
An Efficient Many-Core Architecture for Elliptic
Curve Cryptography Security Assessment

Marco Indaco2, Fabio Lauri2, Andrea Miele1, Pascal Trotta2

1 LACAL, EPFL, Lausanne, Switzerland
2 Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

Abstract. Elliptic Curve Cryptography (ECC) is a popular tool to con-
struct public-key crypto-systems. The security of ECC is based on the
hardness of the elliptic curve discrete logarithm problem (ECDLP). Im-
plementing and analyzing the performance of the best known methods
to solve the ECDLP is useful to assess the security of ECC and choose
security parameters in practice. We present a novel many-core hardware
architecture implementing the parallel version of Pollard’s rho algorithm
to solve the ECDLP. This architecture results in a speed-up of almost
300% compared to the state of the art and we use it to estimate the mon-
etary cost of solving the Certicom ECCp-131 challenge using FPGAs.

1 Introduction

Elliptic Curve Cryptography (ECC) was introduced in the mid 1980s
[11, 13] by Koblitz and Miller and over the last decades it has become
a standardized [16] tool to build public-key crypto-systems. For instance
ECC is employed for secure communication in popular applications like
Bitcoin, TLS and SSH [3]. The security of ECC is based on the difficulty
of solving the elliptic curve discrete logarithm problem (ECDLP). The
best publicly known algorithm to attack this problem in practice is the
parallel Pollard rho [17].

Analyzing the performance of Pollard rho in practice and solving large
instances of the ECDLP is useful to estimate the security of ECC and
choose the parameters of deployed crypto-systems appropriately. The Cer-
ticom challenges [5] have been published with the aim of providing a
public litmus test for assessing the performance of ECDLP attacks.

Our work targets elliptic curves defined over “generic” prime fields
Fp where the prime p is assumed to have no special form. Both hardware
[9, 10] and software [4, 1] implementations of Pollard rho for the ECDLP
on prime fields have been proposed in the literature. The architecture
proposed in [9] has been implemented on Xilinx Spartan-3 FPGAs and
elliptic curve prime group sizes ranging from 64 to 160 bits have been con-
sidered to assess its performance. The implementation proposed in [10]



targets the secp112r1 curve from Certicom defined over a prime field of
a special form. The architecture is based on a modular multiplication
unit optimized to be efficiently mapped on embedded DSP resources of a
Xilinx Virtex-5 FPGA. These works have demonstrated that Field Pro-
grammable Gate Arrays (FPGAs) are suitable accelerators for Pollard
rho.

We present a novel pipelined many-core architecture implementing
the parallel version of Pollard rho for elliptic curves over generic prime
fields using the negation map speed-up and fruitless cycle handling [17].
The size of the prime field is configurable at synthesis time and the im-
plementation does not rely on a specific target device architecture. We
analyze the performance of our architecture when implemented on differ-
ent FPGA families. Compared to the state of the art we obtain a speed-up
of almost 300%. We also provide cost estimates for solving the Certicom
challenge ECCp-131 using FPGA clusters.

This paper is organized as follows. Section 2 introduces elliptic curves
and Pollard rho. Section 3 describes the proposed architecture and its
optimization. Section 4 describes implementation details and the experi-
mental results. Section 5 presents the conclusion.

2 Preliminaries

In this section we introduce some basic notions about elliptic curves and
we describe the parallel version of Pollard’s rho algorithm with the nega-
tion map and fruitless cycle handling used in our implementation.

2.1 Elliptic curves over prime fields

We focus on finite fields whose number of elements is a prime number
larger than 3. We denote with Fp the finite field containing p elements
where p ∈ Z>3 is prime. We denote with k the bit-size of p, i.e., k =
blog2 pc+ 1.

As described in [12], a pair (a, b) ∈ F 2
p , for which 4a3 + 27b2 6= 0,

defines an elliptic curve E over Fp. We denote by E(Fp) set of points of
E and by O the point at infinity. The set E(Fp) has the structure of an
abelian group with the group law defined as follows:

– Identity : O + P = P +O = P for all P ∈ E(Fp).

– Negative: Given P = (x1, y1) 6= O and Q = (x2, y2) 6= O we have that
P+Q = O if and only if x1 = x2 and y1 = −y2; thus −(x, y) = (x,−y).



– Addition: Given P 6= Q and λ ∈ Fp with λ = (y1 − y2)/(x1 − x2)then
P +Q = R = (x3, y3) with x3 = λ2−x1−x2 and y3 = λ(x1−x3)−y1.

The arithmetic operations in the above formulae are addition, subtrac-
tion, multiplication and inversion modulo p.

2.2 Parallel Pollard rho for the ECDLP

We focus on prime order subgroups of E(Fp). We will denote such a sub-
group having prime order q and generator P = (x, y) ∈ E(Fp) by 〈P 〉.
Given someQ ∈ 〈P 〉, the elliptic curve discrete logarithm problem (ECDLP)
is to find h ∈ Z/qZ such that Q = hP .

We use the parallel version of Pollard rho with r-adding walks (where
r is assumed to be a power of 2), distinguished points and the negation
map [17, 18, 7]. A distinguished point, is a point in 〈P 〉 having the least
significant d bits of the x coordinate all equal to zero for a small positive
integer d. An r-adding walk is defined as follows. Precompute r points
Fj = cjP + djQ = (xj , yj), for random non-zero cj , dj ∈ Z/qZ and 0 ≤
j < r (store each point Fj and its coefficients cj , dj in a look-up table).
The first point in the walk is selected as P0 = a0P + b0Q for random
(but known) integers a0, b0 ∈ [1, q− 1] and at step i ≥ 0 the next point is
computed as Pi+1 = f(Pi) with the following iteration function:

f(Pi) = Pi + F`(Pi), (1)

where ` ∈ [0, r − 1] is the non negative integer represented by the log2 r
least significant bits of the x coordinate of Pi. It is easy to also keep track
of two integer multipliers a, b ∈ Z/qZ such that Pi = aP + bQ. Parallel
walks start from different random initial points but all of them use the
same look-up table. This choice implies that once two independent walks
reach the same point then they will eventually hit the same distinguished
point. If at step i ≥ 0 one walk hits a distinguished point Pi, it reports Pi

to a central processor. Once the central processor has received the same
distinguished point twice, it finds a collision, i.e., four integers a, b, a′, b′ ∈
Z/qZ such that aP +bQ = a′P +b′Q and b′−b 6≡ 0 mod q, then the value
(a− a′)/(b′ − b) mod q is a solution of the ECDLP.

The iteration function (1) can be modified to use the negation map
and reduce the number of expected steps to find a collision by a factor

√
2.

When using the negation map additive walks can get stuck in a fruitless
cycle in which the same sequence of points is produced indefinitely pre-
venting the walk from performing useful steps [18, 7]. Fruitless cycles of



all lengths that are a multiple of 2 can occur. The occurrence of the most
frequent fruitless cycles can be reduced using a look-ahead technique,
but as fruitless cycles will eventually occur mechanisms of detection and
escape are usually needed [18].

We use the negation map and the 2-cycle reduction technique pre-
sented in [2], which requires an additional look-up table containing r
points F ′j = c′jP + d′jQ = (x′j , y

′
j) for random non-zero c′j , d

′
j ∈ Z/qZ

and 0 ≤ j < r. This technique reduces the probability of entering a 2-
cycle from 1/(2r) to 1/(2r3) and this makes 4-cycles the most likely to
occur with probability (r−1)/(4r3) (i.e., a 4-cycle appears on average ev-
ery 4r3/(r−1) steps). We do not implement cycle detection and escape in
our FPGA architecture as it would add significant architectural complex-
ity. We assume that cycle detection and escape is performed periodically
on the host system (for instance the processor embedded in most FPGAs)
every w iterations (see Section 4 for an explanation how the value w is
selected following the approach from [2]), after which the current point
of each walk is updated accordingly (see subsection 3.1 for the practical
details).

The Pollard rho iteration we implement follows from the above de-
scription. Each walk repeats the iteration composed of the following steps,
until a collision is found:

1. Given Pi = (xi, yi) and ` = xi mod r, set the point S = (xs, ys) equal
to F` = (xl, yl). Or set the point S equal to F ′` = (x′l, y

′
l) if the second

table was enabled at the previous iteration. Set the values as and bs
equal to c` and d` or c′` and d′` accordingly. Compute Pi+1 = Pi +S =
(xi+1, yi+1) (addition formula in Section 2.1). Given the two integer
multipliers a, b such that Pi = aP+bQ, compute a← a+as mod q and
b← b+bs mod q so that Pi+1 = aP+bQ (recall that P0 = a0P+b0Q).

2. (negation map)

(a) Compute −yi+1 = p− yi+1 mod p.

(b) If yi+1 is even set Pi+1 ← −Pi+1 = (xi+1,−yi+1) and set a ←
−a mod q and b← −b mod q.

3. (reduction) If the second table is not enabled then if `(Pi) = `(Pi+1)
set Pi+1 ← Pi and enable the second table for the next iteration.
Otherwise if the second table is enabled the current step is skipped.

4. If xi+1 mod 2d = 0 report the (distinguished) point Pi+1 to the central
processor.

If w iterations have been run, report current point to central processor
for cycle detection and escape.



3 Proposed architecture

The proposed many-core architecture relies on a pipelined core imple-
menting the parallel version of Pollard rho. In this section we discuss
design and implementation of a single core and of the final many-core
architecture.

3.1 Single pipeline multi walk core

The architecture of a single pipeline multi walk (SPMW) core is depicted
in Figure 1. Although each walk exhibits an iterative behavior, the parallel
version of Pollard’s rho algorithm runs independent walks. We exploit this
behavior by interleaving the execution of several independent walks in the
same hardware pipeline.

Fig. 1: High-level view of the SPMW core.

An SPMW core contains an arithmetic pipeline performing steps 1
and 2(a) from Section 2.2, an initial points FIFO (IP-FIFO) to hold the
initial point P0 = (x0, y0) (2k bits) and the multipliers a0, b0 (2k bits)



for each walk, two lookup tables (4rk bits each), i.e., T-WALK defining
the r-adding walk and T-RED for the reduction technique, three 2-to-1
multiplexers and a comparator implementing negation map and reduc-
tion (steps 2(b) and 3), and an output point dispatcher (OPD) for step 4.
The arithmetic pipeline is composed of addition/subtraction modules,
Montgomery multiplication modules [14] and an inversion module imple-
menting a modified Kaliski inversion algorithm as in [9].

At the start-up the host loads the initial random points P0 = (x0, y0)
and the multipliers a0, b0 for each walk to be started into the IP-FIFO.
As mentioned above, we iteratively run two sets of walks, with only one
set active at a time. Before the execution of the current set of walks is
suspended because of cycle detection and escape, the host loads a fresh
set of updated initial points P0 into the IP-FIFO. A counter inside the
OPD asserts the init signal in Figure 1 controlling the multiplexer that
allows one set of walks to start and also triggers the OPD itself to send the
current point of each walk in the active set to the host for cycle detection
and escape.

The pipeline can be fully filled by interleaving the execution of multi-
ple walks as shown in Figure 2, where we denote by walk i,j the operation
performed by the i-th walk at the j-th iteration. At the beginning, walk1,0

(a) Pipeline filled
with 7 parallel walks.

(b) Start of the sec-
ond iteration of the
first walk.

Fig. 2: Single-Pipe Multi-Walks approach.

enters the pipeline. When the first stage completes, the output of walk1,0



is passed to the second stage. At the same time, a new walk (i.e., walk2,0)
is started, filling the first stage. New walks can be launched until all
pipeline stages are filled (Figure 2a). Once a walk completes an iteration,
it re-enters the first stage to start the following iteration (e.g., walk1,1 in
Figure 2b).

As cycle detection and escape is performed periodically on the central
processor (host) we use two independent sets of walks. Only one of these
two sets is active and running at a time. As soon as cycle detection and
escape has to be performed by sending the current points to the host,
each core switches the execution to the other set of walks by simply
loading updated points from the IP-FIFO buffer. In this way there is
no performance loss due to the communication with the host for cycle
detection and escape. Obviously, the time frame between consecutive cycle
detection and escape runs must be large enough for the host to generate
and store updated points (for the currently inactive set of walks) in the
IP-FIFO.

The performance is limited by the different latencies of pipeline stages.
A walk can move forward only when the stage having the highest latency
completes its computation.

Table 1 shows the latency in terms of clock cycles of each module
composing the pipeline as a function of k, assuming that the adders,
Montgomery multipliers and inversion units are implemented as reported
in [6] and [8].

Table 1: Latencies of the modules composing the pipeline.
Add/Sub Montgomery multiplication Inversion

1 k 2k

As shown in Table 1 the inversion module has the highest latency,
i.e., 2k. Therefore, the throughput is equal to 1/(2k + 1) (an additional
clock cycle is required to transfer the result to the next pipeline stage).
The throughput can be increased by splitting the computation of the
most costly operations, namely inversion and Montgomery multiplication,
across multiple pipeline stages (pipeline unrolling).

3.2 Pipeline unrolling

Pipeline unrolling consists in splitting the computation performed by the
stages having the highest latency across multiple stages having lower la-



tency. In our case we focus on the Montgomery multiplication module and
the inversion module, with latencies equal to k and 2k respectively. We
modify inversion and Montgomery multiplication modules so their inter-
nal state (i.e., content of their registers) can be pre-loaded (e.g., the state
reached by another instance of the same module can be used as the pre-
loaded value). With this modification a module can perform just a subset
of the steps required by the entire operation and its state can be trans-
ferred to another instance of the same module. Several identical modules
can be combined (in a “cascade fashion”) to compute a full operation.
Even though this approach implies area penalty, each module “replica”
in the chain implements a new pipeline stage having lower latency and
this increases the number of walks concurrently running in the pipeline.

As a first step we replicate the inversion unit to split inversion stage
into two pipeline stages, each one characterized by a latency of k clock-
cycles, as shown in Figure 3. The throughput becomes TP = 1/(k + 1),
however the hardware resources needed for the inversion operation have
doubled.

To further increase the throughput of the pipeline, the aforementioned
approach can be recursively applied to all stages currently having maxi-
mum latency tmax = k, namely all Montgomery multiplication and inver-
sion stages, based on equations (2) and (3):

Fig. 3: Replicated inversion module (the total number of stages has in-
creased from 7 to 8).

TP =
1⌈

k/u
⌉

+ 1
, (2)

Ns = 3 + 5 · u. (3)



Equation (2) models the SPMW core throughput with respect to k
and the unrolling factor u. The unrolling factor denotes how many times
inversion and multiplication modules are replicated, assuming as start-
ing point the architecture depicted in Figure 3. Equation (3) computes
the number of stages composing the pipeline after unrolling. The 3 ad-
dition/subtraction stages are not replicated because of their low latency,
whereas the other 5 stages (i.e., 2 inversion stages and 3 multiplication
stages) are replicated u times. As the value Ns equals the number of walks
that can be interleaved and executed in parallel in a single pipeline, it
also represents the number of points to be stored in the IP-FIFO and
thus determines its size.

The unrolling factor is limited by the availability of hardware resources
to accommodate the module replicas. We combine two approaches to
maximize the throughput under hardware resource (area and memory)
constraints:

1. Increase the unrolling factor until the area constraint is violated; this
approach alone leads to a single SPMW core that, in some cases, does
not utilize in the most efficient way the hardware resources available
in the target device. Incrementing the unrolling factor by one causes
a δarea increase of the area (for instance in our case 2 inversion units
and 3 multipliers must be added). This may leave hardware resources
unused when the overall area is not a multiple of δarea.

2. Replicate SPMW cores to build a many-core architecture, as described
in subsection 3.3.

The total device area is denoted by Amax and the total device memory
to accommodate look-up tables and the IP-FIFO is denoted by Mmax. As
aforementioned, incrementing the unrolling factor by one causes a δarea
increase of the area. We denote by A0 the area required to implement
an SPMW core with u = 1. The values A0 and δarea depend both on the
device technology and k. The area occupied by one SPMW core ASPMW is
defined by equation (4). The number of cores we can instantiate NSPMW is
defined by equation (5). The minimum number Ntables of pairs of look-up
tables T-WALK and T-RED necessary to sustain the bandwidth needed
by NSPMW (see subsection 3.3 for the details) is defined by equation (6),
while the amount of memory needed by the IP-FIFO MFIFO is defined
by equation (7). The maximum number NMAXtables of pairs of T-WALK
and T-RED look-up tables that can fit the target device is defined by
equation (8).

The optimal values for the unrolling factor u and the number of
SPMW cores NSPMW, given k, Amax, Mmax and the current tmax, are



found by maximizing the many-core throughput TPMC defined by equa-
tion (9) under the constraints defined by equation (10). The first con-
straint is imposed to make sure we can accommodate enough look-up
table pairs to serve all cores (see subsection 3.3 for details on how the
look-up tables can be shared by multiple cores).

ASPMW = A0 + (u− 1) · δarea. (4)

NSPMW =

⌊
Amax

ASPMW

⌋
. (5)

Ntables = dNSPMW/(tmax + 1)e. (6)

MFIFO = NSPMW4kNs. (7)

NMAXtables = b(Mmax −MIPFIFO)/(8kr)c. (8)

TPMC = NSPMW ·
1⌈

tmax/u
⌉

+ 1
. (9)

NSPMW ≤ NMAXtables · (tmax + 1),

NSPMW ·ASPMW ≤ Amax.
(10)

In the following we describe the details of the inversion and Montgomery
multiplication modules with state pre-loading.

Inversion module with state pre-loading The architecture of the in-
version module with state pre-loading is depicted in Figure 4. We extend
the input/output interface of the basic module, implementing the algo-
rithm reported in [6], with additional input signals (i.e., uin, vin, rin, sin
and fin) and output signals (i.e., uout, vout, rout, sout and fout). We add 5
multiplexers (controlled by the signal selin) to allow the internal state of
the module (registers u, v, r, s and the FSM in Figure 4) to be pre-loaded
from an external source through the additional input signals. The addi-
tional output signals propagate the state of the module. Several inversion
modules with state pre-loading can be connected sequentially by map-
ping the additional output signals of one module to the additional input
signals of the following one to perform a full operation. Figure 3 shows
how our pipeline changes by adding one replica of the inversion module
to reduce tmax from 2k to k.

The output signal rout of the last module will hold the final result.
Notice that several input/output signals are unused by some modules in
the sequence, for instance the primary input signal a is used only by the
first module. All the unused signals are automatically removed when by
synthesis tools.



Fig. 4: Inversion module with state pre-loading. Changes to the reference
architecture [8] are highlighted in bold.

Montgomery multiplier with state pre-loading The architecture of
the Montgomery multiplication module with state pre-loading is depicted
in Figure 5.

We follow the same strategy used above. We add output and input
signals (ACCin and ACCout) to allow pre-loading and propagation of
the state (i.e., the register ACC). Additional input and output signals
(Xin, Yin and Xout, Yout) are needed to pre-load and propagate the content
of the registers storing Xi and Yi. We finally add a multiplexer (controlled
by the signal selin) to allow the internal state of the module (register
ACC) to be pre-loaded from an external source through the additional
input signals ACCin.

As for the inversion module, several Montgomery multiplication units
with state pre-loading can be connected sequentially to perform a full
operation. The output signal P of the last module will contain the final
result P = XY 2−k mod M . The right part of the module (see Figure 5)
produces the final result P (reducing Pt modulo M). As it is used only
by the last module, it can be removed from all the other replicas.



Fig. 5: Montgomery multiplier with state pre-loading. Changes to the ref-
erence architecture [6] are highlighted in bold.

3.3 System level architecture

Figure 6 shows the proposed many-core system level architecture, where
the host communicates with an FPGA on which several instances of the
SPMW core are implemented.

Each SPMW core has its own IP-FIFO, whereas the look-up tables
T-WALK and T-RED can be shared by several cores as long as this is
compatible with the bandwidth required by each core (as mentioned at
the end of Section 3.2). More precisely, an SPMW core accesses T-WALK
(or T-RED) for one cycle every tmax + 1 cycles. Therefore, the look-up
tables can be shared among tmax+1 SPMW cores by making the execution
of each core shifted by one clock cycle.

The architecture, denoted by multi-SPMW (MSPMW) in Figure 6,
can be replicated if the total bandwidth needed by all cores exceeds the



Fig. 6: System level architecture.

maximum bandwidth sustainable by the look-up tables. As will be demon-
strated in Section 4, since the overall bandwidth required for the commu-
nication between the host and the FPGA is very limited, a simple interface
can be employed, leading to a negligible area overhead. We analyze band-
width requirements and other implementation details in the next section
where we optimize and implement our architecture on different FPGAs.

4 Experimental results

In this section we analyze the parameters choice for our implementation
and show the experimental results.

We have selected the Certicom ECCp-131 challenge as the case study.
It defines an ECDLP instance on a prime order elliptic curve over a 131-
bit generic prime field and it is the smallest unsolved Certicom challenge
over prime fields [5]. We denote the prime order of the group of points
by q.

We optimized our architecture for a Virtex 7-xc7v2000t FPGA [19]
using the parameters reported in Table 2 and obtained Ns = 78 (number
of stages), Ntables = 2, NSPMW = 11 and tmax = 9 (see Section 3.2). We
have performed synthesis and place-and-route with Xilinx ISE Design
Suite 14.7. The resulting operating frequency is F = 192 Mhz.

As mentioned in Section 2.2 a walk is expected to get into a fruitless
4-cycle after roughly α = 4r3/(r − 1) ≈ 10.7 · 108 iterations. We run
one set of walks for w iterations before sending the current points to the
host system for cycle detection/escape and switching the execution to



Table 2: Optimization parameters for Virtex-7-xc7v2000t FPGAs. Area
figures are in number of slices.

k A0 δarea Amax Mmax r d

131 3121 1561
287076 40.9Mbit

214 30
(≈ 90%) 1188 BRAMs (≈ 90%)

the second (suspended) set of walks (by reading updated points from the
IP-FIFO). Denote by w′ ≤ w the number of fruitless iterations a walk
performs due to fruitless cycles. As in [2] we want w′/w < 0.1 and this
results in w = α/50 (using equation (1) in [2]).

We set d = 30, thus a walk is expected to hit a distinguished point
every 230 iterations. To apply Equation (9), we consider 90% of the avail-
able hardware resources to make sure the design will fit on the FPGA
after place and route.

We have run post place-and-route simulations using Modelsim SE
10.0c and used Xilinx XPower Analyzer to estimate the power consump-
tion, namely 26.9W.

The system generates D = 211.2 · 106 · 2−30 ≈ 0.2 distinguished
points per second. Each distinguished point consists of x and y coor-
dinates and the two multipliers a and b, plus one bit to differentiate
distinguished points and points sent to the host for cycle detection and
escape. In total each distinguished point is represented by an h-bit string
with h = 4k + 1 = 525. The current set of walks is suspended af-
ter c = (wNs(tmax + 1))/F ≈ 87s (the current points are sent to the
host for cycle detection/escape and the second set of walks is re-started
by reading points from the IP-FIFO) and the host has a time frame of 87
seconds to generate and store the updated points for the suspended set
of walks into the IP-FIFO. A time frame of 87s is large enough to allow a
regular CPU based host to serve several FPGAs. The number of IP-FIFOs
equals NSPMW (see Section 3.3). Each IP-FIFO contains Ns 4k-bit points.
Then the total required bandwidth is hD + (4kNsNSPMW)/c = 5.26
Kbits/s.

Look-up tables T-WALK and T-RED and IP-FIFOs are built from
36 Kbit BRAMs configured as 512x72-bit memory blocks. To read one
point (four 131-bit values) from T-WALK or T-RED in one clock cycle,
each point is stored across 8 BRAMs connected in parallel, for a total of
1024 BRAMs (Ntables = 2) out of the 1292 available. The IP-FIFOs are
implemented with 88 BRAMs (8 BRAMs per IP-FIFO).



Table 3 reports the overall equipment cost in dollars to solve the
ECCp-131 Certicom challenge in one year on various FPGAs. The equip-
ment cost for the Virtex UltraScale FPGA is not available yet. The Rivy-
era V7 is a computer hosting up to 40 Virtex-7 v2000t FPGAs [15].

We have estimated that the size of the hash table to store the distin-
guished points on the host should be a few TeraBytes. It can be further
reduced by increasing the value of d.

Table 3: Solving ECCp-131 in one year on (a cluster of) different FPGAs.
Number of points to compute: ≈

√
qπ/4.

Tech Device FPGA price Points/s Cost

65 nm Virtex-5 vlx330t 8.4 K$ 20.5M 453 M$

40 nm Virtex-6 vlx760 12.6 K$ 67.3M 207 M$

28 nm Virtex-7 v2000t 17.4 K$ 211.2M 91 M$

28 nm RIVYERA V7 500 K$ 8448M 65 M$

20 nm Virtex UltraScale 440 - 738M -

Using the estimated power consumption of 26.9W on a Virtex-7 v2000t
FPGA we can estimate the overall electricity cost in the case of the third
row of Table 3, where 2610 devices are needed. Assuming that the elec-
tricity cost is 0.21$ per KWh we obtain 223K$ as the overall cost for one
year, which is negligible compared to the equipment cost. It is arguably
unfeasible to solve the ECCp-131 challenge on FPGAs in reasonable time
as shown in Table 3, however the technology scaling could make it possible
in the near future.

We have implemented our solution on a Xilinx Virtex-5 (k = 112) and
a Xilinx Spartan-3 FPGAs (k = 160) to compare with the current state
of the art [10] (Table 4), [9] (Table 5). We have implemented our solution
using both the basic SPMW core with no unrolling and the SPMW core
optimized with unrolling (SPMWopt in Tables 4 and 5).

Our solution requires more slices compared to [10]. However unlike
the latter, it does not rely on DSP blocks and we achieve a speed-up of
of 380%. Notice that the speed-up is computed taking into account the
resources available on a single device.This is a pessimistic comparison
due to fact that the prime used in [10] has a special form allowing fast
reduction.

With respect to the architecture from [9], which targets generic prime
fields, we achieve a speed-up of 293%.



Table 4: Comparison with [10] on a Xilinx Virtex-5 vsx240t.
[10] SPMW SPMWopt

Frequency 100 Mhz 125 Mhz 125 Mhz

Points/cycle 1/114 1/225 1/14

Slices/core 5,229 (14.0%) 3,070 (8.2%) 16,386 (43.8%)

DSPs/core 130 (12.3%) - -

BRAMs/core 8 (1.5%) 8 (1.5%) 8 (1.5%)

BRAMs for
-

256 (r = 213) 256 (r = 213)
T-WALK, T-RED (49.6%) (49.6%)

#Cores/device 6 11 (Ns = 7) 2 (Ns = 48, tmax = 13)

Prime type special form Any Any

negation map No Yes Yes

Years to solve
50.4 30.7 10.5

secp112r1 (112-bit)

Speed-up - 64% 380%

Table 5: Comparison with [9] on a Xilinx Spartan-3 xc3s5000.
[9] SPMW SPMWopt

Frequency 40 Mhz 51 Mhz 48 Mhz

Points/cycle 1/855 1/321 1/41

Slices/core 3,230 (9.7%) 9,380 (28.2%) 29,390 (88.3%)

DSPs/core - - -

BRAMs/core 15 (14.4%) 18 (17.3%) 18 (17.3%)

BRAMs for
-

36 (r = 29) 72 (r = 210)
T-WALK, T-RED (34.6%) (69.2%)

#Cores/device 9 2 (Ns = 7) 1 (Ns = 23, tmax = 40

Prime type Any Any Any

negation map No Yes Yes

Years to solve
3.6 · 1018 3.6 · 1018 9.1 · 1017

ECDLP (160-bit)

Speed-up - - 293%

5 Conclusion

We presented a many-core hardware architecture implementing the par-
allel version of Pollard’s rho algorithm with the negation map for the
ECDLP on elliptic curves defined over generic prime fields. On FPGAs
our architecture outperforms the state of the art by providing a speed-
up of almost 300%. The optimization methodology we presented can be
applied to similar hardware designs implementing embarrassingly paral-
lel algorithms. As a case study we estimated the monetary cost to solve
the Certicom ECCp-131. In the near future we plan to explore the opti-



mization of our architecture for specific devices like low-cost Xilinx Zynq
programmable SoCs.

References

1. D. J. Bernstein, T. Lange, and P. Schwabe. On the correct use of the negation map
in the Pollard rho method. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi,
editors, Public Key Cryptography – PKC 2011, volume 6571 of Lecture Notes in
Computer Science, pages 128–146. Springer, Heidelberg, 2011.

2. J. W. Bos, C. Costello, and A. Miele. Elliptic and hyperelliptic curves: A practical
security analysis. In Public Key Cryptography, pages 203–220, 2014.

3. J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wus-
trow. Elliptic curve cryptography in practice. Cryptology ePrint Archive, Report
2013/734, 2013. http://eprint.iacr.org/.

4. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery.
Solving a 112–bit prime elliptic curve discrete logarithm problem on game consoles
using sloppy reduction. International Journal of Applied Cryptography, 2(3):212–
228, 2012.

5. Certicom. Certicom ECC Challenge. https://www.certicom.com/index.php/

the-certicom-ecc-challenge, 1997.
6. J.-P. Deschamps. Hardware Implementation of Finite-Field Arithmetic. McGraw-

Hill, Inc., New York, NY, USA, 1 edition, 2009.
7. I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log compu-

tation on curves with automorphisms. In K.-Y. Lam, E. Okamoto, and C. Xing,
editors, Asiacrypt 1999, volume 1716 of Lecture Notes in Computer Science, pages
103–121. Springer, Heidelberg, 1999.

8. T. Güneysu. Efficient hardware architectures for solving the discrete logarithm
problem on elliptic curves. PhD thesis, Horst Görtz Institute, Ruhr University of
Bochum, 2006.

9. T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the ellip-
tic curve discrete logarithm problem. ACM Trans. Reconfigurable Technol. Syst.,
(2):8:1–8:21, June.

10. L. Judge, S. Mane, and P. Schaumont. A hardware-accelerated ecdlp with high-
performance modular multiplication. International Journal of Reconfigurable Com-
puting, 2012:7, 2012.

11. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

12. H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987.

13. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor,
Crypto 1985, volume 218 of Lecture Notes in Computer Science, pages 417–426.
Springer, Heidelberg, 1986.

14. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
computation, 44(170):519–521, 1985.

15. SciEngines. Rivyera V7-2000T. http://www.sciengines.com/products/

computers-and-clusters/v72000t.html, 2014.
16. U.S. Department of Commerce/National Institute of Standards and Technology.

Digital Signature Standard (DSS). FIPS-186-4, 2013. http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf.



17. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1–28, 1999.

18. M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems.
In S. Tavares and H. Meijer, editors, Selected Areas in Cryptography – (SAC) 1998,
volume 1556 of Lecture Notes in Computer Science, pages 190–200. Springer NY,
1999.

19. Xilinx, Inc. 7 Series FPGAs Overview - DS180, 2014.


