclic groups of prime order p. We call e : G1 × G2 → GT a bilinear map
(pairing) if it is efficiently computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂ ) 6= 1GT , i.e., e(P, P̂ ) generates GT . ♦

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For
Type-2 pairings there is an efficiently computable isomorphism Ψ: G2 → G1; for Type-3
pairings no such isomorphism is known. Type-3 pairings are currently the optimal choice
in terms of efficiency and security trade-off [CM11].

Definition 2 (Bilinear-group generator). A bilinear-group generator is a polynomial-
time algorithm BGGen that takes a security parameter 1κ and outputs a bilinear group
BG = (p,G1,G2,GT , e, P, P̂ ) consisting of groups G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT of prime
order p with log2 p = κ and a pairing e : G1 × G2 → GT . In this work we assume that
BGGen is a deterministic algorithm.1 ♦

Definition 3 (Decisional Diffie-Hellman assumption). Let BGGen be a bilinear-group
generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). The DDH assumption
holds in Gi for BGGen if for all probabilistic polynomial-time (PPT) adversaries A there
is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG = BGGen(1κ), r, s, t←R Zp
b∗ ← A

(
BG, rPi, sPi, ((1− b) · t+ b · rs)Pi

) : b∗ = b

]
− 1

2
≤ ε(κ) . ♦

Definition 4 ((Symmetric) external Diffie-Hellman assumption). The XDH and SXDH
assumptions hold for BGGen if the DDH assumption holds in G1 and holds in both G1

and G2, respectively. ♦

The next assumption is a static computational assumption derived from the SXDH
version of the q-Diffie-Hellman inversion assumption [CM11].

Definition 5 (Co-Diffie-Hellman inversion assumption). Let BGGen be a bilinear-group
generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). The co-DHI∗i assumption
holds for BGGen if for every PPT adversary A there is a negligible function ε(·) such that

Pr
[
BG = BGGen(1κ), a←R Zp∗ : 1

aPi ← A(BG, aP1, aP2)
]
≤ ε(κ) . ♦

co-DHI∗1 is implied by a variant of the decision linear assumption in asymmetric groups
stating that given (BG, (aPj , bPj)j∈[2], raP2, sbP2) for a, b, r, s←R Zp∗ it is hard to distinguish
T = (r + s)P2 from a random G2 element. (A co-DHI∗i solver could be used to compute
1
aP1 and 1

bP1, which enables to check whether e( 1aP1, raP2) e(
1
bP1, sbP2) = e(P1, T ).) This

holds analogously for co-DHI∗2.

Generalized Pedersen commitments. These are commitments to a vector of mes-
sages m = (mi)i∈[n] ∈ Zn

p that consist of one group element. They are perfectly hiding
and computationally binding under the discrete-log assumption.

SetupP(1κ, n): Choose a group G of prime order p with log2 p = κ and n + 1 distinct
generators (Pi)i∈[n], Q and output parameters cpp← (G, p, (Pi)i∈[n], Q) (which is an
implicit input to the following algorithms).

1This is e.g. the case for BN-curves [BN05]; the most common choice for Type-3 pairings.
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CommitP(m; r): On input a vector m ∈ Zn
p and randomness r ∈ Zp, output a commitment

C ←
∑

i∈[n]miPi + rQ and an opening O ← (m, r).

OpenP(C,O): On input C ∈ G and O = (m, r), if C =
∑

i∈[n]miPi + rQ then output
m = (mi)i∈[n]; else output ⊥.

Remark 1. SetupP is typically run by a trusted party and thus cpp can be seen as a
CRS. Note however that the receiver can know the logarithms of the elements in cpp, as
the commitment is perfectly hiding and the binding property protects against malicious
senders/committers.

2.1 Structure-Preserving Signatures on Equivalence Classes

Structure-preserving signatures (SPS) [AFG+10, AGHO11, CDH12, AGOT14] can sign
elements of a bilinear group without requiring any prior encoding. In such a scheme
public keys, messages and signatures consist of group elements only and the verification
algorithm evaluates a signature by deciding group membership and evaluating pairing-
product equations (PPEs).

The notion of SPS on equivalence classes (SPS-EQ) was introduced by Hanser and
Slamanig [HS14]. Their initial instantiation turned out to only be secure against random-
message attacks (cf. [Fuc14] and the updated full version of [HS14]), but together with
Fuchsbauer [FHS14] they subsequently presented a scheme that is unforgeable under
chosen-message attack (EUF-CMA) in the generic group model.

The concept of SPS-EQ is as follows. Let p be a prime and ` > 1; then Zp` is a vector
space and we can define a projective equivalence relation on it, which propagates to Gi

`

and partitions Gi
` into equivalence classes. Let ∼R be this relation, i.e., for M,N ∈ Gi

` :
M ∼R N ⇔ ∃ s ∈ Z∗p : M = sN . An SPS-EQ scheme signs an equivalence class [M ]R
for M ∈ (G∗i )` by signing a representative M of [M ]R. It then allows for switching to
other representatives of [M ]R and updating the signature without access to the secret
key. An important property of SPS-EQ is class-hiding, which roughly means that two
message-signature pairs corresponding to the same class should be unlinkable.

Here, we discuss the abstract model and the security model of such a signature scheme,
as introduced in [HS14].

Definition 6 (Structure-preserving signatures on equivalence classes). An SPS-EQ scheme
SPS-EQ on (G∗i )` (for i ∈ {1, 2}) consists of the following PPT algorithms:

BGGenR(1κ), a bilinear-group generation algorithm, which on input a security parameter
κ outputs an asymmetric bilinear group BG.

KeyGenR(BG, `), on input BG and vector length ` > 1, outputs a key pair (sk, pk).

SignR(M, sk), given a representative M ∈ (G∗i )` and a secret key sk, outputs a signature
σ for the equivalence class [M ]R.

ChgRepR(M,σ, µ, pk), on input a representative M ∈ (G∗i )` of class [M ]R, a signature σ
on M , a scalar µ and a public key pk, returns an updated message-signature pair
(M ′, σ′), where M ′ = µ ·M is the new representative and σ′ its updated signature.

VerifyR(M,σ, pk) is deterministic and, on input a representative M ∈ (G∗i )`, a signature σ
and a public key pk, outputs 1 if σ is valid for M under pk and 0 otherwise.

VKeyR(sk, pk) is a deterministic algorithm, which given a secret key sk and a public key
pk outputs 1 if the keys are consistent and 0 otherwise. ♦
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BGGenR(1κ): Generate a Type-3 bilinear group BG with order p of bitlength κ.

KeyGenR(BG, `): Given BG and vector length ` > 1, choose (xi)i∈[`]←R (Zp∗)`, set sk← (xi)i∈[`],

pk← (X̂i)i∈[`] = (xiP̂ )i∈[`] and output (sk, pk).

SignR(M, sk): Given a representative M = (Mi)i∈[`] ∈ (G∗1)` of class [M ]R and secret key

sk = (xi)i∈[`], choose y←R Zp∗ and output σ = (Z, Y, Ŷ ) with

Z ← y
∑
i∈[`] xiMi Y ← 1

yP Ŷ ← 1
y P̂

VerifyR(M,σ, pk): Given M = (Mi)i∈[`] ∈ (G∗1)`, σ = (Z, Y, Ŷ ) ∈ G1×G∗1×G∗2 and public key

pk = (X̂i)i∈[`], output 1 if the following hold and 0 otherwise:∏
i∈[`] e(Mi, X̂i) = e(Z, Ŷ ) e(Y, P̂ ) = e(P, Ŷ )

ChgRepR(M,σ, µ, pk): Given representative M = (Mi)i∈[`] ∈ (G∗1)`, σ = (Z, Y, Ŷ ), scalar

µ ∈ Zp∗ and pk, return ⊥ if VerifyR(M,σ, pk) = 0. Otherwise pick ψ←R Zp∗ and return

(µM, σ′) with σ′ ←
(
ψµZ, 1

ψY,
1
ψ Ŷ
)
.

VKeyR(sk, pk): Given sk = (xi)i∈[`] ∈ (Zp∗)` and pk = (X̂i)i∈[`] ∈ (G∗2)`, output 1 if for all

i ∈ [`] : xiP̂ = X̂i and 0 otherwise.

Scheme 1: EUF-CMA-secure construction of an SPS-EQ scheme

An SPS-EQ scheme must satisfy correctness, EUF-CMA security and class-hiding.

Definition 7 (Correctness). An SPS-EQ scheme SPS-EQ on (G∗i )` is correct if for all
κ ∈ N, all ` > 1, all key pairs (sk, pk)← KeyGenR(BGGenR(1κ), `), all messages M ∈ (G∗i )`
and all µ ∈ Zp∗: VKeyR(sk, pk) = 1,

Pr
[
VerifyR(M, SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), µ, pk), pk) = 1

]
= 1 . ♦

In contrast to standard signatures, EUF-CMA security is defined with respect to equiv-
alence classes, i.e., a forgery is a signature on a message from an equivalence class from
which no message has been signed.

Definition 8 (EUF-CMA). An SPS-EQ scheme SPS-EQ on (G∗i )` is existentially unforge-
able under adaptively chosen-message attacks, if for all PPT algorithms A with access to
a signing oracle O, there is a negligible function ε(·) such that:

Pr

 BG← BGGenR(1κ),

(sk, pk)← KeyGenR(BG, `),

(M∗, σ∗)← AO(·,sk)(pk)

:
[M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle O. ♦

Class-hiding is defined in [HS14] and uses the following oracles and a list Q to keep
track of queried messages M .

ORM : Pick a message M ←R (G∗i )`, append it to Q and return M .
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BGGen′R(1κ): Output BG← BGGenR(1κ).

KeyGen′R(BG, `): On input BG and ` > 1, output (sk, pk)← KeyGenR(BG, `+ 2).

Sign′R(M, sk): On input M = (Mi)i∈[`] ∈ (G∗1)` and sk, choose (R1, R2)←R (G∗1)2, compute

τ ← SignR((M,R1, R2), sk) and output σ ← (τ,R1, R2).

Verify′R(M,σ, pk): On input M = (Mi)i∈[`] ∈ (G∗1)`, signature σ ← (τ,R1, R2) and pk, return

VerifyR((M,R1, R2), τ, pk).

ChgRep′R(M,σ, µ, pk): Given M = (Mi)i∈[`] ∈ (G∗1)`, σ ← (τ,R1, R2), µ ∈ Zp∗ and pk,

run ((M̃, R̃1, R̃2), τ̃) ← ChgRepR((M,R1, R2), τ, µ, pk) and output (M̃, σ̃) with σ̃ ←
(τ̃ , R̃1, R̃2) (or ⊥ if ChgRepR output ⊥).

VKey′R(sk, pk): Return VKeyR(sk, pk).

Scheme 2: Standard-model SPS-EQ construction from Scheme 1

ORoR(M, sk, pk, b): Given message M , key pair (sk, pk) and bit b, return ⊥ if M 6∈ Q.
On the first valid call, record M and σ ← SignR(M, sk) and return (M,σ). If later
called on M ′ 6= M , return ⊥; else pick R←R (G∗i )` and µ←R Zp∗, set (M0, σ0) ←
ChgRepR(M,σ, µ, pk) and (M1, σ1)← (R,SignR(R, sk)) and return (Mb, σb).

Definition 9 (Class-hiding). An SPS-EQ scheme SPS-EQ on (G∗i )` is called class-hiding
if for all ` > 1 and PPT adversaries A with oracle access to O ← {ORM ,ORoR(·, sk, pk, b)}
there is a negligible function ε(·) such that

Pr

[
BG← BGGenR(1κ), b←R {0, 1},
(st, sk, pk)←A(BG, `), b∗←AO(st, sk, pk)

:
b∗ = b ∧

VKeyR(sk, pk) = 1

]
− 1

2
≤ ε(κ) .

♦

Fuchsbauer, Hanser and Slamanig [FHS14] present an EUF-CMA-secure scheme, which
we give as Scheme 1, and prove the following.

Theorem 1. Scheme 1 is EUF-CMA secure against generic forgers and class-hiding under
the DDH assumption.

3 New Results on SPS-EQ

In the following, we present the first standard-model construction of SPS-EQ as modeled in
[HS14]. We then introduce new properties to characterize SPS-EQ constructions, strength-
ening the notion of class-hiding. Finally, we show how to turn any SPS-EQ construction
into an SPS construction. This does not only provide a new, efficient standard-model
SPS scheme derived from our SPS-EQ scheme; it also allows us to infer optimality of the
SPS-EQ scheme from [FHS14], (Scheme 1) and the impossibility of basing its EUF-CMA
security on non-interactive assumptions.

3.1 A Standard-Model SPS-EQ Construction

Following the approach by Abe et al. [AGHO11], we construct from scheme SPS-EQ, given
as Scheme 1, an SPS-EQ scheme SPS-EQ′, given as Scheme 2, and prove that it satisfies
EUF-CMA and class-hiding, both under non-interactive assumptions.
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The scheme for `-length messages is simply Scheme 1 with message space (G∗1)`+2,
where before signing a message one appends two random group elements to it. Scheme 2
features constant-size signatures (4 G1 + 1 G2 elements), has public keys of size `+ 2 and
still uses 2 PPEs for verification.

Unforgeability follows from a q-type assumption that states that Scheme 1 for ` = 2
is secure against random-message attacks. (That is, no PPT adversary, given the public
key and signatures on q random messages, can, with non-negligible probability, output a
message-signature pair for an equivalence class that was not signed.) Class-hiding follows
from class-hiding of Scheme 1. Both proofs can be found in Appendix A.

3.2 Perfect Adaption of Signatures

We now introduce new definitions characterizing the output distribution of ChgRepR,
which lead to stronger notions than class-hiding. The latter only guarantees that given
an honestly generated signature σ on M , the output (µM, σ′) of ChgRepR for a random µ
looks like a random message-signature pair. This however does not protect a user against
a signer when the user randomizes a pair obtained from the signer. We thus explicitly
require that an adaption of any valid (not necessarily honestly generated) signature is
distributed like a fresh signature.

Definition 10 (Perfect adaption of signatures). SPS-EQ on (G∗i )` perfectly adapts signa-
tures if for all tuples (sk, pk,M, σ, µ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗

ChgRepR(M,σ, µ, pk) and (µM,SignR(µM, sk)) are identically distributed. ♦

We now show the relation between Def. 10 and 9. The following is proven analogously
to the proof of class-hiding of Scheme 1 in [FHS14].

Proposition 1. Let SPS-EQ be an SPS-EQ scheme on (G∗i )`, ` > 1, with perfect adaption
of signatures. If M ←R [M ]R is computationally indistinguishable from M ←R (G∗i )` then
SPS-EQ is class-hiding.

Corollary 1. If the DDH assumption holds in Gi then any SPS-EQ scheme on (G∗i )`
satisfying Def. 10 is class-hiding (Def. 9).

We note that the converse is not true, as witnessed by Scheme 2: it satisfies class-
hiding, but the discrete logs of (R1, R2) contained in a signature σ have the same ratio as
those of (R̃1, R̃2) from the output of ChgRepR.

Maliciously chosen keys. Whereas Def. 10 strengthens Def. 9 in that it considers ma-
liciously generated signatures, the next definition strengthens this further by considering
maliciously generated public keys. As there might not even be a corresponding signing
key, we cannot compare the outputs of ChgRepR to those of SignR. We therefore require
that ChgRepR outputs a random element that satisfies verification.

Definition 11 (Perfect adaption under malicious keys). SPS-EQ on (G∗i )` perfectly adapts
signatures under malicious keys if for all tuples (pk,M, σ, µ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗ (1)

we have that ChgRepR(M,σ, µ, pk) outputs (µM, σ′) such that σ′ is a random element in
the space of signatures, conditioned on VerifyR(µM, σ′, pk) = 1. ♦
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Proposition 2. Scheme 1, from [FHS14], satisfies both Definitions 10 and 11.

Proof sketch. For any M ∈ (G∗1)` and pk ∈ (G∗2)`, let (xi)i∈[`] be s.t. pk = (xiP̂ )i∈[`].

A signature (Z, Y, Ŷ ) ∈ G1 × G∗1 × G∗2 satisfying VerifyR(M, (Z, Y, Ŷ ), pk) = 1 must be
of the form (Z = y

∑
xiMi, Y = 1

yP, Ŷ = 1
y P̂ ) for some y ∈ Zp∗. ChgRepR outputs

σ′ = (yψ
∑
xiµMi,

1
yψP,

1
yψ P̂ ), which is a random element in G1 × G∗1 × G∗2 satisfying

VerifyR(M,σ′, pk) = 1.

3.3 From SPS-EQ to (Rerandomizable) SPS Schemes

We now show how any EUF-CMA-secure SPS-EQ scheme that signs equivalence classes
of (G∗i )`+1 with ` > 0 can be turned into an EUF-CMA-secure SPS scheme signing vectors
of (G∗i )`. (We note that SPS schemes typically allow messages from G1 and/or G2, which
is preferable when used in combination with Groth-Sahai proofs.) The transformation
works by embedding messages (Mi)i∈[`] ∈ (G∗i )` into (G∗i )`+1 as M ′ = ((Mi)i∈[`], P ) and

signing M ′. To verify a signature σ on a message (Mi)i∈[`] ∈ (G∗i )` under key pk, one
checks whether VerifyR(((Mi)i∈[`], P ), σ, pk) = 1.

What we have done is to allow only one single representative of each class, namely
the one with P as its last element, a procedure we call normalization. EUF-CMA of the
SPS-EQ states that no adversary can produce a signature on a message from an unqueried
class, which therefore implies EUF-CMA of the resulting SPS scheme.

Moreover, from any SPS-EQ with perfect adaption of signatures the above transfor-
mation yields a rerandomizable SPS scheme, since signatures can be rerandomized by
running ChgRepR for µ = 1 (Def. 10 guarantees that this outputs a random signature).
This also means that the lower bounds for SPS over Type-3 groups given by Abe et al. in
[AGHO11, AGO11] carry over to SPS-EQ: any SPS must use at least 2 PPEs for verifica-
tion and must have at least 3 signature elements, which cannot be from the same group.
Moreover, EUF-CMA security of optimal (that is, 3-element-signature) SPS-EQ schemes
cannot be reduced to non-interactive assumptions.

Finally, let us investigate the possibility of SPS-EQ in the Type-1 and Type-2 pairing
setting and implied lower bounds. Class-hiding requires the DDH assumption to hold on
the message space. This excludes the Type-1 setting, while in Type-2 settings the message
space must be (G∗1)`. In [AGOT14] Abe et al. identified the following lower bounds for
Type-2 SPS schemes with messages in G1: 2 PPEs for verification and 3 group elements
for signatures. The above transformation converts a Type-2 SPS-EQ into a Type-2 SPS,
hence these optimality criteria apply to Type-2 SPS-EQ schemes as well.

Implications. Applying the above transformation to the SPS-EQ scheme from [FHS14]
(Scheme 1) yields a perfectly rerandomizable SPS scheme in Type-3 groups with constant-
size signatures of unilateral length-` message vectors and public keys of size `+1. Scheme 1
is optimal as it only uses 2 PPEs and its signatures consist of 3 bilateral group elements.
Hence, by [AGO11] there is no reduction of its EUF-CMA security to a non-interactive
assumption and the generic group model proof in [FHS14] is the best one can achieve.

Applying our transformation to Scheme 2 yields a new standard-model SPS construc-
tion for unilateral length-` message vectors in Type-3 groups. It has constant-size signa-
tures (4 G1 + 1 G2 elements), a public key of size `+ 3 and uses 2 PPEs for verification;
it is therefore almost as efficient as the best known direct SPS construction from non-
interactive assumptions in [AGHO11], whose signatures consist of 3 G1 + 1 G2 elements.
Scheme 2 is partially rerandomizable [AFG+10], whereas the scheme in [AGHO11] is not.
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4 Blind Signatures from SPS-EQ

We first present the abstract model for blind signature schemes. Security is defined by
unforgeability and blindness and was initially studied in [PS00, JLO97] and then strength-
ened in [FS09, SU12].

Definition 12 (Blind signature scheme). A blind signature scheme BS consists of the
following PPT algorithms:

KeyGenBS(1κ), on input κ, returns a key pair (sk, pk). The security parameter κ is also an
(implicit) input to the following algorithms.

(UBS(m, pk),SBS(sk)) are run by a user and a signer, who interact during execution. UBS
gets input a message m and a public key pk and SBS has input a secret key sk. At
the end UBS outputs σ, a signature on m, or ⊥ if the interaction was not successful.

VerifyBS(m,σ, pk) is deterministic and given a message-signature pair (m,σ) and a public
key pk outputs 1 if σ is valid on m under pk and 0 otherwise. ♦

A blind signature scheme BS must satisfy correctness, unforgeability and blindness.

Definition 13 (Correctness). A blind signature scheme BS is correct if for all κ ∈ N,
all (sk, pk) ← KeyGenBS(1κ), all messages m and σ ← (UBS(m, pk),SBS(sk)) it holds that
VerifyBS(m,σ, pk) = 1. ♦

Definition 14 (Unforgeability). BS is unforgeable if for all PPT algorithms A having
access to a signer oracle, there is a negligible function ε(·) such that:

Pr

[
(sk, pk)← KeyGenBS(1κ),

(m∗i , σ
∗
i )
k+1
i=1 ←A(·,SBS(sk))(pk)

:
m∗i 6= m∗j ∀i, j ∈ [k+1], i 6= j ∧

VerifyBS(m∗i , σ
∗
i , pk)=1 ∀i ∈ [k+1]

]
≤ ε(κ) ,

where k is the number of completed interactions with the oracle. ♦

There are several flavors of blindness. The strongest definition is blindness in the
malicious signer model [ANN06, Oka06], which allows the adversary to create pk, whereas
in the honest-signer model the key pair is set up by the experiment. We prove our
construction secure under the stronger notion, which was also considered by the recent
round-optimal standard-model constructions [GRS+11, GG14].

Definition 15 (Blindness). BS is called blind if for all PPT algorithms A with one-time
access to two user oracles, there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, (pk,m0,m1, st)← A(1κ),

st← A(UBS(mb,pk),·)(1),(UBS(m1−b,pk),·)(1)(st),
Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗ ← A(st, σ0, σ1)

: b∗= b

−
1

2
≤ ε(κ) .

♦

4.1 Construction

Our construction uses commitments to the messages and SPS-EQ to sign these commit-
ments and to perform blinding and unblinding. Signing an equivalence class with an
SPS-EQ scheme lets one derive a signature for arbitrary representatives of this class with-
out knowing the private signing key. This concept provides an elegant way to realize a
blind signing process as follows.
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KeyGenBS(1κ): Compute BG ← BGGenR(1κ), (sk, pkR)←R KeyGenR(BG, ` = 2), pick q←R Zp∗

and set Q← qP , Q̂← qP̂ . Output (sk, pk = (pkR, Q, Q̂)).

U (1)
BS (m, pk): Given pk = (pkR, Q, Q̂) and m ∈ Zp, compute BG← BGGenR(1κ). If Q = 0G1

or

e(Q, P̂ ) 6= e(P, Q̂), return ⊥; else choose s←R Zp∗ and r←R Zp s.t. mP + rQ 6= 0G1 and

output

M ← (s(mP + rQ), sP ) st← (BG, pkR, Q,M, r, s)

SBS(M, sk): Given M ∈ (G∗1)2 and secret key sk, output π ← SignR(M, sk).

U (2)
BS (st, π): Parse st as (BG, pkR, Q,M, r, s). If VerifyR(M,π, pkR) = 0 then return ⊥. Run

((mP + rQ, P ), σ)← ChgRepR(M,π, 1s , pkR) and output τ ← (σ, rP, rQ).

VerifyBS(m, τ, pk): Given m ∈ Zp∗, blind signature τ = (σ,R, T ) and pk = (pkR, Q, Q̂), with

Q 6= 0G1
and e(Q, P̂ ) = e(P, Q̂), output 1 if the following holds and 0 otherwise.

VerifyR((mP + T, P ), σ, pkR) = 1 e(T, P̂ ) = e(R, Q̂)

Scheme 3: Blind signature scheme from SPS-EQ

The signer’s key contains an element Q under which the obtainer makes a Pedersen
commitment C = mP + rQ to the message m. (Since the commitment is perfectly hiding,
the signer can be aware of q with Q = qP .) The obtainer then forms a vector (C,P ),
which can be seen as the canonical representative of equivalence class [(C,P )]R. Next, she
picks s←R Zp∗ and moves (C,P ) to a random representative (sC, sP ), which hides C. She
sends (sC, sP ) to the signer and receives an SPS-EQ signature on it, from which she can
derive a signature on the original message (C,P ), which she can publish together with an
opening of C. As verification will check validity of the SPS-EQ signature on a message
ending with P , the unblinding is unambiguous.

Let us now discuss how the user opens the Pedersen commitment C = mP + rQ.
Publishing (m, r) directly would break blindness of the scheme (a signer could link a pair
M = (D,S), received during signing, to a signature by checking whether D = mS+ rqS).
We therefore define a tweaked opening, for which we include Q̂ = qP̂ in addition to Q = qP
in the signer’s public key. We define the opening as (m, rP ), which can be checked via the
pairing equation e(C −mP, P̂ ) = e(rP, Q̂). This opening is still computationally binding
under the co-DHI∗1 assumption (in contrast to standard Pedersen commitments, which
are binding under the discrete-log assumption). Hiding of the commitment still holds
unconditionally, and we will prove the constructed blind-signature scheme secure in the
malicious-signer model without requiring a trusted setup.

The scheme is presented as Scheme 3. (Note that for simplicity the blind signature
contains T = rQ instead of C.) Correctness follows by inspection.

4.2 Security

Theorem 2. If the underlying SPS-EQ scheme is EUF-CMA secure and the co-DHI∗1
assumption holds then Scheme 3 is unforgeable.

The proof, which is given in in Appendix B, follows the intuition that a forger must
either forge an SPS-EQ signature on a new commitment or open a commitment in two
different ways. The reduction has a natural security loss proportional to the number of
signing queries.
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Blindness. For the honest-signer model, blindness follows from the DDH assumption
and perfect adaption of signatures (Def. 10) of the underlying SPS-EQ scheme. Let Q←
qP and let q be part of the signing key, and let (P, rP, sP, tP ) be a DDH instance. In the
blindness game we compute M as (m · sP + q · tP, sP ). When the adversary returns a
signature on M , we must adapt it to the unblinded message—which we cannot do as we
do not know the blinding factor s. By perfect adaption however, an adapted signature is
distributed as a fresh signature on the unblinded message, so, knowing the secret key, we
can compute a signature σ on (m·P+q ·rP, P ) and return the blind signature (σ, rP, q ·rP ).
If the DDH instance was real, i.e., t = s · r, then we perfectly simulated the game; if t was
random then the adversary’s view during issuing was independent of m.

For blindness in the malicious-signer model, we have to deal with two obstacles. (1)
We do not have access to the adversarially generated signing key, meaning we cannot
recompute the signature on the unblinded message. (2) The adversarially generated public-
key values Q, Q̂ do not allow us to embed a DDH instance for blinding and unblinding.

We overcome (1) by using the adversary A itself as a signing oracle by rewinding
it. We first run A to obtain a signature on (s′(mP + rQ), s′P ), which, knowing s′, we
can transform into a signature on (mP + rQ, P ). We then rewind A to the point after
outputting its public key and run it again, this time embedding our challenge. In the
second run we cannot transform the received signature, instead we use the signature from
the first run, which is distributed identically, due to perfect adaption under malicious keys
(Def. 11) of the SPS-EQ scheme.

To deal with the second obstacle, we use an interactive variant of the DDH assumption:
Instead of being given P, rP, sP and having to distinguish rsP from random, the adversary,
for some Q of its choice, is given rP, rQ, sP and must distinguish rsQ from random.

Definition 16 (Assumption 1). Let BGGen be a bilinear-group generator that outputs
BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). We assume that for all PPT algorithms A there
is a negligible function ε(·) such that:

Pr

 b←R {0, 1}, BG = BGGenR(1κ)

(st, Q, Q̂)← A(1κ), r, s, t←R Zp
b∗←A(st, rP, rQ, sP, ((1−b)·t+ b·rs)Q)

:

e(Q, P̂ ) = e(P, Q̂)

b∗ = b

− 1

2
≤ ε(κ) .

♦

Proposition 3. The assumption in Def. 16 holds in generic groups and reaches the opti-
mal, quadratic simulation-error bound.

Theorem 3. If the underlying SPS-EQ scheme has perfect adaption of signatures under
malicious keys and Assumption 1 holds then Scheme 3 is blind.

The proofs can be found in Appendices F and C, respectively.

4.3 Discussion

Basing our scheme on non-interactive assumptions. Fischlin and Schröder [FS10]
show that the unforgeability of a blind-signature scheme cannot be based on non-interactive
hardness assumptions if (1) the scheme has 3 moves or less, (2) its blindness holds statis-
tically and (3) from a transcript one can efficiently decide whether the interaction yielded
a valid blind signature. Our scheme satisfies (1) and (3), whereas blindness only holds
computationally.

They extend their result in [FS10] to computationally blind schemes that meet the
following conditions: (4) One can efficiently check whether a public key has a matching
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secret key; this is the case in our setting because of group-membership tests and pairings.
(5) Blindness needs to hold relative to a forgery oracle. As written in [FS10], this does
e.g. not hold for Abe’s scheme [Abe01], where unforgeability is based on the discrete-log
problem and blindness on the DDH problem.

This is the case in our construction too (as one can forge signatures by solving discrete
logarithms), hence the impossibility result does not apply to our scheme. Our blind sig-
nature construction is black-box from any SPS-EQ with perfect adaption under malicious
keys (Def. 11). However, the only known such scheme is the one from [FHS14], which
is EUF-CMA secure in the generic-group model, that is, it is based on an interactive
assumption. Plugging this scheme into Scheme 3 yields a round-optimal blind signature
scheme with unforgeability under this interactive assumption and co-DHI∗1, and blindness
(under adversarially chosen keys) under Assumption 1 (Def. 16), which is also interactive.

To construct a scheme under non-interactive assumptions, we would thus have to base
blindness on a non-interactive assumption; and find an SPS-EQ scheme satisfying Def. 11
whose unforgeability is proven under a non-interactive assumption.

Efficiency of the construction. When instantiating our blind-signature construction
with the SPS-EQ scheme from [FHS14] (given as Scheme 1), which we showed optimal,
this yields a public key size of 1 G1+3 G2, a communication complexity of 4 G1+1 G2 and
a signature size of 4 G1 + 1 G2 elements. For a 80-bit security setting, a blind signature
has thus 120 Bytes.

The most efficient scheme from standard assumptions is based on DLIN [GG14]. Ignor-
ing the increase of the security parameter due to complexity leveraging, their scheme has
a public key size of 43 G1 elements, communication complexity 18 log2 q+ 41 G1 elements
(where, e.g., we have log2 q = 155 when assuming that the adversary runs in ≤ 280 steps)
and a signature size of 183 G1 elements.

4.4 Round-Optimal Partially Blind Signatures

Partially blind signatures are an extension of blind signatures, where messages contain
common information γ, which is agreed between the user and the signer. This requires
slight modifications to the unforgeability and blindness notions: An adversary breaks
unforgeability if after k signing queries it outputs k + 1 distinct valid message-signature
pairs for the same common information γ∗. In the partial-blindness game m0 and m1 must
have the same common information γ to prevent the adversary from trivially winning the
game. (Formal definitions for partially blind signatures are given in Appendix D.)

Construction. We construct a round-optimal partially blind signature scheme PBS =
(KeyGenPBS, (UPBS,SPBS),VerifyPBS) secure in the standard model from an SPS-EQ scheme
SPS-EQ by modifying Scheme 3 as follows. To include common information γ ∈ Zp∗, SPS-
EQ is set up for ` = 3. On input M ← (s(mP + rQ), sP ), SPBS returns a signature for

M ← (s(mP + rQ), γ · sP, sP ) and U (2)
PBS additionally checks correctness of the included

γ and returns ⊥ if this is not the case. Otherwise, it runs ((mP + rQ, γP, P ), σ) ←
ChgRepR(M,π, 1s , pk) and outputs signature τ ← (σ, rP, rQ) for message m and common
information γ. For this construction we obtain the following, whose proofs are analogous
to those for Scheme 3and thus omitted.

Theorem 4. If SPS-EQ is EUF-CMA secure and the co-DHI∗1 assumption holds, then the
resulting partially blind signature scheme is unforgeable.
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Theorem 5. If SPS-EQ has perfect adaption under malicious keys and Assumption 1
holds, then the resulting partially blind signature scheme is partially blind.

5 One-Show Anonymous Credentials from SPS-EQ

Baldimtsi and Lysyanskaya [BL13a] introduced blind signatures with attributes and show
that they directly yield a one-show anonymous credential system in the vein of Brands
[Bra00]. In contrast to Brands’ original construction, their construction relies on a prov-
ably secure three-move blind signature scheme (in the ROM). In this section we show how
to construct two-move blind signatures on message vectors, which straightforwardly yield
anonymous one-show credentials that are secure in the standard model.

5.1 Blind Signatures on Message Vectors

Our construction BSV of round-optimal blind signatures on message vectors m ∈ Zn
p

simply replaces the Pedersen commitment mP + rQ in Scheme 3 with a generalized
Pedersen commitment

∑
i∈[n]miPi + rQ. Thus, KeyGenBSV, on input 1κ, n, additionally

outputs generators (Pi)i∈[n] and VerifyBSV(m, (σ,R, T ), pk) checks VerifyR((
∑

i∈[n]miPi +

T, P ), σ, pkR) = 1 and e(T, P̂ ) = e(R, Q̂). The construction is presented as Scheme 4 in
Appendix E (p. 29). We can prove the following, where the correctness of the scheme,
again, follows by inspection.

Theorem 6. If the underlying SPS-EQ scheme is EUF-CMA secure and the co-DHI∗1
assumption holds then Scheme 4 is unforgeable.

Proof. The proof is analogous to the unforgeability proof of Scheme 3, except that for
Type-2 adversaries, the reduction obtains 1

qP from the relation

(r∗j − r∗i )P =
(
∑
`∈[n]m

∗
i,`p`−

∑
`∈[n]m

∗
j,`p`)

q P ,

implied by the following: M∗i −M∗j =
(∑

`∈[n]m
∗
i,`P` −

∑
`∈[n]m

∗
j,`P`

)
+ (r∗i − r∗j )Q =(∑

`∈[n]m
∗
i,`p` −

∑
`∈[n]m

∗
j,`p`

)
P + (r∗i − r∗j )Q.

Theorem 7. If the underlying SPS-EQ scheme has perfect adaption under malicious keys
and Assumption 1 holds then Scheme 4 is blind.

The proof is identical to the proof for Scheme 3 and thus omitted.

5.2 Anonymous Credentials Light

The intuition behind our construction is comparable to [BL13a], which roughly works as
follows. In the registration phase, a user registers (once) a generalized Pedersen commit-
ment C to her attributes and gives a zero-knowledge (ZK) proof of the opening (some
attributes may be opened and some may remain concealed). In the preparation and
validation phase, the user engages in a blind-signature-with-attributes protocol for some
message m (which is considered the credential serial number) and another commitment C ′.
C ′ is a so-called combined commitment obtained from C and a second credential-specific
commitment provided by the user. Finally, the credential is the user output of a blind-
signature-with-attributes protocol resulting in a signature on message m and a so-called
blinded Pedersen commitment C ′′. The latter contains the same attributes as C, but is
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unlinkable to C and C ′. Showing a credential amounts to presenting C ′′ along with the
blind signature and proving in ZK a desired relation about attributes within C ′′.

Our construction combines Scheme 4 with efficient ZK proofs and is conceptually
simpler than the one in [BL13a]. For issuing, the user sends the issuer a blinded version
M ← (sC, sP ) of a commitment C to the user’s attributes (M corresponds to the blinded
generalized Pedersen commitment in [BL13a]). In addition, the user engages in a ZK
proof (denoted PoK) proving knowledge of an opening of C (potentially revealing some of
the committed attributes). The user obtains a BSV-signature π on M and turns it into
a blind signature σ for commitment C by running ((C,P ), σ) ← ChgRepR(M,π, 1s , pk).
The credential consists of C, σ and the randomness r used to produce the commitment.
It is showed by sending C and σ and proving in ZK a desired relation about attributes
within C.

For ease of presentation, we only consider selective attribute disclosure below. We note
that proofs for a rich class of relations [CDS94, CM99, BS02] w.r.t. generalized Pederson
commitments, as used by our scheme, could be used instead. Henceforth, we denote by S
the index set of attributes to be shown and by U those to be withheld. During a showing,
a ZK proof of knowledge for a commitment C =

∑
i∈[n]miPi + rQ to attributes (mi)i∈[n]

amounts to proving

PoKP

{(
(αj)j∈U , β

)
: C =

∑
i∈SmiPi +

∑
j∈U αjPj + βQ

}
. (2)

The proof for a blinded commitment (A,B) = (sC, sP ) during the obtain phase is done
as follows.

PoKBP

{(
(αj)j∈U , β, γ

)
:

A =
∑

i∈SmiHi +
∑

j∈U αjHj + βHQ ∧∧
i∈[n](Hi = γPi) ∧HQ = γQ ∧B = γP

}
. (3)

Here the representation is with respect to bases Hi = sPi, HQ = sQ, which are published
and guaranteed to be correctly formed by PoKBP.2

Construction. As we combine Scheme 4 with ZK proofs, we need the following concep-
tual modifications. The signature τ ← (σ,R, T ) reduces to τ ← σ, since the user provides
a ZK-PoK proving knowledge of the randomness r in C. Moreover, verification takes C
instead of m as verifiers have only access to the commitment. Consequently, VerifyBSV of
Scheme 4 only runs VerifyR.

Setup. The issuer runs (sk, pk)← KeyGenBSV(1κ, n), where n is the number of attributes
in the system, and publishes pk as her public key.

Issuing. A user with attribute values m runs (M, st)← U (1)
BSV(m, pk; (s, r)) (where (s, r) is

the chosen randomness), sends the blinded commitment M = (sC, sP ) to the issuer and
gives a proof PoKBP from (3) that M commits to m (where the sets U and S depend on
the application). The issuer returns π ← SBSV(M, sk) and after running σ ← U (2)

BSV(st, π)
(the outputs rP and rQ are not needed), the user holds a credential (C, σ, r).

Showing. Assume a user with credential (C, σ, r) to the attributes m = (mi)i∈[n] wants
to conduct a selective showing of attributes with a verifier who holds the issuer’s public
key pk. They engage in a proof PoKP from (2) and the verifier additionally checks the

2In the blindness game, given B = sP from a DDH instance, these bases are simulated as Hj ← pjB
and HQ ← qB. We can even prove security in the malicious-signer model by extending the assumption
from Def. 16: in addition to Q the adversary outputs (Pi)i∈[n] and receives (sPi)i∈[n] and sQ.

16



signature for the credential by running VerifyBSV(C, σ, pk). If both verifications succeed,
the verifier accepts the showing.

Let us finally note that there is no formal security model for one-show credentials. Theorem
2 in [BL13a] informally states that a secure commitment scheme together with a blind
signature scheme with attributes implies a one-show credential system. Using the same
argumentation as [BL13a], our construction yields a one-show credential system in the
standard model.
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A Security of Scheme 2

In order to prove the EUF-CMA security of Scheme 2, we introduce the following non-
interactive q-type assumption. It is derived from Scheme 1 for ` = 2, essentially stating
that Scheme 1 is secure against random-message attacks.

Definition 17 (Assumption 2). Given a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ),
(V̂1, V̂2)←R (G∗2)2 and q instances (Nj1, Nj2, Zj , Yj , Ŷj) ∈ (G∗1)2 ×G1 ×G∗1 ×G∗2 which are
independently uniformly random conditioned on

e(Nj1, V̂1) · e(Nj2, V̂2) = e(Zj , Ŷj) ∧ e(Yj , P̂ ) = e(P, Ŷj) ,

it is hard to output (N∗1 , N
∗
2 , Z

∗, Y ∗, Ŷ ∗) ∈ (G∗1)2 × G1 × G∗1 × G∗2 such that (N∗1 , N
∗
2 ) 6=

k · (Nj1, Nj2) for all k ∈ Zp∗, j ∈ [q], and

e(N∗1 , V̂1) · e(N∗2 , V̂2) = e(Z∗, Ŷ ∗) ∧ e(Y ∗, P̂ ) = e(P, Ŷ ∗) . ♦

Theorem 1, proven in [FHS14], implies that Assumption 2 holds in the generic group
model. When reconsidering the simulation-error analysis in the proof, we see that the
degree of all involved polynomials is constant. Therefore, a generic adversary making

O(q) queries to the group oracles has probability O( q
2

p ) of breaking the assumption and
thus the assumption reaches the optimal simulation error bound.

We are now going to prove the unforgeability and the class-hiding property of Scheme 2.
Correctness follows from correctness of Scheme 1.

Theorem 8. If Assumption 2 holds then Scheme 2 is an EUF-CMA-secure SPS-EQ
scheme.

Proof. We assume that there is an efficient adversary A against the unforgeability of
Scheme 2 that makes q′ signing queries and use A to build an efficient adversary B against
Assumption 2 for q = q′.
B is given BG = (p,G1,G2,GT , e, P, P̂ ), (V̂1, V̂2) ∈ (G∗2)2 and instances (Nj1, Nj2, Zj ,

Yj , Ŷj) for j ∈ [q]. For all i ∈ [`], B chooses ai, bi←R Zp and computes X̂i ← aiV̂1 + biV̂2. It
sets X̂`+1 ← V̂1, X̂`+2 ← V̂2, pk ← (X̂i)i∈[`+2] and runs AO(·,sk)(pk). With overwhelming
probability all elements X1, . . . , X`+2 are non-trivial, in which case pk is distributed as a
key in Scheme 2.

Next, B simulates A’s queries to its signing oracle O(·, sk) as follows. On the jth
signing query for message Mj = (Mji)i∈[`] ∈ (G∗1)`, B computes

Rj1 ← Nj1 −
∑

i∈[`] aiMji and Rj2 ← Nj2 −
∑

i∈[`] biMji (4)

and returns the signature σj ← ((Zj , Yj , Ŷj), Rj1, Rj2) to A. Note that the elements
Rj1 and Rj2 are random, since Nj1 and Nj2 from the instance are random. (There is
a small simulation error, as Nj1 is uniform in G∗1, whereas Rj1 is uniformly random in
G∗1 \ {−

∑
i∈[`] aiMji}, but this error is negligible.) Moreover, they perfectly mask the

scalars ai and bi.
Observe that the simulated signature satisfies the first verification equation:∏
i∈[`] e(Mji, X̂i) e(Rj1, X̂`+1) e(Rj2, X̂`+2) =∏

i∈[`] e(Mji, aiV̂1 + biV̂2) e(Nj1 −
∑

i∈[`] aiMji, V̂1) e(Nj2 −
∑

i∈[`] biMji, V̂2) =∏
e(Mji, aiV̂1)

∏
e(Mji, biV̂2) e(Nj1, V̂1) e(Nj2, V̂2)

∏
e(aiMji, V̂1)

−1 ∏ e(biMji, V̂2)
−1

= e(Nj1, V̂1) e(Nj2, V̂2) = e(Zj , Ŷj) .
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Since (Yj , Ŷj) from the instance are uniformly random in G∗1×G∗2 conditioned on e(Yj , P̂ ) =
e(P, Ŷj) and together with (Mji)i∈[`], (Rj1, Rj2) and (X̂i)i∈[`+2], they uniquely deter-

mine Zj as per the above equation, this shows that (Zj , Yj , Ŷj) is a correctly distributed
Scheme-1 signature. Furthermore, with overwhelming probability we have that Rj1 6= 0G1

and Rj2 6= 0G1 , in which case the signatures σj = ((Zj , Yj , Ŷj), Rj1, Rj2) are perfectly
simulated.

If A outputs a forgery (M∗, σ∗) = ((M∗i )i∈[`], (Z
∗, Y ∗, Ŷ ∗, R∗1, R

∗
2)) then B computes

N∗1 ← R∗1 +
∑

i∈[`] aiM
∗
i and N∗2 ← R∗2 +

∑
i∈[`] biM

∗
i (5)

and returns (N∗1 , N
∗
2 , Z

∗, Y ∗, Ŷ ∗).
In order to show that B’s output breaks Assumption 2, we need to show the following:

(1) (N∗1 , N
∗
2 , Z

∗, Y ∗, Ŷ ∗) satisfies the last pair of equations in Def. 17; (2) (N∗1 , N
∗
2 ) ∈ (G∗1)2

and (3) (N∗1 , N
∗
2 ) 6= µ · (Nj1, Nj2) for all µ ∈ Zp∗, j ∈ [q].

1) We have:

e(N∗1 , V̂1) e(N
∗
2 , V̂2)

(5)
= e(

∑
i∈[`] aiM

∗
i , V̂1) e(

∑
i∈[`] biM

∗
i , V̂2) e(R

∗
1, V̂1) e(R

∗
2, V̂2)

=
∏
i∈[`] e(M

∗
i , aiV̂i)e(M

∗
i , biV̂2) e(R

∗
1, V̂1) e(R

∗
2, V̂2)

=
∏
i∈[`] e(M

∗
i , X̂i) e(R

∗
1, V̂1) e(R

∗
2, V̂2) = e(Z∗, Ŷ ∗) ,

where the last equation follows from A outputting a valid signature. Since for the same
reason, e(Y ∗, P̂ ) = e(P, Ŷ ∗), we have that B’s output satisfies the required equations.
(Note also that Y ∗ 6= 0 and Ŷ ∗ 6= 0 when A’s output is valid.)

2) The only information about (ai)i∈[`] and (bi)i∈[`] revealed to A is

xi = ai · v1 + bi · v2 , (6)

where xi, v1 and v2 are s.t. X̂i = xiP̂ , V̂1 = v1P̂ and V̂2 = v2P̂ , for all i ∈ [`].
Since M∗i 6= 0 for all i ∈ [`], the probability that either N∗1 = R∗1 +

∑
i∈[`] aiM

∗
i = 0 or

N∗2 = R∗2 +
∑

i∈[`] biM
∗
i = 0 is therefore negligible.

3) Since M∗ is a valid forgery, we have that for all µ ∈ Z∗p and j ∈ [q]: M∗ 6= µ ·Mj .
The reduction could however fail if for some µ ∈ Zp and j ∈ [q], we had (N∗1 , N

∗
2 ) =

µ · (Nj1, Nj2), that is
n∗1 · nj2 = n∗2 · nj1 , (7)

where we let lower-case letters denote the logarithms of the corresponding upper-case
letters to the basis P . We now show that even for an unbounded adversary, the probability
that this happens is negligible.
A has no information about (ai)i∈[`], however, by (6), each ai determines bi as

bi = xiv
−1
2 − v1v

−1
2 ai .

Together with (4) and (5) this means that Equation (7) can be written as(
r∗1 +

∑
i∈[`] aim

∗
i

)
·
(
rj2 +

∑
i∈[`] xiv

−1
2 mji − v1v−12

∑
i∈[`] aimji

)
=
(
r∗2 +

∑
i∈[`] xiv

−1
2 m∗i − v1v

−1
2

∑
i∈[`] aim

∗
i

)
·
(
rj1 +

∑
i∈[`] aimji

)
.
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This can be rewritten as (note that the terms containing products of ai’s cancel):∑
i∈[`]

(
− r∗1v1v

−1
2 mji + rj2m

∗
i +

∑
k∈[`] xkv

−1
2 mjkm

∗
i

+ rj1v1v
−1
2 m∗i − r∗2mji −

∑
k∈[`] xkv

−1
2 mjim

∗
k

)
ai

= −r∗1
(
rj2 +

∑
i∈[`] xiv

−1
2 mji

)
+
(
r∗2 +

∑
i∈[`] xiv

−1
2 m∗i

)
rj1 .

Since A has no knowledge of the ai’s, A can only make the equation be satisfied with
non-negligible probability by setting all coefficients of the ai’s to 0. That is, for all i ∈ [`]:(

rj2 + rj1v1v
−1
2 +

∑
k xkv

−1
2 mjk − xiv−12 mji

)
m∗i −

∑
k 6=i xkv

−1
2 mjim

∗
k

=
(
r∗1v1v

−1
2 + r∗2

)
mji . (8)

We now argue that the above system of ` linear equations in the variables (m∗1, . . . ,m
∗
` ) is

regular with overwhelming probability. Indeed, A can choose the mjk’s contained in the
coefficients to its liking, however, it only learns rj2 afterward, which is uniformly random
(determined via the random Nj2 from the instance). Thus to the matrix determined by
A’s choices a (the same) random element is added to each entry in the diagonal; that is, a
random multiple of the unity matrix I is added. It follows from the following claim that
this makes the matrix regular with overwhelming probability.

Claim 1. Let A ∈ Z`×`p . Then A+ηI for η←R Zp is regular with overwhelming probability.

Proof. Consider the Schur decomposition of A, that is, a regular matrix Q and an upper
triangular matrix U , such that A = QUQ−1. A is regular if all diagonal elements of U
are non-zero. A+ ηI = Q(U + ηI)Q−1 is regular if (U + ηI) has no zeros in the diagonal,
which holds with overwhelming probability since the probability that −η occurs in the
diagonal of U is negligible.

Let r∗1, r
∗
2,mj1, . . . ,mj` be arbitrary. We then argue that the only assignment to m∗ =

(m∗1, . . . ,m
∗
` ) that satisfies the equation system in (8) is a multiple of mj . This however

means that the adversary did not win the unforgeability game.
Let λ = (r∗1v1v

−1
2 +r∗2)(rj2+rj1v1v

−1
2 )−1. Then m∗i ← λmji, for all i ∈ [`], is a solution

to equation system in (8):(
rj2 + rj1v1v

−1
2 +

∑
k xkv

−1
2 mjk − xiv−12 mji

)
λmji −

∑
k 6=i xkv

−1
2 mjiλmjk

=
(
rj2 + rj1v1v

−1
2

)
λmji =

(
r∗1v1v

−1
2 + r∗2

)
mji .

Since the system is regular with overwhelming probability, this is the only solution,
meaning in this case the adversary did not win. With overwhelming probability B thus
returns a pair (N∗1 , N

∗
2 ), which is not the multiple of any pair (Nj1, Nj2) from the given in-

stance. As we have constructed from an adversary A breaking unforgeability of Scheme 2
an algorithm B which breaks Assumption 1 with almost the same probability, this com-
pletes the proof.

Theorem 9. If Scheme 1 is class-hiding then Scheme 2 is class-hiding.

Proof. We assume that there is an efficient adversary A against class-hiding of Scheme 2
with message length ` and use A to build an efficient adversary B against class-hiding of
Scheme 1 with length `+ 2.
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B interacts with a class-hiding challenger C, which creates the bilinear group BG and
runs B on (BG, ` + 2). B runs (stA, sk = (xi)i∈[`+2], pk = (X̂i)i∈[`+2]) ← A(BG, `) and

forwards this to C. When C then runs B on (stA, sk, pk), B runs b∗ ← AO(stA, sk, pk) and
simulates A’s oracles as follows.

On A’s jth call to ORM , B calls its ORM oracle to receive Mj = (Mji)i∈[`+2]. B returns
(Mji)i∈[`] to A and records (Mji)i∈[`+2].

When A calls the ORoR oracle for message Mj , B looks for the first occurrence of Mj in
its record, retrieves (Mji)i∈[`+2] and submits it to its ORoR oracle. (If no entry in B’s record
starts with (Mj1, . . . ,Mj`) then B returns ⊥.) Upon receiving (M ′ = (M ′i)i∈[`+2], σ

′), B
returns ((M ′i)i∈[`], (σ

′,M ′`+1,M
′
`+2)) to A. Finally, B forwards A’s output b∗ to C.

The simulation is perfect: On A’s first valid call Mj = (Mji)i∈[`] to ORoR, it receives
M = Mj and σ = (σ′,M`+1,M`+2), which is distributed as (M, Sign′R(M, sk)), since M`+1,
M`+2 are uniformly random elements (picked by ORM ) and σ is a signature on (Mi)i∈[`+2],

computed by ORoR.
Moreover, if C’s bit b = 0 then at all further queries of M to ORoR, B receives

((M ′i)i∈[`+2], σ
′) ← ChgRepR((Mi)i∈[`+2], σ, µ, pk) for µ←R Zp∗, and sends ((M ′i)i∈[`], (σ

′,
M ′`+1,M

′
`+2)) to A, which is distributed as the output of ChgRep′R((Mi)i∈[`], (σ,Mi+1,

Mi+2), µ, pk), and thus what A expects to receive.
Finally, if C’s bit b = 1 then at all further queries of M to ORoR, B receives ((Ri)i∈[`+2],

σ′) where Ri←R (G∗i )`+2 and σ′ ← SignR(R, sk), and returns ((Ri)i∈[`], (σ
′, R`+1, R`+2)) to

A, which is distributed as R←R (G∗i )` and Sign′R((Ri)i∈[`], sk), and thus what A expects to
receive. B thus wins the class-hiding game with the same probability as A does.

B Proof of Theorem 2

To prove unforgeability of Scheme 3, assume there is an efficient adversary A winning the
unforgeability game with non-negligible probability ε(κ). We then construct an adversary
B that uses A to either break the EUF-CMA security of the underlying SPS-EQ scheme
or to break the binding property of the underlying commitment scheme, that is, break
co-DHI∗1.
B first guesses A’s strategy, i.e., the type of forgery A will conduct. We call a forgery

Type 1 if for A’s output (mi, τi = (σi, Ri, Ti))i∈[k], we have miP + Ti 6= mjP + Tj for all
i 6= j; otherwise we call it Type 2.

Type 1: B usesA to break EUF-CMA of the SPS-EQ scheme with ` = 2. B obtains pkR
from its challenger C, chooses q←R Z∗q , computes (Q, Q̂)← q(P, P̂ ), sets pk← (pkR, Q, Q̂)
and runs A(pk). Whenever A queries the (·,SBS(·, sk)) oracle with message M , B queries
its SPS-EQ signing oracle O(·, sk) on M and forwards the reply to A.

If A outputs ((m1, τ1), . . . , (mk+1, τk+1)) with τi = (σi, Ri, Ti) after k successful queries
to (·,SBS(·, sk)) such that mi 6= mj ∀i, j ∈ [k + 1], i 6= j and VerifyBS(mi, τi, pk) = 1 ∀ i ∈
[k + 1] then B aborts if for some i 6= j ∈ [k + 1]: miP + Ti = mjP + Tj (we have a Type
2 forgery).

Otherwise, we have (miP+Ti, P ) 6= (mjP+Tj , P ) for all i, j ∈ [k+1], i 6= j. A has made
k signing queries, but ((miP +Ti, P ), σi)i∈[k+1] are k+ 1 valid SPS-EQ message-signature
pairs for distinct classes. Consequently, there must exist i∗ ∈ [k+1] such that the message-
signature pair ((mi∗P + Ti∗ , P ), σi∗) represents a class that was not queried to C’s signing
oracle. Hence, one of these k + 1 message-signature pairs enables B to break the EUF-
CMA security of the SPS-EQ scheme. Due to the blindness, however, B cannot link the
pairs to the messages Mi = (si(miP + riQ), siP ) which A has queried to the (·,SBS(·, sk))
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oracle. Therefore B guesses an index i∗ ∈ [k + 1] and outputs ((mi∗P + Ti∗ , P ), σi∗) as a
forgery to C. If A wins the unforgeability game then B breaks the EUF-CMA security of
the underlying SPS-EQ scheme incurring a polynomial loss of 1/(k + 1).

Type 2: B obtains an instance (BG, P, P̂ , Q = qP, Q̂ = qP̂ ) of the co-DHI∗1 problem,
and its goal is to compute q−1P . It computes (sk, pkR)← KeyGenR(BG, ` = 2), and runs
A on pk← (pkR, Q, Q̂) simulating its (·,SBS(·, sk)) oracle as in the real game using sk.

If A outputs (mi, τi = (σi, Ri, Ti))i∈[k+1] after k successful oracle queries such that
mi 6= mj for all 1 ≤ i < j ≤ k + 1 and VerifyBS(mi, τi, pk) = 1 for all i ∈ [k + 1], then B
aborts if miP + Ti 6= mjP + Tj for all i, j ∈ [k + 1] (we have a Type 1 forgery).

Otherwise, let i, j ∈ [k + 1] be such that miP + Ti = mjP + Tj (∗). From the second
equation in VerifyBS, since Q̂ = qP̂ , we get Ti = qRi and Tj = qRj . Together with (∗) we
have miP + qRi = mjP + qRj , that is (mi − mj)P = q(Rj − Ri), and since mi 6= mj :
q−1P = (mi −mj)

−1(Rj −Ri). The the latter, which B can efficiently compute, is thus a
solution to the co-DHI∗1 problem.

C Proof of Theorem 3

In the proof of blindness of our blind signature scheme, we will use the following implication
of Def. 11:

Corollary 2. Let SPS-EQ be an SPS-EQ scheme on (G∗i )` satisfying Def. 11. If for a tuple
(pk,M, s0, s1, σ0, σ1) we have VerifyR(s0M,σ0, pk) = 1 and VerifyR(s1M,σ1, pk) = 1 then
ChgRepR(s0M,σ0, 1/s0, pk) and ChgRepR(s1M,σ1, 1/s1, pk) are identically distributed.

Proof. The statement follows, since for b = 0, 1 the tuple (pk, sbM,σb, 1/sb) satisfies (1)
(in Def. 11), and for (M,σb) ← ChgRepR(sbM,σb, 1/sb, pk), by Def. 11 σb is random
conditioned on VerifyR(M,σb, pk) = 1. Thus σ0 and σ1 are identically distributed.

Proof of Theorem 3. Let Expblind be the blindness game (with adversarially/maliciously
generated public keys) defined in Def. 15. Consider Expblind

A,BS with BS being Scheme 3 and
any PPT adversary A, which we assume w.l.o.g. makes both calls to its (UBS(mb, pk), ·)
oracle. Written out, we have:

Expblind
A,BS:

b←R {0, 1}
((pkR, Q, Q̂),m0,m1, stA)← A(1κ)

BG← BGGenR(1κ)

If Q = 0G1 or e(Q, P̂ ) 6= e(P, Q̂) then M0,M1 ← ⊥
Else

r0, s0←R Zp ; r1, s1←R Zp
M0 ← (s0(m0P + r0Q), s0P ) ; M1 ← (s1(m1P + r1Q), s1P )

(πb, stA)← A(stA,Mb) ; (π1−b, stA)← A(stA,M1−b)

If (M0,M1) = (⊥,⊥) or VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0

then b∗ ← A(stA,⊥,⊥)

Else

(N0, σ0)← ChgRepR(M0, π0, 1/s0, pk) ; (N1, σ1)← ChgRepR(M1, π1, 1/s1, pk)

b∗ ← A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b)
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We have slightly modified the game, in that (for i = 0, 1) we allowed si to also take the
value 0 and ri to be such that miP + riQ = 0G1 . However, these events only happen with
negligible probability.

We first argue that if A outputs an inconsistent public key or if π0 or π1 do not
pass VerifyR then the bit b is information-theoretically hidden from A. This is because
if one of the above is the case then in the second phase A receives (⊥,⊥), and r0, r1
information-theoretically hide m0,m1, and thus the bit b is also information-theoretically
hidden, meaning Pr[Expblind

A,BS = 1] = 1/2.
We can now assume w.l.o.g. that A outputs a valid pk and π0 and π1 verify: If A was

not like this, we could construct a well-behaving adversary A′ from A: A′ simulates A
and whenever A misbehaves (which A′ can efficiently detect), it aborts the simulation and
outputs a random bit. By the above, A′ wins with the same probability as A. With this
assumption on A the experiment simplifies thus to:

Expblind-non-⊥
A,BS :

((pkR, Q, Q̂),m0,m1, stA)← A(1κ)

BG← BGGenR(1κ)

r0, r1←R Zp (∗)
s0, s1←R Zp ; b←R {0, 1}
M0 ← (s0(m0P + r0Q), s0P ) ; M1 ← (s1(m1P + r1Q), s1P )

(πb, stA)← A(stA,Mb) ; (π1−b, stA)← A(stA,M1−b)

(N0, σ0)← ChgRepR(M0, π0, 1/s0, pk) ; (N1, σ1)← ChgRepR(M1, π1, 1/s1, pk)

b∗ ← A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b)

Execution 1. Now we do the following: We run Expblind-non-⊥ with A, in particular

choosing r0, r1, s
(1)
0 , s

(1)
1 and b(1), constructing

M
(1)
0 ←

(
s
(1)
0 (m0P + r0Q), s

(1)
0 P

)
, M

(1)
1 ←

(
s
(1)
1 (m1P + r1Q), s

(1)
1 P

)
and running A on M

(1)

b(1)
and then on M

(1)

1−b(1) to obtain signatures π
(1)
0 , π

(1)
1 . Then we

rewind the experiment to the point (∗) and run it again. We choose independent uniform

random s
(2)
0 , s

(2)
1 ←R Zp, b(2)←R {0, 1} (but use the same r0, r1 as in the first run), set

M
(2)
0 ←

(
s
(2)
0 (m0P + r0Q), s

(2)
0 P

)
, M

(2)
1 ←

(
s
(2)
1 (m1P + r1Q), s

(2)
1 P

)
,

run A on M
(2)

b(2)
and then on M

(2)

1−b(2) to obtain signatures π
(2)
0 , π

(2)
1 , and finish the experi-

ment: For i = 0, 1 we compute

(N
(2)
i , σ

(2)
i )← ChgRepR

(
M

(2)
i , π

(2)
i , 1/s

(2)
i , pk

)
,

run b∗ ← A(stA, (σ
(2)
0 , r0P, r0Q), (σ

(2)
1 , r1P, r1Q)) , (9)

and return (b∗ = b(2)). Since the second run simply constitutes an independent run
of A we have that the probability of returning 1 is precisely Pr[Expblind-non-⊥

A,BS = 1] =

Pr[Expblind
A,BS = 1] (by our assumption on A).
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Execution 2. We now introduce a modification. We proceed as in Execution 1, but
instead of (9), we compute for i = 0, 1:

(N
(1)
i , σ

(1)
i )← ChgRepR

(
M

(1)
i , π

(1)
i , 1/s

(1)
i , pk

)
,

run b∗ ← A(stA, (σ
(1)
0 , r0P, r0Q), (σ

(1)
1 , r1P, r1Q)) , (10)

and return (b∗ = b(2)). That is, we use the signatures π
(1)
0 , π

(1)
1 from the first run, adapt

them to signatures on N
(1)
i = (miP + riQ,P ) = N

(2)
i and give them to A as part of our

blind signatures. We now argue that the winning probability of the adversary does not
change. For i = 0, 1 we have the following. Since by assumption we have

VerifyR
(
s
(1)
i · (miP + riQ,P ), π

(1)
i , pk

)
= 1 and

VerifyR
(
s
(2)
i · (miP + riQ,P ), π

(2)
i , pk

)
= 1 ,

the tuple
(
pk, (miP + riQ,P ), s

(1)
i , s

(2)
i , π

(1)
i , π

(2)
i

)
satisfies the premise of Corollary 2 and

therefore the outputs σ
(1)
i and σ

(2)
i of ChgRepR(M

(1)
i , π

(1)
i , 1/s

(1)
i , pk) and ChgRepR(M

(2)
i ,

π
(2)
i , 1/s

(2)
i , pk), resp., are identically distributed. Therefore Executions 1 and 2 are iden-

tically distributed and the probability that after Execution 2 we have (b∗ = b(2)) is
Pr[Expblind

A,BS = 1].
Let us write down Execution 2:

((pkR, Q, Q̂),m0,m1, stA)← A(1κ)

BG← BGGenR(1κ)

r0, r1←R Zp (∗)

s
(1)
0 , s

(1)
1 ←R Zp ; b(1)←R {0, 1} s

(2)
0 , s

(2)
1 ←R Zp ; b(2)←R {0, 1}

M
(1)
0 ←

(
s
(1)
0 (m0P + r0Q), s

(1)
0 P

)
M

(2)
0 ←

(
s
(2)
0 (m0P + r0Q), s

(2)
0 P

)
M

(1)
1 ←

(
s
(1)
1 (m1P + r1Q), s

(1)
1 P

)
M

(2)
1 ←

(
s
(2)
1 (m1P + r1Q), s

(2)
1 P

)
(π

(1)

b(1)
, st′A)← A(stA,M

(1)

b(1)
) (π

(2)

b(2)
, stA)← A(stA,M

(2)

b(2)
)

(π
(1)

1−b(1) , st
′
A)← A(stA,M

(1)

1−b(1)) (π
(2)

1−b(2) , stA)← A(stA,M
(2)

1−b(2))

(N0, σ0)←ChgRepR(M
(1)
0 , π

(1)
0 , 1/s

(1)
0 , pk)

(N1, σ1)←ChgRepR(M
(1)
1 , π

(1)
1 , 1/s

(1)
1 , pk)

b∗ ← A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b(2))

Execution 3. We define another variant, where in Execution 2 we replace the two lines
marked with ‖ by

t0←R Zp ; M
(2)
0 ←

(
s
(2)
0 m0P + t0Q, s

(2)
0 P

)
M

(2)
1 ←

(
s
(2)
1 m1P + s

(2)
1 r1Q, s

(2)
1 P

)
that is, in the definition of M

(2)
0 we replaced the value s

(2)
0 r0 with a random element t0.

Execution 4. Our final execution also replaces s
(2)
1 r1 in the definition of M

(2)
1 with a

random element t1. That is, it is defined as Execution 2 above, except with the lines
marked with ‖ replaced by the following:
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t0←R Zp ; M
(2)
0 ←

(
s
(2)
0 m0P + t0Q, s

(2)
0 P

)
t1←R Zp ; M

(2)
1 ←

(
s
(2)
1 m1P + t1Q, s

(2)
1 P

)
Claim 2. If Assumption 1 (Def. 16) holds then Executions 2 and 3 are indistinguishable;
likewise, Executions 3 and 4 are indistinguishable.

Proof. Assume that there exists an adversary A, for whom the probability that (b∗ = b(2))
is noticeably different in Executions 2 and 3. Then we construct an adversary B against
the Assumption 1 as follows:

On input 1κ, B runs ((pkR, Q, Q̂),m0,m1, stA)← A(1κ) and outputs

(stB ← (pkR,m0,m1, stA), Q, Q̂) ;

B then receives a challenge (rP, rQ, sP, tQ) and needs to decide whether t = rs.

B simulates Execution 2 with A, except that it implicitly sets r0 ← r and s
(2)
0 ← s as well

as s
(2)
0 r0 ← t from the assumption. B’s output is (b∗ = b(2)). If t = rs then B simulated

Execution 2, whereas if t is uniformly random, it simulated Execution 3. In particular,
after receiving the challenge, B runs as follows (which shows that the simulation can be
done using the challenge, which we underline):

B
(
stB = (pkR,m0,m1, stA), rP, rQ, sP, tQ

)
:

r1←R Zp (∗)
s
(1)
0 , s

(1)
1 ←R Zp ; b(1)←R {0, 1}

M
(1)
0 ←

(
s
(1)
0 (m0P + (rQ)), s

(1)
0 P

)
; M

(1)
1 ←

(
s
(1)
1 (m1P + r1Q), s

(1)
1 P

)
(π

(1)

b(1)
, st′A)← A(stA,M

(1)

b(1)
) ; (π

(1)

1−b(1) , st
′
A)← A(stA,M

(1)

1−b(1))

REWIND to (∗)
s
(2)
1 ←R Zp ; b(2)←R {0, 1}
M

(2)
0 ←

(
m0(sP ) + (tQ), (sP )

)
; M

(2)
1 ←

(
s
(2)
1 m1P + s

(2)
1 r1Q, s

(2)
1 P

)
(π

(2)

b(2)
, stA)← A(stA,M

(2)

b(2)
) ; (π

(2)

1−b(2) , stA)← A(stA,M
(2)

1−b(2))

(N0, σ0)← ChgRepR(M
(1)
0 , π

(1)
0 , 1/s

(1)
0 , pk) ; (N1, σ1)← ChgRepR(M

(1)
1 , π

(1)
1 , 1/s

(1)
1 , k)

b∗ ← A(stA, (σ0, (rP ), (rQ)), (σ1, r1P, r1Q))

Return (b∗ = b(2))

We have thus that the probability that B outputs 1 when given a DDH instance is the
probability that Execution 2 outputs 1; and the probability that B outputs 1 when given
a random instance is the probability that Execution 3 outputs 1. Thus, if A behaved
differently in Executions 2 and 3 then B would break the assumption.

Analogously we can construct an adversary B which breaks the assumption given an
adversary A that distinguishes Executions 3 and 4.

Finally, let us consider Execution 4 in Fig. 1 below.

We now see that for i = 0, 1, since s
(2)
i and ti are uniformly random and used nowhere

other than in the definition of M
(2)
i , the latter is a uniform random element from G1×G1.

Since b(2) is only used to determine the order in which M
(2)
0 and M

(2)
1 (which are both

random elements) are sent to A, the bit b(2) is information-theoretically hidden. We thus
have that the probability that (b∗ = b(2)) in Execution 4 is exactly 1/2.

Overall, we have that Pr[Expblind
A,BS = 1] can only be negligibly different from 1/2, which

proves blindness.
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((pkR, Q, Q̂),m0,m1, stA)← A(1κ)

BG← BGGenR(1κ)

r0, r1←R Zp

s
(1)
0 , s

(1)
1 ←R Zp ; b(1)←R {0, 1} s

(2)
0 , s

(2)
1 , t0, t1←R Zp ; b(2)←R {0, 1}

M
(1)
0 ←

(
s
(1)
0 (m0P + r0Q), s

(1)
0 P

)
M

(2)
0 ←

(
s
(2)
0 m0P + t0Q, s

(2)
0 P

)
M

(1)
1 ←

(
s
(1)
1 (m1P + r1Q), s

(1)
1 P

)
M

(2)
1 ←

(
s
(2)
1 m1P + t1Q, s

(2)
1 P

)
(π

(1)

b(1)
, st′A)← A(stA,M

(1)

b(1)
) (π

(2)

b(2)
, stA)← A(stA,M

(2)

b(2)
)

(π
(1)

1−b(1) , st
′
A)← A(stA,M

(1)

1−b(1)) (π
(2)

1−b(2) , stA)← A(stA,M
(2)

1−b(2))

(N0, σ0)←ChgRepR(M
(1)
0 , π

(1)
0 , 1/s

(1)
0 , pk)

(N1, σ1)←ChgRepR(M
(1)
1 , π

(1)
1 , 1/s

(1)
1 , pk)

b∗ ← A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b(2))

Figure 1: Final experiment in the proof

D Partially Blind Signatures

For the sake of completeness, we state the abstract model and the security properties of
partially blind signature schemes.

Definition 18 (Partially blind signature scheme). A partially blind signature scheme PBS
consists of the following PPT algorithms:

KeyGenPBS(1
κ), on input κ, returns a key pair (sk, pk). The security parameter κ is also

an (implicit) input to the following algorithms.

(UPBS(m, γ, sk),SPBS(γ, sk)) are run by a user and a signer, who interact during execution.
UPBS gets input a message m, common information γ and a public key pk. SPBS gets
input common information γ and a secret key sk. At the end UPBS outputs σ, a
signature on (m, γ), or ⊥ if the interaction was not successful.

VerifyPBS(m, γ, σ, pk) is deterministic and given a message-signature tuple (m, γ, σ) and a
public key pk outputs 1 if σ is valid on (m, γ) under pk and 0 otherwise. ♦

A partially blind signature scheme PBS must satisfy correctness, unforgeability and
partial blindness. These properties can be seen as a generalization of blind signatures
(where the common information is the empty string) and are defined as follows [Oka06].

Definition 19 (Correctness). A partially blind signature scheme PBS is correct if for all
κ ∈ N, all key pairs (sk, pk)← KeyGenPBS(1

κ), all messages m and common information γ,
and all σ ← (UPBS(m, γ, pk),SPBS(γ, sk)) it holds that VerifyPBS(m,σ, pk) = 1. ♦

Definition 20 (Unforgeability). PBS is unforgeable, if for all PPT algorithms A having
access to a signer oracle, there is a negligible function ε(·) such that:

Pr

 (sk, pk)← KeyGenPBS(1
κ),

(γ∗, (m∗i , σ
∗
i )i∈[kγ∗+1])

← A(·,SPBS(sk))(pk)

:

m∗i 6= m∗j ∀i, j ∈ [kγ∗ + 1], i 6= j

∧ VerifyPBS(m
∗
i , γ
∗, σ∗i , pk) = 1

∀i ∈ [kγ∗ + 1]

 ≤ ε(κ) ,

where kγ∗ is the number of completed interactions with the oracle involving γ∗. ♦
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KeyGenBSV(1κ, n): On input security parameter κ and vector length n, compute BG ←
BGGenR(1κ), (sk, pkR)←R KeyGenR(BG, ` = 2), pick q←R Zp∗ and (pi)i∈[n]←R (Zp∗)n,

set Q ← qP , Q̂ ← qP̂ and (Pi)i∈[n] ← (piP )i∈[n] and output (sk, pk =

(pkR, (Pi)i∈[n], Q, Q̂)).

U (1)
BSV(pk,m): Given pk = (pkR, (Pi)i∈[n], Q, Q̂) and m ∈ Zpn, compute BG ← BGGenR(1κ). If

CheckP((Pi)i∈[n], Q, Q̂) = 0 then return ⊥; else choose s←R Zp∗ and r←R Zp such that∑
i∈[n]miPi + rQ 6= 0G1 and output

M ←
(
s(
∑
i∈[n]miPi + rQ), sP

)
st← (BG, pkR, Q,M, r, s)

SBSV(M, sk): Given M ∈ (G∗1)2 and a secret key sk, output π ← SignR(M, sk).

U (2)
BSV(st, π): Parse st as (BG, pkR, Q,M, r, s). If VerifyR(M,π, pkR) = 0, return ⊥. Else run

((
∑
i∈[n]miPi + rQ, P ), σ)← ChgRepR(M,π, 1s , pkR) and output τ ← (σ, rP, rQ).

VerifyBSV(m, τ, pk): Given m ∈ Zn
p , a blind signature τ = (σ,R, T ) and pk = (pkR, (Pi)i∈[n],

Q, Q̂) with CheckP((Pi)i∈[n], Q, Q̂) = 1, output 1 if the following holds and 0 otherwise.

VerifyR
(
(
∑
i∈[n]miPi + T, P ), σ, pkR

)
= 1 e(T, P̂ ) = e(R, Q̂)

Scheme 4: Blind signature scheme on message vectors

Definition 21 (Partial blindness). PBS is partially blind, if for all PPT algorithms A with
one-time access to two user oracles, there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, (pk,m0,m1, γ, st)← A(1κ),

st← A(UPBS(mb,γ,pk),·)(1),(UPBS(m1−b,γ,pk),·)(1)(st),
Let σb and σ1−b be the resp. outputs of UPBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗ ← A(st, σ0, σ1)

: b∗= b

−
1

2
≤ ε(κ) .

♦

E Blind Signatures on Message Vectors

Scheme 4 presents our construction for blind signatures on message vectors. We use
{1, 0} ← CheckP(cpp) to denote the check for valid commitment parameters: For a gener-
alized Pedersen commitment in G1 of a Type-3 bilinear group BG with tweaked opening
we have cpp = ((Pi)i∈[n], Q, Q̂) and the check holds if

• cpp ∈ (G∗1)n+1 ×G2 and the G∗1 elements are pairwise distinct;

• e(Q, P̂ ) = e(P, Q̂).

F Proof of Proposition 3

Let A be a generic PPT adversary and let σ : G1 → {0, 1}m1 , σ̂ : G2 → {0, 1}m2 and
τ : GT → {0, 1}mT be random, homomorphic encoding functions where w.l.o.g. m1 <
m2 < mT . A cannot work directly with group elements, but is forced to work with their
image under σ, σ̂ and τ . Furthermore, A is given oracle access to perform generic bilinear
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group operations (operations in G1, G2 and GT and pairings). Since A is given access
to the group-element encodings, it can perform equality checks on its own through string
equality tests. At last, we require that A can only submit already queried encodings to the
group oracles. (Note that we can enforce this by choosing m1,m2 and mT large enough
making the probability of guessing bitstrings in the image of σ, σ̂ and τ , respectively,
negligible.)

Now, let B be an algorithm interacting with A as follows. B picks a random bit
b←R {0, 1}, picks σP ←R {0, 1}m1 and σ̂P̂ ←

R {0, 1}m2 as encoding of the generators of G1

and G2, respectively. B stores (1, σP ) in a list L1 and (1, σ̂P̂ ) in a list L2 and gives the
respective encodings to A. Furthermore, it initializes a list LT to manage elements of GT .
At first, B simulates the group oracles as follows.

Group action in G1: Given two bitstrings σ0, σ1 representing elements in G1, B looks
them up in L1 and recovers the first components f0, f1 ∈ Zp of the corresponding
entries (fi, σi). It computes f0 + f1 and if L1 already contains an entry starting
with f0 +f1, B returns its associated bitstring σ; otherwise, B chooses σ←R {0, 1}m1 ,
returns σ and stores (f0 + f1, σ) in L1.

Inversion in G1: Given a bitstring σ representing an element in G1, B recovers the cor-
responding values f ∈ Zp and computes −f . In case L1 already contains −f , B
returns its associated bitstring σ′. Otherwise, B chooses σ′←R {0, 1}m1 , returns σ′

and stores (−f, σ′) in L1.

Group action in G2: Given two bitstrings σ̂0, σ̂1 representing elements in G2, B recovers
the corresponding values f̂0, f̂1 ∈ Zp and computes f̂0 + f̂1. In case L2 already con-

tains f̂0+f̂1, B returns its associated bitstring σ̂. Otherwise, B chooses σ̂←R {0, 1}m2 ,
returns σ̂ and stores (f̂0 + f̂1, σ̂) in L2.

Inversion in G2: Given a bitstring σ̂ representing an element in G2, B recovers the cor-
responding values f̂ ∈ Zp and computes −f̂ . In case L2 already contains −f̂ , B
returns its associated bitstring σ̂′. Otherwise, B chooses σ̂′←R {0, 1}m2 , returns σ̂′

and stores (−f̂ , σ̂′) in L2.

Pairing: Given two bitstrings σ, σ̂ representing elements in G1 and G2, B recovers the
corresponding values f from L1 and f̂ from L2. In case LT already contains f · f̂ ,
B returns its associated bitstring τ . Otherwise, B chooses τ ←R {0, 1}mT , returns τ
and stores (f · f̂ , τ) in LT .

The group action and inversion oracle for GT are simulated analogously to those for G1

and G2.
When A publishes σQ and σ̂Q̂ such that (fQ, σQ) ∈ L1 and (f̂Q̂, σ̂Q̂) ∈ L2 and fQ = f̂Q̂,

B chooses four bitstrings σ0, σ1, σ2, σ3←R {0, 1}m1 and assigns polynomials R, fQ ·R,S, fQ ·
((1− b) ·T + b ·U) ∈ Zp[R,S, T, U ] to these values (in that order) in order to keep track of
them. B stores (R, σ0), (fQ ·R, σ1), (S, σ2), (fQ · ((1− b) ·T + b ·U), σ3) in L1 and provides
A with σ0, σ1, σ2, σ3.

After this, B simulates the G1 group oracles as follows.

Group action in G1: Given two bitstrings σ0, σ1 representing elements in G1, B recovers
the corresponding polynomials f0, f1 ∈ Zp[R,S, T, U ] and computes f0 + f1. In case
L1 already contains f0 + f1, B returns its associated bitstring. Otherwise, B chooses
σ←R {0, 1}m1 , returns σ and stores (f0 + f1, σ) in L1.
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Inversion in G1: Given a bitstring σ representing an element in G1, B recovers the cor-
responding values f ∈ Zp[R,S, T, U ] and computes −f . In case L1 already contains
−f , B returns its associated bitstring. Otherwise, B chooses σ′←R {0, 1}m1 , returns
σ′ and stores (−f, σ′) in L1.

The group oracles for GT are modified analogously to handle polynomials in Zp[R,S, T, U ].
When A has finished querying the group oracles, A outputs a bit b∗. Then, B chooses

r, s, t←R Zp and sets R← r, S ← s, T ← t, U ← rs.
Now, if the simulation was consistent, no information about b got revealed and hence A

can only guess b with probability 1/2. Nevertheless, the simulation can be inconsistent, if
two distinct polynomials in L1 or in LT evaluate to the same value after choosing concrete
values for R,S, T, U . Note that such collisions cannot occur in L2, since L2 contains only
polynomials of degree 0.

We need to prove that such a collision in L1 (and likewise in LT ) cannot be caused
by A itself. All substitutions in the formal variables R,S, T are independent, whereas
only U depends on R and S. Therefore, A can only produce collisions using RS. In the
beginning, the list L1 only contains polynomials of degree 0, whereas later polynomials
of total degree 1 are being added to L1. Moreover, the group oracles do not increase the
degree of the polynomials in L1 as they only cover addition and inversion. Thus, A is not
able to generate such collisions on purpose.

The same argumentation holds for LT . Observe that the polynomials contained in LT
have at most total degree 1, since they arise from the multiplication of degree-0 polynomials
in L2 and polynomials of total degree at most 1 in L1.

What remains to be shown is that the probability of a collision is negligible, i.e., that
two distinct polynomials in L1 and LT evaluate to the same value after the substitution (or
alternatively that their difference polynomial evaluates to 0). Suppose that A has issued
q queries to the group oracles. Let |L1| = O(q) and |LT | = O(q), then there are O(

(
q
2

)
)

possibilities of colliding polynomials. By the Schwartz-Zippel lemma and the collision

argument, the probability of such an error in the simulation of the generic group is O( q
2

p )
and is therefore negligible in the security parameter. The same kind of argument also
holds for GT .
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