Phasing: Private Set Intersection using Permutation-based Hashing

(Full Version)*

Benny Pinkas
Bar-Ilan University, Israel

Thomas Schneider
TU Darmstadt, Germany

Gil Segev
Hebrew University, Israel

Michael Zohner
TU Darmstadt, Germany

Abstract

Private Set Intersection (PSI) allows two parties to com-
pute the intersection of private sets while revealing noth-
ing more than the intersection itself. PSI needs to be ap-
plied to large data sets in scenarios such as measurement
of ad conversion rates, data sharing, or contact discovery.
Existing PSI protocols do not scale up well, and therefore
some applications use insecure solutions instead.

We describe a new approach for designing PSI proto-
cols based on permutation-based hashing, which enables
to reduce the length of items mapped to bins while en-
suring that no collisions occur. We denote this approach
as Phasing, for Permutation-based Hashing Set Intersec-
tion. Phasing can dramatically improve the performance
of PSI protocols whose overhead depends on the length
of the representations of input items.

We apply Phasing to design a new approach for
circuit-based PSI protocols. The resulting protocol is up
to 5 times faster than the previously best Sort-Compare-
Shuffle circuit of Huang et al. (NDSS 2012). We also
apply Phasing to the OT-based PSI protocol of Pinkas et
al. (USENIX Security 2014), which is the fastest PSI
protocol to date. Together with additional improvements
that reduce the computation complexity by a logarithmic
factor, the resulting protocol improves run-time by a fac-
tor of up to 20 and can also have better communication
overhead than the previously best PSI protocol in that re-
spect. The new protocol is only moderately less efficient
than an insecure PSI protocol that is currently used by
real-world applications, and is therefore the first secure
PSI protocol that is scalable to the demands and the con-
straints of current real-world settings.

*Please cite the conference version of this paper published at
USENIX Security’15 [PSSZ15].

1 Introduction

Private set intersection (PSI) allows two parties P; and P>
with respective input sets X and Y to compute the inter-
section X NY of their sets without revealing any infor-
mation but the intersection itself. Although PSI has been
widely studied in the literature, many real-world applica-
tions today use an insecure hash-based protocol instead
of a secure PSI protocol, mainly because of the insuffi-
cient efficiency of PSI protocols.

In this work we present Phasing, Permutation-based
Hashing Set Intersection, which is a new approach for
constructing PSI protocols based on a hashing technique
that ensures that hashed elements can be represented by
short strings without any collisions. The overhead of re-
cent PSI protocols depends on the length of these rep-
resentations, and this new structure of construction, to-
gether with other improvements, results in very efficient
performance that is only moderately larger than that of
the insecure protocol that is in current real-world usage.

1.1 Motivating Scenarios

The motivation for this work comes from scenarios
where PSI must be applied quite frequently to large
sets of data, and therefore performance becomes critical.
Moreover, the communication overhead might be even
more important than the computation overhead, since in
large data centers it is often easier to add computing
power than to improve the outgoing communication in-
frastructure. We describe here three scenarios which re-
quire large-scale PSI implementations.

Measuring ad conversion rates Online advertising,
which is a huge business, typically measures the success
of ad campaigns by measuring the success of converting
viewers into customers. A popular way of measuring this
value is by computing the conversion rate, which is the
percentage of ad viewers who later visit the advertised

site or perform a transaction there. For banner ads or ser-
vices like Google Adwords it is easy to approximate this
value by measuring ad click-throughs. However, mea-
suring click-throughs is insufficient in other online ad-
vertising settings. One such setting is mobile advertis-
ing, which is becoming a dominating part of online ad-
vertising. Even though mobile ads have a great effect,
click-throughs are an insufficient measure of their utility,
since it is unlikely, due to small displays and the casual
nature of mobile browsing, that a user will click on an
ad and, say, purchase a car using his mobile device. An-
other setting where click rate measurement is unsatisfac-
tory is advertising of offline goods, like groceries, where
the purchase itself is done ofﬁine

An alternative method of measuring ad performance is
to compare the list of people who have seen an ad with
those who have completed a transaction. These lists are
held by the advertiser (say, Google or Facebook), and by
merchants, respectively. It is often possible to identify
users on both ends, using identifiers such as credit card
numbers, email addresses, etc. A simple solution, which
ignores privacy, is for one side to disclose its list of cus-
tomers to the other side, which then computes the nec-
essary statistics. Another option is to run a PSI protocol
between the two parties. (The protocol should probably
be a variant of PSI, e.g. compute total revenues from
customers who have seen an ad. Such protocols can be
derived from basic PSI protocols.) In fact, Facebook is
running a service of this type with Datalogix, Epsilon
and Acxiom, companies which have transaction records
for a large part of loyalty card holders in the US. Accord-
ing to report the computation is done using a variant of
the insecure naive hashing PSI protocol that we describe
in Our results show that it can be computed using
secure protocols even for large data sets.

Security incident information sharing Security inci-
dent handlers can benefit from information sharing since
it provides them with a global view during incidents.
However, incident data is often sensitive and potentially
embarrassing. The shared information might reveal in-
formation about the business of the company that pro-
vided it, or of its customers. Therefore, information is
typically shared rather sparsely and protected using legal
agreements. Automated large scale sharing will improve
security, and there is in fact work to that end, such as the
IETF Managed Incident Lightweight Exchange (MILE)
effort. Many computations that are applied to the shared
data compute the intersection and its variants. Applying

ISee, e.g., http://www.reuters.com/article/2012/10/01/
us-facebook-ads-idUSBRE89001120121001 .

“See, e.g., https://www.eff.org/deeplinks/2012/09/deep
-dive-facebook-and-datalogix-whats-actually-getting
-shared-and-how-you-can-opt.

PSI to perform these computations can simplify the le-
gal issues of information sharing. Efficient PSI protocols
will enable it to be run often and in large scale.

Private contact discovery When a new user registers
to a service it is often essential to identify current regis-
tered users who are also contacts of the new user. This
operation can be done by simply revealing the user’s con-
tact list to the service, but can also be done in a pri-
vacy preserving manner by running a PSI protocol be-
tween the user’s contact list and the registered users of
the service. This latter approach is used by the TextSe-
cure and Secret applications, but for performance rea-
sons they use the insecure naive hashing PSI protocol
described in

In these cases each user has a small number of
records ny, e.g., np = 256, whereas the service has mil-
lions of registered users (in our experiments we use
n = 224). It therefore holds that n, < n;. In our
best PSI protocol, the client needs only O(n;logn;)
memory, O(ny) symmetric cryptographic operations and
O(n1) cheap hash table lookups, and the communication
is O(nylogn;). (The communication overhead is indeed
high as it depends on n1, but this seems inevitable if brute
force searches are to be prevented.)

1.2 Our Contributions

Our goal in this work is to enable PSI computations for
large scale sets that were previously beyond the capabil-
ities of state-of-the-art protocols. The constructions that
we design in this work improve performance by more
than an order of magnitude. We obtain these improve-
ments by generalizing the hashing approach of [PSZ14]
and applying it to generic secure computation-based PSI
protocols. We replace the hash function in [PSZ14] by a
permutation which enables us to reduce the bit-length of
internal representations. Moreover, we suggest several
improvements to the OT-based PSI protocol of [PSZ14].
We explain our contributions in more detail next:

Phasing: Using permutation-based hashing to reduce
the bit-length of representations. The overhead of the
best current PSI protocol [PSZ14] is linear in the length
of the representations of items in the sets (i.e., the ids
of items in the sets). The protocol maps items into bins,
and since each bin has very few items in it, it is tempt-
ing to hash the ids to shorter values and trust the birthday
paradox to ensure that no two items in the same bin are

3See |https://whispersystems.org/blog/contact-disco
very/| and https://medium.com/@davidbyttow/demystifying
-secret-12ab82fda29f , respectively.

http://www.reuters.com/article/2012/10/01/us-facebook-ads-idUSBRE8900I120121001
http://www.reuters.com/article/2012/10/01/us-facebook-ads-idUSBRE8900I120121001
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://whispersystems.org/blog/contact-discovery/
https://whispersystems.org/blog/contact-discovery/
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f

hashed to the same representation. However, a closer ex-
amination shows that to ensure that the collision proba-
bility is smaller than 2% the length of the representation
must be at least A bits, which is too long.

In this work we utilize the permutation-based hash-
ing techniques of [ANS10] to reduce the bit-length of
the ids of items that are mapped to bins. These ideas
were suggested in an algorithmic setting to reduce mem-
ory usage, and as far as we know this is the first time that
they are used in a cryptographic or security setting to im-
prove performance. Essentially, when using 3 bins the
first log B bits in an item’s hashed representation define
the bin to which the item is mapped, and the other bits are
used in a way which provably prevents collisions. This
approach reduces the bit-length of the values used in the
PSI protocol by log 8 bits, and this yields reduced over-
head by up to 60%-75% for the settings we examined.

Circuit-Phasing: Improved circuit-based PSI. As
we discuss in there is a great advantage in using
generic secure computation for computing PSI, since this
enables to easily compute variants of the basic PSI func-
tionality. Generic secure computation protocols evalu-
ate Boolean circuits computing the desired functionality.
The best known circuit for computing PSI was based on
the Sort-Compare-Shuffle circuit of [HEK12]. We de-
scribe Circuit-Phasing, a new generic protocol that uses
hashing (specifically, Cuckoo hashing and simple hash-
ing) and secure circuit evaluation. In comparison with
the previous approach, our circuits have a smaller num-
ber of AND gates, a lower depth of the circuit (which af-
fects the number of communication rounds in some pro-
tocols), and a much smaller memory footprint. These
factors lead to a significantly better performance.

OT-Phasing: Improved OT-based PSI. We introduce
the OT-Phasing protocol which improves the OT-based
PSI protocol of [PSZ14] as follows:

e Improved computation and memory. We reduce
the length of the strings that are processed in the
OT from O(log?n) to O(logn), which results in a
reduction of computation and memory complexity
for the client from O(nlog®n) to O(nlogn).

e 3-way Cuckoo hashing. We use 3 instead of 2
hash functions to generate a more densely populated
cuckoo table and thus decrease the overall number
of bins and hence OTs.

OT-Phasing improves over state-of-the-art PSI both in
terms of run-time and communication. Compared to the
previously fastest PSI protocol of [PSZ14], our protocol
improves run-time by up to factor 10 in the WAN set-
ting and by up to factor 20 in the LAN setting. Further-

more, our OT-Phasing protocol in some cases improves
on the communication of [Mea86|], which was shown to
achieve the lowest communication overhead over all PSI
protocols in [PSZ14]].

1.3 Outline

We give preliminary information in and summarize
related work in In §4) we describe Phasing, our op-
timization for permutation-based hashing that reduces
the bit-length of elements in PSI. Afterwards, we ap-
ply Phasing to generic secure computation protocols, and
present Circuit-Phasing, our new approach for circuit-
based PSI §5] Thereafter, we apply Phasing to the pre-
viously fastest OT-based PSI protocol of [PSZ14] and
present several optimizations in §6] In §7] we analyze the
hashing failure probability of Circuit-Phasing. Finally,
we provide an evaluation of our improved PSI protocols

in
2 Preliminaries

2.1 Notation

We denote the parties as P; and P;. For all protocols we
assume that P, obtains the output. The respective input
sets of the parties are denoted as X and Y, with sizes
ny = |X| and np = |[Y|. Often n; = ny and we use the
notation n = ny = np. We assume that elements are of
bit-length ©.

We refer to the symmetric security parameter as k, the
bit-length of the elliptic curves as ¢, and the statistical
security parameter as A. Throughout the paper we as-
sume 128-bit security, i.e., Kk = 128 and ¢ = 283 (using
Koblitz-curves), and A = 40. For symmetric encryption
we use AES-128.

We refer to the concatenation of bit-strings by ||, to
the exclusive-OR (XOR) operation by &, and to the i-th
element in a sequence S by S[i]. In many protocols, we
shorten the size of hash values that are sent to { = A +
log, (n1) +log, (n2) instead of 2k. This yields collision
probability 2~*, which is suited for most applications.

2.2 Security

Ideal PSI functionality: An execution of PSI that is ideal
in terms of security, can be run in the presence of a
trusted third party. In that case, the two parties can sim-
ply send their inputs to the trusted party, which then com-
putes the intersection and sends it to P;. It is obvious that
if the trusted third party is indeed honest then the correct
function is computed and nothing is leaked. The chal-
lenge is to obtain the same level of security in a setting
that involves no trusted third party.

Adversaries: Two types of adversaries are typically
discussed in the secure computation literature: A semi-
honest adversary is trusted to follow the protocol, but
attempts to learn as much information as possible from
the messages it receives during the protocol. This adver-
sary model is appropriate for scenarios where execution
of the correct software is enforced by software attesta-
tion or where an attacker might obtain the transcript of
the protocol after its execution, either by stealing it or
by legally enforcing its disclosure. In contrast, a mali-
cious adversary can behave arbitrarily. Most work on PSI
protocols was in the semi-honest setting. Protocols that
are secure against malicious adversaries, e.g., [FNP04,
JLO9,[DSMRY09, HN10,/CKT10, [FHNP14, Haz15|], are
considerably less efficient. We focus on optimal per-
formance and therefore design protocols secure against
semi-honest adversaries only. Furthermore, the security
of the protocols is proved in the random oracle model, as
is justified in next.

The random oracle model: As in most previous
works on efficient PSI, we use the random oracle model
to achieve more efficient implementations [BR93|.
The only PSI protocol described in the recent survey
in [[PSZ14]] that is not based on the random oracle model
is the protocol of [FNPO4]] which uses oblivious polyno-
mial evaluation based on El-Gamal encryption, but that
protocol is considerably less efficient than other state-of-
the-art PSI protocols.

2.3 Hashing to Bins

Our protocols hash the input items to bins and then op-
erate on each bin separately. In general, our hashing
schemes use a table T consisting of 3 bins. An element e
is mapped to the table by computing an address a = H (e)
using a hash function H that is modeled as a random
function. A value related to e (or e itself) is then stored
in bin T'[a]. An element ¢’ can be looked up by checking
the content of bin T[H (¢')].

There is a rich literature on hashing schemes, which
differ in the methods for coping with collisions, the com-
plexity for insertion/deletion/look-up, and the utilization
of storage space. In [FNP04,[FHNP14|PSZ14]Haz15],
hashing to bins was used to improve the number of com-
parisons that are performed in PSI protocols. In the
following, we detail the two most promising hashing
schemes for use in PSI, according to [PSZ14|: simple
hashing and Cuckoo hashing. In [PSZ14]] it was shown
that a combination of simple hashing (for P;) and Cuckoo
hashing (for P) results in the best performance for their
OT-based PSI protocol.

2.3.1 Simple Hashing

Simple hashing builds the table 7 by mapping each ele-
ment e to bin 7T [H(e)] and appending e to the bin. Each
bin must, of course, be able to store more than one ele-
ment. The size of the most populated bin was analyzed
in [RS98]], and depends on the relation between the num-
ber of bins and the total number of elements. Most im-
portantly for our application, when hashing n elements
into B = n bins, it was shown that the maximum number
of elements in a bin is 2 (1 +0(1)). In §7.1| we give
a theoretical and an empirical analysis of the maximum
number of elements in a bin.

2.3.2 Cuckoo Hashing

Cuckoo hashing [PRO1] uses % hash functions Hy, ..., Hj
to map an element e to a bin using either one of the &
hash functions. (Typically, & is set to be h = 2; we also
use & = 3.) In contrast to simple hashing, it allows at
most one element to be stored in a bin. If a collision
occurs, Cuckoo hashing evicts the element in the bin
and performs the insertion again for the evicted element.
This process is repeated until an empty bin is found for
the evicted element. If the resulting sequence of inser-
tion attempts fails a certain number of times, the current
evicted element is placed in a special bin called stash.
In [KMWO9]| it was shown that for 4 = 2 hash functions,
B =2(1+¢€)n bins, and a stash of size s < Inn, the inser-
tion of elements fails with small probability of O(n~*),
which is smaller than n~ (=) for sufficiently large values

of n (cf. §7.2).

2.4 Oblivious Transfer

1-ouf-of-2 oblivious transfer (OT) [EGLS3S] is a proto-
col where the receiver with choice bit ¢, chooses one of
two strings (xo,x;) held by the sender. The receiver re-
ceives x. but gains no information about x|_., while the
sender gains no information about c.

OT extension protocols [KK13L/ALSZ13|] precompute
a small number (say, k = 128) of “real” public-key-based
OTs, and then compute any polynomial number of OTs
using symmetric-key cryptography alone. The most ef-
ficient OT variant that we use computes random OT. In
that protocol the sender has no input but obtains random
(x0,x1) as output of the protocol, while the receiver with
input ¢ obtains x. [ALSZ13]]. The advantage of this pro-
tocol is that the sender does not need to send messages
based on its inputs, as it does not have any inputs, and in-
stead computes them on-the-fly during the OT extension
protocol. As a result, the communication overhead of the
protocol is greatly reduced.

An additional improvement that we use, described
in [KK13]], efficiently computes 1-out-of-N OT for short

strings. The communication for a random 1-out-of-N OT
(for 3 < N < 256) is only 2k-bits, whereas the commu-
nication for a random 1-out-of-2 OT is k-bits. The com-
putation for a random 1-out-of-N OT amounts to four
pseudo-random generator (PRG) and one correlation-
robust function (CRF) evaluations for the receiver and
two PRG and N CRF evaluations for the sender. In addi-
tion, if the sender only requires i < N outputs of the OT,
it only needs to perform i CRF evaluations.

We use 1-out-of-N OT since we have to perform OTs
for every bit of an element. By using 1-out-of-N OT for
N = 2", we process U bits in parallel with communica-
tion equal to that of processing two bits. We denote m
1-out-of-N OTs on ¢-bit strings by (})-OT?".

2.5 Generic Secure Computation

Generic secure two-party computation protocols allow
two parties to securely evaluate any function that can
be expressed as a Boolean circuit. The communication
overhead and the number of cryptographic operations
that are computed are linear in the number of non-linear
(AND) gates in the circuit, since linear (XOR) gates
can be evaluated “for free” in current protocols. Fur-
thermore, some protocols require a number of interac-
tion rounds that are linear in the AND depth of the cir-
cuit. The two main approaches for generic secure two-
party computation on Boolean circuits are Yao'’s garbled
circuits [[Yao86| and the protocol by Goldreich-Micali-
Wigderson [GMWS&87] summarized next

2.6 Yao’s Garbled Circuits

Yao’s garbled circuits protocol [Yao86[is run between
a server and a receiver. The server garbles the Boolean
circuit by assigning a symmetric key to each input wire
and encrypting the output wires of a gate using the keys
on the input wires. The server then sends the garbled cir-
cuit together with the keys of its own input wires to the
receiver. The receiver uses oblivious transfers to obliv-
iously obtain the input keys corresponding to its input
wires to the garbled circuit and then iteratively decrypts
the garbled circuit. The output can be decrypted by hav-
ing the server provide a mapping from keys to their plain
values for all output wires.

Numerous optimizations to Yao’s basic garbled
circuit protocol have been proposed, including the
following techniques: point-and-permute [BMRO9(],
free-XOR [KSOS8|], pipelining [HEKMI11], fixed-key
AES garbling [BHKRI13], and the recent half-gates
method [ZRE15]. Using all these optimizations, in the
construction stage the server has to evaluate AES four
times for each AND gate, and send two k-bit ciphertexts

to the receiver. In the evaluation stage the receiver has to
evaluate AES twice per AND gate.

2.7 Goldreich-Micali-Wigderson (GMW)

In the Goldreich-Micali-Widgerson protocol for secure
computation [GMWR&7|], the two parties secret-share
their inputs using an XOR secret-sharing scheme. They
evaluate each XOR gate locally and perform an interac-
tive random (3)-OT3 to evaluate each AND gate. The
output can be obtained by having either party send its
shares of the output wires to the other party.

Using OT extension, for each AND gate each party has
to perform three PRG evaluations and three CRF evalu-
ations and send (x + 2)-bits. The number of commu-
nication rounds of the protocol is linear in the depth of
the circuit when counting only AND gates. To decrease
the number of communication rounds, several depth-
efficient circuit constructions for standard functionalities
were summarized in [SZ13]].

An efficient implementation of the GMW protocol for
secure multi-party computation was given in [CHK12].

3 Related Work

We reflect on existing PSI protocols by following
the classification of PSI protocols in [PSZ14]: the
naive hashing protocol (§3.1), server-aided PSI proto-
cols (§8.2), public-key cryptography-based PSI proto-
cols (§3.3), generic secure computation-based PSI pro-
tocols (§3.4), and OT-based PSI protocols (§3.5). For
each category, we review existing work and outline the
best performing protocol, according to [PSZ14].

3.1 (Insecure) Naive Hashing

The naive hashing protocol is the most commonly used,
but it is an insecure solution for PSI, except for rare
cases. In the protocol, P> samples a random 2k-bit salt k
and sends it to P;. Both parties then use a cryptographic
hash function H : {0,1}* ~ {0,1}’ to hash their ele-
ments salted with k. Namely, P; computes h; = H(x; Dk)
for each of its inputs, and P> similarly computes h’] values
from its own inputs. P; then randomly permutes the hash
values #; and sends them to P>, which computes the in-
tersection as the elements for which there exists a j such
that h; = h’j

Security: The naive hashing protocol is very efficient:
Py and P, each evaluate n; (resp. n») hash functions and
Py sends n; hash values of length { = A +log,(n;) +
log,(n2) bit. Note, however, that the naive hashing pro-
tocol has a major security flaw if the elements are taken
from a domain D which does not have very large entropy.
In this case, P, can recover all elements in the set of P,

by running a brute force attack computing the hash of all

possible elements x € D and checking if H(x @ k) Z hi
for any 1 <i < nj. This attack is relevant for many set-
tings, say, where the inputs are ip addresses, credit card
numbers, names, social security numbers, etc.

Even if the input elements are chosen from a domain
with high entropy, forward-secrecy is not guaranteed,
since an attacker can compute whether a specific element
was part of the other party’s set if the attacker learns the
element after the protocol execution.

3.2 Server-Aided PSI

To increase the efficiency of PSI, protocols that use
a semi-trusted third party were proposed [KMRSI14].
These protocols are secure as long as the third party does
not collude with any of the participants. We mention
this set of protocols here for completeness, as they re-
quire different trust assumptions as protocols involving
no third party.

The protocol of [KMRS14]] has only a slightly higher
overhead than the naive hashing PSI solution described
in In that protocol, P; samples a random k-bit key
k and sends it to P,. Both parties compute h; = Fy(x;)
(resp. h'; = Fi(y;)), where F is a pseudo-random permu-
tation that is parametrized by k. Both parties then send
the hashes to the third party (in randomly permuted or-
der) who then computes I = h; ﬂh’j, forall 1 <i<n;and
1 < j<mnp and sends I to P,. P, obtains the intersection
by computing kal (e) foreach e € 1.

3.3 Public-Key Cryptography based PSI

The first protocols for PSI were outlined in [Mea86|
HFH99| and were based on the Diffie-Hellmann (DH)
key exchange. The overhead of these protocols is
O(n) exponentiations. In [FNPO4, FHNP14], a PSI
protocol based on El-Gamal encryption was introduced
that uses oblivious polynomial evaluation and requires
O(nloglog(n)) public-key encryptions (the advantage of
that protocol was that its security was not based on the
random oracle model). Protocols for different set oper-
ations, such as set-intersection and set-union, on multi-
sets were presented in [KSO5[. A PSI protocol that uses
blind-RSA was introduced in [CT10] and implemented
efficiently in [[CT12].

We implement the DH-based protocol of [Mea86|
HFH99] based on elliptic-curve-cryptography, which
was shown to achieve lowest communication in [PSZ14].
We describe the protocol in more detail next.

DH-based PSI: The DH-based PSI protocol is se-
cure based on the Decisional Diffie-Hellmann (DDH) as-
sumption (cf. security proof in [AESO3]]) and works as
follows:

e Both parties agree on a cyclic group of prime order
g and on a hash function H that is modeled as a
random oracle.

e Pj chooses a secret & €g Z, and P> chooses a secret
B €k Zyg.

e P computes (H(x1))%,...,(H(xy,))% permutes
the order of the results and sends them to P».
In parallel to that operation, P, computes
(H(»1))B,...,(H(ys,))P, permutes the order of
the results and sends them to P;.

e P, then raises each of the values that it received to
the power of & and sends the results to P, while P,
raises each of the values that it received to the power

of B.

e P> compares the values that it computed to those
received from P;. The associativity of the expo-
nentiation operation guarantees that if x =y then
((H(x)®)B = ((H(y)P)* and this enables P, to iden-
tify the intersection.

To further decrease communication, P; can hash the
group elements e = ((H(y)?)%) to shorter /-bits that are
sent to P. This step requires an additional hash operation
per item.

Overall, P; and P, have to send n; 4+ n, and n group
elements (resp. hash values), and compute n; + n expo-
nentiations and n; +ny (resp. 2(n; +n2)) hash functions
each.

A major advantage of this protocol is that the two
parties execute similar computations and can therefore
work in parallel and in full utilization of their com-
puting power. In addition, the exponentiation can be
implemented using elliptic-curve cryptography, improv-
ing computation and, even more notably, communication
overhead.

Another advantage, of no lesser importance, is that this
protocol is very simple to implement, compared to all
other protocols that we discuss here.

3.4 PSI based on Generic Protocols

Generic secure computation can be used to perform PSI
by encoding the intersection functionality as a Boolean
circuit. The most straightforward method for this encod-
ing is to perform a pairwise-comparison which compares
each element of one party to all elements of the other
party. However, this circuit uses O(n?) comparisons and
hence scales very poorly for larger set sizes [HEK12].
The Sort-Compare-Shuffle (SCS) circuit of [HEK12] is
much more efficient. As indicated by its name, the cir-
cuit first sorts the union of the elements of both parties,
then compares adjacent elements for equality, and finally

shuffles the result to avoid information leakage. The sort
and shuffle operations are implemented using a sorting
network of only O(nlogn) comparisons, and the com-
parison step requires only O(n) comparisons.

The work of [HEK12]] describes a size-optimized ver-
sion of this circuit for use in Yao’s garbled circuits;
[PSZ14] describes a depth-optimized version for use in
the GMW protocol. The size-optimized SCS circuit has
o (3nlogyn + 4n) AND gatesﬂ and AND depth (o +
2)log,(2n)+1log, (o) + 1 while the depth-optimized SCS
circuit has about the same number of gates and AND
depth of about (log,(c) + 4)log,(2n), for n = (n; +
I’lz) / 2.

PSI protocols based on generic secure computation
have higher run-time and communication complexity
than most special-purpose PSI protocols [|CT12,[PSZ14].
Yet, these protocols are of great importance since they
enable to easily compute any functionality that is based
on basic PSI. Consider, for example, an application that
needs to find if the size of the intersection is greater than
some threshold, or compute the sum of revenues from
items in the intersection. Computing these functionali-
ties using specialized PSI protocols requires to change
the protocols, whereas a PSI protocol based on generic
computation can be adapted to compute these functional-
ities by using a slightly modified circuit. In other words,
changing specialized protocols to have a new functional-
ity requires to employ a cryptographer to design a new
protocol variant, whereas changing the functionality of
a generic protocol only requires to design a new circuit
computing the new functionality. The latter task is of
course much simpler. An approximate PSI protocol that
uses generic secure computation protocols in combina-
tion with Bloom filters was given in [WLN™15]].

3.5 OT-based PSI

OT-based PSI protocols are the most recent category of
PSI protocols. Their research has been motivated by re-
cent efficiency improvements in OT extension. The gar-
bled Bloom filter protocol of [DCW13]] was the first OT-
based PSI protocol and was improved in [PSZ14]. A
novel OT-based PSI protocol, which we denote OT-PSI
protocol, was introduced in [PSZ14], combining OT and
hashing to achieve the best run-time among all analyzed
PSI protocols. We next describe the OT-PSI protocol
of [PSZ14]. We give a full description of the protocol
without the stash in Fig.[I]

The abstract idea of the OT-PSI protocol is to have
both parties hash their elements into bins using the same
hash function (Step 1, described in and compare

“The original description of the SCS circuit in [HEK12]] embedded
input keys into AND gates in the sort circuit to reduce communication.
‘We did not use this optimization in our implementation.

the elements mapped to the same bin. The comparison
is done using OTs that generate random masks from the
elements (Step 2, described in §3.5.2)), such that the inter-
section of the random masks corresponds to the intersec-
tion of the original inputs (Step 3, described in §3.5.3).
Finally, the intersection of the elements in the stash is
computed (§3.5.4). We give the overhead of the protocol

in {333

3.5.1 PSI via Hashing to Bins

In the first step of the protocol, the parties map their el-
ements into their respective hash tables 77 and 7>, con-
sisting of B = h(1+ €)n, bins (cf. §7). P> uses Cuckoo
hashing with % hash functions (with 4 = 2), and obtains
a one-dimensional hash table 7>. P, hashes each item &
times (once for each hash function) using simple hash-
ing and obtains a two-dimensional hash table 77 (where
the first dimension addresses the bin and the second di-
mension the elements in the bin). Each party then pads
all bins in its table to the maximum size using respective
dummy elements: P pads each bin to maxg elements us-
ing a dummy element dy (where maxg is computed using
B and n; as detailed in §7]to set the probability of map-
ping more items to a bin to be negligible), while P fills
each empty bin with dummy element d> (different than
dp). The padding is performed to hide the number of el-
ements that were mapped to a specific bin, which would
leak information about the input.

3.5.2 Masking via OT

After the hashing, the parties use OT to generate an /-bit
random mask for each element in their hash table.

Naively, for each bin, and for each item that P, mapped
to the bin, the parties run a 1-out-of-2 OT for each bit
of this item. P is the receiver and its input to the OT
is the value of the corresponding bit in the single item
that it mapped to the bin. P;’s input is two random ¢-bit
strings. After running these OTs for all ¢ bits of the item,
Py sends to P, the XOR of the strings corresponding to
the bits of P;’s item. Note that if P;’s item is equal to
that of P then the sent value is equal to the XOR of the
output strings that P received in the OTs. Otherwise the
values are different with high probability, which depends
on the length ¢ of the output strings.

This basic protocol was improved in several ways:

e Recall that OT extension is more efficient when ap-
plied to 1-out-of-N OT [KK13]]. Therefore, the pro-
tocol uses p-bit characters instead of a binary repre-
sentation. It splits the elements into ¢ p-bit charac-
ters, and uses ¢ invocations of 1-out-of-N OT where
N =2H, instead of ru invocations of 1-out-of-2 OT.

P, Input: X = {x1,....%, }

Output: L

P, Input: ¥ = {yi, M,y,lz}

Output: XNY

Common Inputs

! Bit-length of elements G; random hash functions {H\,...,Hp}; number of bins B = 2(1 + €)ny; max. number of elements

Lin Py’s bins maxg = F(ny,B); mask-length { = A +log, (n;) +log, (n2); u for which 2* = N and (7) -OT},

! number of characters t = [6/1t); dummy elements dy # d».

axg o

‘ 1) Hashing

i a) T1[][| = SimpleHashing(X, {H,,...,H,}, B) a) 1> [] = CuckooHashing(X, {H,,....H, }, B)

ib)fori:lloﬁ: b) fori=1to f:

‘ Pad Ti[i] to maxg elements using d; If 73 [i] empty, put d> in T5[i]

o Randomly P et I T e
2) Masking via OT

for each bin i:

i a) Letv; = Ty [i] /]

a) Let w = Tx[i]
 b) Divide v; = v;[1]]|...||v;[r] in ¢ p-bit characters b) Divide w = w([1]||...||w[t] in u-bit characters
c)fork=1tor:
P wik]
Rand- (¥ -OT! .0 h

(o 1) ()0 ol

3d)f0rj:1tomaxﬁ: d) for j =1 to maxg:
Mi[i)[j) = Bl 11 [K]1J] M[i][]] = Bleey g (K [J]
3) Intersection
ta) Let V= {M[i][j} | Vi.j: T[] # i}
'b) Randomly permute the elements of V
|4

i Output: L

Output: {D>[i] | 3j s.t. My[i][j] €V}

Figure 1: OT-based PSI protocol of [PSZ14] without the stash.

In each bin the parties run OTs for all maxg items
that P; mapped to the bin, and to all characters in
these items. P»’s inputs are the same for all maxg
OTs corresponding to the same character. There-
fore the parties could replace them with a single OT,
where the output string of the OT is maxg times as
long as before.

Recall that random OT, where the protocol ran-
domly defines the inputs of P;, is more efficient than
an OT where P; chooses these inputs by itself. For
the purpose of PSI the protocol can use random OT.

It is also important to note that if P; mapped m <
maxg elements to a bin, then in the random OTs P

only needs to evaluate inputs for m OTs in this bin
and not for all maxg random OTs that are taking
place. This improves the overhead of the protocol.

3.5.3 Intersection

The parties compute the intersection of their elements us-
ing the random masks (XOR values) generated during
Step 2: P; generates a set V' as the masks for all of its
non-dummy elements. P; then randomly permutes the
set V in order to hide information about the number of
elements in each bin, and sends V to P». P> computes the
intersection X NY by computing the plaintext intersec-
tion between V and the set of XOR values that it com-

puted.

3.5.4 Including a Stash

The OT-based PSI protocol of [PSZ14]] uses Cuckoo
hashing with a stash of size s, which we omitted in our
description of the protocol in Fig.[l| The intersection of
P>’s elements with P;’s elements is done by running the
masking procedure of Step 2 for all s items in the stash,
comparing them with all n; items in P;’s input. Finally,
Py sends the masks it computed to P (in randomly per-
muted order) which can then check the intersection as in
Step 3.

3.5.5 Overhead

The overhead of this protocol is linear in the bit-length
of the input elements. Therefore, any reduction in the
bit-length of the inputs directly results in a similar im-
provement in the overhead.

For readers interested in the exact overhead of the pro-
tocol, we describe here the details of the overhead. In

total, the parties have to evaluate random (1}/) -OT,Bntaxﬁ ,

+(’Y) -OT}/ , and send (/2 + s)n; masks of (-bit length,
where B = h(np +¢€), N=2",t=[o/ul], L =21+
log,(n1) +log,(nz), and s is the size of the stash. To
be exact, the server has to perform 2¢(+s) pseudo-
random generator evaluations during OT extension, (h+
s)nit correlation-robust function evaluations to gener-
ate the random masks, and send (2 + s)n;¢ bits. The
client has to perform 4¢(f 4 s) pseudo-random generator
evaluations during OT extension, natmaxgl/o +snitl/o
correlation-robust function evaluations to generate the
random masks, and send 2(f + s)tx bits during OT ex-
tension, where o is the output length of the correlation-
robust function. Note especially that the client has to
evaluate the correlation-robust function O (nlog? n) times
to generate the random bits which represent the masks of
the server’s elements. This cost can become prohibitive
for larger sets, as we will show in our evaluation in

4 Permutation-based Hashing

The overhead of the OT-based PSI protocol of [PSZ14]
and of the circuit-based PSI protocols we describe in
depends on the bit-lengths of the items that the parties
map to bins. The bit-length of the stored items can be re-
duced based on a permutation-based hashing technique
that was suggested in [ANS10] for reducing the memory
usage of Cuckoo hashing. That construction was pre-
sented in an algorithmic setting to improve memory us-
age. As far as we know this is the first time that it is used
in secure computation or in a cryptographic context.

The construction uses a Feistel-like structure. Let
x = xz|xg be the bit representation of an input item,
where |x;| = logf, i.e. is equal to the bit-length of an
index of an entry in the hash table. (We assume here that
the number of bins § in the hash table is a power of 2. It
was shown in [ANS10] how to handle the general case.)
Let f() be a random function whose range is [0, — 1].
Then item x is mapped to bin x;, & f(xg). The value that
is stored in the bin is x, which has a length that is shorter
by log B bits than the length of the original item. This is a
great improvement, since the length of the stored data is
significantly reduced, especially if |x| is not much greater
than log 3. As for the security, it can be shown based on
the results in [ANS10] that if the function f is k-wise in-
dependent, where k = polylogn, then the maximum load
of a bin is logn with high probability.

The structure of the mapping function ensures that if
two items x, x’ store the same value in the same bin then it
must hold that x = x": if the two items are mapped to the
same bin, then x; @ f(xg) = x; @ f(x%). Since the stored
values satisfy xg = x} it must also hold that x, = x}, and
therefore x = x’.

As a concrete example, assume that |x| = 32 and that
the table has B = 2%° bins. Then the values that are stored
in each bin are only 12 bits long, instead of 32 bits in the
original scheme. Note also that the computation of the
bin location requires a single instantiation of f, which
can be implemented with a medium-size lookup table.

A comment about an alternative approach An alter-
native, and more straightforward approach for reducing
the bit-length could map x using a random permutation
p() to a random |x|-bit string p(x). The first log bits of
p(x) are used to define the bin to which x is mapped, and
the value stored in that bin holds the remaining |x| —log 3
bits of p(x). This construction, too, has a shorter length
for the values that are stored in the bins, but it suffers
from two drawbacks: From a performance perspective,
this construction requires the usage of a random permu-
tation on |x| bits, which is harder to compute than a ran-
dom function. From a theoretical perspective, it is im-
possible to have efficient constructions of k-wise inde-
pendent permutations, and therefore we only know how
to prove the logn maximum load of the bins under the
stronger assumption that the permutation is random.

5 Circuit-Phasing

PSI protocols that are based on generic secure compu-
tation are of great importance due to their flexibility (cf.
§3.4)for details). The best known construction of a circuit
computing the intersection (of 6-bit elements) is the SCS
circuit of [HEK12|] with about 3nclog,n AND gates

and an AND depth of ®(log, clog,n). We describe a
new construction of circuits with the same order of AND
gates (but with smaller constants), and a much smaller
depth. Our experiments, detailed in §8] demonstrate that
the new circuits result in much better performance.

The new protocol, which we denote as Circuit-
Phasing, is based on the two parties mapping their in-
puts to hash tables before applying the circuit. The idea
is similar to the OT-based PSI protocol of [PSZ14] de-
scribed in but instead of using OTs for the com-
parisons, the protocol evaluates a pairwise-comparison
circuit between each bin of P, and P in parallel:

e Both parties use a table of size f = O(n) to store
their elements. Our analysis (§7) shows that setting
B = 2.4n reduces the error probability to be negligi-
ble for reasonable input sizes (28 < n < 22*) when
setting the stash size according to

e P, maps its input elements to bins using Cuckoo
hashing with two hash functions and a stash of
size 4; empty bins are padded with a dummy ele-
ment d.

e P; maps its input elements into § bins using sim-
ple hashing. The size of the bins is set to be maxg,
a parameter that is set to ensure that no bin over-
flows (see 7). The remaining slots in each bin are
padded with a dummy element dy # d;. The anal-
ysis described in §7| shows how maxg is computed
and is set to a value smaller than log, n.

e The parties securely evaluate a circuit that compares
the element that was mapped to a bin by P, to each
of the maxp elements mapped to it by P.x

e Finally, each element in P,’s stash is checked for
equality with all n; input elements of P; by securely
evaluating a circuit computing this functionality.

e To reduce the bit-length of the elements in the
bins, and respectively the circuit size, the protocol
uses permutation-based hashing as described in 4]
(Note that using this technique is impossible with
SCS circuits.)

A detailed analysis of the circuit size and depth
Let m be the size of P;’s input to the circuit with m =
Bmaxg +sny, i.e., for each of the B bins, P; inputs maxg
items as well as n; items for each of the s positions in
the stash. The circuit computes a total of m comparisons
between the elements of the two parties. Each element
is of length ¢’ bits, which is the reduced length of the
elements after being mapped to bins using permutation-
based hashing, i.e. 0’ = o —log, 8.

10

A comparison of two ¢’-bit elements is done by com-
puting the bitwise XOR of the elements and then a tree
of 0’ — 1 OR gates, with depth [log, 0']. The topmost
gate of this tree is a NOR gate. Afterwards, the circuit
computes the XOR of the results of all comparisons in-
volving each item of P,. (Note that at most one of the
comparisons results in a match, therefore the circuit can
compute the XOR, rather than the OR, of the results of
the comparisons.) Overall, the circuit consists of about
m- (0’ —1) = ny - (maxg +s) - (¢’ — 1) non-linear gates
and has an AND depth of [log, o].

Advantages Circuit-Phasing has several advantages
over the SCS circuit:

e Compared to the number of AND gates in the SCS
circuit, which is 3nclogn, and recalling that ¢’ <
o, and that maxg was shown in our experiments
to be no greater than logn, the number of non-
linear gates in Circuit-Phasing is smaller by a factor
greater than 3 compared to the number of non-linear
gates in the SCS circuit (even though both circuits
have the same big “O” asymptotic sizes).

o The main advantage of Circuit-Phasing is the low
AND depth of log, (o), which is also independent
of the number of elements n. This affects the over-
head of the GMW protocol that requires a round of
interaction for every level in the circuit.

o Another advantage of Circuit-Phasing is its simple
structure: the same small comparison circuit is eval-
uated for each bin. This property allows for a SIMD
(Single Instruction Multiple Data) evaluation with a
very low memory footprint and easy parallelization.

Hashing failures: The correct performance of the pro-
tocol depends on the successful completion of the hash-
ing operations: The Cuckoo hashing must succeed, and
the simple hashing must not place more than maxg ele-
ments in each bin. Tables of size 2(1 +&)n and maxg =
O(logn) guarantee these properties with high probabil-
ity. We analyze the exact table sizes that are required
in {/]and set them to be negligible in the security param-
eter A.

6 OT-Phasing

We improve the OT-PSI protocol of [PSZ14] by applying
the following changes to the protocol:

e Reducing the bit-length of the items using the
permutation-based hashing technique described
in §4 This improvement reduces the length of the
items from |x| bits to |x| — B bits, where J is the size

of the tables, and consequently reduces the number
of OTs by a factor of 3 /]x].

e Using OTs on a single mask instead of on O(logn)
masks before. This improvement is detailed in

e Improving the utilization of bins by using 3-way
Cuckoo hashing (§6.2).

We call the resulting PSI protocol that combines all
these optimizations OT-Phasing. We evaluate the per-
formance gain of each optimization individually in Ap-
pendix §A] and micro-benchmark the resulting protocol

in Appendix

6.1 A Single Mask per Bin

In order to hide information about the number of items
that were mapped to a bin, the original OT-PSI proto-
col of [PSZ14] (§3.3) padded all bins to a maximum size
of maxg = O(logn). The protocol then ran OTs on maxg
masks of /-bit length where the parties had to generate
and process all of the maxg masks. We describe here
a new construction that enables the parties to compute
only a constant number of masks per element, regardless
of the number of elements that were mapped to the bin
by P;. While this change seems only small, it greatly
increases the performance and scalability of the protocol
(cf. §A). In particular, this change results in two improve-
ments to the protocol:

e The number of symmetric cryptographic operations
to generate the masks is reduced from O(log2 n) to
O(logn). Furthermore, note that P> had to compute
the plaintext intersection between his npmaxg gen-
erated masks and the 2n; masks sent by P;. This
also greatly improves the memory footprint and
plaintext intersection.

e In the previous OT-based protocol, a larger value of
the parameter maxg reduced the failure probability
of the simple hashing procedure used by Pj, but in-
creased the string size in the OTs. In the new proto-
col the value of maxg does not affect the overhead.
Therefore Py can use arbitrarily large bins and en-
sure that the mapping that it performs never fails.

Recall that in the OT-based PSI protocol of [PSZ14]
(cf. the parties had inputs of 7-bit characters, where
each character was p bits long, and we used the no-
tation N = 2. The parties performed OTs on strings
of maxg masks per bin. Each mask had length ¢ =
A +1log,(n1)+1log,(n2) bits, corresponded to an element
that P; mapped to the bin, and included a l-out-of-N
random-OT for each of the ¢ characters of this element.
P; was the sender, received all the N sender input-strings

11

of each OT, and chose from them the one correspond-
ing to the value of the character in its own element. P>
was the receiver and received the string corresponding to
the value of the character in its own element. Then P,
computed the XOR of the ¢ strings corresponding to the
t characters of its element and sent this XOR value to P,
which compared it to the XOR of its ¢ outputs from this
OT set.

The protocol can be improved by running the ¢ 1-out-
of-N OTs on a single mask per bin. Denote by u the
actual number of items mapped by P; to a bin. The
value of u is not revealed to P, in the new protocol and
therefore there is no need to pad the bin with dummy
items. Denote the single item that P mapped to the bin
asy=yi,...,), and the u items that P; mapped to the bin
asx!,...,x% where each x' is defined as x' = x’i sexh

Define the input strings to the jth OT as {s;¢}/—1..n-
The protocol that is executed is a random OT and there-
fore these strings are chosen by the protocol and not
by P;. The parties run a single set of ¢+ OTs and P,
learns the ¢ strings s1,y,,...,5,,. It computes their XOR
Sp, = S1y, ®--- @51, and the value H(Sp,), where H()
is a hash function modeled as a random oracle.

Py learns all the Nt strings generated in the random-
OT protocols. For each input element x' that P; mapped
to the bin, it computes the XOR of the strings corre-
sponding to the characters of the input, namely S}z =
Sy ® @5, and then computes the value H (Sp,)-
Note that over all bins, P; needs to perform this compu-
tation only O(n;) times and compute O(n;) hash values.
Py then sends all these values to P, in randomly permuted
order. P, computes the intersection between these values
and the H(Sp,) values that it computed in the protocol.

Efficiency: P, computes only a single set of # OT's per
bin on one mask, compared to OT's on maxg masks in the
OT-based protocol of [PSZ14]. As for P;’s work, it com-
putes a single set of OTs per bin, and in addition com-
putes a XOR of strings and a hash for each of its O(n;)
input elements. This is a factor of maxg = O(logn)
less work as before. Communication is of only O(no)
strings, as before.

Security: Assuming that the OT protocols are secure
and that the parties are semi-honest, the only informa-
tion that is received by any party in the protocol is the
H (S}l) values that are sent from Py to P,. For all val-
ues in the intersection of the input sets of the two parties,
Py sends to P, the same hash values as those computed
by P,. Consider the set of input elements X that are part
of P;’s input and are not in P’s input, and the set of XOR
values corresponding to X. There might be linear depen-
dencies between the XOR values of X, but it holds with
overwhelming probability that all these values are differ-
ent, and they are also all different from the XOR values
computed by P5. Therefore, the result of applying a ran-

dom hash function H () to these values is a set of random
elements in the range of the hash function. This prop-
erty enables to easily provide a simulation based proof
of security for the protocol.

6.2 3-Way Cuckoo Hashing

The original OT-based PSI protocol of [PSZ14] uses
Cuckoo hashing which employs two hash functions to
map elements into bins. It was shown in [PRO4] that
if n elements are mapped to 2(1 + €)n bins, Cuckoo
hashing succeeds with high probability for € > 0. This
means that Cuckoo hashing achieves around 50% utiliza-
tion of the bins. If the number of hash functions # is in-
creased to A > 2, a much better utilization of bins can
be achieved [DGM™10]. However, using / hash func-
tions in our protocol requires P; to map each element /
times into its bins using simple hashing and requires P;
to send An; masks in the intersection step of the proto-
col (cf. Fig.[I).

We detail in Tab. [I] the utilization and total communi-
cation of our PSI protocol for n; = ny = 22° and ny =
28 < ny = 2%, for o = 32-bit elements with different
numbers of hash functions. We observe that there is a
tradeoff between the communication for the OTs and the
communication for the masks that are sent by P;. Our
goal is to minimize the total communication, and this is
achieved for 4 = 3 hash functions in the setting of n; =n,
and for A = 2 in the setting of n, < n;. For n; = ny us-
ing h = 3 instead of & = 2, as in the original protocol
of [PSZ14], reduces the overall communication by 33%.

h || UtiL[%] | #OTs | #Masks Comm. [MB]
ny =np ny <K ny
2 50.0 2.00mt | 2ni0 148.0 7.0
3 918 .09, ¢ 30 9.8 255
7 977 T02mst | 4ni? 1053 340
5 992 10l t | 5l 1146 5

Table 1: Overall communication for a larger number of
hash functions 4. Communication is given for a) n; =
ny =220 and b) ny = 28 < n; =220 elements of o = 32-
bit length. Utilization according to [DGM™10].

Hashing failures: We observe that with OT-Phasing,
there is essentially no bound on the number of items that
the server can map to each specific bin, since the client
does not observe this value in any way (the message that
the client receives only depends on the total number of
items that the server has). However, the parameters used
in the protocol do need to ensure that the Cuckoo hashing
procedure does not fail. The analysis appears in

12

7 Hashing Failures

The PSI schemes that we presented use simple hashing
(by Py), and Cuckoo hashing (by P»). In each of these
hashing schemes, the usage of bins of constant size (or
a stash of constant size), might result in hashing failures
if the number of items mapped to a bin (or the stash)
exceeds its capacity.

When hashing fails, the party which performed the
hashing has two options: (1) Ignore the item that can-
not be mapped by the hashing scheme. This essentially
means that this item is removed from the party’s input to
the PSI protocol. Consequently, the output of the compu-
tation might not be correct (although, if this type of event
happens rarely, the effect on correctness is likely to be
marginal). (2) Attempt to use a different set of hash func-
tions, and recompute the hash of all items. In this case
the other party must be informed that new hash functions
are used. This is essentially a privacy leak: for example,
the other party can check if the input set S of the first
party might be equal to a set S’ (if a hashing failure does
not occur for §' then clearly S’ # S). The effect of this
leak is likely to be weak, too, but it is hard to quantify.

The effect of hashing failures is likely to be marginal,
and might be acceptable in many usage settings (for ex-
ample, when measuring ad conversion rates it typically
does not matter if the revenue from a single ad view is
ignored). However, it is preferable to set the probability
of hashing failures to be negligibly small.

In OT-Phasing, P> does not learn the number of items
that P; maps to each bin, and therefore P can set the size
of the bins to be arbitrarily large. However, in that PSI
protocol P; knows the size of the stash that is used in
the Cuckoo hashing done by P;. In Circuit-Phasing, each
party knows the size of the bins (or stash) that is used by
the other party. We are therefore interested in learning
the failures probabilities of the following schemes, and
bound them to be negligible, i.e., at most 240,

e 7.1} Simple hashing in the Circuit-Phasing
scheme, where n items are mapped using two in-
dependent functions to 2.4n bins. This is equivalent
to mapping 2n items to 2.4n bins.

. Cuckoo hashing, using 2.4n bits and either 2-
way hashing (for Circuit-Phasing), or 3-way hash-
ing (for OT-Phasing). The failure probability for
3-way hashing is smaller than for 2-way hashing
(since there is an additional bin to which each item
can be mapped), and therefore we will only examine
the failure probability of 2-way Cuckoo hashing.

7.1 Simple Hashing

It was shown in [RS98]] that when n balls are mapped at
random to » bins then the maximum number of elements
in a bin is with high probability {3 (1+o0(1)). Let us
examine in more detail the probability of the following
event, “2n balls are mapped at random to 2.4n bins, and

the most occupied bin has at least k balls”:

Pr(ﬂbin with > k balls) €))]
< 2.4n-Pr(bin #1 has > kballs) (2)
<24 (Zk”> <21m) k)

k k—1
(%) (zm) @
@

It is straightforward to see that this probability can be
bounded to be at most 2~4° by setting

k > max(6,2elogn/loglogn). (6)

We calculated for some values of n the desired bin sizes
based on the upper bound of Eq. (6) and the tighter
probability calculation of Eq. (5), and chose the mini-
mal value of k that reduces the failure probability to be-
low 2740, The results are in Table It is clear that
Eq. (B) results in smaller bins for sufficiently large n, and
therefore the maximal bin size should be set according to

Eq. ().

n 28 2T 276 220 224
Eq. 17 [18 | 19 | 20 [21
Eq.(6) [15 | 19 | 22 | 26 | 29

Table 2: The bin sizes that are required to ensure that
no overflow occurs when mapping 2n items to 2.4n bins,
according to the Eq. (5) and Eq. (6).

7.2 Cuckoo Hashing

It was shown in [KMWOQ9] that Cuckoo hashing with a
stash of size s fails with probability O(n™*). The con-
stants in the big “O” notation are unclear, but it is ob-
vious that O(n~*) < n~0~1) for sufficiently large values
of n.

We would like to find the exact size of the stash that
ensures that the failure probability is smaller than 2740,
We ran 2°° repetitions of Cuckoo hashing, mapping n
items to 2.4n bins, for n € {2!1 212213 2141 and
recorded the stash size s that was needed for Cuckoo
hashing to be successful. Tab. [3| depicts the number of
repetitions where we required a stash of size s. From the

13

results we can observe that, to achieve 27° failure prob-
ability of Cuckoo hashing, we would require a stash of
size s=6 forn=2!"s=35forn=12'2 and s = 4 for
both n =213 and n = 21 elements.

l s [2] T [2[2 [2] 3 [2[4 l

0 [1,068,592,289 | 1,070,826,935 | 1,072,132,187 | 1,072,845430

1 4,994,200 2,361,137 1,592,951 891,497

2 147,893 52,038 16,404 4,340

3 7,005 1647 274 56

4 407) 8 1

5 28 5 0 0

6 2 0 0 0
Table 3: Required stash sizes s accumulated
over 23 Cuckoo hashing repetitions mapping

ne {211 212 213 2141 elements to 2.4n bins.

However, in our experiments we need the stash sizes
for larger values of n > 2'# to achieve a Cuckoo hashing
failure probability of 274°. To obtain the failure proba-
bilities for larger values of n, we extrapolate the results
from Tab. |3| using linear regression and illustrate the re-
sults in Fig. 2] We can observe that the stash size for
achieving a failure probability of 2740 is drastically re-
duced for higher values of n: for n = 2'6 we need a
stash size of s = 4, for n = 220 we need s = 3, and for
n = 2?* we need s = 2. This observation is in line with
the asymptotic failure probability of O(n™*).

Finally, we extrapolate the required stash sizes s to
achieve a failure probability of 270 for smaller values of
n € {28,212} and give the results together with the stash
sizes of n € {2!°,2%0,224} in Tab.[4]

Number of Elements (2%)
_ 111 1‘2 1‘3 lfl- 1‘5 1‘6 1‘7 18 1‘9 2‘0 2‘1 2‘2 2‘3 24
0L
30} e
-40

nunnnnon
OO WNEF

_60 L

_80 L

Error Probability (2Y)

-100+

Figure 2: Error probability when mapping n elements to
2.4n bins using 2-way Cuckoo hashing for stash sizes
1 < s < 6. The solid lines correspond to actual measure-
ments, the dashed lines were extrapolated using linear
regression. Both axes are in logarithmic scale.

[number of elements n [2
| stash size s

™
N
R
N
N

Table 4: Required stash sizes s to achieve 2740 error
probability when mapping » elements into 2.4n bins.

8 Evaluation

In this section we report on our empirical perfor-
mance evaluation of Circuit-Phasing (§5) and OT-
Phasing (§6). We evaluate their performance separately
(§8.1] and §8.2), since special purpose protocols for set-
intersection were shown to greatly outperform circuit-
based solutions in [PSZ14]]. (The latter are nevertheless
of independent interest because their functionality can be
easily modified.)

Benchmarking Environment We consider two
benchmark settings: a LAN setting and a WAN setting.
The LAN setting consists of two desktop PCs (Intel
Haswell i7-4770K with 3.5 GHz and 16GB RAM)
connected by Gigabit LAN. The WAN setting consists
of two Amazon EC2 m3.medium instances (Intel Xeon
E5-2670 CPU with 2.6 GHz and 3.75 GB RAM)
located in the US east coast (North Virginia) and Europe
(Frankfurt) with an average bandwidth of 50 MB/s and
average latency (round-trip time) of 96 ms.

We perform all experiments for a symmetric security
parameter k = 128-bit and statistical security parame-
ter A = 40 (cf. §2.1), using a single thread, and aver-
age the results over 10 executions. In our experiments,
we frequently encountered outliers in the WAN setting
with more than twice of the average run-time, for which
we repeated the execution. The resulting variance de-
creased with increasing input set size; it was between
0.5% — 8.0% in the LAN setting and between 4% — 16%
in the WAN setting. Note that all machines that we per-
form our experiments on are equipped with the AES-NI
extensions which allows for very fast AES evaluation.

Implementation Details We instantiate the random or-
acle, the function for hashing into smaller domains,
and the correlation-robust function in OT extension with
SHA256. We instantiate the pseudo-random generator
using AES-CTR and the pseudo-random permutation in
the server-aided protocol of [KMRS14] using AES. To
compute the (21#)-OT}, functionality, we use the random
1-out-of-N OT extension of [KK13] and set u =8, i.e.,
use N = 256, since this was shown to result in minimal
overhead in [PSZ14]]. We include in the measurements
of our results the cost of precomputing the OT exten-
sion protocol prior to the function evaluation using the
OT extension implementation of [[ALSZ13]. Our OT-
Phasing implementation is available online at https:

14

//github.com/encryptogroup/PSI|and our Circuit-
Phasing implementation is available as part of the ABY
framework of [DSZI15] at https://github.com/enc
ryptogroup/ABY.

For simple hashing we use the maximum bin sizes that
were computed using Equation [5]in (cf. Tab.[2). For
Cuckoo hashing, we set € = 0.2 and map n elements to
2(1+ ¢€)n bins for 2-way Cuckoo hashing and to (1+ €)n
bins for 3-way Cuckoo hashing with a stash size of s = 4.

For the OT-based PSI protocol [PSZ14] and OT-
Phasing, where the performance depends on the bit-
length of elements, we hash the o-bit input elements into
a £ = A +log,(ny) + log, (ny)-bit representation using
SHA256 if o > ¢. Thereby, we decrease the impact of
the bit-length on the performance.

We use a Yao’s garbled circuits implementation with
most recent optimizations, including the recent half-gate
optimization of [ZRE15] (cf. §2.6|for details).

We emphasize that all implementations are done in
the same programming language (C++), use the same
underlying libraries for evaluating cryptographic opera-
tions (OpenSSL for symmetric cryptography and Miracl
for elliptic curve cryptography), perform the plaintext-
intersection of elements using a standard hash map, are
all executed using a single thread (except for the GMW
implementation which uses two threads), and run in the
same benchmarking environment.

8.1 Generic Secure Computation-based
PSI Protocols

For the generic secure computation-based PSI protocols,
we perform the evaluation on a number of elements vary-
ing from 28 to 2%° and a fixed bit-length of ¢ = 32-bit.
For n = 2?0 all implementations, except Circuit-Phasing
with GMW, exceeded the available memory, which is
due to the large number of AND gates in the SCS circuit
(estimated 3.4 billion AND gates) and the requirement
to represent bits as keys for Circuit Phasing with Yao,
where storing only the input wire labels to the circuit re-
quires 1 GB. A more careful implementation, however,
could allow the evaluation of these circuits. We com-
pare the sort-compare-shuffle (SCS) circuit of [HEK12]
and its depth-optimized version of [PSZ14]], with Circuit-
Phasing (§5), by evaluating both constructions using
Yao’s garbled circuits protocol [Yao86] and the GMW
protocol [GMWS7] in the LAN and WAN setting. We
use the size-optimized version of the SCS circuit in Yao’s
garbled circuit and the depth-optimized version of the
circuit in the GMW protocol (cf. §3.4). For the evalu-
ation in Circuit-Phasing, we set the maximum bin size in
simple hashing according to Equation 3] (cf. Tab. 2} set
€ =0.2, set the stash size s = 4, and assume n = n; = ny.
For our Circuit-Phasing protocols, we give the failure

https://github.com/encryptogroup/PSI
https://github.com/encryptogroup/PSI
https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/ABY

Protocol LAN [[WAN l
=2 [n=2" [n=2" [n=2" [n=2 [n=27] n=2" [n=2"|

Yao’s garbled circuits [Yao86)]

SCS [HEK12] 273 2,470 [55,327 [— [3,290 [18,677 [216,504 [—

Circuit-Phasing §5[[244 | 1,404 [18,143 | — || 2014 | 8975 [109427 | —

Goldreich-Micali-Wigderson [|[GMWS87|]

SCS [HEK12] 520 | 2,455 [47,726 — [10,125 [24,320 [225,642 —

Circuit-Phasing [196 [764 [10,462 [133,729 H 1,625 [4,409 [42,472 [521,785

Table 5: Run-time in ms for generic secure PSI protocols in the LAN and WAN setting on ¢ = 32-bit elements.

Protocol [n=25T n=2"7 n=21°] n=2%] Asymptotic
Number of AND gates
SCS [HEK12] [] 360488 | 8,273,920 [172,490,752 | *3,400,000,000 | o (3nlog, (n) +4n)
Circuit-Phasing §5| [| 173,514 | 2,619,864 | 36,962,100 | 472,383,420 | (o —log,(n) —2)(6(1+&)n +sn)
Communication in MB for Yao’s garbled circuits [[Yao86| and GMW |[GMW87)]
SCS [HEK12] 1 11] 268 | 5593 110,245] 2k0(3nlog, (n) +4n)
Circuit-Phasing §5[|| 5] 81| 1,145 | 14,642 | 2k(0 —log,(n) —2)(6(1 +&)n i + sn)
Number of communication rounds for GMW [GMW87)]
SCS [HEK12] [T 31 | 117] 153] 189 | (log, (o) +4)log, (2n)
Circuit-Phasing §5| [5] 5] 5] 5] log, (o)
[Failure Probability for Hashing QZ[]
[Circuit-Phasing §5] [[2°¢-19) | 2°(-28) | 2°(-40) | 2°(-40) | Empirical Evaluation |

Table 6: Number of AND gates, concrete communication in MB, round complexity, and failure probability for generic
secure PSI protocols on o = 32-bit elements. Numbers with * are estimated.

probability for simple and Cuckoo hashing separately.
The run-time of Circuit-Phasing would increase linear in
the bin size maxg, while the stash size s would have a
smaller impact on the total run-time as the concrete fac-
tors are smaller.

Run-Time (Tab. Our main observation is that
Circuit-Phasing outperforms the SCS circuit of [HEK12]
for all tested parameters. When evaluated using Yao’s
garbled circuits, Circuit-Phasing outperforms the SCS
circuit by factor of 1-3, and when evaluated using GMW
it outperforms SCS by a factor of 3-6. Furthermore, the
run-time for Circuit-Phasing grows slower with n than
for the SCS circuit for all settings except for GMW in
the WAN setting. There, the run-time of the SCS cir-
cuit grows slower than that of Circuit-Phasing. This
can be explained by the high number of communication
rounds of the SCS based protocol, which are slowly be-
ing amortized with increasing values of n. The slower
increase of the run-time of Circuit-Phasing with increas-
ing n is due to the smaller increase of the bin size
maxg € O({22.) vs. O(logn) for the SCS circuit, and
the use of permutation-based hashing, which reduces the
bit-length of the inputs to the circuit. Note that our Yao’s
garbled circuits implementation suffers from similar per-
formance drawbacks in the WAN setting as our GMW
implementation, although being a constant round proto-
col. This can be explained by the pipelining optimization
we implement, where the parties pipeline the garbled cir-
cuits generation and evaluation. The performance draw-
back could be reduced by using an implementation that

15

uses independent threads for sending / receiving.

Communication (Tab.[6) Analogously to the run-time
results, Circuit-Phasing improves the communication of
the SCS circuit by factor of 1-4 and grows slower with
increasing values of n. The improvement of the round
complexity, which is mostly important for GMW, is even
more drastic. Here, Circuit-Phasing outperforms the SCS
circuit by factor of 16-38. Note that the round complex-
ity of Circuit-Phasing only depends on the bit-length of
items and is independent of the number of elements.

8.2 Special Purpose PSI Protocols

For the special purpose PSI protocols we perform the
experimental evaluation for equally sized sets n; =
ny (§8.2.1) and differently sized sets n, < ny (§8.2.2)),
for set sizes ranging from 28 to 22* in the LAN setting
and from 28 to 2%° in the WAN setting.

We compare OT-Phasing (§6) to the original OT-
based PSI protocol of [PSZ14], the naive hashing
solution (, the semi-honest server-aided protocol
of [KMRS14] (§3.2), and the Diffie-Hellmann (DH)-
based protocol of [Mea86] (§3.3) using elliptic curves.
Note that the naive hashing protocol and the server-aided
protocol of [KMRS14| have different security assump-
tions and cannot directly be compared to the remaining
protocols. We nevertheless included them in our com-
parison to serve as a base-line on the efficiency of PSIL
For the protocol of [KMRS14]], we run the server rou-
tine that computes the intersection between the sets on

[Setting T LAN T WAN
| Protocol [n=28T n=2"Tn=2] n=2% n=2% [n=25 n=2" T n=2%F n=2%
Naive Hashing™ §3.1| 1 4 48 712 13,665 97 111 558 3,538
Server-Aided™ [KMRS14] 1 5 78 1,250 20,053 198 548 2,024 7,737
DH-based ECC [Mca86] 231 3,238 | 51,380 | 818,318 | 13,065,904 628 | 10,158 | 161,850 | 2,584,212
Bir-length 6 — 32-bit
OT PSI[PSZ14] [184] 216 [3,681 [61078 | 929,685 | 957 [1,820 | 9,556 | 157,332
OT-Phasing §6| [179] 202 [442 | 4495 | 47,111 || 820 [1,340 | 3,028 | 15363
Bit-length 6 = 64-bit
OT PSI [PSZ14] [196 [442 | 7302 [125697 | — [[977 [1873 [18998 [315,115
OT-Phasi [18T [233 | 873 | 10437 | 142593 || 899 | 1448 | 4051 | 32,531
Bit-length o = 128-bit
OT PSI[PSZ14] [[198] 448 [8478 | 155051 | — [[980 [1,879 [21,273 [392,265
OT-Phasing §6| [181] 233 | 967 | 13,602 | 216280 [| 914 [1,673 [4631 | 42,420
Table 7: Run-time in ms for protocols with n = n| = n, elements. (Protocols with (*) are in a different security model.)
[Protocol [n=25] n=2" [n=2" [n=2" 1 n=2"] Asymptotic [bit] |

Naive Hashing®™ §3.1 0.01 0.03 0.56 10.0 176.0 n(

Server-Aided™ [KMRS14] 0.01 0.16 2.5 40.0 640.0 (m +nm+[XNY)K

DH-based ECC [Mea86] 0.02 0.28 456 740 | 1,000 (i +)@ +ml

Bit-length o = 32-bit

OT PSI [PSZ14] 0.09 139 2258 | 36720 | 5,971.20 0.6n0K + 61,7

OT-Phasing 0| 0.03 0.54 649 | 1068 | 11424 | 2.4mpx(T2 43,0

Bit-length 6 = 64-bit

OT PSI [PSZ14] 0.14 2.59 4178 6744 | 10,8864 0.6n,K % min(l, G) + 6n,

OT-Pt 6] 0.06 114 | 1609 [2604 | 36000 | 2.4mx([mmCIRR0IT) 43,

Bit-length 6 = 128-bit

OT PSI [PSZ14] 0.14 2.59 46.58 8280 | 14,572.8 061> 0K + 61,

OT-P} 6| 0.06 1.14 18.49 3372 | 54432 2.4nyic([221 1) 4 30,0

Table 8: Communication in MB for PSI protocols with n = n; = ny elements. £ = A +1log, (n;) 4 log,(n2). Assuming
intersection of size 1/2 - n for TTP-based protocol. (Protocols with (*) are in a different security model.)

the machine located at the US east coast (North Virginia)
and the server and client routine on the machine in Eu-
rope (Frankfurt). For the original OT-based PSI and OT-
Phasing, we give the run-time and communication for
three bit-lengths: short o =32 (e.g., for IPv4 addresses),
medium ¢ = 64 (e.g., for credit card numbers), and long
o = 128 (for set-intersection between arbitrary inputs).

Note that the OT-based PSI protocol of [PSZ14] and
our OT-Phasing protocol both evaluate public-key cryp-
tography during the base-OTs, which dominates the run-
time for small sets. However, these base-OTs only need
to be computed once and can be re-used over multiple
sessions. In the LAN setting, the average run-time for
computing the 256 base-OTs was 125 ms while in the
WAN setting the run-time was 245 ms. Nevertheless, our
results all contain the time for the base-OTs to provide an
estimation of the total run-time.

8.2.1 Experiments with Equal Input Sizes

In the experiments for input sets of equal size n =n; =ny
we set n € {28,212,216 220 2241 i the LAN setting and
n € {28,212 216 2201 in the WAN setting. Note that for
larger bit-lengths ¢ >= 64 and for n = 2%* elements,
the memory needed for the OT-based PSI protocol of

[PSZ14]] exceeded the available memory.

Run-Time (Tab.[7) As expected, the lowest run-time
for the equal set-size experiments is achieved by the (in-
secure) naive hashing protocol followed by the server-
aided protocol of [KMRS14], which has around twice
the run-time. In the LAN setting, however, for short bit-
length o = 32, our OT-Phasing protocol nearly achieves
the same run-time as both of these solutions (which are in
a different security model). In particular, when comput-
ing the intersection for n = 2°* elements, our OT-Phasing
protocol requires only 3.5 more time than the naive hash-
ing protocol and 2.5 more time than the server-aided pro-
tocol. In comparison, for the same parameters, the orig-
inal OT-based PSI protocol of [PSZ14] has a 68 times
higher run-time than the naive hashing protocol, and the
DH-based ECC protocol of [Mea86| has a four orders of
magnitude higher run-time compared to of naive hash-
ing.

While the run-time of our OT-Phasing protocol in-
creases with the bit-length of elements, for ¢ = 128-bit
its run-time is only 15 times higher than the naive hash-
ing protocol, and is still nearly two orders of magnitude
better than the DH-based ECC protocol.

Overall, in the LAN setting and for larger sets (e.g.,

16

n = 2?4, the run time of OT-Phasing is 20x better than
that of the original OT-based PSI protocol of [PSZ14],
and 60-278x better than that of the DH-ECC protocol
of [Mea86].

When switching to the WAN setting, the run-times of
the protocols are all increased by a factor of 2-6. Note
that the faster protocols suffer from a greater perfor-
mance loss (factors of 5 and 6 for 220 elements, for the
naive hashing protocol and server-aided protocol) than
the slower protocols (factor 3 for the DH-based and our
OT-Phasing protocol and 2.5 for the OT-based PSI proto-
col of [PSZ14])). This difference can be explained by the
greater impact of the high latency of 97 ms on the run-
time of the protocols. The relative performance among
the protocols remains similar to the LAN setting.

Communication (Tab. The amount of communica-
tion performed during protocol execution is often more
limiting than the required computation power, since the
latter can be scaled up more easily by using more ma-
chines. The naive hashing approach has the lowest
communication among all protocols, followed by the
server-aided solution of [KMRS14]. Among the secure
two-party PSI protocols, the DH-based ECC protocol
of [Mea86] has the lowest communication, except for the
case of a short bit-length of ¢ = 32 bit and n = 2>* ele-
ments. In that setting our OT-Phasing has a slightly lower
communication complexity. This is quite surprising, as
protocols that use public-key cryptography and, in par-
ticular elliptic curves, were believed to have the lowest
communication complexity. Our protocol has less com-
munication in this case due to the usage of permutation-
based hashing.

In comparison to the original OT-based PSI protocol
of [PSZ14], OT-Phasing reduces the communication by
factor 2.5 - 5. We can also observe that OT-Phasing re-
duces the impact when performing PSI on elements of
longer bit-length. In particular, OT-Phasing has lower
communication overhead than the original OT-based PSI
protocol for all combinations of elements and bit-lengths.
In fact, it even has a lower communication for o = 128
than the original OT-based PSI protocol has for o = 32.

8.2.2 Experiments with Different Input Sizes

For examining the setting where the two parties have dif-
ferent input sizes, we set n; € {216,220 224} and n, €
{28,2'2} and run the protocols on all combinations such
that n, < n;. Note that we excluded the original OT-
based PSI protocol of [PSZ14] from the comparison,
since the bin size maxg becomes large when f < n
and the memory requirement when padding all bins to
maxg elements quickly exceeded the available memory.
In this setting, unlike the equal input sizes experiments

17

in we use h = 2 hash functions instead of h = 3,
since this results in less total computation and communi-
cation (cf. §6.2). Since we use & = 2 hash functions, we
also increase the number of bins from 1.2n, to 2.4n,.

Run-Time (Tab. [0) Similar to the results for equal
set sizes, the naive hashing protocol is the fastest pro-
tocol for all parameters. The server-aided protocol
of [KMRS14] is the second fastest protocol but it scales
better than the naive hashing protocol for increasing
number of elements. The best scaling protocol is our
OT-Phasing protocol. It achieves the same performance
as the server-aided protocol for ny, = 28 pny =22 with
short bit-length ¢ = 32. For n; = 2%* its run-time is at
most twice that of the server-aided protocol in both net-
work settings.

When switching to the WAN setting, the run-times of
all protocols are increased by a factor 4-6 while the rela-
tive performance between the protocols remains similar,
analogously to the equal set size experiments.

Communication (Tab. [E]) As expected, the naive
hashing solution again achieves the lowest communica-
tion overhead. Surprisingly, our OT-Phasing protocol
achieves nearly the same communication as the server-
aided protocol of [KMRS14] and has only two times the
communication of the naive hashing protocol for all bit-
lengths. Furthermore, our OT-Phasing protocol requires
a factor of 2-3 less communication than the DH-based
ECC protocol of [Mea86] for nearly all parameters. The
low communication of our OT-Phasing protocol for un-
equal set sizes can be explained by the low number of
OTs performed.

Acknowledgements We thank the anonymous review-
ers of USENIX Security 2015 for their helpful com-
ments. This work was supported by the European
Union’s 7" Framework Program (FP7/2007-2013) un-
der grant agreement n. 609611 (PRACTICE) and via
a Marie Curie Career Integration Grant, by the DFG as
part of project E3 within the CRC 1119 CROSSING, by
the German Federal Ministry of Education and Research
(BMBF) within EC SPRIDE, by the Hessian LOEWE
excellence initiative within CASED, by a grant from
the Israel Ministry of Science and Technology (grant 3-
9094), by a Magneton grant of the Israeli Ministry of
Economy, by the Israel Science Foundation (Grant No.
483/13), and by the Israeli Centers of Research Excel-
lence (I-CORE) Program (Center No. 4/11).

Setting LAN WAN
n2:28 ” }12:2'2 n2:28 n2:2'2

Protocol =2 [m=2"] m=2" [m=2" m=2"] n=0% =20 | m=2" [m=2°] m=2"
Naive Hashing™ §3.1 33 464 7,739 35 466 7,836 560 2,775 562 2,797
Server-Aided™ [KMRS 14| 74 680 8,935 75 696 8,965 629 2,923 731 2,951
DH-based ECC [Mea86] 28,387 421,115 | 6,848,215 29,810 | 422,712 | 6,849,534 112,336 | 1,743,400 111,642 | 1,753,595
OT-Phasi

Bit-length ¢ = 32 360 906 9,465 369 2,949 12,634 2,139 4,780 3,143 11,399

Bit-length ¢ = 64 555 1,506 15,789 581 6,146 22,368 3,349 6,879 3,923 20,345

Bit-length 0 = 128 571 1,942 21,843 649 7,291 31,932 3,352 7,999 4,391 23,209

Table 9: Run-time in ms for PSI protocols with ny < n; elements. (Protocols with (*) are in a different security model.)

Protocol =2 m =27] Asymptotic [bit]
=" [m=2" [n =2 [m=2" [m=2" [=2"|
Naive Hashing™ §3.1| 0.5 8.5 144.0 0.5 9.0 152.0 nil
Server-Aided™ [KMRS14| 1.0 16.0 256.0 1.1 16.1 256.1 (m+m+[XNY)k
DH-based ECC [Mca86] 25 405 656.0 27 ard 664.1 (i +m)p+ml
OT-Phasing §6|
Bit-length ¢ = 32 1.1 18.1 288.1 2.0 18.9 320.9 | 4.8nyx(] TLRCIY) Loy 0
Bit-length & = 64 1.1 18.1 288.1 32 20.1 3221 | 4.8nyic([TR 4 g
Bit-length & = 128 1.1 182 288.2 35 204 3227 | 48nyx([TRy oy

Table 10: Communication in MB for special purpose

PSI protocols with ny < n; elements. ¢ = A +log,(n;) +

log,(n2). Assuming intersection of size 1/2 - ny for the TTP-based protocol. (Protocols with () are in a different
security model.)

References

[AESO3]

[ALSZ13]

[ANS10]

[BHKRI13]

[BMRI0]

R. Agrawal, A. Evfimievski, and
R. Srikant. Information sharing across
private databases. In Management Of
Data (SIGMOD’03), pages 86-97. ACM,
2003.

G. Asharov, Y. Lindell, T. Schneider, and
M. Zohner. More efficient oblivious trans-
fer and extensions for faster secure compu-
tation. In Computer and Communications
Security (CCS’13), pages 535-548. ACM,
2013.

Y. Arbitman, M. Naor, and G. Segev.
Backyard cuckoo hashing: Constant
worst-case operations with a succinct rep-
resentation. In Foundations of Com-
puter Science (FOCS’10), pages 787-796.
IEEE, 2010.

M. Bellare, V. Hoang, S. Keelveedhi,
and P. Rogaway. Efficient garbling from
a fixed-key blockcipher. In Symposium
on Security and Privacy (S&P’13), pages
478-492. 1IEEE, 2013.

D. Beaver, S. Micali, and P. Rogaway. The
round complexity of secure protocols (ex-
tended abstract). In ACM Symposium on
Theory of Computing (STOC’90), pages
503-513. ACM, 1990.

18

[BR93]

[CHK*12]

[CKT10]

[CT10]

[CT12]

M. Bellare and P. Rogaway. Random or-
acles are practical: A paradigm for de-
signing efficient protocols. In Computer
and Communications Security (CCS’93),
pages 62-73. ACM, 1993.

S. G. Choi, K.-W. Hwang, J. Katz,
T. Malkin, and D. Rubenstein. Secure
multi-party computation of Boolean cir-
cuits with applications to privacy in on-
line marketplaces. In Cryptographers’
Track at the RSA Conference (CT-RSA’12),
volume 7178 of LNCS, pages 416-432.
Springer, 2012.

E. De Cristofaro, J. Kim, and G. Tsudik.
Linear-complexity private set inter-
section protocols secure in malicious
model. In Advances in Cryptology —
ASIACRYPT’10, volume 6477 of LNCS,
pages 213-231. Springer, 2010.

E. De Cristofaro and G. Tsudik. Practi-
cal private set intersection protocols with
linear complexity. In Financial Cryptog-
raphy and Data Security (FC’10), volume
6052 of LNCS, pages 143—159. Springer,
2010.

E. De Cristofaro and G. Tsudik. Ex-
perimenting with fast private set intersec-
tion. In Trust and Trustworthy Computing

[DCW13]

[DGM'10]

[DSMRY09]

[DSZ15]

[EGLS5]

[FHNP14]

[FNPO4]

[GMW&7]

(TRUST’12), volume 7344 of LNCS, pages
55-73. Springer, 2012.

C. Dong, L. Chen, and Z. Wen. When pri-
vate set intersection meets big data: An ef-
ficient and scalable protocol. In Computer
and Communications Security (CCS’13),
pages 789-800. ACM, 2013.

M. Dietzfelbinger, A. Goerdt, M. Mitzen-
macher, A. Montanari, R. Pagh, and
M. Rink. Tight thresholds for cuckoo
hashing via XORSAT. In International
Colloquium on Automata, Languages and
Programming (ICALP’10), volume 6198
of LNCS, pages 213-225. Springer, 2010.

D. Dachman-Soled, T. Malkin,
M. Raykova, and M. Yung. Efficient
robust private set intersection. In Applied
Cryptography and Network Security
(ACNS’09), volume 5536 of LNCS, pages
125-142. Springer, 2009.

D. Demmler, T. Schneider, and M. Zohner.
ABY - A framework for efficient mixed-
protocol secure two-party computation. In
Network and Distributed System Security
Symposium, (NDSS’15). The Internet So-
ciety, 2015.

S. Even, O. Goldreich, and A. Lempel.
A randomized protocol for signing con-
tracts. Communmunications of the ACM,
28(6):637-647, 1985.

M. J. Freedman, C. Hazay, K. Nissim, and
B. Pinkas. Efficient set-intersection with
simulation-based security. In Journal of
Cryptology, pages 1-41. Springer, October
2014.

M. J. Freedman, K. Nissim, and B. Pinkas.
Efficient private matching and set intersec-
tion. In Advances in Cryptology — EURO-
CRYPT’ 04, volume 3027 of LNCS, pages
1-19. Springer, 2004.

O. Goldreich, S. Micali, and A. Wigder-
son. How to play any mental game or a
completeness theorem for protocols with
honest majority. In Symposium on Theory
of Computing (STOC’87), pages 218-229.
ACM, 1987.

19

[Haz15]

[HEK12]

[HEKM11]

[HFH99]

[HN10]

[JLO9]

[KK13]

[KMRS14]

[KMWO09]

[KSO05]

C. Hazay. Oblivious polynomial evalua-
tion and secure set-intersection from al-
gebraic PRFs. In Theory of Cryptogra-
phy Conference (TCC’15), volume 9015
of LNCS, pages 90—120. Springer, 2015.

Y. Huang, D. Evans, and J. Katz. Private
set intersection: Are garbled circuits better
than custom protocols? In Network and
Distributed System Security (NDSS’12).
The Internet Society, 2012.

Y. Huang, D. Evans, J. Katz, and L. Malka.
Faster secure two-party computation using
garbled circuits. In USENIX Security Sym-
posium, pages 539-554. USENIX, 2011.

B. A. Huberman, M. Franklin, and
T. Hogg. Enhancing privacy and trust in
electronic communities. In ACM Con-

ference on Electronic Commerce (EC’99),
pages 78-86. ACM, 1999.

C. Hazay and K. Nissim. Efficient set op-
erations in the presence of malicious ad-
versaries. In Public Key Cryptography
(PKC’10), volume 6056 of LNCS, pages
312-331. Springer, 2010.

S. Jarecki and X. Liu. Efficient oblivious
pseudorandom function with applications
to adaptive OT and secure computation of
set intersection. In Theory of Cryptogra-
phy Conference (TCC’09), volume 5444
of LNCS, pages 577-594. Springer, 2009.

V. Kolesnikov and R. Kumaresan. Im-
proved OT extension for transferring short
secrets. In Advances in Cryptology —
CRYPTO’13 (2), volume 8043 of LNCS,
pages 54—70. Springer, 2013.

S. Kamara, P. Mohassel, M. Raykova, and
S. Sadeghian. Scaling private set intersec-
tion to billion-element sets. In Financial
Cryptography and Data Security (FC’14),
volume 8437 of LNCS. Springer, 2014.

A. Kirsch, M. Mitzenmacher, and
U. Wieder. More robust hashing: Cuckoo
hashing with a stash. SIAM Journal of
Computing, 39(4):1543-1561, 2009.

L. Kissner and D. Song. Privacy-
preserving set operations. In Advances in
Cryptology — CRYPTO’05, volume 3621
of LNCS, pages 241-257. Springer, 2005.

[KS08]

[Mea86]

[PRO1]

[PRO4]

[PSSZ15]

[PSZ14]

[RS98]

[SZ13]

[WLNT15]

V. Kolesnikov and T. Schneider. Improved
garbled circuit: Free XOR gates and ap-
plications. In International Colloquium on
Automata, Languages and Programming
(ICALP’08), volume 5126 of LNCS, pages
486—498. Springer, 2008.

C. Meadows. A more efficient crypto-
graphic matchmaking protocol for use in
the absence of a continuously available
third party. In Symposium on Security and
Privacy (S&P’86), pages 134-137. 1IEEE,
1986.

R. Pagh and F. F. Rodler. Cuckoo hash-
ing. In European Symposium on Algo-
rithms (ESA’01), volume 2161 of LNCS,
pages 121-133. Springer, 2001.

R. Pagh and F. F. Rodler. Cuckoo hash-
ing. Journal of Algorithms, 51(2):122—
144, 2004.

B. Pinkas, T. Schneider, G. Segev, and
M. Zohner. Phasing: Private set intersec-
tion using permutation-based hashing. In
USENIX Security Symposium. USENIX,
2015.

B. Pinkas, T. Schneider, and M. Zohner.
Faster private set intersection based on OT
extension. In USENIX Security Sympo-
sium, pages 797-812. USENIX, 2014.

M. Raab and A. Steger. “Balls into bins”
- a simple and tight analysis. In Ran-
domization and Approximation Techniques
in Computer Science (RANDOM’98), vol-
ume 1518 of LNCS, pages 159-170.
Springer, 1998.

T. Schneider and M. Zohner. GMW vs.
Yao? Efficient secure two-party computa-
tion with low depth circuits. In Financial
Cryptography and Data Security (FC’13),
volume 7859 of LNCS, pages 275-292.
Springer, 2013.

X. Shaun Wang, C. Liu, K. Nayak,
Y. Huang, and E. Shi. iDASH se-
cure genome analysis competition using
ObliVM. Cryptology ePrint Archive, Re-
port 2015/191, 2015. http://eprint.i
acr.org/2015/191.

20

[Yao86] A. C. Yao. How to generate and exchange
secrets. In Foundations of Computer Sci-
ence (FOCS’86), pages 162-167. IEEE,
1986.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans.

Two halves make a whole: Reducing
data transfer in garbled circuits using half
gates. In Advances in Cryptology — EURO-
CRYPT’15, volume 9057 of LNCS, pages
220-250. Springer, 2015.

A Iterative Performance Improvements

In the following, we evaluate the iterative performance
improvements starting from the original OT-based PSI
protocol of [PSZ14] for each of our optimizations: the
single mask per bin (cf. §6.1), permutation-based has-
ing (cf. §4), and 3-way Cuckoo hashing (cf. §6.2). We
evaluate the run-time in the WAN setting and communi-
cation of our improvements for n = n; = ny = 2°9 ele-
ments and give the results in Tab. Note that the run-
time and communication for each optimization always
include the previously listed optimizations.

Run-Time Overall, our optimizations reduce the run-
time of the original OT-based PSI protocol of [PSZ14]
by approximately factor 10. The biggest run-time im-
provement is due to the single mask per bin optimization,
which reduces the number of hash function evaluations in
the OT extension protocol P> from O(Inn) to 1 (cf. §4).
The permutation-based mapping reduces the run-time by
a factor of 1.1-2, depending on the bit-length of elements.
This can be explained by the reduction in OTs per bin
that permutation-based mapping allows: for n = 229 ele-
ments, it reduces the number of OTs by L%j =2. For
o = 32-bit, this corresponds to a reduction from 4 to 2
OTs per bin, for 0 = 64-bit a reduction from 6 to 4 OTs,
and for ¢ = 128-bit a reduction from 10 to 8 OTs. Fi-
nally, the 3-way Cuckoo hashing optimization (cf.
reduces the run-time again by factor 1.2-1.3, which is due
to the reduction in bins.

Communication In terms of communication, our im-
provements overall allow a reduction from factor 2.5-
3.4, depending on the bit-length of elements. The short
OT string optimization yields a constant reduction by
40 MB, which is due to the absence of the stash in
Cuckoo hashing. The permutation-based mapping re-
duces the communication by factor 1.2-1.9, again due
to the reduction in number of OTs per bin. Finally, the
3-way Cuckoo hashing optimization yields an improve-
ment from 1.6-1.9, since it reduces the number of bins
and hence the number of OTs that need to be performed.

http://eprint.iacr.org/2015/191
http://eprint.iacr.org/2015/191

Measure Run-time [ms] Communication [MB]
Ontimization Original Short OT Permutation 3-way Cuckoo Original Short OT Permutation 3-way Cuckoo
P [PSZ14] | strings §6.1 # 62 [PSZ14] | strings §6.1 $62
OT-Phasing ¢ = 32 157,332 33,741 17,749 15,363 367 327 174 107
OT-Phasing 0 = 64 315,115 53,409 41,688 32,531 674 634 480 260
OT-Phasing o = 128 392,265 66,103 58,774 42,420 828 788 634 337
Table 11: Run-time (WAN setting) and communication of our OT-Phasing improvements for n = ny = n; = 2%
elements.
[Phase [[Hasl [Base-OTs | OT-Extension [CRF | Communication | Intersect [[Total |
Py
OT Phasing o = 32 8,231 105 23,383 1,757 4,703 - 38,374
OT Phasing ¢ = 64 12,753 105 114,322 1,760 4,703 - 133,674
OT Phasing 6 = 128 13,854 105 231,013 1,766 4,704 - 255912
b
OT Phasing ¢ = 32 5,580 123 23,133 585 4,762 7,886 46,645
OT Phasing ¢ = 64 6,624 123 114,127 585 4,765 7,834 141,930
OT Phasing o = 128 7,254 123 230,803 588 4,763 7,804 264,143
Table 12: Run-time in ms for all phases of our OT-Phasing protocol in the LAN setting with n, = n; = 224 elements.

B Micro-Benchmarks

To foster future work on private set intersection, we
micro-benchmark our OT-Phasing protocol in the LAN
setting for n = n| = ny elements. We divide our protocol
into six different phases for which we give the individ-
ual run-time for P; and P»: 1) constructing the hash table
(simple hashing for P; and Cuckoo hashing for P), 2)
the base-OTs, 3) OT-extension, 4) the evaluation of the
correlation-robust function (CRF), 5) transferring the re-
sulting masks from P; to P», and 6) finding the plaintext
intersection of the random masks (only done by P,). We
give the result of this micro-benchmark in Tab.

Our first observation is that both parties have a simi-
lar run-time for all individual steps, except for the hash-
ing and CRF evaluation steps, where P; has a 2- and 3-

21

times higher run-time than P, respectively. The higher
run-time of P can be explained by P; having to pro-
cess each element once per hash function. The highest
time-consumption in our OT-Phasing is due to the OT-
extension step, which is responsible for 60 —90% of the
total run-time, depending on the bit-lengths of the el-
ements. The simple hashing step, which is performed
by Py, is the second most time-consuming step for both
parties. Somewhat surprising is that the plaintext inter-
section step, which is carried out by P, to identify the
common masks, requires more time than the Cuckoo
hashing of P». The correlation-robust function evalua-
tion and transfer of random masks are independent of the
bit-length of the elements. Finally, the base-OTs present
a constant-time overhead, which is independent of the
number of elements.

	Introduction
	Motivating Scenarios
	Our Contributions
	Outline

	Preliminaries
	Notation
	Security
	Hashing to Bins
	Simple Hashing
	Cuckoo Hashing

	Oblivious Transfer
	Generic Secure Computation
	Yao's Garbled Circuits
	Goldreich-Micali-Wigderson (GMW)

	Related Work
	(Insecure) Naive Hashing
	Server-Aided PSI
	Public-Key Cryptography based PSI
	PSI based on Generic Protocols
	OT-based PSI
	PSI via Hashing to Bins
	Masking via OT
	Intersection
	Including a Stash
	Overhead

	Permutation-based Hashing
	Circuit-Phasing
	OT-Phasing
	A Single Mask per Bin
	3-Way Cuckoo Hashing

	Hashing Failures
	Simple Hashing
	Cuckoo Hashing

	Evaluation
	Generic Secure Computation-based PSI Protocols
	Special Purpose PSI Protocols
	Experiments with Equal Input Sizes
	Experiments with Different Input Sizes

	Iterative Performance Improvements
	Micro-Benchmarks

