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Abstract. A persistent problem with program execution, despite nu-
merous mitigation attempts, is its inherent vulnerability to the injec-
tion of malicious code. Equally unsolved is the susceptibility of firmware
to reverse engineering, which undermines the manufacturer’s code con-
fidentiality. We propose an approach that solves both kinds of security
problems employing instruction-level code encryption combined with the
use of a physical unclonable function (PUF). Our novel Secure Execution
PUF-based Processor (SEPP) architecture is designed to minimize the
attack surface, as well as performance impact, and requires no significant
changes to the development process. This is possible based on a tight
integration of a PUF directly into the processor’s instruction pipeline.
Furthermore, cloud scenarios and distributed embedded systems alike
inherently depend on remote execution; our approach supports this, as
the secure execution environment needs not to be locally available at the
developers site. We implemented an FPGA-based prototype based on
the OpenRISC Reference Platform. To assess our results, we performed
a security analysis of the processor and evaluated the performance im-
pact of the encryption. We show that the attack surface is significantly
reduced compared to previous approaches while the performance penalty
is at a reasonable factor of about 1.5.

1 Introduction

Today, many embedded systems are no longer stand-alone but are connected
by field busses, like CAN or Flexray in the automotive domain and Profibus in
production environments. A growing extent of such systems is also connected
by standard Internet technologies; and in this context the term cyber physical
system is used. This immediately raises the issue of security and the possibil-
ity of remote attacks. One big challenge is the secure execution of programs.
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Code injection, especially when performed remotely, is one of the most effective
strategies for malicious attackers. Stuxnet, for example, exploited such a remote
code execution vulnerability (CVE-2008-4250) in the Windows RPC handler to
infect remote machines [17]. Since the infamous phrack article “Smashing The
Stack For Fun And Profit” [25] by Aleph One in 1996, which described simple
stack buffer overflows, many additional detection and prevention techniques like
stack canaries or non-executable stacks have been proposed and soon thereafter
been circumvented by more sophisticated attack techniques. Now, more than 15
years later, it is still an open security challenge to effectively prevent injection of
unauthorized code into an execution environment. In the case of cyber physical
systems, insecure execution of programs may result in successful hacker attacks
and potential danger to life and expensive equipment.

Goals of a secure and isolated execution environment are (1) to protect
against code injection to prevent malicious actions inside the environment (code
injection) and (2) to prevent genuine code from getting extracted out of its exe-
cution environment to prevent reverse engineering (code confidentiality). In this
paper we present Secure Execution PUF-based Processor (SEPP), a novel pro-
cessor architecture which allows secure execution of encrypted programs while
encrypted program images can only be generated with the help of the target
processor instance itself. Code that is not properly encrypted will not execute
and thus an attacker will not be able to produce and remotely inject code. At
the same time, the architecture will effectively prevent extraction and reverse
engineering of programs stored in such an embedded system. While we focus
on cyber physical systems in this paper, there are many additional application
areas, e. g. in cloud computing. Based on the presented architecture, future work
is intended to allow the integration of secure remote code deployment for cloud
computing.

The contribution of this paper is an architecture for a secure execution envi-
ronment based on a processor providing runtime decryption of single instructions
directly in the execution pipeline. A central security feature of this instruction
level encryption is a strict hardware binding of code through utilization of a
PUF. It cryptographically restricts executable code to the single instance of our
secure processor it was specifically compiled for. Thereby injection of malicious
code on the one hand and extraction of code for reverse engineering of deployed
applications on the other is prevented, as long as developers keep their cryp-
tographic development keys secret. The feasibility of the architecture is shown
by an implementation and its theoretical and practical evaluation on a Xilinx
Spartan-6 FPGA based on the OpenRISC architecture.

2 Related Work

2.1 Secure Code Execution

To achieve code injection mitigation and code confidentiality, it is necessary to
maintain control over the execution environment, even if it is physically acces-
sible to an adversary. Previous attempts to solve similar problems have been



described using the term isolated execution environment (IEE) [26]. Several re-
cent works on IEEs [36, 9, 26, 29, 34] have shown that it is possible to keep
data confidential and to minimize the side channel attack surface of processors.
However, few papers concerned the confidentiality of application code.

Binding software to a physical execution environment to build a trusted com-
puting base, tries to solve the problem on a fundamental level involving the
underlying hardware as anchor of trust. This has been the objective of several
initiatives [31, 24, 2] for the last decade. However, the adoption of those meth-
ods has been scarce presumably for concerns over poor performance, complex
deployment and unsatisfactory protection against local attacks [26].

Today’s computing systems include many extensions to prevent code injec-
tion attacks. One popular method is the insertion of a so-called canary variable
around dynamic memory to detect an attack [8, 14]. Other approaches use ran-
domization to prevent attackers from making assumptions about their victim.
Address space layout randomization (ASLR) randomizes the location of address
segments like stack, heap or libraries in a process’ address space. It is available
in most modern operating systems, including Windows, Linux and Android.
In contrast instruction set randomization (ISR) randomizes machine instruc-
tions [16]. Code injected without knowledge of the current instruction set will
most likely cause a runtime exception [4]. A hardware-supported countermea-
sure is executable space protection. It allows to mark certain memory areas as
non-executable and prevents the processor from executing them. This feature is
known as NX-bit on AMD processors and XD-bit on Intel processors.

The execute-only memory (XOM) architecture [19] considers main memory
to be insecure and assumes on-chip memory like caches to be secure. In XOM,
all data is encrypted when it leaves the cache and decrypted when it is brought
back from main memory. This leads to significant latency issues when accessing
memory [34]. Yang et al. address this problem by using an algorithm similar
to one-time pad (OTP) encryption [34]. Our approach does not require the as-
sumption that main memory or even caches are secure.

The AEGIS secure processor [28, 29] is the first attempt to utilize the
challenge-response behavior of a PUF. Like the XOM processor, AEGIS encrypts
only main memory using a similar OTP encryption scheme. The encryption keys
are derived from the embedded PUF. Applications can switch the processor to
different secure execution modes to match the current security demands. This
is very flexible and improves performance compared to full program encryp-
tion but requires careful consideration by the application’s programmer, which
makes porting existing software to AEGIS a non-trivial task. AEGIS also re-
quires extensive compiler and OS support, as well as modified hardware like a
custom memory controller. Our approach aims for a smaller trusted computing
base (TCB) and better compatibility with existing code.

OASIS is an instruction set extension for secure CPUs which provides an
isolated execution environment for secure execution and remote attestation [26].
All cryptographic keys are bootstrapped from a PUF secret generated by an
SRAM PUF. Data confidentiality and integrity is established by encrypting pro-



gram data with keys bound to the program code. However, unlike our approach,
OASIS does not encrypt the code itself. To protect the actual execution, the
processor uses a Cache-as-RAM mode using on-die cache as general purpose
memory to perform computations.

Ascend [9] is a secure CPU architecture designed to obfuscate input and
output signals on the processor’s pins. The architecture has been extended into
Stream-Ascend [36] to overcome the rather harsh limitations on the processors
interactions with the outside world. Ascend’s main goal is to obfuscate and
minimize side channels due to access timings of off-chip data transfers. The
capabilities of Ascend are orthogonal to our architecture.

All presented approaches are data-centric and attempt to secure commu-
nication to and from the processor by introducing an additional encryption or
obfuscation layer. They essentially locate security at the memory interface. Once
an attacker gains access to caches or pins, instructions are unencrypted and can
be read out or modified. We aim for a deeper embedding where code remains
encrypted in memory and caches and gets decrypted just within the execution
pipeline. Previous architectures come at the price of a relatively large TCB, in-
cluding most of the processor and memory attachment, in some cases even large
portions of software with parts of the operating system. This requires special-
ized compilers, with significant changes compared to standard compilers for the
base line architecture of each respective approach. The programming models of
those concepts also differ significantly from conventional ones. Our design aims
at minimizing such adverse effects of a secure IEE.

2.2 Physical Unclonable Functions

Storing encryption keys in memory inside or outside of the CPU is a source
of potential vulnerabilities, as attackers may succeed in extracting them, e. g.,
by the use of cold-boot attacks. In our design, we utilize the physical diver-
sity of chip hardware to deduce a device-unique key that does not need to be
stored. Physical unclonable functions (PUFs) evaluate manufacturing variations
in integrated circuits to derive unique secrets inside a device to generate cryp-
tographic keys or authenticate a device in a challenge-response protocol [3, 15].
Instead of storing secrets permanently, PUFs reveal their secret only during run-
time. Popular PUF types for key generation are the SRAM PUF [10] and the
Ring-Oscillator (RO) PUF [30, 23]. The secrets derived from PUFs are noisy
and affected by environmental conditions such that they require additional er-
ror correction. Helper data is generated to map the random PUF responses to
codewords of an Error-Correcting Code (ECC), thereby eliminating the vari-
ation in the PUF responses. Implementations of related approaches are based
on the Code-Offset construction [6, 21, 18], the Syndrome construction [22] or
Differential Sequence Coding [13, 12]. In this work, we use a Complementary
Index-Based Syndrome coding (C-IBS) RO implementation [11] which is an ex-
tension of IBS [35]. The implementation contains a small Reed-Muller code with
GMC soft-decision decoding [7] as ECC.



3 Preliminaries

3.1 Encryption ciphers

There are two major types of encryption ciphers: stream ciphers and block ci-
phers. Although intuitively the right choice, stream ciphers have several undesir-
able properties in our use case: They need a warm-up phase of several hundred
cycles and it is not possible to randomly jump from one position in the stream to
another. This renders them unusable for instruction stream encryption because
random access is mandatory.

Block ciphers operate on a block of plaintext with a fixed size and encrypt it
using a symmetric key. Because the input length is limited to a fixed size of bits,
several modes of operation exist to encrypt longer plaintexts. In counter (CTR)
mode, a nonce is combined with a counter value and encrypted as shown in
Fig. 1. The result is used as encryption pad and XORed with the plaintext. The

node | counter block
cipher

key

encryption
pad X ciphertext

plaintext

Fig. 1. Block cipher in CTR mode of operation

XOR operation can be calculated in hardware in less than one clock cycle and
induces no execution delay. For the next block, the nonce stays the same and the
counter is incremented. To decrypt a message, the ciphertext is again XORed
with the encryption pad. Such a block cipher in CTR mode has the same benefits
as regular stream ciphers and is in addition capable of random access as pads
for any block can be calculated directly.

3.2 Adversary Model

There are two distinct addressed adversary models:
For the code confidentiality scenario (e.g., to protect intellectual property

of programs in embedded systems), we assume that the attacker has physical
access to the processor and its peripheral connections, including network com-
ponents as well as low-level memory bus lines. The attacker tries to learn parts
of the application code by reading out memory or registers. Programs are flashed
to embedded micro controllers at production time by the manufacturer using a
secure connection to the device.

The provider is certified to provide the expected processor architecture. For
this certification we assume the hardware manufacturer to be a trusted third
party. The users system is assumed to be secure and a cryptographically secured
channel between user system and remote processor can be established. We do
not consider all details of this connection within this work.



For themalicious code injection scenario, we assume an attacker that may
or may not have physical access to the processor, but has the ability to place
arbitrary data into the processors main memory. We deliberately do not limit the
access to certain portions of memory. Vulnerabilities introduced accidentally by
programming errors like buffer overflows, likewise are conceptually not limited
to certain memory areas and we therefore address the mitigation of malicious
code injection on this general level.

Beyond those two primary scenarios, attacks like denial-of-service (DoS),
e. g. injecting random invalid instructions, and hardware side-channels are not
specifically considered within our approach. Despite this, we like to note that
complementary research exists, attempting to solve issues of hardware side-
channels. Ascend [9], for example, is specifically designed to hamper side-channel
attackers by obfuscating memory access patterns, power consumption and tem-
perature analyses. It does so by restricting instances of memory access to fixed
public points in time, at which a number of memory operations are performed,
even if none are necessary for the actual task of the arithmetic logic unit (ALU).
The ALU on the other hand, fires all possible data paths on all components at
each cycle so that the actual instruction can not be determined by power or
thermal analyses of chip regions. We concur with the authors of XOM, AEGIS,
OASIS, and Ascend in assuming that there exists a variety of methods to pre-
vent or impede hardware tampering, e. g. probing or fault-injection. Therefore we
consider the chip itself a tamper-proof packaged piece of hardware and attacks
of this kind are addressed only implicitly.

4 Secure Execution PUF-based Processor Architecture

In embedded systems, execution typically happens detached from development.
To address our envisioned use cases, we separate the SEPP-architecture into
a development machine and the execution environment in the embedded sys-
tem. The execution environment, where code is securely executed, we call target
system. The development machine we call user system. On the user system,
programs are generated by the user to be deployed later on the target system.

As shown in Fig. 3, generation of a program image at the user system re-
quires the compilation and encryption of the code. The encrypted binary is then
packaged as image to be transferred to the target machine. There, the image is
cryptographically bound to the physical instance of the one processor the binary
will solely be executable on in the future. This binding also prevents malicious
code injection.

For our prototype, we chose OpenRISC as our platform, as it is a popular
open-source RISC architecture. This architecture implies that a single instruc-
tion is of fixed 32-bits-length. This is convenient for the proposed instruction level
encryption where the smallest encryption unit therefore is of the fixed length of
one instruction. We extended the OpenRISC Reference Platform (ORPSoC) by
a PUF module and an instruction decryption module.



The roles of these components of the architecture during program generation
and program execution are explained in the following sections.

4.1 Program Generation

After a user has compiled code into a program binary on the trusted user system,
he needs to encrypt the binary. The choice of a suitable encryption scheme
has to take into account the requirements of the program flow. Program flow
generally must allow for jumps (branches) and loops, so random access within the
instruction stream is mandatory. The program flow typically is divided into basic
blocks. A basic block is a sequence of instructions with exactly one entry point
and one exit point, and no branches in between. Thus, it is possible to encrypt
the program code on a basic block level, although it is the individual instructions
that are decrypted before being executed. Encryption of basic blocks, using a
symmetric cipher in CTR mode, enables random access to support branches. We
use virtual addresses to identify code locations. Virtual addressing is convenient
since it is static no matter where the program actually will reside. This requires
a memory management unit which might not always be available, especially on
low-cost systems where, however, alternative solutions are possible.

For this symmetric encryption, a key ku is chosen by the user. Each basic
block is encrypted using ku with the following CTR mode parameters: The nonce
is set to the virtual address of the beginning of the basic block and the counter is
set to zero. A basic block may consist of multiple CTR mode encryption blocks.
The counter is incremented for each encryption block while the nonce stays the
same until the end of the current basic block is reached (Fig. 3).

With the start of the next basic block, the nonce is again set to the new basic
block’s starting address and the counter is cleared. This scheme is applied until
the whole program is encrypted.

user system
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Fig. 2. SEPP architecture: compile mode



Program Code Virtual Address    Nonce              Counter

0x08000000        0x08000000    0
0x08000004        0x08000000    1
0x08000008        0x08000000    2
0x0800000B        0x08000000    3
...                         ...                     ...

0x08004A00        0x08004A00    0
0x08004A04        0x08004A00    1
0x08004A08        0x08004A00    2
...                         ...                     ...

0x1F005064        0x1F005064    0
0x1F005068        0x1F005064    1
...                         ...                     ...

Basic Block:

one entry and
one exit point

Fig. 3. Program encryption scheme

The program encryption itself is not critical for runtime performance and
requires no hardware support. It may be implemented within the compiler or as
standalone tool, processing the compiled binary in software.

To finally bind a program binary B to a hardware instance, inherent proper-
ties of the PUF are utilized. This part of the process of program generation is
shown in Fig. 3. The encrypted binary encku (B) and ku are thereto transmitted
to the target system. The binary encku (B) may be public, but ku must remain
confidential, thus it has to be transmitted securely. For embedded systems, this
transmission can be conducted before deployment over a dedicated data cable.
The PUF is then used to generate a cryptographic key kp , which is bound to the
encrypted binary and – by the properties of the PUF itself – to the processor
instance. In addition, the security kernel K, i. e. all other necessary target-system
software parts critical for security, is included in the computation. For this an
HMAC is used:

c = HMAC(K, encku (B)) (1)

The challenge c is then used as input to the PUF, with kp as the corresponding
response.

The choice of an HMAC over a simple hash is not due to the security kernel K
being a key to be incorporated, but to prevent length-extension attacks on the
challenge c. LE attacks are only of concern when choosing a specific hash func-
tion, that follows the Merkle-Damgård structure, like MD5, SHA-1, and SHA-2.
That said, HMAC is chosen for its property to be a MAC, i. e. a key-dependent
hash function. Another way of viewing HMAC in this context is as a “symmetric
digital signature scheme”.

To protect the user key ku , required for program-execution, it is encrypted
using kp and can then be stored publicly, together with the encrypted binary, to
form the program image. This public representation of ku we call π = enckp (ku).



This scheme has the advantage that the user does not require access to the
target hardware itself to prepare a binary to be executed on it while retaining
the desired security properties.

Constants such as data parameter or string sections of a binary are not to be
encrypted in SEPP at this point. However, some embedded device vendors may
rely on the confidentiality of input parameters of their algorithms rather than
the secrecy of the algorithms themselves. We did not specifically address this
issue, although we deem it feasible to let the secure program run any decryption
algorithm on any encrypted data, whether residing in the binary itself or as
external data. Necessary key material can be derived from the encrypted program
itself without any hardware support.

4.2 Program Decryption and Execution

To minimize the parts of the processor required to be trusted, the decryption
module is included in the instruction fetch stage of the processor’s pipeline.
Encrypted instructions enter the stage and are decrypted immediately before
proceeding to the instruction decode stage. If the program execution starts, or an
instruction jump is detected, the nonce is set to the current value of the program
counter (PC) and the CTR mode counter is set to zero. This way, the CTR
mode’s encryption parameters are enforced to match the basic block decryption.
The module pre-computes encryption pads by incrementing the counter value.
The end of a basic block is reached when either a jump occurs or the execution
runs into the next basic block. In either case, the processor detects the new
block and restarts the decryption by resetting the counter. Some instructions
take more than one processor cycle to execute. Thus, a first-in, first-out (FIFO)
buffer is added to store the produced encryption pads until they are needed by
the processor.

A simplified schematic view of the decryption module embedded in the in-
struction fetch (IF) stage is shown in Fig. 4. There are four main functional
blocks. The nonce and counter generator prepares the input to the block cipher.
It is also responsible for detecting jumps and for rewinding the counter when the
FIFO is filled. Since an encryption pad block can be larger than one instruction
(here: factor four), an additional multiplexer following the FIFO is necessary. It

nonce &
counter

generation

block cipher
in

CTR modePC

key

mux

+ decrypted
instruction

encrypted
instruction.

IF ID
FIFO

encryption pad
blocknonce | ctr

Fig. 4. Simplified structure of the decryption module



selects the correct part of the encryption pad block depending on the current
PC. This encryption pad is XORed with the incoming encrypted instruction
and the decrypted instruction is forwarded to the instruction decode stage. To
simplify the schematic, all control logic has been omitted. The implementation
also has to take care of resetting the encryption, flushing the FIFO and stalling
the processor whenever necessary.

4.3 The Role of the PUF

The target system’s memory might be attacked physically. Nevertheless, no ex-
pensive secure non-volatile memory is necessary, due to the program image being
public. To remain self-contained, the correct ku must to be recovered for execu-
tion only from the encrypted π inside the program image and kp . Just the same
processor instance can generate the right kp to restore ku = deckp (π).

Memory/Cache

CPU

target system

PUF ID

IF

...

P
IP

E
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E
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ALU

REGku

dec
instruction

K Bπ

IMG

Data

encrypted unencryptedsecurekey:

Fig. 5. SEPP architecture: execute mode

As depicted in Fig. 5, kp has to be derived from the target system’s PUF:
kp = PUF(c) with the challenge c incorporating the security kernel and the pro-
gram itself as described in Eq. 1. Sec. 4.1. Thus, c is unique for every program
and infeasible to forge. Finding another binary that produces the same challenge
is equally difficult as finding a collision in the hash function used for the HMAC.
The HMAC breaks the direct link between user inputs and kp which could other-
wise be exploited. Key ku needs to be present in the target system’s instruction
fetch (IF) logic during execution. This is necessary for the on-the-fly decryption
of the instructions of a specific binary. However, ku is not permanently stored



or installed there. It has to be recovered from the publicly known π each time a
binary is loaded for execution, to prevent any possibility of exposure. The target
system does not store and requires no program specific private values except
during execution.

The RO PUF implementation we utilized for our approach does not provide
challenge-response behavior by itself. Instead, this PUF generates a single fixed
response by comparing the oscillating frequencies of ring oscillator pairs. To
counter the noise of the PUF output, the C-IBS fuzzy extractor (see Sec. 2.2)
takes the PUF output and creates helper data to reliably recreate the fixed
response. The corresponding helper data can be stored in hardware memory
since an attacker gains no advantage from it. We call this reliable, embedded
secret PUF secret, denoted sp .

We now construct a challenge-response wrapper around the device specific sp .
Challenge-response behavior is required for the generation of cryptographic keys
which are not only bound to the device but also to the program binary. To reach
the desired challenge-response behavior, PUF and fuzzy extractor are integrated
as shown in Fig. 6. The PUF module consists of the PUF with the challenge-

Wrapper implementing kp = PUF(c)

ring oscillator
PUF

data
collector

C-IBS fuzzy
extractor

helper data
memory

owner seed so

challenge c response kp

PUF secret sp

Fig. 6. PUF with challenge-response wrapper

response wrapper implemented by an HMAC ( ). It is used as an alternative to
a challenge-response PUF, so kp = PUF(c) = HMAC(sp , c). For kp to remain
confidential, there is no interface to access the outputs of the PUF or the fuzzy
extractor. To prevent an adversary from acquiring information about kp when
knowing ku and π, it is important to use an HMAC.

The PUF challenge-response wrapper circuit is used in this context much like
a keyed hash function. The key is the PUF secret kp , combined with the owner
seed so . The owner seed is an additional measure to restrict knowledge of third
parties and is explained in the following section. The challenge is the encrypted



binary encku (B) respectively a simple hash thereof. The response is kp , which in
turn is used as key for the encryption of π = enckp (ku), respectively decryption
deckp (π) = ku .

To prevent known-plaintext-attacks on any of the inputs (seed, PUF secret,
challenge) and possibly the output of the encryption, π, a simple XOR is not
sufficient. It further is insufficient to simply hash the resulting value, since length
extension attacks might remain possible, due to the nature of the wide-spread
Merkle-Damgård construction for hashes like MD5, SHA-1, or SHA-2. This is
not primarily due to the fact, that a confidential key is needed in the input, but
that an HMAC allows for the combination of multiple values, regardless of their
confidentiality or interpretation as “key”, without opening up to length extension
attacks. Those attacks would endanger the confidentiality of either of the input
values of a simple hash function. Therefore we use an HMAC here as well.

4.4 Preventing Leakage of Manufacturer Data

The PUF’s challenge does not only consist of hashes of the binary and the
security kernel, but also a device owner seed, combined with the PUF-created
secret. This is necessary because part of the helper data has to be chosen by
a party. The consequence is that the hardware manufacturer (HWM) can gain
knowledge of the PUF secret. We tolerate this because we have to trust the
HWM to build a PUF which is not manipulated or biased in any way that
undermines security in the first place. Nevertheless, we want to prevent any party
from being able to decrypt another users’ confidential code. Notwithstanding the
adversary model, the HWM’s knowledge of sp could leak to an attacker who has
access to the encrypted program binary. The attacker can now compute the
corresponding challenge (Eq. 1) and consequentially can compute kp for every
given encrypted program. Finally, the attacker can decrypt ku and consequently
the user’s program.

To prevent this, an owner seed so is added. This seed is static and chosen by
the device owner. Including this seed, none of the three parties involved knows
the full challenge-response wrapper’s input and can foresee its result: π, encku (B)
and K are public; the user knows ku and B; the device owner knows so ; the HWM
may gain knowledge of sp . Note that the PUF response is different on different
devices, so sp is unique to a device. The seed is encrypted with the device’s
public key so it can safely be stored outside the PUF module. Before the PUF
can be evaluated for the first time, the seed is decrypted and saved in the PUF
module. This gives the following equation for kp , resolving the substitution of a
challenge-response PUF:

kp = HMAC(c,HMAC(so , sp)) (2)

The owner seed is set by a write instruction to a dedicated non-volatile
register of the processor. There is no read operation to this register besides
a direct line to the PUF-module. There is no possibility to extract this value
without extremely sophisticated hardware probing which the adversary model
excludes.



5 Prototype Implementation

To demonstrate the feasibility of our architecture, we developed a prototype
capable of creating and executing encrypted standalone program images. The
prototype is based on an OR1200 processor. The OR1200 is an implementation
of the OpenRISC OR1000 architecture, an open-source RISC architecture with a
32 bit wide instruction set and a five stage, single issue pipeline. The full specifi-
cation of our system is shown in Tab. 1. This baseline system was enhanced with
two major modules: the PUF module and the instruction decryption module.
We implemented our design on a Xilinx Spartan-6 LX45 FPGA.

The PUF module encapsulates the RO PUF itself with the C-IBS fuzzy ex-
tractor and a low area AES core in ECB mode for the encryption and decryption
of ku . The CPU interfaces the module over a dedicated class of special purpose
registers. Those include configuration and status registers as well as the input
of the PUF challenge and the write-only owner seed register. It is important to
note that in program execution mode, ku is directly forwarded to the decryption
module over a separate connection and is not visible on any system bus.

The instruction decryption module is integrated in the processor’s instruction
fetch stage and has no dedicated interface other than the input of ku from the
PUF module. As shown in Fig. 4 it evaluates the PC to detect branches and
sets the nonce and counter accordingly. The program flow from one basic block
to the other with no branch is marked by a custom instruction. Another custom
instruction enables and disables the decryption to maintain compatibility with
unencrypted programs. It also allows for mixed applications where non-critical
parts might run faster in unencrypted mode and only specific parts of the code
run in the secure encrypted mode. The AES decryption core should provide a
throughput high enough to allow sequential code to be decrypted and executed
without stalling. In order to minimize the area cost, we used four 13-cycle AES
cores in parallel which are limited to decryption. They provide 16 decryption
pads every 13 cycles which is enough for uninterrupted execution considering
that in the worst case one instruction per cycle enters the pipeline. Thus, stalling
the processor is only necessary until the first encryption pad for a basic block is
computed.

The Universal Bootloader Das U-Boot (or U-Boot)4 is used as software plat-
form. It was modified to implement the functionality of the target system security
4 http://www.denx.de/wiki/U-Boot, accessed on 22/02/2014

OR1200
architecture 32 bit RISC
clock frequency 50 MHz
instruction cache 8 Kbyte, 1-way direct-mapped
data cache 8 Kbyte, 1-way direct-mapped
memory 128 MB DDR2 SDRAM

Table 1. Configuration of the prototype system

http://www.denx.de/wiki/U-Boot


kernel, i. e. the generation and execution of encrypted program images in inter-
action with the PUF module. It provides a simple command line interface to the
user for which we added custom commands. RSA public/private key cryptog-
raphy is used by U-Boot to establish a secure communication channel between
the user system and the target system. The HMAC calculation for the PUF
challenge is also implemented as part of our security kernel.

Program encryption is independent from the hardware prototype and is han-
dled on the user system. In our case this is a common Linux system for which
we developed helper tools that analyze the compiled binary, encrypt the code
and package it together with the RSA encrypted ku in an U-Boot image. The
user transfers such an encrypted program image to the prototype system over
an Ethernet connection. There π is generated and replaces the ku embedded
in the image. This image can now securely be made public as it only contains
encrypted code and the public π. It is tied to this exact hardware instance and
only this processor with its unique PUF is able to execute it.

6 Evaluation

6.1 Security

Through the use of a PUF, there is no unsecured key material that needs to
be stored persistently. Nevertheless, to confirm the proposed security properties,
considerations of the two adversary models (Sec. 3.2) code confidentiality and
injection prevention need to be done.

Code Confidentiality To achieve code confidentiality, encryption of the binary
image is applied. Conclusively the encryption and its necessary key material
determines the security properties. The key necessary to decrypt the binary is
ku . Knowing a specific π and having available the encrypted binary and K to
calculate the HMAC thereof, ku can be recovered using the correct PUF instance.
Only ku and kp need to remain confidential. kp is expected to never leave the
PUF module, whereas ku in contrast originates externally. We therefore argue,
that the confidentiality of a program equals the confidentiality of ku outside of
the processor’s instruction decode module.

The single process where ku is required outside of the processor is for the user
to encrypt the binary after creation. Provided the adversary model and scope of
our approach, the only possible attack vector arises during the necessary transfer
of ku from the user machine to the target machine. Therefore we require a
secure channel between those two endpoints. We assume that this can be ensured
during deployment. The user machine itself must be secured and trusted. Those
requirements are out of scope of our approach, but we are confident that they
can be addressed by known means.

Injection Prevention The second scenario is prevention of code injection,
which is accomplished by executing only correctly encrypted code. The security



thereof is based on the confidentiality of kp . The aforementioned decryption
process of code requires the recovery of ku , which in turn requires kp . Provided
kp can not be extracted from the hardware, it only can be generated by the
correct PUF instance. Blocking the key generation data path in the processor
– most consequently by a hard-wired switch – the generation of a new valid π
for any program can be prevented. Thereby no new validly encrypted code can
be generated. Therefore injection of any valid instruction is as hard as finding a
collision in the output of the block cipher generating ku . In doing so, the attacker
can not manipulate any of the block cipher’s inputs directly except π itself.

Because of the per-basic-block encryption, the architecture is theoretically
still vulnerable to control flow manipulation by attacks like return oriented pro-
gramming (ROP). But as the counter value and nonce are controlled by hardware
and cannot be influenced by the attacker, the most damage an attacker can cause
are jumps to the beginnings of basic blocks. A jump to any other address will set
wrong nonce and counter values and fail to decrypt the code at that location.
This severely limits an attacker’s ability to construct useful ROP gadgets. Due
to the high probability that executing random bytes results in an exception [4],
we argue that an attacker has no realistic way of injecting code. This is true
as long as kp is not extracted directly from the system by usage of very strong
hardware attacks.

In general, SEPP is susceptible to a time-of-check time-of-use (TOCTOU)
attack, which however is not practically exploitable. SEPP does not use any sig-
natures of executable binaries. Instead we rely on the failure to correctly decrypt
ku at the time of use if there had been any tampering with the binary since the
time of check. This likely failure of correct decryption results from the fact that
the binary itself is used as part of the PUF-input providing the decryption key
for π. But it is possible to targetedly change a selected portion of a binary in
memory, after it has been read to generate the decryption key. Typically this
change would remain dormant until the control flow reaches the manipulated
operation. Only then the decryption of the binary at this position will result in
some arbitrary value, most likely not being a valid instruction to SEPP. Even
if it results in a valid instruction, it is likely that a subsequent instruction will
fail since it depends on the outcome of this instruction. However, in general,
the attacker is not able to discern which instruction actually failed during the
manipulated binary’s execution and for what exact reason. So he cannot even
tell whether he successfully manipulated the last instruction executed or any of
the previous ones. So, randomly guessing a value that correctly decrypts into a
valid instruction is as difficult as breaking the encryption scheme. SEPP’s usage
of CTR-mode has a known weakness of this kind we will discuss later on to show
that this is no actually feasible attack. Barrantes et al. [4] established that this
kind of code encryption, used as integrity check of a binary, is a sufficiently large
obstacle for an attacker under most practical circumstances. We especially em-
phasize this as a very good trade-of between security, practicality, overhead, and
design decisions, since adding a signature to the binary would not automatically
mitigate the TOCTOU attack. On the contrary, the attack would prevail and



only increase the complexity of the design without any gain in security. Only
repeated verifications of the assumed signature during each IF-cycle might solve
this, but at the cost of a severe performance penalty, due to the memory ac-
cess and signature verification operation. This remains true for every static code
manipulation even if the PUF itself is involved in the assumed integrity check.
Signature checking during each instruction-fetch-cycle might mitigate this at-
tack completely, but at the cost of a severe performance penalty, due to the
frequent memory access and signature verification operations. For our goal to
protect against dynamic code injection in particular, the failure of decryption
in the instruction fetch phase of the execution in practice is superior to any
additional signature, when taking performance into account. Static code manip-
ulation in dormant memory should be impossible in the first place using SEPP.
This means that currently without dedicated signature to be checked is no eas-
ier for an attacker to replace portions of the encrypted binary code than with a
signature.

There is a remote possibility for an attack due to the usage of the CTR-mode
in the decryption phase. This attack exploits the fact that knowing the clear-text
Bi at a position i in the binary B allows to replace this value by a freely chosen
one, under certain circumstances. Knowing opcodes of the processor, those can
targetedly be replaced by another known opcode in an encrypted binary but only
during a successful TOCTOU-attack as explained above. Assume an attacker has
gained knowledge of some opcodes and at least one exact usage position i of such
an opcode in a certain binary. The attacker wants to exchange the binary value
of this position Bi for an arbitrary number of i’s by a value Ei. Therefore the
attacker chooses values Ii to be injected so that Ii = Bi⊕Ei. At the processors
instruction-fetch-logic, when XORing the decryption pad to the manipulated
portion of the binary during execution, the following is decrypted:

(Bi ⊕ Ei)⊕ Bi ⊕ CTRi(ku) = Ei ⊕ CTRi(ku)

Therefore the processor will execute Ei instead of Bi. Another variation of this
attack does not even require to know an opcode but only a single bit value
of clear-text and the position for this to be injected purposefully. This single
arbitrary bit can be flipped using the process outlined above. This is only helpful
for DoS- or ROP-attacks. We excluded DoS for reasons discussed in the adversary
model section. And since, as we argued earlier in the current section, SEPP only
allows for a severely limited form of ROP-attack, we do not regard this type of
attack, either.

However, to be able to targetedly manipulate a portion of the encrypted
binary, in the first place, it must be decrypted using the correct ku . Since ku is
recovered from π using the encrypted program image itself as part of the PUF-
input, the binary must not be tampered with, before it is loaded for execution.
Ignoring this will lead to the recovery of a wrong ku , thereby invalidating the
whole binary and consequently preventing its execution. Therefore the attack
can only be accomplished, manipulating the encrypted binary in memory after
it has been loaded for execution by the processor. This requires exact timing



in combination with some control over or exact knowledge about the processors
execution state and full control over the memory segment to be tampered with.
Moreover, the knowledge of the position of certain clear-text opcodes inside
the encrypted binary image can only be acquired by additional sophisticated
attacks. The state of processor and memory has to be monitored during the
execution of a binary. Since the clear-text binary is not known at this point to
the attacker, he needs to progressively deduct his knowledge about the control
flow of the binary. Methods to accomplish that may be monitoring well-known
memory access pattern for relevant operations and analysing ALU-activity. The
clear-text opcode to an operation identified to reside at a specific position in
the binary is public information dependent on the architecture only. All those
weaknesses that need to be exploited in combination to make the attack actually
possible, may be countered by individual measures. Those include but are not
limited to Oblivious RAM to obfuscate memory access patterns and payload
data, and operation obfuscation by firing multiple random ALU operations at
once, preventing detection methods for ALU-operations. The application of those
measures to a secure execution environment have been described by Ascend [9,
36]. Those measures may be desirable anyway to protect payload data from being
extracted even if data encryption is put in place. An additional conventional
ISR-layer, obfuscating even the clear-text opcodes, may further hinder attacks.

Even if such an attacker was successful, at least the usage of the PUF prevents
the predictability of the pad resulting from the CTR-mode decryption operation.
This restricts the attackers immediate gain to be able to modify exactly this one
position of a binary and only on-the-fly at execution time in a TOCTOU manner.
He cannot deduct the key material used to generate the pad, independent from
the number of pad-bits he knows and Therefore the attack needs to be repeated
in its whole complexity for each and every memory location of the binary. We
question the feasibility of this attack and like to point out in this context that the
primary goal of the adversary model are injection attacks like those exploiting
buffer overflows. Moreover, ROP attacks possible on SEPP are significantly less
powerful than they are in general as mentioned earlier in this security evaluation.
Offline attacks targeting the dormant image of the binary in memory are only
secondary goals.

We have stated in the adversary model (Sec. 3) that we do not address hard-
ware tampering directly and assume the chip itself as tamper-proof. Nevertheless
SEPP promotes the goal of producing a tamper-proof device by minimizing the
chip area that has to be trusted even in an adverse environment. Only there
some intermediate values and keys like ku and kp need to be stored temporarily
during execution. Those values are stored in protected internal registers which
can only be read-out using sophisticated hardware attacks targeting this very
small part of the CPU’s internals. We excluded such an attack from the adver-
sary model as we assume that typical attackers on embedded systems do not
have the necessary skills and equipment. However, we argue that our approach
is in favour of any additional measures to be taken to mitigate attacks which
involve hardware tampering. Since SEPP utilizes a PUF, no permanently stored



key values need to be protected in powered-off state of the processor, since there
are no such values that may not be public. The extremely small chip area, we
need to be trusted and confidential during runtime, essentially is the instruction
fetch logic including the PUF and its wrapper.

6.2 Performance

Calculating the performance penalty: Decryption latency and bandwidth
directly impact the processor’s performance twofold: First, upon each jump,
the processor has to be stalled until the newly fetched instruction is decrypted,
causing the so-called warm-up latency latw . Second, in a sequential stream of in-
structions, the processor has to be stalled when the bandwidth of the decryption
module is smaller than the processor’s bandwidth; we call this execution latency.
The entire decryption process can be implemented very efficiently in hardware.
As described in Sec. 5, our prototype induces no execution latency.

The only remaining time overhead during execution is the warm-up latency
at the beginning of new basic blocks. The overall performance penalty, therefore,
is dependent on the control flow of the program and we can calculate the run-
time penalty by normalizing the number of clock cycles required to execute an
encrypted program on the SEPP platform to the number of clock cycles required
to execute an unencrypted program on the baseline platform:

runtime penalty =
IC · CPI + BIC · latw

IC · CPI

where IC denotes the total number of executed instructions of a program and
CPI the average clock cycles per instruction. These values are identical across
SEPP and the baseline processor. The overhead can be calculated by BIC · latw
as the product of the number of branching instructions and the warm-up latency
in clock cycles.

SEPP’s latw is 13 cycles due to the utilized AES-core implementation. Actu-
ally, this latency is reduced by the average common memory access latency, since
the encryption pad is computed in parallel to the memory access. This decreases
the effective latw to 8 cycles instead of 13 cycles per branch. For a hypothetical
program with 1 mio. instructions, 10% branching instructions and a CPI of 1.5,
the runtime penalty calculates to 1.53. The average memory access latency and
CPI are estimations based on the OR1200’s data sheet and system simulations.

Practical performance measurements: Benchmarks and tests were con-
ducted on our prototype implementation. We compare the test results with our
prototype’s base platform, the OR1200 CPU, running on the same FPGA board
as SEPP’s prototype implementation. In order to demonstrate the performance
impact, we developed a number of custom tests with known parameters such
as the number of branching instructions. These custom tests were all compiled
without any compiler optimization in order to ensure deterministic outcomes.
The results of our tests are summarized in Tab. 2 (Appendix).



A custom test program, we used, induces jump instructions by a single func-
tion call within a loop. This program consists of 14.3% branching instructions
resulting in a runtime penalty of 1.84 compared to its execution on the baseline
system. By replacing the function call by the function code only (including stack
frame allocation and parameter passing) inside the loop, two out of three jumps
are removed, leaving the loop jump. This results in 5.3% branching instructions
and a reduced runtime penalty of 1.34, which clearly demonstrates the impact
of branch and jump instructions on the execution time of encrypted programs.

Loops generally introduce a substantial number of jumps into program exe-
cution. Therefore it is to be expected that unrolling a loop results in a significant
speed-up of encrypted execution. To verify this assumption, we developed an-
other short application containing a nested loop; an outer loop with a large
number of iterations and an inner loop with a small number of iterations. We
then compared the runtime of the unmodified program with a modified version.
Therein the inner loop has been unrolled manually by removing the loop instruc-
tions and repeating the instructions in the loop body the appropriate number of
times. This optimization reduces the percentage of branching instructions from
9.8 to 3.8 and thereby speeds up encrypted execution by factor 1.83, while un-
encrypted execution on the baseline system only gains a factor of approximately
1.33. The runtime penalty of the SEPP version of the program compared to the
baseline version is reduced tremendously from 1.61 to 1.17 by the optimization.

The positive influence of unrolling loops is also evident in the following
CoreMark5 benchmarks, which we performed in order to enable comparison
with future developments and other platforms, and to show the effects of our
instruction-level decryption on actual calculations. We conducted the benchmark
both, on our system in encrypted form, as well as on the baseline architecture
in unencrypted form. It was compiled with four different GCC optimization set-
tings: -O0, -O2, -O3 and -O3 -funroll-all-loops. While -O0 tells the compiler
not to optimize at all, optimization level -O2 activates all optimizations that
do not increase code size, and -O3 adds function inlining and register renam-
ing. The flag -funroll-all-loops additionally enables loop unrolling. Fig. 7(a)
compares the benchmark results of both systems for the different GCC set-
tings. The warm-up latency is significant, but reasonable, resulting in a highest
measured runtime penalty of approximately 49.4% when compiled with -O2.
Compilation with -O3 results in a 48.8% penalty and compilation with -O3
-funroll-all-loops in 43.5% penalty. When compiled with no optimization
at all (-O0), the encrypted execution is 31% slower compared to the baseline
processor, however, the baseline’s performance is significantly reduced as well.

CoreMark results confirm that reduction of branching instructions result in
a larger improvement on SEPP than on the baseline processor. Our prototype
clearly profits more from loop-unrolling optimizations with -funroll-all-loops
than the original system. Fig. 7(b) illustrates that our architecture benefits sig-
nificantly more from loop unrolling – with a speed-up of 21% – than the baseline
configuration, with only 9% speed-up.

5 http://www.eembc.org/coremark accessed on 09/02/2015
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As performance solely depends on the warm-up latency of the deployed block
cipher, recent advances in the design of hardware block ciphers promise a severe
reduction of this latency. Specialized low-latency block ciphers like PRINCE [5]
can perform encryption in a single cycle at a competitive area cost. In our mode
of operation the block cipher implementation needs only to support encryption
to produce pads which are used as a key stream for both en- and decryption.
While code optimizations can boost the performance of the current design, we
believe that the substitution of AES with a low-latency cipher would make the
performance overhead almost negligible.

Unfortunately, the comparison of our prototype with related implementa-
tions is not straightforward, as authors in this field use a variety of methods for
performance assessment. The AEGIS [28] developers used the SPEC2000 CPU6

benchmark suite, we had not available. AEGIS can be operated in two different
modes, namely Tamper-Evident (TE) processing or Private Tamper-Resistant
(PTR) processing. With TE processing, the authors measure a performance
degradation of up to 50% in the worst case, while other applications run with as
little as 15% degradation. For PTR processing, their memory encryption causes
up to 25% degradation, resulting in an overall performance penalty of up to 60%;
while the authors state that in most cases the degradation stays below 40%. The
authors additionally suggest that the performance can be increased by a larger
L2 cache or L2 cache block size. As the overhead originates from the decryp-
tion of data and instructions during memory access, we argue that it can not
be improved as easily as SEPP performance. However, it must be acknowledged
that AEGIS processes both data and instructions, while SEPP only processes
encrypted instructions.

The authors of the OASIS [26] instruction set extension only provide abso-
lute time overheads for specific platform operations and compare their approach
with other Trusted Platform Module benchmarks, which does not allow direct
comparison to our benchmarks. The XOM [19] research paper provides a theoret-
ical performance analysis, similar to our formal analysis. The authors state that
6 https://www.spec.org/cpu2000/, accessed on 11/02/2015
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for one of their processor examples, the slow-down is less than 50% according
to calculations. Similarly to the AEGIS approach, the XOM performance over-
head originates from the memory pipeline, and is therefore presumably harder
to improve than the SEPP performance.

We conclude that the runtime penalty of SEPP lies well within the average
for comparable systems. We expect a significant performance advantage of SEPP
over the compared platforms when the described improvements are implemented
in future work.

7 Future Work

Implementing the processor using a true challenge-response PUF could provide
insights about the utility of different kinds of PUFs for the current concept. Espe-
cially to compare the complexity of the management of challenges and responses
and the corresponding helper data might support our approach.

Despite its drawbacks, we have chosen CTR-mode for the instruction en-
cryption and decryption for its ease of implementation and straightforward un-
derstanding of its function. Thus we were able to rapidly prototype the proof-
of-concept implementation to be able to show the general feasibility of our ap-
proach. With reasonable effort, CTR-mode can be exchanged for a number of
other block cipher modes having the required properties. Those properties are
known from disc encryption approaches, where an encryption block is not chained
with the previous plain-text block whereby enabling random access. Candidates
for the usage by SEPP are the block-cipher modes devised by Liskov, Rivest,
and Wagner (LRW) [20], being an improved security-complexity trade-off, or
the XEX-based tweaked-codebook mode with ciphertext stealing (XTS) [1].

If we want to use our approach in distributed scenarios like cloud computing,
but also for updating software in already deployed embedded systems, we need
to provide a secure channel for the transmission of ku . This can be achieved by
embedding an asymmetric cryptography module into the secure part of SEPP.

To enable software updates in the field, a binary B initially deployed in a
secure environment as stated before, may contain an update function written
as part of the secure binary encku (B). This update function needs to be able
to take a user-key ku ′ and an encrypted binary encku ′(B′) and feed it into the
PUF-driven executable-image generation process of SEPP. SEPP will return
π′ = enckp ′(ku

′) to be packaged into a new image img(B′, π′) for the current
SEPP instance. A user can send an encrypted binary encku ′(B′) and ku ′ to this
function, possibly from remote via an untrusted network connection. ku ′ needs
to be transmitted securely. The update function already deployed in binary B
must therefore contain a suitable encryption scheme, e. g. RSA, for a secured
channel between user and secure binary. Since ku can not be retrieved outside of
the IF phase of the processor, ku does not need to remain the same for both, the
already deployed and the about-to-be deployed application. Normally the PUF-
driven executable-image generation process of SEPP, generating an encrypted
π = enckp (ku), should be deactivated after deployment of the binaries. This com-



pletely prohibits the generation of any new executable sequence of instructions
for this instance of SEPP and therefore completely prevents injections. For the
over-the-air update, this security feature has to be deactivated as a trade-off
for a convenient update path. Nevertheless, the image generation process can
be restricted to be only usable when called from within a program running in
encrypted mode. This is due to the update function being part of a legitimately
encrypted binary already running on a SEPP instance. To ensure the injection
prevention security goal, this restriction of the image generation must be en-
forced. There remains the remote possibility that this might be exploitable by
an attacker to encrypt his own code for the current processor instance. This,
however, should be quite difficult to actually perform, since a set of code to be
validly decrypted in the security context of the legitimate application has to be
injected at some point in that application. This as for itself is prevented by the
security properties of SEPP in the first place, as laid out before.

Besides these enhancements, our concept may be augmented in future work
to provide for a larger variety of security demands. This includes data encryption
which might be accomplished via homomorphic encryption [32], Oblivious RAM
[27] or Authenticated Storage [33].

A further open question about data confidentiality is the decryption of con-
stant data sections in the binary. A dedicated hardware extension of SEPP could
be devised in future work that will reduce any performance penalties of those
decryption processes. Using an approach with minimal architectural changes,
the compiler would encrypt any constant values in the binary and automatically
add a suitable decryption function to the binary. This, however, will come at the
cost of increased compiler customization.

Beyond, we also need to consider additional requirements from other sce-
narios, e. g. the need to interoperate with virtualization mechanisms in cloud
computing scenarios.

8 Conclusion

In this paper, we have presented SEPP, an architecture that embeds a PUF-
based decryption module deeply into a CPU design in order to prevent injection
of malicious code or reverse engineering of programs in embedded systems. Code
gets encrypted and thus bound to single individual CPU instances. This may
also open up additional opportunities, e. g. for offering additional features to
customers but preventing those features from being activated in other devices.

As our evaluation has shown, we reached the envisioned security goals while
at the same time incurring only a reasonable performance penalty on our pro-
totypical implementation on an FPGA. Remaining attack vectors require either
exceedingly sophisticated hardware attacks, or are based on highly unlikely ROP
scenarios. Compared to previously proposed solutions, this constitutes a signif-
icant step forward in the level of security and it paves the way for improved
performance.



Our future work will focus on the completion of the development environ-
ment, operating system support for our platform by porting a Linux system to
it, further performance enhancements, and addressing challenges in additional
scenarios, e. g. virtualization in cloud computing.
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Appendix

2
3
jumps removed manual loop unroll

number of
branching instructions

unmodified 14.3% 9.8%

modified 5.3% 3.8%

baseline system

iterations per second
unmodified 909,091 138,122

modified 1,063,830 183,824

speed-up factor 1.17 1.33

SEPP

iterations per second
unmodified 495,050 85,690

modified 793,651 157,233

speed-up factor 1.6 1.83

runtime penalty
compared to baseline system

unmodified 1.84 1.61

modified 1.34 1.17

Table 2. Results of custom tests executed on prototype implementation
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