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Abstract. We formalise the notion of adaptive proofs of knowledge
in the random oracle model, where the extractor has to recover wit-
nesses for multiple, possibly adaptively chosen statements and proofs.
We also discuss extensions to simulation soundness, as typically required
for the “encrypt-then-prove” construction of strongly secure encryption
from IND-CPA schemes. Utilizing our model we show three results:
(1) Simulation-sound adaptive proofs exist.
(2) The “encrypt-then-prove” construction with a simulation-sound adap-

tive proof yields CCA security. This appears to be a “folklore” result
but which has never been proven in the random oracle model. As a
corollary, we obtain a new class of CCA-secure encryption schemes.

(3) We show that the Fiat-Shamir transformed Schnorr protocol is not
adaptively secure and discuss the implications of this limitation.

Our result not only separates adaptive proofs from proofs of knowledge,
but also gives a strong hint why Signed ElGamal as the most prominent
encrypt-then-prove example has not been proven CCA-secure without
making further assumptions.

1 Introduction

Proofs of knowledge [34,24,52,6] are a generic tool to ensure correct operation in
many cryptographic constructions, including voting protocols, e-cash systems,
or group signatures. More generally, they can turn passively secure multi-party
protocols into actively secure ones. The value of proofs of knowledge in security
arguments is that whenever a participant makes a proof of knowledge on some
statement as part of a protocol, one can “hop” into an alternate, virtual world
in which the participant outputs the witness along with the statement. This
approach of pretending that each proof makes its witness available in a security
argument relies on the extractor that exists by definition of a proof of knowledge:
when a participant outputs a proof, we “freeze” the protocol, and invoke the
extractor to get the witness. This extraction is usually carried out by rewinding
the party and branching into another protocol execution. Then we resume the
protocol with the witness now being available.

The problem with the “freeze-extract-resume” approach is that its imple-
mentation can easily become expensive. Each extraction and its rewinding can
double the running time of a reduction such that, if a participant makes a badly



nested “chain” of n proofs, a naive approach ends up with an exponential run-
ning time of 2n to get all the witnesses. This is certainly true for interactive
proofs of knowledge, but also in the case of non-interactive proofs of knowledge
in the random oracle model. Such random-oracle based proofs are paramount if
efficiency is vital, especially in the form of Fiat-Shamir transformed Sigma pro-
tocols a.k.a. “Schnorr-type” proofs. In this context the rewinding problem was
first mentioned explicitly by Shoup and Gennaro [50].

Shoup and Gennaro [50] required nested proofs in the random oracle model
for the construction of CCA secure public-key encryption from IND-CPA se-
cure encryption via the encrypt-then-prove approach (e.g., for signed ElGa-
mal). The idea behind this approach, gradually refined in a sequence of works
[15,39,43,19,57,48], is to attach to each ciphertext a proof of knowledge of the
message. Intuitively, if one has to know the message to create a ciphertext, a
decryption oracle should be redundant, so encrypt-then-prove should lift CPA
security to CCA security. Unfortunately, there is no general proof of this intu-
ition which also covers the setting with random oracles. Currently, the best result
for signed ElGamal, without making additional “knowledge type” assumptions
as in [53,46], is that the scheme is non-malleable (NM-CPA) [14].

Adaptive Proofs of Knowledge. Our notion and formalisation of adaptive
proofs of knowledge allows to capture the case of having to extract from multiple
proofs, possibly chosen adaptively by a malicious prover. We focus on the case
of non-interactive proofs in the random oracle. As a first step, we will cast
the (single-round) proof of knowledge property as a game between a prover (or
attacker) and an extractor. The prover wins the game if it makes a statement and
a valid proof but such that the extractor cannot find a witness. The extractor
wins the game if it can return a witness (or if the prover does not produce a
valid proof). A proof scheme is a proof of knowledge if there is an extractor that
wins against any prover with overwhelming probability.

For extending our simple game to the adaptive case, the prover can now
produce many statement/witness pairs in rounds and the scheme is an adaptive
proof if the extractor can find all witnesses (for a prover who makes a polyno-
mially bounded number of queries). The game is adaptive because the extractor
must return each found witness to the prover before the prover makes her next
query.

In addition to adaptive proofs, we define simulation-sound adaptive proofs
of knowledge. These proofs are obtained by the exact same change that extends
proofs of knowledge to simulation-sound proofs of knowledge: in addition to
producing statements and proofs of her own, the prover can simultaneously ask
the zero-knowledge simulator for proofs on valid statements of her choice. Of
course, the prover cannot ask the extractor to extract a witness from a simulated
proof.

Our results. After we provide a formalisation of adaptive proofs we can argue
about instantiations and applications. We provide three main results in this
regard:



(1.) Simulation-sound adaptive proofs exist. We discuss that the construction
of straight-line proofs of knowledge by Fischlin [28] satisifies our notion. Fis-
chlin’s transformation is an alternative to the common Fiat-Shamir transforma-
tion and allows any Sigma protocol with unique responses to be turned into a
non-interactive proof.
(2.) Adaptive simulation-sound proofs yield CCA security.We propose that adap-
tive proofs are to proof schemes what CCA security is to encryption schemes.
Only an adaptive proof gives you a formal guarantee that the intuition behind
proofs of knowledge still works when they are used over multiple rounds of a
protocol.

We prove that the encrypt-then-prove construction using an IND-CPA en-
cryption scheme and a simulation sound adaptive proof yields CCA security.
Our proof is to our knowledge the first proof of CCA security that considers a
potentially rewinding reduction in an adaptive case. While our proof follows the
same high-level direction as proofs of existing CCA schemes (using the reduction
to answer decryption queries), the need to handle rewinding without causing an
exponential blow-up makes for a complicated argument. We develop a new proof
technique called coin splitting to deal with some of the problems that arise.
(3.) Fiat-Shamir-Schnorr is not adaptively secure. We prove that the most com-
mon and efficient construction of proofs of knowledge via the Fiat-Shamir trans-
formation [27] is not adaptively secure. Our proof constructs a prover who makes
a “chain” of n Fiat-Shamir-Schnorr statement/proof pairs, following the ideas of
Shoup and Gennaro [50]. We then show that any extractor that wins the adaptive
proof game against this prover either reduces to breaking the one-more discrete
logarithm problem or launches Ω(2n) copies of the prover. The key technical
tools in the proof are the meta-reduction paradigm and a technique which we
term coin splitting.

Coin splitting allows us to perform a kind of hybrid argument on attackers
which have rewinding black-box access to several copies of the same algorithm.
We can change these copies individually as long as we can argue that the attacker
does not notice the difference. Coin splitting is a technique to show that some
changes which we make to individual copies are indeed indistinguishable to an
attacker who cannot break a more basic security assumption. The idea of this
technique originates in papers on resettable zero-knowledge [16].

Related work. We recall some related work here and discuss that so far no
previous work has given a profound answer to the issue of adaptive simulation-
sound proofs of knowledge in the random oracle model. We describe how our work
first into a larger context more comprehensively in Appendix A. The notion of
simulation-soundness of zero-knowledge proofs has been introduced for proofs
of membership by Sahai [44], showing that the Naor-Yung paradigm [39] yields
CCA secure encryptions in the common reference string model. In the context of
proofs of knowledge, De Santis and Persiano [21] already augmented ciphertexts
by proofs in the common reference string model to aim at CCA security, albeit
their argument seems to miss simulation-soundness as an important ingredient.
This property has been considered in works by Groth [36], Chase and Lysanskaya



[17], and by Dodis et al. [22], but once more in the common reference string model
only. The first formal definitions of simulation-sound proofs of knowledge in the
random oracle model were concurrently given by Bernhard et al. [14] and Faust
et al. [23]; both works show that proofs derived via Fiat-Shamir transform meet
this notion. Both formulations, however, consider an extractor that needs only
to extract from non-adaptively chosen proofs, and in case of [23] only once (for
security of their signature construction). In conclusion, our work here fills in a
gap allowing to argue about important properties of adaptivity and simulation-
soundness of proofs of knowledge in the random oracle model.

2 Zero-knowledge proofs

In this section we discuss zero-knowledge proofs of knowledge and simulation
soundness in the random oracle model (ROM). Our central idea for zero-knowledge
and its extension of simulation soundness is a game between two players, a ma-
licious prover P̂ and an extractor K. The prover’s aim is to produce a statement
and a proof that verifies such that the extractor cannot extract a witness from
this proof. The extractor’s goal is to extract a witness from the proof that the
prover provides.

We use a code-based game-playing model à la Bellare and Rogaway [11] to
define adaptive proofs of knowledge. The game mediates between all involved
players, e.g., between the adversarial prover and the extractor and possibly also
the simulator in case of simulation soundness. The game starts by running the
initialisation algorithm which ends by specifying to which player it wishes to
transfer control to first. Executions are token-based: at any time, either the
game or one of the players is running (“holding the token”) and a call from one
participant to another yields control. All game variables are global and persist
between calls so the game may maintain state between calls. The game eventually
declares the winner among the prover and the extractor.

To ensure termination, we assume strict polynomial-time provers and extrac-
tors (in the size of implicit parameters such as the size of the groups over which
the proofs are constructed). Our notions could also be achieved by having the
game “time out” if one player does not reply in a bounded number of time steps,
though this would require a more involved model of concurrency. The important
property is in any case that all players in the game must, on receiving an input,
eventually produce an output. In particular, a prover cannot prevent a “perfect”
extractor from winning a game by entering an infinite loop instead of producing
a proof.
Proof schemes. A cryptographic group G consists of a group (in the sense
of group theory) of prime order q with a distinguished generator g. A group
generation algorithm GrpSetup is an algorithm that takes a security parameter
λ ∈ N (in unary encoding, written 1λ) and outputs a cryptographic group G(λ).
A relation over cryptographic groups is a relation R′ parametrised by the “in-
terface” of a group. For example, in any cryptographic group G one can define
the discrete logarithm relation R′(G) := {(x,w) | x ∈ G ∧ x = gw} where g is



the distinguished generator of G. For a group generator GrpSetup and a relation
R′ over groups one can define the relation R =

⋃
G(λ)R

′(G(λ)) for a sequence of
groups G(λ), λ ∈ N; proof schemes typically prove relations R of this kind that
are in class NP.1 An algorithm over cryptographic groups is given by pseudocode
that uses the “interface” of groups. For example, the algorithms P and V below
are algorithms over groups: they can be implemented for any given group2 G.

Definition 1. A non-interactive proof scheme for a relation R over groups con-
sists of two algorithms (P,V) over groups. P may be randomised, V must be
deterministic. For any pair (x,w) ∈ R, if π ← P(x,w) then V(x, π) must output
“true”.

The elements of the relation R are called statement and witness. P is called
the prover and its outputs π are called proofs. V is called the verifier and a
statement/proof pair on which V outputs “true” is called a valid proof. In the
random oracle model, both P and V may call the random oracle but the relation
R′ itself must be independent of any oracles. The last condition in the definition
of proof schemes is called correctness and says that proofs produced by the
genuine prover are valid. In the random oracle model, the prover and verifier in
the definition of the correctness property have access to the same random oracle,
i.e. the oracle answers consistently for both algorithms.

Our definitions of properties for proof schemes are centered around a game
with multiple interfaces to which various parties such as provers, extractors or
simulators may connect. We give our games as collections of algorithms where
each algorithm has both a name and a description of the interface to which
it applies. A return statement in an algorithm terminates the algorithm and
outputs the return value on the same interface that called the algorithm. Where
an algorithm should terminate and send a value on a different interface, we use
the keyword send instead. The keyword halt in the code of a game terminates
not just an algorithm but the entire game — when this occurs, the game will
announce a winner.
Zero-knowledge. A proof scheme is called zero-knowledge if there is an algo-
rithm S, called the simulator, which is able to produce proofs indistinguishable
from genuine ones after seeing only the statement but no witness. Informally,
π ← P(x,w) and π′ ← S(x) should be indistinguishable for any pair (x,w) ∈ R.

In the (programmable) random oracle model we define zero-knowledge in
such a way that the simulator is responsible for the random oracle (if present).
Formally, we treat the prover P as an interactive algorithm that may issue oracle
queries and get responses, and that eventually outputs a proof. A simulator is
a stateful interactive algorithm S that can respond to two kinds of queries: a
prove query which takes a value x as input and should produce a proof π as
1 Note that it would be pointless to ask whether R′ is in class NP or not, as R′(G) is
a finite object for any finite group G.

2 If we wanted to be really precise we could write P(G)(x,w) to capture the depen-
dency on a group. We choose not to use subscripts in order to avoid subscripted
subscripts when the group itself depends on a security parameter.



output, and a ro query which takes an arbitrary x ∈ Σ∗ as input and returns
a y ∈ Σ∗. A simulator does not have access to a random oracle, but simulates
its own random oracle towards its “clients”. A proof scheme is zero-knowledge in
the random oracle model if the following two games are indistinguishable:

– The first game internally runs a random oracle RO . On input a pair (x,w),
if R(x,w) does not hold then the game returns ⊥ and halts. If the relation
holds, the game runs π ← P(x,w) and returns π. The prover P uses the
game’s random oracle. The adversary may then query the game’s random
oracle (which P used) directly, as often as she wants.

– The second game does not run a random oracle. On input a pair (x,w), again
if R(x,w) does not hold the game returns ⊥ and halts. Otherwise, the game
runs π ← S(x) and returns π to the adversary. The adversary may then issue
random oracle queries which the game delegates to the simulator’s random
oracle.

We specify this property using pseudocode in Figure 1. We use the following
notation: An oracle is a stateful process which other processes can access via a
well-defined set of queries. If O is an oracle and q is one if its supported queries
then we write O.q(x) to denote the invocation of this query with parameter
x. We write x←$ S for selecting x uniformly at random from the set S and
y←$AO1,...,On(x) for calling the (potentially randomised) algorithm A on input
x to get output y. The superscripts denote the oracles that A can use while
it is running. Sometimes, we will allow these oracles to call each other directly
(for example if several oracles need access to a random oracle) and to issue a
command halt that halts the entire execution.

To maintain random oracle queries in later definitions we write [ ] for the
empty list and L :: l to concatenate element l to list L. When L is a list of pairs,
we define L(x) to be y such that (x, y) is the first element in L of the form (x, ·).
If no such element exists then L(x) is defined to be ⊥.

In Figure 1 we give the games G1 and G2 and the methods that the adversary
can call. Since it will be helpful later on to give each kind of query a name, we
call the adversary’s initial query with parameters (x,w) a prove query. Similarly,
we call the two operations that a simulator S admits prove and ro queries.

At the moment, our code may seem like an unnecessarily complicated way of
stating a simple property. This level of formalism will become necessary when
we move on to adaptive proofs however.

Definition 2. A proof scheme (P,V) is zero knowledge in the random oracle
model for a relation R if there exists a simulator S satisfying the following con-
dition. For any security parameter λ let δ(λ) be the distinguishing advantage of
any efficient adversary between the games G1 and G2 of Figure 1 and for relation
R and simulator S. Then δ(λ) is negligible as a function of λ.

Proofs of knowledge. A proof scheme is a proof of knowledge if there is an
extractor K such that for any prover P̂ which can make a statement/proof pair
that verifies, K can deliver an associated witness. Formalising this statement



Game G1

initialise():
//potentially generate parameters

A issues prove(x,w):

if ¬R(x,w) then return ⊥
π ← PRO(x,w)

return π

A issues ro(x):

return RO(x)

Game G2

initialise():
//potentially generate parameters

A issues prove(x,w):

if ¬R(x,w) then return ⊥
π ← S.prove(x)

return π

A issues ro(x):

return S.ro(x)

Fig. 1: Games for zero-knowledge (ZK) in the random oracle model. A scheme (P,V)
is ZK if the two games G1 and G2 are indistinguishable. The adversary A may issue
prove once and ro any number of times. RO is a random oracle.

requires that we not only take care of random oracles but also the extractor’s
ability to “fork” the prover.

We first consider the non-rewinding case as a warm-up. A prover P̂ is a
randomized interactive algorithm that may make random oracle queries and
eventually outputs a pair (x, π). A non-rewinding extractor K is an algorithm
that takes a pair (x, π) as input, may make random oracle queries and even-
tually outputs a value w. We consider the game G that runs a random oracle
RO internally and connects a prover and an extractor as in Figure 2. A proof
scheme is an R-proof of knowledge if there is an extractor K such that for every
prover P̂, the game mediating between the two algorithms outputs “K wins”
with overwhelming probability.

The game as in Figure 2, in which both the prover P̂ and the extractor K
can access a random oracle and where the extractor is supposed to find a witness
for a valid proof produced by the prover, is actually too demanding to be useful:
It basically says that anyone is able to extract a witness from the proof. To
derive some sensible notion we give the extractor some advantage and allow it
to inspect the random oracle queries made by the prover. That is, the extractor
K can make an extra query list in response to which the game G returns the
list H. This gives us a notion of straight-line proofs in the random oracle model
which is actually sufficient for capturing the approach used by Fischlin [28].

Definition 3. A proof scheme (P,V) is a straight-line proof of knowledge in the
ROM w.r.t. a relation R if there is an extractor K such that for any prover P̂,
the game in Figure 2 augmented with a list query that allows K to see the list H
returns “K wins” with overwhelming probability.



initialise:
H ← [ ]

start P̂

P̂ issues ro(x):

y ← RO(x)

H ← H :: (x, y)

return y to P̂

K issues ro(x):

y ← RO(x)

return y to K

P̂ outputs (x, π):

if ¬VRO(x, π) then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if R(X,w) then

halt with output “K wins”
else

halt with output “P̂ wins”

K issues list :

return H

Fig. 2: The game G defining proofs of knowledge in the random oracle model. Capital-X
is part of the game’s internal state that persists between calls (so that the extractor’s
witness is verified against the same statement that the prover provided earlier).

The above definition is less general than the one first proposed by Bellare
and Goldreich [6]. There the authors relate the extractor’s success probability
to that of the prover (in producing a valid proof), whereas our definition lets
the extractor win by default if the prover does not make a proof. However, our
notion generalises more easily to the adaptive setting where the probability of
the prover making a valid proof is no longer well-defined, since it also depends
on the extractor’s response to earlier proofs.
Rewinding Extractors. The next standard notion that we formalise in our
game-based model is that of a rewinding extractor in the ROM, running the
prover multiple times. We model the extractor’s rewinding ability by giving the
extractor access to further copies of the prover, initialised with the same random
string as the main incarnation of the prover’s algorithm which connects to the
proof of knowledge game. We call these further copies “rewound copies”. Although
all copies of the prover share the same random string, this string is not available
to the extractor directly. This prevents the extractor from just simulating the
prover on its own and reading off any witness used to make a proof.

The rewound copies of the prover connect to the extractor directly as sketched
in Figure 3. In particular, the extractor is responsible for answering the random
oracle queries for the rewound copies and can use this ability to “fork” them at
any point. In order to apply the forking strategy to proofs made by the main
prover, the extractor may make use of the list H that records all random oracle
queries and answers for the main execution.



The game itself is the same as for non-rewound provers. For example, for the
prover in Schnorr’s protocol, one extraction strategy is to start a rewound copy
of the prover and run it up until the point that it asks the oracle query which the
main prover used to make its proof. Then, the extractor gives the rewound copy
a different answer to the oracle query and hopes to obtain a new proof with the
same commitment, in order to extract via special soundness. If the main prover
made other oracle queries before the “target” one, then the extractor looks these
up in the list H and gives the rewound copy the same answers when it makes
the relevant queries.

genuine RO extractor’s RO

P̂

main prover

G

game

K

extractor

P̂

rewound provers

Fig. 3: Extending the straight-line proof of knowledge game to the rewinding case.

Definition 4. A proof scheme is a rewinding proof of knowledge in the ROM if
it satisfies the conditions of Definition 3 (proof of knowledge) for an extractor
K that has black box access to further copies of the main prover with the same
random string.

Simulation soundness and Extractability. Simulation soundness is a prop-
erty of some zero-knowledge proofs, where even after seeing a simulated proof
you cannot construct a new proof of a false statement. Simulation soundness
was introduced by Sahai [44] for proofs of statements; unlike proofs of knowl-
edge these do not require an extractor. Sahai used simulation soundness to show
that the Naor-Yung “double encryption” transformation can be used to obtain
CCA secure encryption. Naor-Yung is not an encrypt-then-prove construction.
The latter use only a single encryption but require a proof of knowledge; their
security arguments make use of the extractor.

In fact, encrypt-then-prove requires a proof scheme for which one can ap-
ply both the zero-knowledge simulator and the proof-of-knowledge extractor in
the same security argument. The formal property that models this is called
simulation-sound extractability (SSE) [36]. Specifically, the extractor must still
work even if the simulator has been invoked, as long as one does not try to
extract from a simulated proof. Simulation soundness is often challenging to
achieve outside the random oracle model. The proof scheme of Groth and Sa-
hai [55] for example, even in the instantiations that are proofs of knowledge,
operates with a setup parameter that can be constructed in two ways: either



one can simulate proofs or one can extract, but not both simultaneously. In the
random oracle model simulation soundness is typically easier to achieve, e.g.,
it comes almost for free with Schnorr-type proofs. However, it takes some care
to formalise this property as the simulator works under the condition that it
controls the random oracle. Hence, the extractor must now succeed w.r.t. the
simulator’s random oracle in this case.

We model simulation-sound extractability by taking the game for proofs of
knowledge and giving the prover the extra ability to ask prove queries just like
in the zero-knowledge game. These queries are always answered by the zero-
knowledge simulator and their proof replies are banned from being handed over
to the extractor. The SSE game runs the simulator and delegates random oracle
queries to it. The result is the game G in Figure 4. The list Π keeps track of
simulated proofs. If the prover returns a simulated proof (on the same statement
as it used in the related proof query), it loses the game. The state C is required
for a bit of extra bookkeeping since the random oracle is now external to the
game. By VS.ro we mean that the game G runs the verifier V and uses the
simulator’s random oracle to answer any oracle queries made by the verifier.
In other words, in the SSE game even the notion of a valid proof depends on
the simulator. Unlike the prover P̂ which is one of the players in our game, the
simulator S is assumed to always produce valid proofs by the zero-knowledge
property. The extractor’s list query returns both the random oracle queries and
the proof queries made by the main prover so far — this allows the extractor to
make a rewound copy of the prover run in identical executions as in the main
copy.

In addition to the main game G, we define an auxiliary game Ĝ that sits
between the extractor K and its rewound provers (there is one copy of Ĝ for each
rewound prover). The task of Ĝ is to “sanitize” prove queries made by rewound
provers. When a rewound prover makes such a query, the extractor must play
the role of the simulator — after all, the extractor is already simulating the
rewound prover’s random oracle. (The extractor may run a copy of the simulator
S internally.) However, provers make prove queries containing both a statement
x and a witness w whereas the simulator only ever gets to see x. The auxiliary
game Ĝ strips the witness from these proof queries. Otherwise, Ĝ acts as a
channel between K and a rewound copy of P̂. This is slightly tedious to write in
our notation; we make the convention that Ĝ prefixes a string to every message
from P̂ to K to indicate whether the value is meant to be a random oracle,
extraction or proof query. Messages (responses) flowing in the other direction
can always be passed on unchanged — the prover will hopefully remember what
its last query was when it gets a response.

Definition 5. A proof scheme (P,V) is simulation sound in the ROM for a re-
lation R if it satisfies the following conditions. An s-prover is an algorithm P̂ that
can ask random oracle and proof queries and eventually outputs an extraction
query containing a statement/proof pair.

– The proof scheme is zero-knowledge w.r.t. R for a simulator S and a proof
of knowledge w.r.t. R for an extractor K.



– For every s-prover P̂, if we connect K to P̂ through the game G of Fig-
ure 4 and give K access to further rewound copies of the prover (with the
same random string) through the auxiliary game Ĝ of Figure 5 then with
overwhelming probability the game G returns “K wins”.

3 Adaptive Proofs of Knowledge

Given our game-centric view of proofs of knowledge we can extend the approach
to adaptive proofs of knowledge. An adaptive proof is simply a proof scheme
where the extractor can still win if the prover is given multiple turns to make
proofs. The adaptive part is that the game hands the extractor’s witness in each
turn back to the prover before the prover must take her next turn. Should a
prover be able to produce a proof for which she does not know the witness,
she could then use the extractor’s ability to find a witness to help make her
next proof. The intuition is essentially the same for the cases with and without
simulation soundness. We first introduce adaptive proofs formally without simu-
lation soundness using so-called n-proofs, where n is a parameter describing the
number of rounds the prover plays. In a later step we add simulation soundness.
Adaptive proofs and n-proofs. Let (P,V) be a proof scheme for a relation
R. An adaptive prover P̂ in the ROM is a component that can make two kinds of
queries, repeatedly and in any order. The first are random oracle queries; these
are self-explanatory. The second are extraction queries which take a statement
and a proof as parameters. The response to an extraction query is a witness.
(Correctness conditions will be enforced by the game, not the prover.) Adaptive
provers may also halt. For example, a non-adaptive prover can be seen as an
adaptive prover that halts after its first extraction query.

An adaptive extractor K is a component that can make list and random oracle
queries and receive and process extraction queries from an adaptive prover. In
addition, an extractor may have black-box access to further rewinding copies
of the adaptive prover (with the same random string) and answer all of their
queries.

The n-proof game takes a parameter n as input and connects an adaptive
prover and extractor. It runs up to n rounds in which the prover may make a
statement and proof and the extractor must return a witness. The extractor wins
if it can deliver all n witnesses or if the prover halts earlier than this, or fails to
make a valid proof. The extractor loses if it does not supply a valid witness to
one of the first n extraction queries.

Definition 6. A proof scheme is an n-proof in the ROM for a relation R if
there exists an extractor K such that for every adaptive prover P̂ the game G
of Figure 7 when connected to P̂ and K returns “K wins” with overwhelming
probability.

If K also has access to further copies of P̂ with the same random string then
we call the proof scheme a rewinding n-proof, otherwise we call it a straight line
n-proof.



If for every polynomial p(x) there is an extractor Kp(x) making a particular
scheme a p(n)-proof, we say that the scheme is an adaptive proof.

Simulation-sound adaptive proofs. Adding simulation soundness to adap-
tive proofs works the same way as for non-adaptive proofs. Adaptive s-provers
may make random oracle, proof and extraction queries (the simulation sound
n-proof game only limits the number of extraction queries, not proof queries).
We give the new algorithms in Figure 8. Random oracle calls from the main
prover go to the simulator; simulated proofs are logged and provided on request
to the extractor (via a list query) and are banned from extraction queries. The
rewinding copies of the prover are connected to the extractor through the same
games Ĝ as in the non-adaptive case: extraction queries and witnesses found
by the extractor are simply passed back and forth. Only the witnesses in prove
queries are stripped out.

Consider a proof scheme (P,V) that is zero-knowledge for a relation R with
simulator S. The simulation sound n-proof experiment for this scheme, an adap-
tive s-prover P̂ and an extractor K is the following experiment. Connect the
prover P̂, the simulator S and the extractor K to the game G of Figure 8. Let
K have black box access to further copies of P̂ mediated by Ĝ as in Figure 5
that forwards all messages in both directions except that it strips witnesses from
proof queries.

Definition 7. Let (P,V) be a proof scheme for a relation R that is zero-knowledge
with simulator S. The scheme is a simulation sound n-proof if there is an extrac-
tor K such that for any adaptive s-prover P̂, the simulation sound n-proof ex-
periment returns “K wins” with overwhelming probability. If the extractor works
for all polynomially bounded n, we call the scheme an adaptive simulation sound
proof.

Discussion. We can classify the types of proofs that we have introduced with
the following table. “poly” means polynomially many and means that the number
of queries is not bounded by the games involved but an efficient algorithm will
be able to launch at most polynomially many queries (in some initial input or
security parameter) in the first place. We see no reason to study explicit bounds
on the number of proof queries as our simulators are non-rewinding.

type # extraction queries # proof queries

PoK 1 none
ss-PoK 1 poly
n-proof n none
ss-n-proof n poly
adaptive proof poly none
ss adaptive proof poly poly

The adaptive property of our proofs is strictly stronger than allowing the
prover to make one extraction query with a vector of many statement/proof



pairs. Namely, the multiforking lemma of Bagherzandi et al. [5] shows that Fiat-
Shamir-Schnorr proofs are extractable for one such “parallel” query yet we will
show that such proofs are not adaptive proofs (under the one-more discrete log-
arithm assumption). This separation has an analogue in the world of public-key
encryption that we will discuss soon. Sahai [44] shows that security against one
“parallel” decryption query is equivalent to non-malleability (NM-CPA) which
is known to be strictly weaker than CCA security where adaptive decryption
queries are allowed. It is also known that adding a proof of knowledge (of the
message and randomness) to an IND-CPA secure encryption scheme can be used
to construct non-malleable encryption yet this technique is not guaranteed to
achieve CCA security.

After establishing that simulation sound adaptive proofs exist by studying a
construction due to Fischlin [28], we show two main results. The negative result
is that the Fiat-Shamir transformed Schnorr protocol is not adaptively secure.

Adaptive proofs bear an interesting relationship to CCA security of encryp-
tion. Although adaptivity is an interesting question for many applications in
particular in multiparty computation, almost all known constructions of CCA
secure public-key encryption use some form of non-interactive proof of knowl-
edge in their ciphertexts3. This is sometimes known as the encrypt-then-prove
construction.

Our conceptual understanding of our new notion is that simulation sound
adaptive proofs are to proof schemes what CCA is to encryption. Under this
comparison, normal (simulation sound) proofs of knowledge are the equivalent
notion to non-malleability (NM-CPA). We validate this connection by show-
ing that the encrypt-then-prove construction with an adaptively secure proof
is indeed CCA secure, assuming the encryption scheme was IND-CPA secure.
Together with Fischlin’s proof scheme this yields a new CCA secure encryption
scheme. Our proof is to our knowledge the first proof of a CCA secure construc-
tion with a potentially rewinding extractor, leading to many complexities not
present in the proofs of existing schemes.

On the negative side, Shoup and Gennaro [50] first observed that adding a
Fiat-Shamir-Schnorr proof to ElGamal encryption cannot be proven CCA secure
the “obvious” way. This construction is called Signed ElGamal or TDH0 and if
it were CCA, it would outperform all other known CCA public-key schemes
and at the same time allow for homomorphic4 operations e.g. for tallying in an
electronic voting scheme. The problem with Signed ElGamal is that the usual
rewinding extractor suffers an exponential blow-up when used adaptively. While
Shoup and Gennaro found an example of this, they admit that they could neither
prove nor disprove CCA security of Signed ElGamal; this has since become a

3 The exception is the original construction via the Naor-Yung transformation [39]
but this comes at the cost of having to encrypt twice.

4 CCA secure schemes cannot of course be homomorphic in the usual sense. However,
an encrypt-then-prove ciphertext consists of two parts, a “small” ciphertext (usually
ElGamal) and a proof; after checking the proof, one may in some cases discard the
proofs and work homomorphically with only the small ciphertexts.



long-standing open problem. In this work, we give the first formal proof of an
inherent limitation in the Fiat-Shamir-Schnorr construction. Under the one-more
discrete logarithm assumption, we show that any extractor for such proofs in the
random oracle model must make at least Ω(2n) “forking” executions to extract
from the n-prover originally sketched by Shoup and Gennaro. It follows that
Fiat-Shamir transformed Sigma protocols are not adaptive proofs.

The big open question is still whether Signed ElGamal (ElGamal with a
Fiat-Shamir-Schnorr proof; we formalise this in the next section) is CCA se-
cure. Our results rule out any proof of CCA security of Signed ElGamal that
depends on or implies adaptive security of the contained Fiat-Shamir-Schnorr
PoK, which would otherwise seem the most straightforward way to obtain CCA
security. We cannot rule out proofs using other techniques however. Certainly,
Schnorr and Jakobsson [46] have given a proof in a combination of the random
oracle and generic group models. Tsiounis and Yung [53] have done the same
under a “knowledge assumption” for which however we know no justification
that does not invlove both generic groups and random oracles. Interestingly, if
the Schnorr-Jakobsson technique were applicable without generic groups then
Signed ElGamal would not only be CCA but also PA2 “plaintext aware” yet
Seurin and Treger [48] have shown that Signed ElGamal cannot be PA2 in the
random oracle model (without generic goups) unless ElGamal is insecure (CDH
is easy) in the first place, in which case the whole construction can never be
CCA secure5. Seurin and Treger too admit that their results cannot rule out a
proof of CCA security of Signed ElGamal by other means.

4 Overview of our results

In this section we briefly discuss our main results. Since the proofs of our theo-
rems are long and contain many technical/formal details that are not particularly
enlightening, we have chosen to give only an overview of our results in the body
of the paper and place the proofs in the appendices.
Adaptive proofs exist. First, we establish that simulation-sound adaptive
proofs in the random oracle model exist. An existing construction due to Fis-
chlin [28] is adaptively secure. Fischlin gives a transformation of Sigma protocols
to non-interactive proof schemes as an alternative to the more common Fiat-
Shamir transformation. We present Fischlin’s transformation and a proof that it
is adaptively simulation sound in Appendix C. Here, we sketch the construction.

Sigma protocols use a property called special soundness to achieve their se-
curity properties. Special soundness says that if you see any two proofs with
the same statement and commitment but different challenges (which implies dif-
ferent responses) then you can compute a witness from the “difference” of the

5 PA2 together with IND-CPA implies CCA but PA2 on its own says very little:
the scheme in which ciphertexts are just plaintexts in the clear is PA2 and if the
Schnorr-Jakobsson extractor worked without generic groups we would have the same
situation for ElGamal.



two protocols. The rewinding extractor for Fiat-Shamir proofs exploits special
soundness. Fiat-Shamir provers in the random oracle model obtain their chal-
lenges from the random oracle. The extractor runs a second copy of the prover
identical to the main one from which it is trying to extract but since the extractor
plays the random oracle towards the second copy of the prover, the extractor can
give the second prover a different challenge. If the second prover makes a proof,
the extractor can take the first and second prover’s proofs and apply special
soundness. The formal argument that this works (with overwhelming probabil-
ity for a prover who almost always succeeds in making a proof) is called the
Forking Lemma [10].

Fischlin’s idea is to impose an additional constraint on proofs: a number of
low-order bits in the hash of the entire proof must be all zero. This forces the
prover to make several attempts until she finds a proof that meets the constraint.
The number of bits that must be zero is small enough that a prover can succeed
with a reasonable number of attempts and large enough that with high proba-
bility, a prover will need more than one attempt. The prover must check each
attempt by sending the whole proof to the random oracle. A real verifier will
only ever see one proof and not the prover’s intermediate attempts; an extractor
however can see all of the prover’s random oracle queries. Fischlin shows that
with high probability, a prover must send two candidate proofs to the random
oracle before she finds a proof satisfying the new constraint and from two such
proofs, an extractor can extract a witness by special soundness. Since the prover
is doing the “rewinding” herself, the extractor for Fischlin proofs is straight line,
i.e. never needs to rewind the prover.

The following theorem (which we prove in Appendix C) establishes that
Fischlin proofs are adaptive.

Theorem 1. A Fischlin-transformed Sigma protocol with special soundness is
a simulation-sound adaptive proof in the random oracle model.

Encrypt-then-prove. Our main positive result is that the encrypt-then-prove
transformation does what it is intuitively supposed to do — boost IND-CPA
to CCA — if the proof scheme is a simulation-sound adaptive proof. To define
the transformation we first clarify a point about NP languages. In the intro-
duction, we said that encrypt-then-prove uses a proof of the “randomness and
message” used to encrypt. This is not precise enough for a formal definition.
This informal statement would give us a proof over a relation R1 : {(c, (m, r)) |
c = Encrypt(pk,m; r)} where statements are ciphertexts and witnesses are mes-
sage/randomness pairs. However, Signed ElGamal (which we will define soon)
uses a Schnorr proof which is a proof of knowledge of a discrete logarithm,
namely the randomness in an ElGamal ciphertext. This would suggest a relation
R2 : {(c, r) | c = Encrypt(pk,m; r)}. Of course, the point of the proof is that the
message can be computed from a ciphertext and its randomness, but that is not
the same thing as the formal definition of the proof’s NP relation. In addition,
since the NP relation and proof depends on the public key as an extra parame-
ter, when we define the transformation formally we are actually working with a



parametrised family of relations. Further, the encrypt-then-prove transformation
still works if one adds extra features to the proof. For example, the Helios voting
scheme for example uses encrypt-then-prove ciphertexts that additionally prove
that the encrypted message is a valid vote.

We address all these problems with an abstract definition of compatibility
between encryption and proof schemes; any schemes that meet this definition
can be used in the encrypt-then-prove transformation. Our definition also means
that we will not have a concrete NP relation to work with in our main theorem.
Instead, compatibility says that the NP relation can be anything that supports
the two features we need: from a witness you can compute a message and from
the list of all inputs used to form a ciphertext, you can derive a witness.

Definition 8. An encryption scheme E = (KeyGen,Encrypt,Decrypt) and a
proof scheme P = (P,V) for relation R are compatible if there are efficient
algorithms M and W such that:

1. For any tuple (pk, c, w) of public key, ciphertext and witness such that R((pk, c), w)
holds, the value m := M(pk, c, w) is the message such that c is an encryption
of m under public key pk.

2. For any tuple (pk, c,m, r) of public key, ciphertext, message and random
string, the value w := W(pk, c,m, r) is a witness for which R((pk, c), w)
holds.

Definition 9. Let E and P be compatible encryption and proof schemes (for a
relation R and algorithms M, W. The encrypt-then-prove transformation of E
and P is the encryption scheme in Figure 9 where RS is the space of random
strings for E.Encrypt.

Signed ElGamal. As an example, we present the Signed ElGamal scheme.
Signed ElGamal is ElGamal encryption with a Fiat-Shamir-Schnorr proof. It
operates over a cyclic group G of prime order q with a generator G. To generate
keys, pick a random sk←$ Fq and set your public key to pk ← Gsk. To encrypt
a message m ∈ G, pick a random r←$ Fq and create an ElGamal ciphertext
e ← (Gr, pkr · m). Then pick another random value a←$ Fq and create the
Schnorr commitment A ← Ga, challenge c ← H(pk, e, A) and response s ←
a + c · r (mod q). The ciphertext is (e,A, s). To decrypt a ciphertext (e,A, s)
with secret key sk, parse e as a pair (u, v) and check that Gs = A+H(pk, e, A) ·u
(mod q). If this fails, the ciphertext is invalid. If it succeeds, the decryption is
m← v/usk. The relation R for Signed ElGamal is R((pk, (u, v)), r) :⇔ u = Gr.
Here (u, v) is an ElGamal ciphertext and (pk, (u, v)) is a statement consisting
of a public key/ciphertext pair. The maps to make the encryption scheme and
proof compatible are M(pk, (u, v), w) := v/pkw and W(pk, (u, v),m, r) := r.
Simulation-sound adaptive proofs yield CCA. Our main positive result
expresses the intuition behind encrypt-then-prove.

Theorem 2. Let E be an IND-CPA secure encryption scheme and let P be a
compatible simulation-sound adaptive proof scheme in the random oracle model.



Then the encrypt-then-prove transformation of these schemes is a CCA secure
encryption scheme in the random oracle model.

As a corollary we immediately obtain a new CCA secure encryption scheme.

Corollary 1. The encrypt-then-prove transformation of ElGamal using Fischlin-
Schnorr proofs is CCA secure.

The final step of the proof follows the basic intuition behind all encrypt-
then-prove constructions. We reduce CCA security to IND-CPA security. Our
reduction sends the two challenge messages to the IND-CPA game for the basic
scheme, gets a ciphertext back and simulates a proof on it to create the chal-
lenge ciphertext of the encrypt-then-prove construction. When the CCA attacker
makes a decryption query with an encrypt-then-prove ciphertext, the reduction
invokes the extractor using the IND-CPA ciphertext component as the state-
ment and the proof component as the proof. The witness contains the encrypted
message which the reduction returns to the attacker. Since we are simulating and
extracting in the same reduction, we require simulation sound extractability.

Unfortunately, this idea does not explain how the reduction is supposed to
deal with the extractor requesting a further copy of the attacker. Worse still, the
“prover” that we are simulating towards the extractor is a combination of the
attacker and the IND-CPA challenger. We definitely cannot clone or rewind our
challenger. To our knowledge, our proof is the first proof of a CCA construction
that involves rewinding.

After an intial step in which we simulate all proofs on challenge ciphertexts,
most of the proof is an argument how and why a single reduction can provide the
extractor with a consistent simulation of multiple copies of the same algorithm.
We call this technique coin splitting. It works on two principles. (1.) Keep track
of which copies are “clones” of other copies. If a copy C is getting the exact
same queries that another copy D has already answered, let C simply replay D’s
answers. (2.) Make sure that all cases not handled by the last point involve fresh,
independent randomness. Then the reduction can simply draw fresh random
values from one source to simulate all copies.

Coin splitting lets us use our one IND-CPA challenge for the extractor’s
main prover and simulate our own challenges for the rewinding provers. To the
extractor, all this will look just like fresh randomness each time.
Fiat-Shamir-Schnorr is not adaptively secure. Our third result is neg-
ative. It separates proofs of knowledge from adaptive proofs and shows that
Fiat-Shamir Schnorr is an example that separates the two notions.

Theorem 3. The Fiat-Shamir-Schnorr (FSS) proof scheme is not adaptively
secure under the one-more discrete logarithm assumption. Specifically, for any n
there is a prover P̂ who makes a sequence of n FSS proofs. For any extractor K
who can win the adaptive proof experiment against P̂, either K calls at least 2n
rewinding copies of P̂ or there is a reduction that solves the one-more discrete
logarithm problem in the underlying group with a comparable success rate to K.



The prover in question follows the same ideas as Shoup and Gennaro’s CCA
attacker [50]. While the cited work gave the attacker as an example why the
“obvious” proof fails, it did not show any inherent limitation of the Fiat-Shamir
technique; it did not show that this limitation cannot be overcome by using a
different proof technique. Our paper is the first to give a proof that Fiat-Shamir
transformed sigma protocols have an unavoidable limitation.

The core of the proof is a kind of metareduction. For any extractor that
wins the adaptive proof game against our prover, we construct a second “meta-
extractor” that finds a discrete logarithm to one of the Schnorr challenges in-
volved if the extractor’s rewinding strategy satisfies certain conditions that we
call “event E”. We then replace the prover by a one-more discrete logarithm chal-
lenger to deal with the other proofs that may arise from rewinding copies. We
reuse our coin splitting technique to argue that this game hop is undetectable
by the extractor.

We use a combinatorial argument to show that any extractor who does not
make at least 2n calls to different rewinding copies of the prover must trigger
event E. The gist of the argument is that we map the prover’s n queries to a
path in a depth-n binary tree where each node represents a discrete-logarithm
problem. Each query that the extractor answers successfully reveals certain nodes
in this tree and answering all n queries implies that the entire tree is revealed.
We treat each rewinding operation that the extractor performs as exploring a
path in the tree. If the extractor explores the complete tree we get the claimed
2n rewinding operations. The event E is that the extractor “jumps” from one leaf
in the tree to another without exploring the path in between. If this occurs, our
reduction solves the one-more discrete logarithm problem. It is impossible, even
for a computationally unbounded extractor, to reveal the whole tree (answer all
n queries) without either exploring the whole tree (taking exponential time) or
performing at least one jump (solving a one-more discrete logarithm instance).

5 Conclusion

It has been known for a long time [50] that Fiat-Shamir proofs can be problematic
in adaptive settings. Our notion of adaptive proofs captures the kind of proofs
we would like to have in such settings (and which are achievable via the Fischlin
transformation). For example, simulation sound adaptive proofs capture in more
detail than any previous work how Signed ElGamal and more generally encrypt-
then-prove is supposed to be CCA secure. We also provide the first proof of
an inherent limitation of the Fiat-Shamir transformation: it is not adaptively
secure (under a one-more assumption on the underlying one-way function). The
question of the exact security of Signed ElGamal remains open and we plan to
address it in future work with similar techniques to the ones in this paper.

Adaptive Proofs outside the ROM.. In this paper, we have focused entirely
on non-interactive proofs in the random oracle model. A good question is, can
we generalise to e.g. common reference string-based proof schemes?



The game for adaptive proofs could easily be cast in other models. If addi-
tional “static” setup parameters such as a common reference string (CRS) are
required, these can be generated once in the initialisation algorithm and shared
between all parties (the extractor and any provers that it may invoke). If a ran-
dom oracle is not required, the corresponding algorithms can simply be removed
from the game. A CRS with an extraction trapdoor could also be generated in
the initialisation algorithm: the extractor would get the CRS and the trapdoor,
the provers would get the CRS only. Since the provers obtain their CRS from
the game directly, the extractor cannot tamper with it. However, this whole dis-
cussion misses a point: adaptivity was never much of a problem with CRS-based
proofs; their extractor is straight-line in all cases that we know of. Indeed, the
only feature of some proof schemes that causes problems with adaptivity is the
rewinding extractor, for which we know of no sensible instances except in the
random oracle model. We would expect all non-ROM non-interactive proofs of
knowledge to be adaptively secure, so we question whether there is much value
in a notion of adaptive proofs outside the ROM.

We believe that the most interesting proof schemes are simulation sound
extractable (SSE) ones, whether adaptive or not: such proofs seem to be required
to boost security in an encrypt-then-prove construction. Typically, ROM proofs
come with the SSE property for free. Simulation-sound extraction however can
be a big problem in the CRS model. Consider Groth-Sahai proofs: one can set up
either a hiding CRS with a potential simulation trapdoor or a binding CRS with
a potential extraction trapdoor6. To achieve SSE, one would need both trapdoors
at once; indeed the basic Groth-Sahai proofs are sound and zero-knowledge but
not SSE as far as we are aware.

With this problem in mind, we do not at the moment have a sensible gen-
eralisation of the simulation-sound n-proof game that admits CRSs. The open
questions for us are first, whether it would make sense to demand that simu-
lation and extraction trapdoors are simultaneously available for some form of
CRS; secondly, whether it would not give the extractor too much power if it
were allowed to see both the simulation and extraction trapdoors (which might
let the extractor interfere too much with the main prover); thirdly, if the extrac-
tor does not get a simulation trapdoor, how it should answer proof queries of
rewinding provers. Finally, we are unsure whether rewinding provers serve any
purpose outside the ROM — removing rewinding would solve the preceding two
questions, at the cost of a slightly weaker notion, but leave the first question
open how to simulate and extract in the same experiment). We do not know of
any efficient non-ROM schemes that would acheive such a notion, however one
chooses to settle these questions.
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A Comparison with Previous Work

We briefly survey the results most closely related to this paper.
Non-interactive zero-knowledge proofs.Non-interactive zero-knowledge (NIZK)

proof schemes can be classified as common reference string (CRS) or random or-
acle model (ROM) schemes.7 In the ROM one can further distinguish between
rewinding and straight-line extractors; CRS extractors are always straight-line.
One can further distinguish proofs of knowledge from proofs of membership.

Historically, CRS proof schemes were discovered first and the theory of NIZK
schemes has mainly concerned itself with the CRS model. However, the only
NIZK proofs for which we are aware of practical deployments are ROM based,
as they are more efficient than CRS ones. Due to the non-rewinding extraction
strategy for proofs in the CRS model, some ideas which work on CRS NIZK
schemes do not carry over to ROM proofs. This paper studies NIZK proofs of
knowledge in the random oracle model directly.

NIZK and CCA. Many authors have studied the use of NIZK proofs to ob-
tain CCA security [15,39,21,43,19,57,28,14]. Encrypt-then-prove goes back to
the works of Rackoff and Simon [43] and DeSantis and Persiano [21]. The lat-
ter define simulation soundness for proofs of knowledge and sketch a proof that
encrypt-then-prove with such proofs yields CCA in the CRS model. The folk-
lore statement that “simulation-sound NIZK implies CCA security” presumably
relates to the same work.

Naor and Yung [39] presented a double-encryption construction using proofs
of membership. Sahai [44] introduced simulation soundness for proofs of mem-
bership and proved the Naor-Yung construction CCA-secure with such proofs.
7 Some schemes use both a CRS and a random oracle.



However, the Naor-Yung paradigm encrypts each message twice in a ciphertext,
which is not the encrypt-then-prove construction as we define it. The Naor-
Yung construction and many of its refinements [20,38,32,22] also reside in the
CRS model.

The first adaptive notion for NIZK was proposed by Groth [36] and by Chase
and Lysanskaya [17] in the related context of signatures of knowledge, again in
the common reference string model. Dodis et al. [22] showed that a relaxation to
true-simulation extractability of non-interactive proofs, where the adversary only
sees proofs of true statements, suffices to achieve CCA security in the common
reference string model.

ROM proof schemes. Fouque and Pointcheval [30] were the first to define sim-
ulation soundness in the random oracle model. Their definition applies to proofs
of membership and they transport the Naor-Yung construction from the CRS to
the ROM model, where it remains CCA secure. The first formal definitions of
simulation sound proofs of knowledge in the random oracle model were concur-
rently given by Bernhard et al. [14] and Faust et al. [23]; both works show that
proofs derived via the Fiat-Shamir transformation meet this notion. Faust et al.
[23] also defined simulation sound extractability in the random oracle model.
None of these notions are adaptive.

Signed ElGamal. Signed ElGamal is simple, elegant and efficient. It is used in
the Helios voting system [3] which is, for example, deployed by the IACR. It is an
encrypt-then-prove construction so “folklore” suggests it should be CCA secure.
If this were proven, Signed ElGamal would be the best known encryption scheme
as it outperforms all other known CCA encryption schemes. The best positive
result for Signed ElGamal in the random oracle model to date is due to Bernhard
et al. [14] who recently showed that the encrypt-then-prove construction based
on Fiat-Shamir proofs is NM-CPA.

IND-CCA security results [53,46] for Signed ElGamal rely on random ora-
cles and either “knowledge assumptions” or the generic group model. A proof
of security that relies on the Gap-Diffie-Hellman assumption had been provided
by Abe [1], but for a hashed ElGamal variant with Schnorr signatures where
parts of the ElGamal ciphertext is now hashed. This demolishes the homomor-
phic property of the ElGamal encryption, inhibiting further applications like for
example Wikström’s submission-security [56] which is implicitly used in Helios.
The same argument applies to ECIES [49] and DHIES [2].

Yet another variation is to combine ElGamal encryption with other proofs
like Chaum-Pedersen signatures, thereby resurrecting chosen-ciphertext secu-
rity in the random oracle model [48]. In the same paper, Seurin and Treger
proved that Signed ElGamal is not plaintext-aware and cannot have a straight-
line extractor. This does not resolve the CCA question, because a rewinding,
“plaintext-unaware” strategy may still exist. Yet it suggests that a proof along
the lines of the ones for other, known CCA secure schemes is impossible and
that rewinding is “inherent” in Signed ElGamal. It also proves that the generic-
group extractor [46] has no equivalent without the generic group model, as said
extractor is straight-line.



B Detailed Definitions

All literature on proofs of knowledge somehow mentions that they operate over
NP relations but the degree of formality varies widely. This is not a bad thing:
the key points of an argument concerning PoKs can often be understood better
without getting lost in details of the execution model and the exact formulation
of polynomial-time algorithms. Nonetheless, for the interested reader we present
here a highly formal definition of the objects that we consider in this paper.

For example, what exactly does Schnorr’s proof scheme prove? We know
that it proves knowledge of discrete logarithms in a group and that like all good
proof schemes, it is based on a class NP relation. We would expect a relation
of the form R = {(X,x) | gx = X}. For a fixed finite group G, this relation
(viewed as a set) is finite however so there is always an algorithm for taking
discrete logarithms with a constant overhead of |G| — formally, such a relation
is class P! The common cryptographic approach is to consider a group generator
algorithm GrpSetup that takes a security parameter λ (in unary encoding 1λ) as
input and outputs a group G(λ). Although not commonly spelt out this formally,
the NP relation in question is then the union R =

⋃
λ∈NR(λ) over the relations

for all the groups in the support of the generator algorithm.
This is fine until we come to define a dishonest prover, against which an ex-

tractor must succeed (whether for single-use or adaptive PoKs). The statement
should read something like “for every prover who produces a valid statemen-
t/proof pair, the extractor can extract a witness”. We define a valid pair to be
a pair on which the verification algorithm V outputs “true”. However, the cor-
rectness condition is usually formulated as “for any statement/witness pair in
the relation R, running the honest prover P on this pair produces a proof that
verifies (w.r.t. the statement)”. Taking these statements together, if we let our
NP relation be the union over the support of the group generator algorithm
then we give our dishonest provers the ability to choose a group (and security
parameter) at runtime; adaptive provers would even be able to vary the group
between proofs. This is not the definition that we are looking for.

In what follows, we give a formal definition of NP relations and languages
and proof schemes that avoids these problems.
Cryptographic groups and generators. A cryptographic group G is a
group of prime order together with parameters including the group order q and
a distinguished generator g. We re-use the notation G for the carrier set of the
group where no confusion can arise. For a particular group G, a local relation
R′(G) is any relation that uses the “interface” of a cryptographic group. For
example, the local relation for discrete logarithms is R′(G) := {(X,x) | X ∈
G ∧ 0 ≤ x < q ∧ X = gx}. To be really formal, R′ is a map8 from groups to
relations.

A group generator is a map GrpSetup from N to the class of cryptographic
groups. Its input is usually called a security parameter and denoted λ; the usual
8 We prefer the map notation over subscripts since this avoids having to subscript the
subscripts when we introduce security parameters.



convention is that security parameters are provided in a unary encoding and
written 1λ so that the generator algorithm becomes efficient in the usual sense.
We write G(λ) for a group output by the generator algorithm on input 1λ. For a
particular group generator, one can consider the relation R :=

⋃
λ∈NR

′(G(λ)).
For a randomised group generator, one would include a second union over all
random coins of the generator so that R covers the entire range of the generator.
NP relations and languages. Let Σ = {0, 1} and Σ∗ :=

⋃
k∈N0

Σk. A
binary relation R ⊆ Σ∗ × Σ∗ is an NP-relation if it is decidable in polynomial
time in the size of the first argument. An NP relation R defines the language
LR = {x | ∃w : (x,w) ∈ R}; if x ∈ LR and w is such that (x,w) ∈ R we say that
w is a witness for x ∈ LR.

For a group generator GrpSetup and a local relation R′ on cryptographic
groups, the relation R obtained as described in the previous section is of class
NP if there is a polynomial p such that for every groupG, the following conditions
hold.

1. Let L′(G) := {X | ∃w (X,w) ∈ R′(G)} be the induced (localised) language
over G. Then every X ∈ L′(G) has an element w with |w| ≤ p(|X|) such
that R′(G)(X,w) holds.

2. There is an algorithm that on input a group G and a pair (X,w) decides
R′(G) in at most p(|X|) steps.

Taking a group as input means that the algorithm can obtain the group order
and distinguished generator and can perform group operations and inversions for
a cost of one step each.
Proof schemes. A proof scheme for a (local) relation over cryptographic groups
is formally a triple (R′,P,V) where all components are maps from the class of
cryptographic groups to local relations resp. algorithms over these groups. In
other words, the relation R′(G) and the algorithms P(G),V(G) may use the
group order q, the distinguished generator g and group operations and inversions.
It is a fact of basic Algebra that this allows one to compute a map Z×G→ G :
(z, h) 7→ hz which is a group isomorphism for any fixed h and 0 ≤ z < q.

The correctness condition too can be formulated locally: for any group G, if
(X,x) ∈ R′(G) and π ← P(G)(X,x) then V(G)(X,π) should return “true”. Note
that at this stage one could demand that the relation is polytime decidable in
the length of its first argument alone (for some polynomial p fixed once for all
groups) but it does not make sense to talk of an NP relation yet.

For example, the Fiat-Shamir-Schnorr proof scheme has the following algo-
rithms. The algorithms are “generic” as they operate over any cryptographic
group. This does not prevent the algorithms from, i.e. acting differently for par-
ticular choices of q but it does mean that details of the representation of the
underlying group (such as whether it is implemented as a subgroup of Z×p or the
group of rational points on an elliptic curve) are abstracted away.

P(X,x): a←$ Zq;A ← ga; c ← H(X,A); s ← a + c · x (mod q);π ← (A, s);
return π.



V(X,π): (A, s)← π; c← H(X,A); If gs = A ·Xc then return “true” else return
“false”.

Proofs of Knowledge. To define asymptotic security for proofs of knowledge,
the objects we consider are formally 4-tuples (GrpSetup, R′,P,V) consisting of
a group generator algorithm, a local relation and generic prover and verifier
algorithms. For such a tuple and an extractor K which is formally a map from
the class of cryptographic groups to algorithms over these groups, one can define
the extraction probability η(G, P̂,K) as the probability that K(G) wins the proof
of knowledge game against P̂(G) over group G.

We say that the (maps from groups to) algorithms (P,V) are a proof of
knowledge for the local relation R′ with respect to the group generator GrpSetup
if for any λ ∈ N the following condition holds: there is an efficient (randomised,
strict polynomial-time in the size of its input) extractor K such that for any ef-
ficient prover P̂ the quantity PoK(λ) := η(GrpSetup(1λ), P̂,K) is overwhelming
as a function of λ. Here the probability is taken over all “coins” involved in the
experiment, including those of the group generator.

This definition guarantees that we can first fix a group (by picking a value for
λ) and then run an experiment in which the prover and extractor are constrained
to this group while still obtaining a valid asymptotic definition in which we can
ask for a quantity to be negligible (namely the probability that the extractor
loses).

The One-More Discrete Logarithm Problem. Formally, we consider the
experiment Expomdl

A,G (λ) defined in Figure 10. The notation follows the code-based
game-playing model of Bellare and Rogaway [12]: there are procedures called
initialise and finalise and oracles called chal and dlog. The experiment begins
with the game running the initialisation algorithm and handing its return value
to the adversary. The adversary may then call the two oracles in any order and as
many times as she wishes before she returns an output value which is passed to
the finalisation algorithm — in our case a set of candidate discrete logarithms for
the challenges. The output of the finalisation is taken to be the game result. The
adversary’s aim is to make the game result beome 1 and the OMDL assumption
holds in a family of groups if no efficient adversary can make the game return 1
with more than negligible probability.

The experiment involves an adversary A that works against group G defined
by GrpSetup. The adversary has access to two oracles, one that provides fresh
random group elements, and one that returns the discrete logarithm for aribtrary
group elements. For the OMDL experiment, the game output is the boolean value
that indicates whether the number of challenges obtained from the challenge
oracle is strictly greater than the number of discrete logarithm queries made, and
that the adversary has returned the discrete logarithms of all of the challenges
she has received.

For an adversary A we define its advantage against the one more discrete
logarithm problem by Advomdl

A,G (λ) = Pr[Expomdl
A,G (λ) = 1] and we say that the



problem is hard with respect to a group generator GrpSetup if for any efficient
adversary A, its advantage is negligible.

C Fischlin’s Simulation-Sound Adaptive Proof

The results of our paper show that the most popular way to construct proofs of
knowledge in the random oracle model (the Fiat-Shamir transformation) may
not lead to non-interactive proofs of knowledge that offer all the guarantees
that are desired and expected. A natural question is whether one can avoid the
rewinding extractors which led to the problems that we have shown. At Crypto
2005, Fischlin [28] presented an alternative to the Fiat-Shamir transformation
with an online extractor, which fulfils this requirement. It is intuitively clear that
proof systems with non-rewinding extractors yield adaptive proofs. We confirm
this intuition for the construction of [28] which we actually show to also be
simulation sound adaptive proof.
The Protocol. The basic idea of Fischlin’s transformation is to select the
verifier’s challenge in a Σ-protocol such that a number of low-order bits in the
hash of the proof are all zero, or at least “small enough”. This forces the prover
to ask repeated values of potential challenges to the random oracle until he
finds one with a suitable response; from any two such queries, one can extract a
witness using special soundness.

We begin with a Σ-protocol with a challenge space of ` bits size, such that
` = O(log λ) where λ is the security parameter. We can associate the following
algorithms to a Σ-protocol:

Commit takes some inputs and produces a commitment comm and auxiliary
information aux (to generate the response later). This algorithm models
what the honest prover does at the beginning of the protocol.

Respond(ch, aux) produces the response that the honest prover gives after re-
ceiving challenge ch. All other information that he needs is contained in aux.
We assume that Respond is deterministic.

Verify(y, comm, ch, resp) verifies a protocol execution with respect to some ini-
tial input y. This algorithm is run by the verifier at the end of the protocol.
We assume that Verify is deterministic.

The transformation relies on parameters b, r, S, t subject to the following
conditions.

b is the bit-size of the range of a random oracle H : {0, 1}∗ → {0, 1}b. We require
b = O(log λ).

r is the number of repetitions of the basic Σ-protocol. We require r = O(log λ)
and b · r = ω(log λ).

S is the maximum sum of hash values for an accepting proof. We require S =
O(r).

t is the size of challenges. We require t = O(log λ), b ≤ t ≤ ` and 2t−b = ω(log λ).



The prover and verifier execute the following algorithms which we write
(Prove,Verify) instead of (P,V) in this section, to be consistent with the original.
By i ← argminj∈If(j) we mean iterate over all values of I and set i to be the
value of j ∈ I for which f(j) is minimal. If the minimum is attained for several
values, pick the first such one.

procedure Prove (x,w)
100 for i = 1, . . . , r do
101 (comi, auxi)← Commit(x,w)

102 for i = 1, . . . , r do
103 chi ← argminj∈[0,2t−1]H(x, (comk)

r
k=1, i, j,Respond(j, auxi))

104 respi ← Respond(chi, auxi) // We assumed that Respond is
deterministic so we get the same value as above.

105 π ← (comi, chi, respi)
r
i=1

procedure Verify (x, π)
200 for i = 1, . . . , r do // Verify each sigma proof individually.
201 if Verify(x, comi, chi, respi) = 0 then
202 return 0
203 if

∑r
i=1H(x, (comk)

r
k=1, i, chi, respi) ≤ S then return 1 else return 0

For the security proofs of this scheme we refer the reader to the original
paper [28]. This protocol has a straight-line (non-rewinding) extractor: given
only the hash queries made by any prover that produced an accepting proof, with
overwhelming probability there are two queriesH(x, (comk)

r
k=1, i, chi, respi) and

H(x, (comk)
r
k=1, i, ch

′
i, resp

′
i) such that chi 6= ch′i. If the original Σ-protocol

has special soundness and satisfies some property about unique responses, this
suffices to compute a witness w efficiently.
Simulation sound adaptive proofs. In this section we argue that Fischlin’s
construction yields simulation sound adaptive proofs.

Theorem 4. Let (Commit,Respond,Verify) be a Σ-protocol with special sound-
ness and unique responses. Then the Fischlin transformation of this protocol is
a simulation sound adaptive proof.

Proof. We first show that the system in question is an adaptive proof. The
extractor K stores all hash input/output pairs that the main invocation of the
adversary makes. The extractor does not launch any other invocations. When
the extractor K receives an extraction query, it searches for values in the hash list
from which it can extract a witness to the given proofs using special soundness
and the fact that responses are unique.

Fischlin has showed that for every proof, the probability of finding such values
is overwhelming. Therefore, the probability of success remains non-negligible
even after polynomially many repetitions, whether in sequence or in parallel.
More precisely, let q(λ) be a bound on the number of proofs the extractor must



extract from in total. Let ε(λ) be the probability that the extractor fails on a
single proof. We know that ε(λ) is negligible, so from some λ0 onwards we can
assume q(λ) < 1/ε(λ)2. But limλ→∞

(
1− 1/λ2

)λ
= 1, so the success probability

of the extractor converges to 1. From some λ0 onwards we can therefore assume
that the extractor succeeds with constant (greater than zero) and hence non-
negligible probability.9 To argue simulation soundness, we simply note that the
simulator given in the original paper [28] can be used to simulate proofs even in
the presence of an extractor, as it only needs to program the random oracle on
freshly chosen values with high entropy.

D Proof of Theorem 2

We will prove Theorem 2 by code-based game-playing. This requires us to set
up code for all algorithms that are involved.

Security of encryption: an encryption scheme is a triple of algorithms
(KeyGen,Encrypt,Decrypt) and has the IND-CPA or CCA security properties
if for any efficient adversary A, the probability of winning the following
games is negligibly close to 1/2. The adversary may call challenge once and
RO many times; in the IND-CPA game she may not call decrypt whereas
in the CCA game she may do this as often as she likes.
procedure initialise

100 (pk, sk)← KeyGen()
101 return pk
procedure finalise (b)
150 return b = u // False if b has not been defined yet (by challenge).

The challenge oracle may only be called once.
procedure challenge (m0,m1)
200 b← {0, 1}
201 c∗ ← Encrypt(pk,mb)
202 return c∗

The decryption oracle is only available in the CCA game.
procedure Decrypt (c)
300 if c = c∗ then // False if c∗ is not defined yet.
301 return ⊥
302 return Decrypt(sk, c)

Random oracle (ro) queries are handled by a random oracle as defined
in the preliminaries.

Here is an outline of the proof, which proceeds in six “hops”:
9 The proof so far can be extended to any non-interactive proof scheme with a straight-
line extractor that takes the transcript of all queries made by the adversary so far
as input and has an overwhelming probability of extraction.



1. Rewrite the challenger as a collection of individual algorithms, so it becomes
easier to swap them out (and make an indistinguishability argument).

2. Switch the proof on the challenge ciphertext from a real to a simulated one.
This is in preparation for delegating the E-part of the challenge ciphertext to
the IND-CPA challenger, when we will no longer have the witness necessary
to make the required proof.

3. Use the extractor K to answer decryption queries. This means we need to
provide implementations of the rewinding provers for K, with all the in-
stances of this oracle sharing the same random coins. This complexity was
not present in previous proofs of CCA security since they did not rely on
rewinding extractors.

4. Remove the code that passes a witness to the challenge ciphertext between
the reduction that creates said ciphertext and the game, which checks the
witness. This is a technical step necessary to make the last step work, in
which we use the IND-CPA challenger.

5. Coin-splitting. The simulation sound adaptive experiment gives us an ex-
tractor that expects access to multiple copies of the same prover, all running
with the same random string. We wish to inject the IND-CPA challenge in
one copy only (as we only get one challenge query), so we give an argument
why this is allowed.

6. Reduce to IND-CPA, now that we have done all the work necessary to make
this step possible.

To help the reader through the proof, we present each step in a separate
section, following the five-part layout of motivation, new/changed code, justifi-
cation, diagram and conclusion.

Proof. Suppose that A is an adversary against the IND-CCA2 property of the
transformed scheme.

A

CCA2 adversary

CCCA

CCA2 challenger
Our starting point: an adversary which can win the CCA game with some non-
negligible advantage. In all the following diagrams, we will draw the “game”
against which the adversary has this distinguishing advantage with a dashed
border.

Hop 1: Building a Reduction.
We know that A has non-negligible advantage against CCCA. In a first step,

we rewrite the challenger as a collection of different algorithms for the various
tasks (key generation, challenge, decryption) controlled by a reduction R. R will
later connect A and K, reducing the CCA property of the transformed scheme to
the simulation sound adaptive property of the proof and the IND-CPA property
of the basic encryption scheme, hence the name. This step is purely to make the
following steps easier, and does not change the advantage of the adversary A.



Reduction R1 and algorithms I (for initial setup and key generation), C
(for the proof on the challenge) and D (for decryption). Oracles ro, challenge
and Decrypt of A are handled by R which delegates part of the work to the
aforementioned algorithms.
procedure R.initialise

100 pk ← I.setup()
101 return pk
procedure R.finalise (u)
150 return b = u // False if b has not been defined yet (by challenge).

The challenge oracle may only be called once.
procedure challenge (m0,m1)
200 b← {0, 1}
201 r←$REnc
202 c− ← E.Encrypt(pk,mb; r) // E is the IND-CPA encryption scheme.
203 w− ←W(pk, c−,mb, r) // w− is the witness to the statement that

we’re going to make a proof on, where W is the algorithm that exists by
Definition 8 and turns a message/randomness pair into a witness.

204 π− ← C.prove(pk, c−, w−)
205 c∗ ← (c−, π−)
206 return c∗

procedure Decrypt (c)
300 if c = c∗ then // False if c∗ is not defined yet.
301 return ⊥
302 m← D(c)
303 return m
procedure ro (x)
400 return RO(x)

procedure I.setup

600 (pk, sk)← KeyGen()
601 return pk
procedure I.keys

650 return (pk, sk)

procedure C.prove (pk, c, w)
700 return prove(pk, c, w)

Random oracle queries are handled by C using a random oracle.
procedure D (c)
800 (pk, sk)← I.keys()
801 return Decrypt(sk, c)



One can easily verify by expanding all calls made by R1 that all calls from
A are handled exactly the same as by the CCA challenger. In other words, this
hop does not change the adversary’s advantage.

A

CCA2 adversary

R1

reduction I

D

C

G1

The first game-hop: rebuilding the challenger into a collection of algorithms
which we collectively call game G1.

Let Adv(A, G1) be the advantage of the adversary A against G1, i.e. 1/2
plus the probability that A guesses the bit b correctly when interacting with G1.
(The bit b is created by R1 in line 200.) Let Adv(A,CCA) be his advantage
against the CCA challenger. Then for all adversaries A, we have shown

Adv(A, G1) = Adv(A,CCA)

Hop 2: Simulating Challenge Proofs.
For our next game-hop, we replace the proof on the challenge ciphertext with

a simulated one, in preparation for the time when we no longer have a witness
to the challenge ciphertext. Recall that we have a simulator S that responds to
calls prove(X) by simulating a proof π on X, and at the same time manages a
random oracle. The simulator expects these queries without a witness. However,
to justify this step we will need to reduce to the zero-knowledge experiment, in
which we do have to provide witnesses to our simulation queries. We introduce
an adapter E that checks and strips these witnesses. (We will get rid of the
witnesses completely in a later hop.)

Changes to R for the second hop, and the new adapter E. In this and
all future hops, we underline important changes to the code since the last
hop.
procedure R.challenge (m0,m1)
200 b← {0, 1}
201 r←$REnc
202 c− ← E.Encrypt(pk,mb; r)
203 w− ←W(pk, c−,mb, r)
204 π− ← E.prove(pk, c−, w−)

205 c∗ ← (c−, π−)
206 return c∗

procedure E.prove (pk, c, w)



250 if ¬Rpk(c, w) then
251 return ⊥
252 return S.prove(pk, c) // No w!
procedure R.ro (x)
400 return E.ro(x)
procedure E.ro (x)
450 return S.ro(x)

We wish to show that the second game-hop is undetectable from the point of
view of the adversary. To do this, we note that the only changes we have made
are routing ro calls and the one proof creation in the challenge procedure to S
(the latter through E) instead of C.

If we view the ensemble of A, R, I and D as an algorithm with a single
interface that can be connected to either E or C (see the figure below), we have
essentially built a distinguisher for the zero-knowledge experiment in Definition
2. All we must do now is let this distinguisher output 1 if A guessed the bit b
correctly and 0 otherwise. We omit writing out the code for this argument.

A

CCA2 adversary

R2

reduction

I

D

E

witness checker

S

simulator

ZK adversary
G2

Using the simulator for challenge ciphertexts. The new adapter E checks and
strips witnesses from prove queries as required by the ZK game. Everything in
the dashed box is the game G2 against which we show that A still has a non-
negligible advantage; the dotted box can be used as a distinguisher for the zero-
knowledge property to justify this step.

Let Adv(A, G2) be the advantage of adversary A against the above game
(still the probability that he guesses b correctly, plus one half). The hop from G2

to G3 switches a subsystem that creates real proofs for one that creates simulated
proofs. Distinguishing these two subsystems is exactly the zero-knowledge game.
So let ∆ZK be the distinguishing advantage against the zero-knowledge game.
Then we have shown

Adv(A, G1) ≤ Adv(A, G2) +∆ZK

Hop 3: Decryption.
In this hop, we will introduce K and use it to answer decryption queries.

The construction that we have built so far (minus the simulator) will become



the main prover P̂ with which K will interact via the simulation sound adaptive
proof game. The extractor K will be able to invoke further “rewinding” copies of
our prover but we do not care about these (yet).

This hop is not a “game-hop” in the usual sense. We do not change a small
part of the game’s code and argue that this makes only a negligible difference
to A. Rather, we completely replace the whole game and argue that it makes
no difference at all to A. So while we are still giving the common “game-hop”
argument that the new game, i.e. everything but the main invocation of A, is
indistinguishable from the old game, due to the different nature we prefer to call
the current hop an environment hop, as we are placing A in a completely new
environment. Let R3 be R2 with the following changes.

Changes to R for the third hop.
procedure R.challenge (m0,m1)
200 b← {0, 1}
201 r←$REnc
202 c− ← E.Encrypt(pk,mb; r)
203 w− ←W(mb, r)
204 π− ← prove(pk, c−, w−) // On external interface — will go to

adaptive proof game.
205 c∗ ← (c−, π−)
206 return c∗

procedure ro (x)
400 return ro(x) // On external interface.
procedure Decrypt (c)
300 if c = c∗ then // False if c∗ is not defined yet.
301 return ⊥
302 return extract(c) // On external interface.

Let P̂ be the ensemble consisting of A and R3, that takes a public key as
input (on what was formerly the I interface) and has an external interface on
which it can output proof, extraction and RO queries. We consider the simulation
sound adaptive proof game of Definition 7 with K playing against P̂ .

The main invocation of A, which will be accessible to K as part of the main
prover, will be provided with access to a simulator by the game. We wish to
argue that this main invocation of A cannot distinguish the third game from
the second; we do not care what the extractor does with the other invocations
of the prover P̂ and their instances of A. The external interface of A allows for
the following queries.

Public key This is now produced by the new reduction, but according to the
same distribution as before — the algorithm that ends up creating the key
is still KeyGen.



Challenge The only difference in the handling of challenge queries is that the
adaptive game’s simulation oracle is now in charge of making the simu-
lated proof on the challenge ciphertext. But this oracle just delegates to the
simulator, so the proof is still made exactly the same way (with the same
distribution) as before.

Decryption Here, we note that a ciphertext can only decrypt to one plaintext.
So, there is only one possible answer to a decryption query; therefore it does
not matter how this answer is generated by K.

Random Oracle Random oracle queries end up at the simulator S, just like
they did in the last game. So the distribution of these does not change either.

In conclusion, all answers to queries by the main invocation of A are given
with the same distributions as they were in the last game-hop.

A

CCA2 adversary

R3

reduction

G

game

K

extractor

P̂

A R3A R3

P̂

G3

Connecting the challenger K. The entire previous game (minus S) has become
the prover P̂ in the top-left corner; further copies of this prover are available to
K (on the lower row). The game G3 is still “everything except A”, but now that
means everything except the main invocation of A.

The main observation is that the view of adversary A in G3 is the same as
the view of A in G2, provided that K successfully answers all decryption queries.

For a given malicious prover P̂ and extractor K we write Advss-zk
P̂ ,K for the

probability that the adaptive simulation-sound extraction game in Definition 7
does not output “K wins”, that is P̂ manages to produce a proof for which
K cannot extract a witness. We also write Pr[G2(A) ⇒ 1] for the probability
that A successfully guesses the challenge bit in G2, and similarly for G3. By
the assumption that the proof system used in the construction is simulation-
sound adaptive proof of knowledge we may assume the existence of a knowledge
extractor K such that Advss-zk

P̂ ,K is negligible. We write K wins for the event that
K successfully answers all of the queries of malicious prover P in G3 and K wins
for the complementary event. Notice that by our construction we have that
Pr[K loses] = Advss-zk

P̂ ,K and Pr[K wins] = (1−Advss-zk
P̂ ,K ) (as the execution of the

extractor is as in the game for simulation sound adaptive extractability). We
have the following:



Adv(A, G3) =

∣∣∣∣Pr[G3(A)⇒ 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[G3(A)⇒ 1 ∧ K wins] + Pr[G3(A)⇒ 1 ∧ K loses]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[K wins] · Pr[G3(A)⇒ 1 | K wins] + Pr[K loses] · Pr[G3(A)⇒ 1 | K loses]− 1

2

∣∣∣∣
=

∣∣∣∣(1−Advss-zk
P̂ ,K ) · Pr[G3(A)⇒ 1 | K wins] +Advss-zk

P̂ ,K · Pr[G3(A)⇒ 1 | K loses]− 1

2

∣∣∣∣
=

∣∣∣∣(Pr[G2(A)⇒ 1]− 1

2

)
−Advss-zk

P̂ ,K · (Pr[G3(A)⇒ 1 | K wins]− Pr[G3(A)⇒ 1 | K wins])

∣∣∣∣
=
∣∣∣Adv(A, G2)−Advss-zk

P̂ ,K · (Pr[G3(A)⇒ 1 | K wins]− Pr[G3(A)⇒ 1 | K wins])
∣∣∣

If we write ∆ss-aPoK(A) for the negligible function that represents the advan-
tage of P̂ (based on A against the extractor K guaranteed by the security of the
proof system employed in our construction, i.e. an extractor for which ∆ss-aPoK
is neligible) we have that

Adv(A,G3) ≥ Adv(A, G2)− 2 ·∆ss-aPoK(A) (1)

Hop 4: Dropping the Witness.
Currently, when an instance of A makes a challenge query, R3 makes a proof

query to get a simulated proof on it, but must provide a witness which is checked
and then discarded by the adaptive proof game. We change the code of this game
so that proof queries do not require a witness any more. We simply drop the
witness check. This is legitimate if we can show that the check was never going
to fail in the first place. Since the game, apart from checking and stripping
witnesses, just forwards proof queries to the simulator, we are not changing the
values returned from proof queries so A and K will not notice this change.

procedure R.challenge (m0,m1)
200 b← {0, 1}
201 r←$REnc
202 c− ← E.Encrypt(pk,mb; r)
203 π− ← prove(pk, c−)

204 c∗ ← (c−, π−)
205 return c∗

procedure G.prove (x)
900 X ′ ← x
901 send x to S.prove



procedure G.return-proof (π)
950 Π ← Π :: (X ′, x) // Called when S returns π to the game.
951 send π to P̂

We perform the same change on the auxiliary games Ĝ that handle proof
queries for the rewinding provers: we drop the witness from the parameter list
of the proof queries and remove the witness-checking code. In other words, the
prover and extractor now use the same syntax for proof queries: the only param-
eter is the statement.

This game-hop will not affect A as long as no prove query is ever made on a
false statement, i.e. on an x for which no w exists such that R(pk, x, w) holds.
But the only proof query ever made by R is for the challenge ciphertext, and we
can inspect the code of R to see that it is always well-formed. Let Adv(A, G4)
be the advantage of adversary A against the above game. Then we have

Adv(A, G4) = Adv(A, G3)

Hop 5: Coin-Splitting.
The simulation sound adaptive proof game says that K can extract witnesses

to proofs as long as he is given access to many copies of the same prover P̂
using the same random string. In our reduction to the IND-CPA challenger for
E however, we will have access to only one instance of the challenger. We will use
our one instance of the challenger to create the challenge for the main invocation
of A, as this is the one that we are arguing to have a non-negligible advantage
in guessing the challenge bit. This means that all the rewinding copies of A will
not be identical to the main one and we have to justify why this reduction will
work.

The argument, which we call coin-splitting (as opposed to coin-fixing), relies
on two observations. First, if an invocation I of P̂ is doing exactly the same as
another invocation J has done earlier (in this case we call I a prefix of J), then I
can just replay the queries that J has already sent. Secondly, if two invocations
ever get different answers to the same query, in which case we say that they have
been forked at the point where this first happens, then we will show that they
can essentially use independent random coins from then onwards and K will still
work.

Informally, the reasoning is as follows. Suppose P̂ , instead of using its random
coins directly, uses them to seed a PRG and uses the input and output of all
queries to update this PRG; when it needs a random coin, it draws it from the
PRG. Then the moment two invocations are forked, they behave towards K as
if they were using independent random coins, unless K can distinguish the PRG
from a true random generator.

We leave a general formulation of this principle for future work. For the
current paper, we reuse the technique from the metareduction in Appendix E,
but instead of using a truly random function Ψ we can work with a pseudorandom



function. The reason is that here we work only with efficient algorithms and could
make another game hop to a truly random function, unlike in the case of the
OMDL problem where we have a “hidden” superpolynomially powerful support
through the DL oracle and cannot perform such a game hop. In addition, we only
need it to generate the random coins r and bit b used to produce the challenge
ciphertext (essentially, the random coins that the IND-CPA challenger will use
in the next game-hop).

This allows us to simulate all copies of the prover with a single reduction
which can pick fresh random coins for the challenge queries in each invocation of
P̂ that it will simulate, subject to a prefix rule. More formally, call an invocation
I a prefix of another invocation J if the list of all inputs and outputs that I has
received so far is a prefix of the list of inputs and outputs that J has received.
If two invocations have received identical inputs and outputs, they are both
prefixes of each other. Call an invocation I a strict prefix of J if I is a prefix of
J but J is not a prefix of I. Call a query made by an invocation that is not a
strict prefix of any other a fresh query.

We make the following changes.

1. All invocations of R ask a random oracle query ro(m0,m1) on the challenge
messages immediately before creating the challenge ciphertext. (We will see
in a minute that this exempts the main invocation from the prefix rule
below.)

2. All invocations except the main one obey the prefix rule: if any such invo-
cation is a prefix of another at the point when it needs to draw a bit b and
randomness r for encrypting the challenge message, it draws the same b and
r as the invocations of which it is a prefix.

3. If any invocation of R is not a prefix of any other at the point when it must
create a challenge ciphertext, it draws fresh random b and r independently
of all previous invocations.

We assume that id is the identifier of the current invocation, and that
there is a well-defined way to check for “being a prefix”. Let ⇔$ denote
sampling fresh randomness independently of all other executions, i.e. from
a source distinct from the common random string.
procedure R.challenge (m0,m1)
200 z ← S.ro(m0,m1)
201 if id =“main” then // If we are the main invocation.
202 b⇔$ {0, 1}
203 r⇔$REnc
204 c− ← E.Encrypt(pk,mb; r)
205 challenge[id]← c− // Save our choice. id is our identifier.
206 else if ∃I : we are a prefix of I then
207 c− ← challenge[I] // Replay challenge.
208 else



209 b⇔$ {0, 1}
210 r⇔$REnc
211 c− ← E.Encrypt(pk,mb; r)
212 challenge[id]← c−

213 π− ← prove(pk, c−) // This is not replayed, as it becomes a call to
K.

214 c∗ ← (c−, π−)
215 return c∗

We need to prove two points: why the main invocation of A cannot detect this
game-hop and why K still works despite having to interact with a construction
outside the scope of the simulation sound adaptive proof game. However, we do
not have to argue that K cannot detect this game-hop: as long as K “believes”
that he is interacting with some valid multi-prover P̂ , we do not mind if K has
a different view to the last game as K must work for all adaptive provers.

We have not changed the reduction’s interaction with the main invocation of
A at all (we can assume that R discards the result of the extra RO query), so we
are fine here. For the second argument, assume for a moment that R internally
had a PRF F with a seed drawn from his random coins, and that R created
the random values b and r by applying the PRF to the transcript of all previous
inputs and outputs to S and K so far. Consider the second point in time when
an invocation in this game makes a challenge query and label this invocation
J ; call the invocation that previously made its challenge query I. An analogous
argument applies to all further challenge queries after the second one. Three
cases can occur:

– J is not the main invocation, and is a prefix of I at this point in time.
In this case, by the prefix rule, J chooses the same challenge ciphertext as
I. This is what would happen too if K were interacting with multiple copies
of the same multi-prover P̂ .

– J is not the main invocation, and is not a prefix of I when it makes its
challenge query.
In this case, there must have been some point earlier in time when J “forked”
from I because it got a different response to I on one of its queries. (Other-
wise, since I has already made its challenge query, J would be a prefix of I.)
In this case, in the thought experiment with the PRF, the result would be
that J draws b and r that are indistinguishable to K from fresh random val-
ues created independently from the values used by I, despite being a “clone”
of I with the same random coins.

– J is the main invocation.
In this case we claim that with overwhelming probability, J cannot be a
prefix of any other invocation due to the extra random oracle query inserted
just before making the challenge ciphertext. Suppose that J got a value z
from the oracle in response to this query. z came from the simulator, so K



has no control over it. In fact, if K could distinguish z from a fresh random
value, then the entire construction minus S would be able to distinguish S
from a random oracle and honest prover, breaking the ZK game.
Therefore, when K answered the same query for I, he must have chosen
a response z′ where z = z′ holds only with negligible probability. So with
overwhelming probability, J is not a prefix of I and is free to choose a fresh
challenge ciphertext by the argument above.

A RΓ5

Game 5

K

extractor

We assume the reader is familiar by now with the idea of G5 being everything
except the main invocation of A. We narrow our view a bit and let Γ5 be ev-
erything that is connected to the simulation sound adaptive proof game. Γ5

interacts with K, but unlike in the game definition all prover copies are handled
by the same algorithm Γ5 (let us assume that some convention for addressing
is given) that uses some joint state and randomness between the instances of P̂
that it is simulating.

Let Adv(A, G5) be the advantage of the main invocation of the adversary in
guessing the random bit of the main invocation of R, in the game consisting of
“everything except the main invocation of the adversary” as usual. Let ∆′ZK(A)
be the distinguishing advantage of this whole construction minus the game’s
simulator against the ZK game. This is at most the distinguishing advantage
∆ZK of any efficient algorithm against the ZK game. Then we have

Adv(A, G5) ≥ Adv(A, G4)−∆ZK

Hop 6: Reduction to IND-CPA.
We can finally construct an adversary against the IND-CPA challenger of E.

First, we obtain a public key from this challenger and use it to start our latest
game, which differs from the previous one in that the reduction R (which is
now finally reducing something) for the main invocation gets the E-part of the
challenge ciphertext from the IND-CPA challenger. If the main invocation of the
adversary outputs a bit u, we stop our construction and return this bit to the
challenger.

We have already established that the main invocation cannot be a prefix of
another at the point when it asks a challenge query; if another invocation is a
prefix of the main one when asking its challenge query we can simply replay the
same challenge ciphertext without involving the IND-CPA challenger again. The
challenge ciphertexts for all other invocations are still created without involving
the new challenger.

procedure R.challenge (m0,m1)



200 z ← S.RO(m0,m1)
201 if id =“main” then // If we are the main invocation.
202 c− ← CIND-CPA.challenge(m0,m1)

203 challenge[id]← c−

204 else if ∃I : we are a prefix of I then
205 c− ← challenge[I]
206 else
207 b⇔$ {0, 1}
208 r⇔$REnc
209 c− ← E.Encrypt(pk,mb; r)
210 challenge[id]← c−

211 π− ← prove(pk, c−)
212 c∗ ← (c−, π−)
213 return c∗

Algorithm bit is triggered when the main invocation of A outputs his
final bit.
procedure bit (u)
950 return u // Triggers CIND-CPA.finalise (u) which ends the execution.

As usual, we need to argue that the main invocation of A cannot detect a
difference between this game and the last. This is easy however: we know the
code of the IND-CPA challenger (at the beginning of this section) and that it
creates the challenge ciphertext in exactly the same way as R used to.

CIND-CPA

challenger

Γ6(A,R6)

Game 6

K

extractor

IND-CPA adversary

The reduction to IND-CPA of E. We have shown that the advantage of the
main invocation of A (inside Γ6) is still non-negligible, and how it relates to the
advantage that A had against the original CCA challenger.

With the usual notation and with AdvCPA(A) the advantage of this whole
construction against the IND-CPA challenger, we have

AdvCPA(A) = Adv(A, G5)

and conclude

AdvCPA(A) ≥ AdvCCA(A)− (∆ZK(A) +∆′ZK(A) + 2 ·∆ss-aPoK(A)))

which yields the security of the encrypt-then-prove construction.



Summary. We have shown that if E is IND-CPA secure and the proof scheme P
is a zero-knowledge simulation sound adaptive proof then the encrypt-then-prove
transformation has CCA security.

The technical tools that we needed in the proof were the zero-knowledge
property of P to turn an E-challenge into an encrypt-then-prove one, the sim-
ulation sound adaptive property to get the extractor K to answer decryption
queries for us (with the simulation sound part allowing us to use the aforemen-
tioned simulated proof) and the coin-splitting paradigm to allow us to inject a
single challenge query into what looks like multiple copies of the same algorithm
running with the same random coins.

The main difficulties, and the reason that we cannot at the moment run the
entire proof using code-based game-playing, is that we do not know either the
code of K nor the order in which it will launch and respond to queries of different
invocations of our reduction, neither is the number of such invocations a priori
bounded. We see it as an open problem for future research to come up with
an analogue of the code-based game-playing framework [12] with syntax and
semantics for “token-based concurrent” execution of algorithms and a method
to construct proofs such as ours in such a framework, where the main game-
hops are not so much changing code within as moving code between different
algorithms.

E Proof of Theorem 3

This section is devoted to a proof that Fiat-Shamir-Schnorr is not an adaptively
secure proof scheme in the ROM under the one-more discrete logarithm (OMDL)
assumption. The general idea of the proof can be carried over to any Fiat-
Shamir transformed Sigma protocol; the security assumption becomes a one-
more version of the one-wayness assumption on the underlying homomorphism.
Overview.

We begin by defining a particiular adversary P̂ which makes a chain of n
proofs following the ideas of Shoup and Gennaro [50]. Our adversary uses a
random function Ψ but this is only for illustration purposes (one could also
replace Ψ with a pseudorandom function).

Next, we construct a reduction R which simulates multiple copies of the
prover P̂ . We claim that no extractor K in the adaptive proof game can distin-
guish whether it is interacting with R or multiple copies of P̂ . The reduction
R does not require a random function. R reduces to the one-more discrete log-
arithm problem and the main challenge in this step is ensuring that R can
simulate a potentially unbounded number of copies of P̂ using only one OMDL
challenger.

In the adaptive proof game between K and R (the latter playing all copies
of the adversary at once), we define an event NZP. If this event occurs, R can
solve the one-more discrete logarithm instance that is is interacting with.

For any execution of the game that K wins against R without event NZP
occuring, we show via a combinatorial argument that K must have interacted



with at least 2n copies of the adversary (simulated by R). Since an efficient
extractor (in the sense of the adaptive proof definition) must win the game with
overwhelming probability but cannot take exponential time, we conclude that
such an extractor always triggers event NZPand therefore we have an efficient
OMDL adversary which always succeeds.

Construction.

In Figure 11 we give the prover P̂ and a “hypothetical” OMDL reduction An.
We cannot use this reduction directly as the extractor has the ability to rewind
its adversary, but a reduction cannot rewind the challenger. The reduction An
is intended only as an illustration of how our reduction R will work later.

The prover P̂ runs two loops. First, it builds up a chain of n Schnorr statemen-
t/proof pairs by picking statements, commitments and challenges (Xi, Ai, ci).
Whenever a random value is required, P̂ uses its random function on the entire
“history” of random oracle queries so far. This has the effect that if an extractor
runs two copies of P̂ and “forks” them at any point by giving them different
answers to a random oracle query, they will behave from then on as if they had
independent sources of randomness.

In the second loop, P̂ completes the proofs by computing the responses si and
asks extraction queries in reverse order (note that the loop counter j runs from
n down to 1). Whenever the extractor returns a witness wi, P̂ checks this and
halts if it is incorrect. While the main prover does not need to check witnesses
(the adaptive proof game does this already), if the extractor tries to give a bad
witness to a rewinding copy of the prover then this copy halts and refuses to
divulge any further responses si which the extractor could use to apply special
soundness.

The algorithm An shows the idea behind our reduction R. The Schnorr
proof statements and commitments become OMDL challenges and we use one
dlog query to compute the response. We can already see that if the extractor
correctly answers any extract query of the main copy of the adversary without
launching any other copies of the adversary then we must win the OMDL game
since we used two challenges but only one discrete logarithm query for the proof
in question and the extractor’s reply is the second discrete logarithm. We can
open all other proofs with one extra dlog query in which case we have obtained
2n challenges and solved them all with only 2n−1 dlog queries, which means that
we win the OMDL game. The reduction R in the next step keeps track of OMDL
queries across all copies of the adversary so that we can make a similar argument
to win OMDL whenever there are fewer than 2n copies of the adversary in play.

Reduction.

The key idea in our reduction R is to track the history H of all challenges
(random oracle responses) in each copy of the adversary. We give the code of the
reduction in Figure 12. The calls to ro and extract pass control to the extractor



which may choose to activate a different copy of the adversary before returning
a value10.

The reduction shares state between the copies of the adversary that it sim-
ulates through the OMDL challenger and two global maps L and Φ, which are
shared between all copies of the adversary simulated by R. In the first loop, the
adversary makes a chain of n Schnorr statement/commitment pairs. The map
L tracks the pair that the adversary makes when its history is H and we write
L[H] for the value stored at key H, if any. This allows the reduction to simulate
several copies of the adversary consistently: whenever a copy with history H is
supposed to make a statement/commitment pair, it looks first in the list H if
another copy has already made the required pair and re-uses the same pair if
this is the case.

If a copy of the adversary needs to make a fresh statement/commitment
pair because it is the first copy to reach history H, it calls the newchallenge
subroutine. This draws two OMDL challenges, records them in L and makes an
entry in Φ which we will describe in a moment.

In each pass through the second loop, each adversary copy completes a proof,
asks and verifies an extraction query. Since the aim of the OMDL game is to open
all challenges with fewer dlog calls than challenge calls, consider a potential Φ
defined as the number of challenge calls minus the number of discrete logarithm
calls made so far at any point in the execution of the reduction R. We will see
that this potential can never become negative. If we ever manage to collect all
discrete logarithms while the potential is strictly positive, we can win the OMDL
game.

The potential Φ can be expressed as the sum of the local potentials φ over all
pairs (X,A) of statements and commitments made by the reduction. The map
Φ tracks this potential and some extra bookkeeping information. Whenever the
newchallenge procedure draws two new OMDL challenges, it adds a new entry
for them in Φ. Each such entry is a 5-tuple (φ, c, s, x, a) where the first element
φ is the local potential of the pair and the last four elements can take the special
value ? (undefined). When a pair is first created, two OMDL challenges have
been used to create it and no discrete logarithms for this pair are known yet so
the local potential is set to φ = 2 and the other entries are undefined.

The first time we make a proof on a pair (X,A), we use one dlog query to
get the required response s and drop the local potential to φ = 1. We also record
the challenge c and response c used in the map Φ.

If we need to make a proof on a pair (X,A) at local potential φ = 1, there
must have been a previous proof on this pair (or the potential would still be at 2).
We have two cases: if we have been given the same challenge as in the previous
proof, we just replay the same response. This is why we record challenge/response
pairs in the map Φ. If we are given a fresh challenge, this means that the extractor
has “forked” two copies of the adversary on this proof and is about to obtain the

10 For those with knowledge of software engineering terminology: the copies of the
adversary simulated by R are coroutines with shared state and the ro and extract
calls are “yield” calls.



witness by special soundness. In this case, we drop the potential to 0 with a dlog
query to get x, the actual witness on which we are making our Schnorr proof,
and use the previously stored information to find a.

If the extractor forks multiple copies of the adversary on the same proof
more than once (i.e. it gives three different copies three different challenges for
the same statement/commitment pair) then after the second proof, the local
potential will be at 0 but we will have recovered x and a already. Therefore, we
do not need any further dlog queries to complete the third proof but can just
compute the response the usual way.

Lemma 1. For any extractor K connected to the adaptive proof game, our re-
duction R is statistically indistinguishable from multiple copies of the adversary
P̂ .

Proof. The proof is by induction over all queries sent to the extractor K. Before
the first time the extractor receives anything, it obviously cannot distinguish
anything. The reduction receives a random oracle query from the adversary
whenever a rewinding copy of the adversary passes through its first loop. The
elements in these queries are completely characterised by the following descrip-
tion:

– If the history of the current copy (making the random oracle query) is a
prefix of any other copy’s history, then the current copy returns the exact
same query as the previous one. After all, all copies run the same algorithm
on the same initial random string.

– If the current copy’s history is “fresh” — either the current copy has advanced
further than any other copy or the extractor has forked it — then the two
elements in the random oracle query are uniformly random group elements
independent of any previous elements. This is because the elements are drawn
using a random function on a fresh input.

By inspection of the code of the reduction, we see that it has the same loop
structure and meets the same invariants. The list L ensures the first condition
that copies with the same history return the same elements and fresh copies
trigger challenge calls which return fresh, uniform group elements by definition
of the OMDL problem. Therefore, the pattern of random oracle queries is sta-
tistically indistinguishable between the reduction and the adversary copies. The
argument for the main copy is identical although the extractor only gets to see
the oracle queries in response to list queries to the adaptive game rather than
immediately.

For extraction queries the induction argument is even simpler: statement/-
commitment pairs of each copy are exactly the ones asked earlier in the random
oracle queries (in reverse order) and the responses si are completely determined
by the statement, commitment and challenge (which came from the extractor).

The event NZP.



Let event NZPin an execution of the reduction R be the event that R receives
a correct response to an extract query while the local potential of the associated
statement/commitment pair is φ = 1 (it can never be 2 as the reduction had to
drop it to 1 just to get the response s to ask the extract query in the first place).

Lemma 2. In any execution, the moment event NZPoccurs, the reduction R
can immediately win the OMDL game that it is playing.

The only way that the extractor can ever answer an extraction query without
triggering event NZPis if it has interacted with a different copy of the adversary,
giving it a different challenge for the same pair. This triggers the secondproof
algorithm which drops the local potential to 0. This is exactly extraction by
forking and special soundness. In other words, event NZPis the event that the
extractor finds a witness by some other means than special soundness.

Proof. When the reduction receives the correct w for a pair (X,A) at potential 1,
the entry Φ[(X,A)] is of the form (1, c, s, ?, ?) such that (X,A, c, s) is a correct
Schnorr transcript. Since w is the discrete logarithm of X, the reduction can
compute a← s− c ·x and has both discrete logarithms of a pair of challenges at
potential 1. The reduction next opens all other challenge pairs: pairs at potential
0 are already opened; for pairs (X ′, A′) at potential 1 the reduction asks x′ ←
dlog(X ′) and proceeds as before to get a′; for pairs (X ′′, A′′) at potential 2 it just
asks dlog(X ′′) and dlog(A′′). The result is that the reduction has made exactly
one fewer dlog query than challenge query and has all discrete logs, which wins
the OMDL game.

Note that the reduction can check the correctness of a candidate w from
the extractor itself. If the extractor passes the reduction’s “main adversary” an
incorrect witness, the reduction loses the adaptive proof game. If a rewinding
adversary simulated by the reduction gets an incorrect witness, event NZPis not
triggered but this copy halts and so is of no further use to the extractor.

There is one other case that lets the reduction win OMDL immediately: if
two challenges returned from the OMDL challenger ever collide. We could simply
ignore this event as it happens with negligible probability but even then, since
one discrete logarithm call in this case gives the answer to two challenges, the
reduction can open all further challenges at a cost of one discrete logarithm call
each and win the OMDL game.
Combinatorial argument.

Lemma 3. Suppose that the extractor K wins an execution of the adaptive proof
game against the reduction R without R winning its OMDL game (whether by
event NZPor a collision in the challenger). Then the extractor must have inter-
acted with at least 2n copies of the adversary (simulated by R).

Proof. Consider an arbitrary execution of K withR in which K wins the adaptive
proof game. We identify each instance of the adversary that R simulates through
the sequence of answers it received to its random oracle calls. For example, the



main adversary is identified through I0(c0, c1, . . . , cn): since K was successful it
returned answers to all of the extraction queries (and in particular to all of the
random oracle queries). Different random oracle answers imply that K talks to
different copies of the adversary. At the same time, we ignore duplicates: if K
had induced identical executions in two different copies then we count them as
one.

Suppose that event NZP does not occur. Then we can construct the following
complete binary tree: the nodes of the tree are of the form (I, k) where I is an
identifier (for a copy of the adversary) and 1 ≤ k ≤ n. The nodes of the tree
satisfy the invariant that if (I, k) is present in the tree, then copy I must have
run up to the point where it made its k-th extraction query and received a valid
answer. We set the root of the tree to be (I0, n): the main adversary completed
so K must have answered all of the n extraction query of I0.

For each node (I, k) that occurs in the tree and for which k > 1 we recursively
add two children: the first child of (I, k) is (I, k− 1). If an invocation I asked k
extraction queries then it certainly also asked k − 1 queries and got answers to
all previous ones, so the first child meets the required invariant. For the second
child of (I, k), consider the pair of OMDL challenges (X,A) that I made its
k-th extraction query about. Since event NZP has not occurred, there must have
been some invocation I ′ in which a second extraction query was made on the
same (X,A) (as otherwise the potential of (X,A) would be one).

With overwhelming probability the other execution I ′ must have been about
the same n − k first hash queries (and answers) as I, or else the value (X,A)
would not occur in the random oracle call made by I ′. Furthermore, I ′ can only
reduce the potential for (X,A) if it has run up to the k-th extraction query, which
implies that it received valid answers for the first k − 1 queries. The invariant
is satisfied, so we can add (I ′, k − 1) as the second child of (I, k) to our binary
tree.

To summarize, if a node N ′ = (I ′, k′) is a child of a node N = (I, k) then
k′ = k−1 and I ′ is an execution that received identical answers to the first n−k
hash queries as I. Furthermore, the two children of N = (I, k) correspond to
adversaries that differ in the responses to their n−k+1-st hash query. Therefore,
for any node N = (I, k) at level k > 1, all identities appearing in the subtree
rooted at the first child of N shared the first n− k + 1 hash answers with I; all
identities appearing in the subtree rooted at the second child of N shared the
first n − k hash answers with I but got a different answer to the n − k + 1-st
hash query.

The leaves of the binary tree will thus be of the form (Ii, 1), where each
different Ii corresponds to a different adversary that R simulates. The tree
has 2n leaves and it only remains to show that the identities in the leaves are
pairwise distinct. Suppose that two of these identities I and I ′ in different leaves
are identical. There is a unique path in the binary tree that connects these two
leaves and a unique node N = (I ′′, k′′) on this path with a highest index k′′

among all nodes on this path. Without loss of generality, the path from N to
(I, 1) passes through the first child of N , and that to (I ′, 1) through the second



child of N . But this is a contradiction: all identities in the subtree rooted at
the first child of N differ from those in the second at least in the response to
the n − k′′ + 1-st hash query, therefore they are distinct. We conclude that an
extractor K which does not trigger event NZP must access 2n distinct copies
of the adversary. In other words, for any efficient K the probability of winning
the adaptive proof game against our adversary without triggering event NZP is
negligible.

Proof.
Suppose that Fiat-Shamir-Schnorr is an adaptive proof with respect to a

group generator GrpSetup and the discrete logarithm relation. Then there is an
efficient extractor K that can win the adaptive proof game with overwhelming
probability against P̂ for n = λ in the groups G(λ) created by GrpSetup . Our
reduction R and (many copies of) P̂ are statistically indistinguishable in any
group so with overwhelming probability, K still wins the adaptive proof game
against R (w.r.t. GrpSetup ).

Since K is efficient, from some λ0 onwards K makes strictly fewer than 2λ

queries; in particular it launches fewer than 2λ copies of the adversary. Since K
triggers event NZPin R whenever it wins the adaptive proof game with fewer
than 2λ copies of the adversary, we conclude that R (interacting with K and
the adaptive proof game) wins the OMDL game with overwhelming probability
w.r.t GrpSetup .

Actually, since the probability that R solves OMDL is negligibly close to the
probability of K winning the adaptive proof game (for λ > λ0), our Theorem
even holds for extractors with only non-negligible success probability and yields
an OMDL adversary with a comparable success probability. This concludes the
proof of Theorem 3.



initialise:
H ← [ ] ; Π ← [ ]

start P̂

P̂ issues ro(x):
C ← “prover”; I ← x

send x to S.ro

K issues ro(x):
C ← “extractor”
send x to S.ro

S.ro returns a value y:
if C = “prover” then

H ← H :: (I, y)

send y to P̂
else

send y to K

K calls list:

return (H,Π)

P̂ outputs (x, π):

if ¬VS.ro(x, π) or (x, π) ∈ Π

then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if R(X,w) then

halt with output “K wins”
else

halt with output “P̂ wins”

P̂ issues prove(x,w):

if ¬R(x,w) then
halt with output “K wins”

X ′ ← x

send x to S.prove

S.prove returns π:
Π ← Π :: (X ′, π)

send π to P̂

Fig. 4: The game G defining SSE in the random oracle model. It has three interfaces for
the main prover P̂, the extractor K and the simulator S. The list H tracks the prover’s
random oracle queries. The state C (for caller) tracks who made the last random oracle
query so that the result can be returned to the initiator. I (input) tracks the prover’s
oracle inputs to update H correctly. X and X ′ track the prover’s outputs and proof
requests for verification in a later query.



K calls P̂ for the first time:

start P̂

K sends a value z:

send z to P̂

P̂ calls ro(x):

send (“ro”, x) to K

P̂ outputs (x, π):

send (“extract”, x, π) to K

P̂ calls prove(x,w):

send (“prove”, x) to K

Fig. 5: The auxiliary game Ĝ for SSE. It acts mostly as a channel between K and
a rewound prover P̂ except that it strips witnesses from proof queries. We use the
convention that Ĝ indicates to K whether a value is for a random oracle, extraction or
proof query by prefixing a string.

P̂ G

extract
and ro

K
list

P̂

extract
and ro

Fig. 6: The adaptive proof game and the queries that the various algorithms can ex-
change.



initialise(n):

H ← [ ]

K ← 0

start P̂

P̂ issues ro(x):

y ← RO(x)

H ← H :: (x, y)

return y to P̂

K issues ro(x):

y ← RO(x)

return y to K

K issues list :

return H to K

P̂ halts: halt with output “K wins”

P̂ issues extract(x, π):

if ¬VRO(x, π) then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if ¬R(X,w) then

halt with output “P̂ wins”
K ← K + 1

if K = n then
halt with output “K wins”

else
send w to P̂

Fig. 7: The game G for adaptive proofs with parameter n.



initialise(n):

H ← [ ] ; Π ← [ ]

K ← 0

start P̂

P̂ issues ro(x):
C ← “prover”; I ← x

send x to S.ro

K issues ro(x):
C ← “extractor”
send x to S.ro

S.ro returns a value y:
if C = “prover” then

H ← H :: (I, y)

send y to P̂
else

send y to K

K issues list:

return (H,Π)

P̂ halts:

halt with output “K wins”

P̂ issues extract(x, π):

if ¬VS.ro(x, π) or (x, π) ∈ Π

then
halt with output “K wins”

X ← x

send (x, π) to K

K outputs w:
if ¬R(X,w) then

halt with output “P̂ wins”
K ← K + 1

if K = n then
halt with output “K wins”

else
send w to P̂

P̂ issues prove(x,w):

if ¬R(x,w) then
halt with output “K wins”

X ′ ← x

send x to S.prove

S.prove returns π:
Π ← Π :: (X ′, π)

send π to P̂

Fig. 8: Simulation sound n-proofs in the random oracle model.



KeyGen():

(pk, sk) ←
E.KeyGen()

return (pk, sk)

Encrypt(pk,m):
r←$RS

c ←
E.Encrypt(pk,m; r)

w ←W(pk, c,m, r)

π ← P.P((pk, c), w)
return (c, π)

Decrypt(sk, c):

parse c as (e, π)
if P.V((pk, e), π) = 0

then
return ⊥

m ←
E.Decrypt(sk, e)

return m

Fig. 9: The encrypt-then-prove transformation of compatible E and P. RS is the space
of random strings used by the original encryption algorithm.

procedure initialise (λ):

G← GrpSetup(λ);
i, j ← 0;C ← ∅;
return G

procedure finalise ({xi}i∈[n]):
If n > j and gxi ∈ C for all i

then return 1

else return 0

oracle challenge ():
i++;Xi←$ G;
C ← C ∪ {Xi};
return Xi

oracle dlog (X):
j ++;
return dlogg(X)

Fig. 10: Experiment for defining the one-more discrete logarithm problem. We demand
that xi 6= xj mod |G| for all i 6= j.



procedure P̂Ψn (G):
c0 ← 0

for i← 1, . . . , n do
xi←$ Ψ(1, c0, c1, . . . , ci−1)

ai←$ Ψ(2, c0, c1, . . . , ci−1)

Xi ← gxi ;Ai ← gai

ci ← ro(Xi, Ai)

for i← n, . . . , 1 do
si ← ai + cixi
wi ← extract(Xi, (Ai, si))

halt if gwi 6= Xi //check an-
swer wi

halt //give up, extractor wins

procedure AchallengeΨ ,dlog
n (G):

c0 ← 0

for i← 1, . . . , n do
Xi ←

challengeΨ (1, c0, . . . , ci−1)

Ai ←
challengeΨ (2, c0, . . . , ci−1)

ci ← ro(Xi, Ai)

for i← n, . . . , 1 do
si ← dlog(Ai ·Xci

i )

wi ← extract(Xi, (Ai, si))

halt if gwi 6= Xi //check answer
wi

halt //give up, extractor wins

Fig. 11: Adversary P̂ is against the adaptive property of the Fiat-Shamir-Schnorr. Ad-
versary An simulates P̂ using the oracles from the one more discrete logarithm exper-
iment.



procedure adversary(id):

H ← [ ]

for i← 1, . . . , n do
if (Xi, Ai)← L[H] then

ci ← ro(Xi, Ai)

H ← H :: ci
else

(Xi, Ai) ←
newchallenge(H)

ci ← ro(Xi, Ai)

H ← H :: ci
for i← n, . . . , 1 do

(φ, c, s, x, a)← Φ[(Xi, Ai)]

if φ = 2 then
si ←

firstproof(Xi, Ai, ci)

elseif φ = 1 then
si ←

secondproof(Xi, Ai, ci)

else
si ← a+ c · x

wi ← extract(Xi, (Ai, si))

if gwi 6= Xi then halt

procedure newchallenge(H):

X ← challenge()

A← challenge()

L[H]← (X,A)

Φ[(X,A)]← (2, ?, ?, ?, ?)

return (X,A)

procedure firstproof(X,A, c):

s← dlog(A ·Xc)

Φ[(X,A)]← (1, c, s, ?, ?)

return s

procedure secondproof(X,A, c):

(φ, c′, s′, x′, a′)← Φ[(X,A)]

if c = c′ then
return s′

else
x← dlog(X)

a← s′ − c′ · x
s← s′ + (c− c′) · x
Φ[(X,A)]← (0, c, s, x, a)

return a+ c · x

Fig. 12: The reduction R simulating a copy of P̂ . The reduction R itself consists of
multiple copies of this algorithm each with a unique identifier id. The variables C,L, Φ
are shared between all copies.
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