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Abstract

Real-world cryptographic protocols such as the widely used Transport Layer Security
(TLS) protocol support many different combinations of cryptographic algorithms (called
ciphersuites) and simultaneously support different versions. Recent advances in provable
security have shown that most modern TLS ciphersuites are secure authenticated and
confidential channel establishment (ACCE) protocols, but these analyses generally focus on
single ciphersuites in isolation. In this paper we extend the ACCE model to cover protocols
with many different sub-protocols, capturing both multiple ciphersuites and multiple versions,
and define a security notion for secure negotiation of the optimal sub-protocol. We give a
generic theorem that shows how secure negotiation follows, with some additional conditions,
from the authentication property of secure ACCE protocols. Using this framework, we
analyse the security of ciphersuite and three variants of version negotiation in TLS, including
a recently proposed mechanism for detecting fallback attacks.
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1 Introduction

The security of much communication on the Internet depends on the Transport Layer Security
(TLS) protocol [DA99, DR06, DR08], previously known as the Secure Sockets Layer (SSL)
protocol [FKK11]. TLS allows two parties to authenticate each other using public keys and
subsequently establish a secure channel which provides confidentiality and integrity of messages.
The general structure of all versions of SSL and TLS is that a handshake protocol is run,
in which a set of cryptographic preferences are first negotiated, then an authenticated key
exchange protocol is used to perform mututal or server-to-client authentication and establish a
shared session key; and then the record layer is active, in which the shared session key is used
with authenticated encryption for secure communication. TLS supports many combinations of
cryptographic parameters, called ciphersuites: as of this writing, more than 300 ciphersuites
have been standardized, with various combinations of digital signature algorithms, key exchange
methods, hash functions, ciphers and modes, and authentication codes.

Given the paramount importance of TLS, formal understanding of its security is an important
goal of cryptography. Wagner and Schneier [WS96] were among the first to study SSL, and
in particular compared SSLv3 [FKK11] to SSLv2 [Hic95]. A key difference was that SSLv3
provided authentication of the full handshake, whereas SSLv2 omitted the ciphersuite negotiation
messages, leaving SSLv2 vulnerable to ciphersuite rollback attacks: an active attack could force
clients and servers to negotiate weaker ciphersuites than the best they mutually support.

Provable security of TLS. A significant body of work is devoted to studying the provable
security of TLS: the majority of it focuses on individual ciphersuites. Early work on the
provable security of TLS analyzed truncated forms of the TLS handshake [JK02, MSW08] and
a simplified record layer [Kra01]. More recently, unmodified versions of the TLS constructions
have been studied by introducing suitable security definitions. Paterson et al. [PRS11] showed
that certain modes of authenticated encryption in the TLS record layer satisfy a property
known as secure length-hiding authenticated encryption. In 2012, Jager et al. [JKSS12] showed
that, under suitable assumptions on the underlying cryptographic primitives, the signed-Diffie–
Hellman TLS ciphersuite is a secure authenticated and confidential channel establishment (ACCE)
protocol, yielding the first full proof of security of an unmodified TLS ciphersuite. Subsequent
efforts [KPW13, KSS13, LSY+14] have shown that most other TLS ciphersuites (using static or
ephemeral Diffie–Hellman, RSA key transport, or pre-shared keys) are also secure. Other recent
approaches to analyzing TLS include an alternative composability notion [BFS+13] and formal
verification of an implementation [BFK+13].

Previous security results on TLS all focus on analyzing a single ciphersuite in isolation.
Among other things, TLS allows for versions and ciphersuites to be negotiated within the protocol,
sessions to be resumed, renegotiation within a session. Moreover, in practice servers often use the
same long-term key in many different ciphersuites, and browsers re-attempt failed handshakes
with lower versions. This variety of complex functionality leaves a gap between single-ciphersuite
results and real-world security. Some work has tried to bridge that gap: Giesen et al. [GKS13]
extended the ACCE model to analyze the renegotiation security of TLS in light of the attack of
Ray and Dispensa [RD09]; Mavrogiannopoulos et al. [MVVP12] demonstrated a cross-ciphersuite
attack first suggested by Wagner and Schneier [WS96] when the same long-term signing key is
used in two different key exchange methods; Bergsma et al. [BDK+14] developed an ACCE-based
model for multi-ciphersuite security and showed that the Secure Shell (SSH) protocol is multi-
ciphersuite security, though the Mavrogiannopolous et al. attack rules out a general proof that
TLS is multi-ciphersuite secure; and Bhargavan et al. [BFK+14] showed that some combinations
of ciphersuites do support key agility (a concept related to multi-ciphersuite security).
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Ciphersuite and version negotiation. This work aims to give a formal treatment of the
negotiation of ciphersuites and versions in real-world protocols like TLS. For ciphersuite negotia-
tion in TLS, the client sends in its first handshake message a list of its supported ciphersuites in
order of preference, and the server responds with one of those that it also supports. With regards
to version negotiation, most browsers and servers support multiple versions of SSL and TLS,
with the majority supporting and accepting SSLv3 and TLSv1.0 (with more modern software
also supporting TLSv1.1 and TLSv1.2). The differences between versions can significantly
affect security: TLSv1.1 and TLSv1.2 are less vulnerable to certain weaknesses in record layer
encryption in some ciphersuites; SSLv3 does not support extensions in the ClientHello and
ServerHello negotiation messages; and some extensions such as the Renegotiation Information
Extension [RRDO10] are essential to prevent certain types of attacks; and some ciphersuites
with newer, more efficient and secure algorithms are only supported in TLSv1.2.

The TLS protocol standards support a limited version negotiation mechanism at present:
the client sends the highest version it supports, and the server responds with the highest version
it supports that is less than or equal to the client’s version, and that is the version the parties
continue to use. However, some server implementations do not correctly respond to ClientHello

messages containing higher versions, and instead of returning their highest supported version
in the ServerHello message will instead fail and return an error. Thus, in practice a more
complex version negotiation mechanism is often employed by web browsers, sometimes called the
“downgrade dance”. The client’s browser will try to negotiate the highest version it supports
(say, TLSv1.2); if the handshake fails, then the browser will retry with each lower enabled
version (TLSv1.1, TLSv1.0, SSLv3) until it succeeds. This improved compatibility with incorrect
server implementation comes at the cost of decreased efficiency and more importantly decreased
security: the client and server have no way of detecting whether the negotiated version is actually
the highest version they both support or a lower version due to an attacker maliciously injecting
failure messages. In light of this potential downgrade attack, a very recent Internet-Draft by
Möller and Langley has proposed a new backwards-compatible mechanism for detecting such
attacks [ML15], but as of this writing has yet to be standardized or deployed. The SCSV
extension is proposed to work as follows: If the client is falling back to an earlier version due to
a handshake failure, the client includes the SCSV value indicating that it has fallen back; if the
server observes the fallback SCSV but supports a higher version than the client requests, the
server returns an error indicating that inappropriate fallback has been detected.

Contributions. We investigate the security of version and ciphersuite negotiation in TLS.
We do so by introducing an extension to the ACCE security model that generically captures
negotiation of “sub-protocols”. In particular, using ideas from the multi-ciphersuite ACCE
security experiment of Bergsma et al. [BDK+14], we extend the ACCE security experiment to
include “sub-protocols”: a single protocol (such as TLS) consists of a negotiation protocol NP
and several sub-protocols

# �

SP (such as different ciphersuites or different versions), and in each
session the parties use the negotiation protocol to identify which sub-protocol they will use for
that session. We define secure negotiation for a negotiable protocol, and use this to derive
a negotiation-authentication theorem which allows us to relate the security of sub-protocol
negotiation to ACCE authentication under certain conditions. Intuitively, if each sub-protocol
individually is a secure ACCE protocol with an independent long-term key, and if the transcript
of all of the messages in the negotiation protocol is authenticated by the sub-protocol, then
the authentication detects any attempt by an attacker to carry out a downgrade attack. It is
important to note that the aforementioned cross-ciphersuite attack breaks ACCE authentication
security under long-term key reuse setting; thus, in order to obtain results on multi-ciphersuite
TLS, our framework assume long-term keys are independent for each sub-protocol. Existing
analyses of TLS show ([JKSS12, KPW13, KSS13, LSY+14]) that authentication security of TLS
holds under independent long-term key assumptions.
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Having established the secure negotiation framework and tools we proceed to study version
and ciphersuite negotiation in TLS in several forms:

1. Ciphersuite negotiation within a single version: For a fixed version of TLS, by application
of the negotiation-authentication theorem we show that TLS provides secure ciphersuite
negotiation.

2. Version negotiation, no fallback: For clients and servers that support multiple versions
of TLS but do not attempt to fallback to earlier versions upon handshake failure, we
show that TLS also provides secure version negotiation via the negotiation-authentication
theorem.

3. Version negotiation, with fallback: For clients and servers that support multiple versions of
TLS and where the client will fallback to earlier versions if the handshake fails, we see that
secure negotiation is not provided demonstrating that our secure negotiation definition
does detect this undesired behaviour.

4. Version negotiation, with fallback using signalling ciphersuite value (SCSV): A recent
Internet-Draft [ML15] proposes the use of a special flag in the ClientHello message. We
show that this SCSV does provide TLS with a secure version negotiation mechanism even
when fallbacks are used.

2 The TLS Protocol

In this section, we give the details for ciphersuite negotiation and three variants of version
negotiation in the TLS protocol. The following is a description of the two messages most relevant
to TLS ciphersuite and version negotiation: the ClientHello and ServerHello messages;
descriptions of the subsequent messages can be found in the TLS protocol specification [DR08].

• ClientHello: Sent by the client to begin the TLS handshake. Consists of: the highest
version that the client supports v; a random nonce rc; the optional identifier of previous
session that the client wishes to resume; a list of client ciphersuite preferences #�c ; and an
optional list of extensions extensions describing additional options or functionality.
• ServerHello: Sent by the server in response to ClientHello. Consists of: the negotiated

choice of version v; a random nonce rs; a session identifier; the negotiated choice of
ciphersuite c∗; and an optional list of extensions.

2.1 Ciphersuite negotiation in TLS

Client session π Server session π̂

ClientHello.CipherSuite← π. #�c
π.sid← π.sid‖ClientHello

#�c ′ ← ClientHello.CipherSuite
c∗ = ci where i = min{j : π̂.cj ∈ #�c ′}

ServerHello.cipher suite← c∗, π̂.c← c∗

π̂.sid← π̂.sid‖ClientHello‖ServerHello

ClientHello

ServerHello

π.c← ServerHello.cipher suite

π.sid← π.sid‖ServerHello

Figure 1: NPcs: Ciphersuite negotiation protocol in TLS

As indicated above, in TLS the client sends in ClientHello. #�c a list of supported ciphersuites,
ordered from most preferred to least preferred. The server also has a list of supported ciphersuites
ordered by preference, and selects its most preferred ciphersuite that the client also supports.
This ciphersuite negotiation protocol NPcs is described algorithmically in Figure 1. In our
formalism, the adversary activates each party with the vector #�c of their ordered ciphersuite
preferences for that session.
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Client session π Server session π̂

ClientHello.client version← max{π. #�v }
π.sid← π.sid‖ClientHello

v′ ← ClientHello.client version
v∗ = max{v ∈ π̂. #�v : v ≤ v′}

ServerHello.server version← v, π̂.v ← v∗

π̂.sid← π̂.sid‖ClientHello‖ServerHello

ClientHello

ServerHello

π.v ← ServerHello.server version
π.sid← π.sid‖ServerHello
if π.v 6∈ π. #�v , then π.α← reject

Figure 2: NPv: No-fallback version negotiation protocol in standard TLS

2.2 Version negotiation in TLS

As indicated in the standards, in TLS the client sends in ClientHello.v the highest version of
TLS supports, and the server responds in its ServerHello message with the chosen version. In
practice, buggy TLS server implementations sometimes reject unrecognised versions rather than
negotiating a lower version, so some TLS clients will carry out fallback, where they try again
with a lower supported version. We identify three variants of TLS version negotiation as follows.
Recall again that in our formalism, the adversary activates each party with a vector #�v of their
supported versions for that session.

• No-fallback version negotiation, denoted NPv: Version negotiation as defined by the TLS
standards (Figure 1).
• Fallback version negotiation (the “downgrade dance”), denoted NPv-fb: Version negotiation

as defined by the TLS standards, but allowing version fallback (Figure 3).
• Fallback version negotiation with SCSV, denoted NPv-fb-scsv: The client proceeds as in

fallback version negotiation, but when falling back to a lower version, the client also
includes in its ciphersuite list a fallback signalling ciphersuite value (SCSV) to indicate
that it has fallen back; this ciphersuite cannot be negotiated, and instead simply serves
as a flag. If the server sees that it would negotiate a version lower than its highest
version and the client has included the fallback SCSV, the server aborts and responds with
inappropriate fallback (Figure 4).

Note that the transcript (π.sid in our formalism) “resets” in fallback version negotiation:
matching conversations are based solely on the last handshake, rather than all handshakes that
may have fallen back.

3 Security definitions

We begin by introducing the standard authenticated and confidential channel establishment
(ACCE) protocol framework as introduced by Jager et al. [JKSS12]. We then extend the
definition to cover protocols which negotiate a sub-protocol, and define the secure negotiation
property.

3.1 Authenticated and confidential channel establishment (ACCE) protocols

An ACCE protocol is a multi-party protocol. Each instance of the protocol is executed between
two parties: during the pre-accept phase, the parties establish a shared secret key and mutually
authenticate each other; this is followed by a post-accept phase, which allows parties to transmitted
authenticated and encrypted payload data. We now proceed to describe the ACCE security
model in detail, beginning with the per-session variables and adversary interaction. Note
that, for simplicity, we restrict to the mutual authentication setting as in the original ACCE

6



Client session π Server session π̂

(∗) ClientHello.client version← π.v0
π.sid← π.sid‖ClientHello

v′ ← ClientHello.client version
if ⊥ = max{π̂. #�v , v ≤ v′}

reply with fatal handshake error
else server responds as in Figure 2

if fatal handshake error
π.sid← ∅
go to (∗) and try with next highest version†

else π.v ← ServerHello.server version
π.sid← π.sid‖ServerHello
if π.v 6∈ π. #�v , then π.α← reject

ClientHello

fatal handshake error or ServerHello

† Note that the “go to (∗)” step in the client execution means that execution remains in the
same session for the client; however, the server, receiving a new ClientHello, will start a new

session.
Figure 3: NPv-fb: Fallback version negotiation in TLS (the “downgrade dance”)

Client session π Server session π̂

(∗) ClientHello.client version← π.v0
π.sid← π.sid‖ClientHello

ClientHello

if FALLBACK SCSV ∈ ClientHello.Cipher Suite

and π̂.v0 > ClientHello.client version,
then reply with inappropriate fallback and abort

else server responds as in Figure 3

fatal handshake error or inappropriate fallback or ServerHello

if inappropriate fallback then π.α← reject and abort
if fatal handshake error

π.sid← ∅
ClientHello.Cipher Suite← π. #�c ‖FALLBACK SCSV
go to (∗) and try with next highest version

else π.v ← ServerHello.server version
π.sid← π.sid‖ServerHello
if π.v 6∈ π. #�v , then π.α← reject

Figure 4: NPv-fb-scsv: Fallback negotiation in TLS with signalling ciphersuite value

definition of Jager et al. [JKSS12], but our results apply equally to server-only authenticated
ACCE [KPW13, KSS13]. Each ciphersuite in TLS is considered a separate ACCE protocol with
independent long-term keys, which limits the application of the framework to implementations
of TLS with no long-term key reuse.

Parties and sessions. The execution environment consists of nP parties, denoted P1, P2, . . . PnP .
Each party Pi has a long-term public/private key pair (pki, ski), generated according to the
protocol specification. Each party can execute multiple runs of the protocol either sequentially
or in parallel; each run is referred to as a session, and πsi denotes the sth session at party i.
For each session, the party maintains a collection of the following per-session variables, and we
overload the notation πsi to refer to both the session itself and the corresponding collection of
per-session variables.

• ρ ∈ {init, resp}: The role of the party in the session.
• pid ∈ [nP ]: The index of the intended peer of this session.
• α ∈ {in-progress, accept, reject}: The execution status of the session.
• k: A session key, or ⊥; k may for example consist of sub-keys for bi-directional authentica-

tion and encryption.
• T : Transcript of all messages sent and received by the party in this session.
• sid: A session identifier, consisting of an ordered subset of messages in T as defined by
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the protocol specification.1

• Any additional state specific to the protocol (such as ephemeral Diffie–Hellman exponents).
• Any additional state specific to the security experiment.

We use the notation πsi .ρ etc. to denote each variable of a particular session.
While a session has set α← in-progress, we say that the session is in the pre-accept phase;

after the session has set α← accept, we say that the session is in the post-accept phase.

Definition 1 (ACCE protocol). An ACCE protocol P consists of a probabilistic long-term
public-private key pair generation algorithm, as well as probabilistic algorithms defining how
the party generates and responds to protocol messages. The protocol specification also includes
a stateful length-hiding authenticated encryption (sLHAE) scheme StE [PRS11, JKSS12] for
sending and receiving payload data on the record layer.

Adversary interaction. In the security experiment, the adversary controls all interactions
between parties: the adversary activates sessions with initialization information; it delivers
messages to parties, and can reorder, alter, delete, replace, and create messages. The adversary
can also compromise certain long-term and per-session values. The adversary interacts parties
using the following queries.

The first query models normal, unencrypted operation of the protocol, generally corresponding
to the pre-accept phase.

• Send(i, s,m)
$→ m′: The adversary sends message m to session πsi . Party Pi processes

m according to the protocol specification and its per-session variables πsi , updates its
per-session state, and optionally outputs an outgoing message m′.
There is a distinguished initialization message which allows the adversary to activate the
session with certain information, such as the intended role ρ the party in the session, the
intended communication partner pid, and any additional protocol-specific information;
when we extend to the negotiable setting in the next subsection, this will include ciphersuite
and/or version preferences.
This query may return error symbol ⊥ if the session has entered state α = accept and no
more protocol messages are to be transmitted over the unencrypted channel.

The next two queries model adversarial compromise of long-term and per-session secrets.

• Corrupt(i)
$→ ski: Returns long-term secret key ski of party Pi.

• Reveal(i, s)
$→ πsi .k: Returns session key πsi .k.

The final two queries, Encrypt and Decrypt, model communication over the encrypted channel.
The adversary can direct parties to encrypt plaintexts and obtains the corresponding ciphertext.
The adversary can deliver ciphertexts to parties, which are then decrypted. To accommodate
defining the security property of indistinguishability of ciphertexts, the Encrypt query takes two
messages, and one of the tasks of the adversary is to distinguish which was encrypted. The
exact specification of Encrypt and Decrypt is specified in Figure 4 of [JKSS11] (the full version of
[JKSS12]), and is omitted in this paper as these queries are not required for defining negotiable
security.

ACCE security definitions. We now present the two sub-properties that define security
of ACCE protocols. Like authenticated key exchange (AKE) security definitions, the ACCE
framework requires that the protocol provides secure mutual authentication. The difference lies
in the encryption-challenge: instead of key indistinguishability (found in AKE experiments) the
ACCE framework requires that all payload data transmitted between parties (during the post-
accept stage) is over an authenticated and confidential channel. The original motivation for this

1Our separation of the transcript and session identifier follows [BDK+14] and is a slight change compared to the
original ACCE model [JKSS12] to allow for consideration of protocols where some messages are not authenticated.
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distinction is that real-world protocols often have key confirmation messages (for example, TLS’s
Finished message), which can act as a key-distinguisher in a AKE security framework. ACCE
solves this by focusing on message confidentiality and integrity instead of key indistinguishability.

We start by defining matching conversations and the mutual authentication property of an
ACCE protocol. Matching conversations is a property useful for describing the correctness and
authentication of a protocol, first introduced by Bellare and Rogaway [BR93]. 2

Definition 2 (Matching sessions). A session πtj matches session πsi if:

• if Pi sent the last message in πsi .sid, then πtj .sid is a prefix of πsi .sid; or
• if Pi received the last message in πsi .sid, then πsi .sid = πtj .sid,

where X is a prefix of Y if X contains at least one message and the messages in X are identical
to and in the same order as the first |X| messages in Y .

Definition 3 (Mutual authentication). A session πsi accepts maliciously if

• πsi .α = accept;
• πsi .pid = j and no Corrupt(j) query was issued before πsi .α was updated to accept; and
• there is not a unique session πtj that matches πsi .

We define Advacce-auth
P (A) as the probability that, when probabilistic adversary algorithm A

terminates in the ACCE experiment for protocol P, there exists a session that has accepted
maliciously.

Channel security for ACCE protocols is defined as the ability of the adversary to break
confidentiality or integrity of the channel. As the channel security definition does not play
a role in the remainder of this paper, we omit the definition and refer the reader to Defini-
tion 5.2 of [JKSS12] for details. Using the notation of Bergsma et al. [BDK+14], the expression
Advacce-aenc

P (A) denotes the probability that the adversary A breaks channel security of protocol
P.

Definition 4 (ACCE-secure). A protocol P is said to be ε-ACCE-secure against an adversary
A if we have that Advacce-auth

P (A) ≤ ε and Advacce-aenc
P (A) ≤ ε.

3.2 Negotiable ACCE protocols

In this section we define formally a negotiable ACCE protocol and the corresponding security
notions. We do so by explaining the differences with Section 3.1. The basis of our definition is the
multi-ciphersuite ACCE definition of Bergsma et al. [BDK+14], but like the ACCE definitions
above we do not consider use of the same long-term key in multiple sub-protocols. We then
define the secure negotiation property.

Differences in execution environment. A negotiable ACCE protocol is composed of a
negotiation protocol NP and a collection of sub-protocols

# �

SP; we use the notation NP‖ # �

SP to denote
the combined protocol. For example:

• In TLS with multiple ciphersuites, the negotiation protocol NPcs consists of the sending
and receiving of the ClientHello and ServerHello messages as shown in Figure 1, and
each sub-protocol SPi corresponds to the remaining messages in ciphersuite i.
• For TLS with multiple versions, each sub-protocol SPi corresponds to a different version of

TLS; the description of the negotiation protocol depends on whether and how fallback is
handled, and is described in Section 2.

2Our formulation is a slight variant of Jager et al. [JKSS12]: we match on session identifiers (a well-defined
subset of messages sent and received) rather than the full transcript.
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Parties and sessions. In a negotiable ACCE protocol, each party Pi has a vector of long-term
public/private key pairs (

#   �

pki,
#  �

ski), one for each sub-protocol.
Each session in a negotiable ACCE protocol maintains two additional per-session variables:

• #�n : An ordered list of negotiation preferences.
• n: The index of the negotiated sub-protocol.

In the execution of NP‖ # �

SP, the protocol begins by running the negotiation protocol NP, which
has as input the ordered list #�n of negotiation preferences; the negotiation protocol updates
per-session variables, and in particular updates the index n of the negotiated sub-protocol. Once
the negotiation protocol completes, subprotocol SPn is run, operating on the same per-session
variables.

Adversary interaction. The adversary can interact with parties exactly as in Section 3.1.
The only difference is that in the distinguished initialization message in the Send query, the
adversary also includes an ordered list #�n of the sub-protocol preferences that the party should
use in that session. For example, in ciphersuite negotiation, the adversary may direct the party
to prefer RSA over Diffie–Hellman in one session and Diffie–Hellman over RSA in another session.
For version negotiation in TLS, order of the list is descending and contiguous (i.e., if TLSv1.2
and TLSv1.0 are listed as supported, TLSv1.1 must be listed).

Secure negotiation. Intuitively, a negotiable protocol has secure negotiation if the adversary
cannot cause the parties to successfully negotiate a worse sub-protocol than the best one they
both support. We formalize this via an optimality function, which will be different for each
protocol (for example, the optimality function for TLS ciphersuite negotiation is different from
that of TLS version negotiation).

Definition 5 (Optimal negotiation). Let ω( #�x , #�y )→ z be a function taking as input two ordered
lists and outputting an element of one of the lists or ⊥. We say that two sessions πsi and πtj do
not have optimal negotiation with respect to ω unless

πsi .n = πtj .n = ω(πsi .
#�n, πtj .

#�n) . (1)

For TLS ciphersuite negotiation, the optimality function yields the first ciphersuite in the
server’s ordered list of preferences also supported by the client:

ωcs(
#�x , #�y ) = yi, where i = min{j : yj ∈ #�x} . (2)

For TLS version negotiation, the optimality function yields the highest version that is
supported by both the client and the server:

ωvers(
#�x , #�y ) = max{ #�x ∩ #�y } . (3)

For TLS version negotiation, we impose the order

TLSv1.2 > TLSv1.1 > TLSv1.0 > SSLv3.0 > SSLv2.0 . (4)

We can now define what it means for a protocol to have secure negotiation, either of a
particular sub-protocol or over all sub-protocols.

Definition 6 (Secure negotiation of a sub-protocol). We say that a session πsi has negotiated a
sub-protocol n∗ insecurely with respect to ω if

• πsi .α = accept;
• πsi .n = n∗;
• πsi has not accepted maliciously (in the sense of Definition 3); and
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• πsi and πtj do not have optimal negotiation with respect to ω, where πtj is the unique session
that matches πsi .

We define Advneg,ω

NP‖ #�SP,n∗(A) as the probability that, when A terminates in the negotiable-ACCE

experiment for NP‖ # �

SP, there exists a session that has negotiated sub-protocol n∗ insecurely with
respect to ω.

Remark 1 (Secure negotiation vs. authentication). Secure negotiation, as defined is a stronger
property than authentication: the third condition of Definition 6 effectively incorporates the
authentication security definition. Recall that authentication is based on matching session
identifiers; if a protocol uses the full transcript as the session identifier, then negotiation generally
reduces to authentication, which is shown in the theorem in the next section. However, if a
protocol uses some subset of the transcript as the session identifier, or for example “resets” the
session identifier partway through the handshake as in TLS version fallback, then negotiation
becomes non-trivially different from authentication and requires further consideration, as we
shall see in Section 6.

4 Negotiation-authentication theorem

We now present our negotiation-authentication theorem, which allows us under certain conditions
to relate the probability of an adversary forcing a user to insecurely negotiate to NP‖SPn to the
probability of an adversary breaking authentication in NP‖SPn. At first glance, this seems obvious:
if all of the messages in a protocol are securely authenticated, then it should be impossible for
an adversary to trick the parties into negotiating something sub-optimal. There is a reason
why the application of the theorem is not trivial: In practise, not all protocols authenticate all
messages in the handshake. As we will see Section 6, version fallback in TLS results in some
parts of the negotiation not being authenticated. Historically, ciphersuite downgrade in SSLv2
was possible as the negotiation phase wasn’t entirely authenticated.

To be able to apply this theorem, the protocol P has to satisfy certain conditions as shown
in the theorem statement below. Precondition 1 captures the notion that protocols where all
handshake message are authenticated, or at least all handshake messages related to negotiation
are authenticated, should allow us to reduce negotiation security to authentication security.
Precondition 2 is a simply that, in the absence of an active adversary, parties negotiate correctly.

Theorem 1. Let NP‖ # �

SP be a negotiable ACCE protocol and let ω be an optimality function.
Suppose that:

1. all message sent and received by a party in the negotiation phase are included in the session
identifier; and

2. in the absence of an active adversary, negotiation is always optimal with respect to ω,

then for all algorithms A and for all sub-protocols SPn,

Advneg,ω

NP‖ #�SP,n(A) = Advacce-auth
NP‖SPn (A) . (5)

The proof of Theorem 1 appears in Appendix A.1. The brief description of the argument
is as follows: By condition 1, both parties can verify that in presence of a passive adversary
that negotiation was optimal with respect to ω. Since both parties can verify (via the session
identifier) that the negotiation sub-protocol SPn is the optimal sub-protocol, and NP||SPn itself is
an ACCE protocol with negligible adversary advantage over a passive adversary, then negotiating
to NP||SPn is both optimal and authenticated with negligible adversary advantage. Once we
have related the security of negotiation to the security of authentication as in the equation
in the theorem, we can make use of existing results on ACCE authentication security, for
example the bounds on Advacce-auth

P (B) given for ACCE authentication security of P = TLS
signed-Diffie–Hellman ciphersuites [JKSS12], P = TLS RSA key transport and P = TLS static
Diffie–Hellman ciphersuites [KSS13, KPW13].
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5 Analysis of TLS ciphersuite negotiation

Using our negotiation-authentication theorem from Section 4, we can show that TLS is ciphersuite-
negotiation secure. We do this by showing that ciphersuite negotiation in TLS satisfies the two
preconditions outlined in our negotiation-authentication theorem, and hence secure negotiation
of ciphersuites is, not surprisingly, guaranteed by security of authentication. All outputs
of ciphersuite negotiation are included in the session identifier (as seen in Figure 1), thus
precondition 1 is satisfied, provided the ciphersuite has secure authentication. In addition, TLS
ciphersuite negotiation is optimal in the presence of a passive adversary, so precondition 2 is
also satisfied. Details appear in Appendix A.2.

Corollary 1. For the TLS protocol with ciphersuite negotiation NPcs as described in Figure 1 and
TLS ciphersuites

# �

SP, an adversary A who can force a user to negotiate insecurely to ciphersuite
SPn with respect to the TLS ciphersuite optimality function ωcs from equation (2) can also break
authentication of that ciphersuite:

Advneg,ωcs

NPcs‖
#�

SP,n
(A) = Advacce-auth

SPn (A) . (6)

6 Analysis of TLS version negotiation

In this section, we consider the three variants of TLS version negotiation identified in Section 2.2.
The no-fallback version negotiation mechanism specified by the TLS standard, can easily be
seen to be secure using our negotiation-authentication mechanism. When version fallback is
permitted, version negotiation is no longer secure, as we demonstrate with a counterexample,
and thus our model successfully captures this weakness of fallback. Finally, when the signalling
ciphersuite value (SCSV) version fallback detection mechanism is used, we can show that TLS
becomes version-negotiable secure.

6.1 TLS no-fallback version negotiation is secure

It is straightforward to apply our negotiation-authentication theorem to show that TLS with
no-fallback version negotiation (NPv described in Figure 2), provides secure version negotiation.
Here the session identifier consists of the entire transcript, which includes the client and server’s
version information, so precondition 1 of Theorem 1 is satisfied. It is clear that TLS provides
optimal version negotiation in the presence of a passive adversary, so precondition 2 is satisfied.
Thus the negotiation-authentication theorem yields Corollary 2. Details appear in Appendix A.3.

Corollary 2. For the TLS protocol with no-fallback version negotiation NPv as described in
Figure 2 and TLS versions

# �

SP, an adversary A who can force a user to negotiate insecurely to
version SPn with respect to the TLS version optimality function ωvers from equation (3) can also
break authentication of that version:

Advneg,ωvers

NPv‖
#�

SP,n
(A) = Advacce-auth

SPn (A) . (7)

6.2 TLS fallback version negotiation is not secure

When examining version negotiation in TLS with fallback (NPv-fb from Figure 3), notice that
many different ClientHello messages may be sent by the client before the handshake is accepted
by the server. An active adversary may force this behaviour: instead of delivering the first
few ClientHello attempts at handshake messages to the server, the adversary responds with
fatal handshake error, until the client sends a ClientHello which has a sufficiently low
version that the adversary is satisfied. In practise, this may mean a client and a server both
supporting TLSv1.2 may be downgraded to TLSv1.0 by an adversary returning a handshake
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error until the client attempts a TLSv1.0 ClientHello with a successful response. In this
scenario, the session clearly has sub-optimal version-negotiation—the client and server both
support TLSv1.2, but the adversary has caused a version 1.0 negotiation—and this provides a
example that TLS with fallback is not version-negotiable secure.

In terms of our negotiation-authentication theorem, it fails to apply here because not every
output of the negotiation phase is authenticated by the sub-protocol: only the successful
ClientHello message is included in the transcript and is considered for matching sessions.
Much like the ciphersuite-downgrade vulnerability in SSLv2, this allows an active adversary to
modify and delete any of the previous exchanges between the server and client.

6.3 TLS fallback version negotiation with SCSV is secure

Similar to TLS fallback version negotiation, TLS fallback version negotiation with SCSV
(NPv-fb-scsv as described in Figure 4) does not acknowledge or authenticate any messages previous to
the fatal handshake message in the session identifier, and as such does not satisfy precondition
1 of Theorem 1. Thus, we cannot use the negotiation-authentication theorem to show that
that fallback version negotiation with SCSV securely negotiates version. Instead, we provide a
direct argument to show that fallback version negotiation with SCSV is secure provided that
no-fallback TLS version negotiation is secure.

Theorem 2. For the TLS protocol with fallback version negotiation with SCSV NPv-fb-scsv as
described in Figure 4 and TLS versions

# �

SP, an adversary who can force a user to negotiate
insecurely to version SPn with respect to the TLS version optimality function ωvers from equation 3
can also break authentication of that version:

Advneg,ωvers

NPv-fb-scsv‖
#�

SP,n
(A) ≤ Advacce-auth

SPn (A) . (8)

Proof. The security argument proceeds by showing that an adversary who is successful in
breaking fallback version negotiation with SCSV is also successful in breaking authentication
of the underlying ACCE protocol. We give a high-level description of the simulator behaviour
below.

The simulator B in our argument recreates the SCSV mechanisms described in Figure 4
and ref. [ML15] using a version negotiation TLS challenger C for TLS with no-fallback version
negotiation; more precisely, B simulates the neg experiment for NPv-fb-scsv‖

# �

SP using a challenger
for NPv‖

# �

SP.
B initially forwards all adversarial queries to the challenger C for each session. After receiving

the ClientHello message for a session π from the adversary A, the simulator is able to determine
whether the version in the ClientHello would cause a handshake error. If the error would
occur, B replies to A directly with fatal handshake error. If the error would not occur, B
faithfully forwards all queries for that session between A and C.

Upon receiving a fatal handshake error from A intended for a session π, the simulator uses
a Send query to activate a new session π′ that is activated identically to π except FALLBACK SCSV

is also included in the list of supported ciphersuites and the list of supported versions for π′ is
modified to no longer include the highest supported version v of the session π. B also adds π to
a fallback list FL to determine which sessions have performed version-fallback.

Note that from A’s point-of-view, π′ and π are the same continuous session, and B now
directs all queries sent to π to π′ instead.

As well, B, upon receiving a ClientHello from A that contains FALLBACK SCSV in the list
of supported ciphersuites, determines if the server’s highest supported version is higher than the
client’s indicated version in the ClientHello. If so, B replies with an inappropriate fallback

error message. Note that the alert is fatal, so the simulator B will disregard all further Send
queries directed to the server’s session. If not, B forwards the ClientHello to C and continues
to forward all messages for these sessions between A and C.

13



This describes the simulator’s behaviour during the experiment. Suppose at some point A
breaks the negotiable security of a session π∗. There are two cases:

1. If π∗ does not appear on B’s fallback list FL, then all messages were forwarded faithfully
between A and C. An insecure version fallback to version SPn in B’s simulation of
NPv-fb-scsv‖

# �

SP thus directly translates to insecure version negotiation to version SPn in
C’s execution of NPv‖

# �

SP. Hence, Advneg,ωvers

NPv-fb-scsv‖
#�

SP,n
(A) ≤ Advneg,ωvers

NPv‖
#�

SP,n
(A). By Corollary 2,

Advneg,ωvers

NPv-fb-scsv‖
#�

SP,n
(A) ≤ Advacce-auth

SPn (A).

2. If π∗ does appear on B’s fallback list FL, then the simulator will have rejected any
non-optimal handshakes containing the SCSV. It follows then that the session must have
accepted maliciously (either by the A impersonating the server party or by modifying the
handshake of the fallback session π∗′). Thus an insecure fallback to version SPn in B’s
simulation of NPv-fb-scsv‖

# �

SP directly translates to an authentication break in SPn. Hence,
Advneg,ωvers

NPv-fb-scsv‖
#�

SP,n
(A) ≤ Advacce-auth

SPn (A).

Need for contiguous support of TLS versions for fallback with SCSV. As shown
above, SCSV does give additional protection against version downgrade attacks in TLS imple-
mentations that support version fallback. However, we observe that there is a drawback to the
SCSV proposal as it stands: Non-contiguous support of versions in TLS implementations (a
viable scenario in practise) can hamper interoperability between systems supporting checking
for insecure fallback using SCSV.

In some implementations of TLS,3 users can select a non-contiguous subset of TLS version
support. For example, a user could—for some reason—enable TLSv1.2 and TLSv1.0, but not
TLSv1.1.

In relation to the SCSV, this can result in a connection attempt that could fail to accept
without adversarial interaction. Consider the following scenario: suppose a client user selects
TLSv1.2 and TLSv1.0 to support, and attempts to connect to a server that only supports
TLSv1.1 and TLSv1.0, and will return a fatal handshake error for TLSv1.2. The client sends
a ClientHello with TLSv1.2. After the server fails to parse the TLSv1.2 handshake correctly, it
reply with a fatal handshake error message. The client falls back, sending a new ClientHello

message with its next highest supported version, TLSv1.0, and includes FALLBACK SCSV in the
ciphersuite list to indicate it is falling back. The server notes the SCSV and rejects the handshake
with inappropriate fallback as recommended in the SCSV proposal because the server’s
highest supported version (TLSv1.1) is higher than the client’s indicated version (TLSv1.0),
despite the fact that the optimal negotiated version would be TLSv1.0.

An alternative mechanism for secure version fallback would be to include a signalling
ciphersuite value for each version it supports, allow the parties to detect insecure fallback while
allowing non-contiguous version support.

7 Discussion

We have introduced provable security notions for negotiation in Internet protocols, and extended
the definition of ACCE protocols to utilise previous comprehensive ACCE proofs of TLS
ciphersuites. We develop a negotiation-authentication theorem and show that ciphersuite
negotiation in TLS is secure, under certain conditions about long-term key reuse. We follow by
showing that the version negotiation in standards-defined TLS and the TLS implementation with

3The current version of Microsoft Internet Explorer (11) and previous versions allow users to configure which
subset of SSL/TLS versions are enabled (Internet options → Advanced → Security); Mozilla Firefox up to version
22 did as well. On the server side, Apache mod ssl, Microsoft IIS, and nginx all allow the server administrate to
select which subset of SSL/TLS versions to enable.
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the SCSV is also secure, but demonstrate that TLS implementations that utilise browser-based
version fallback mechanisms are not version-negotiable secure. This analysis holds for TLS
configurations that exclude sharing long-term keys across multiple versions. In practice, our
analysis requires that TLS configurations (in order to have ciphersuite negotiation security)
must use independent long-term keys and thus distinct digital certificates for each ciphersuite;
this is currently a necessary cost in order to prevent cross-ciphersuite-like attacks from breaking
authentication in TLS. To the best of our knowledge, no web server software currently permits
configuring different certificate for different TLS ciphersuites with the same signing/key transport
algorithm, nor different certificates for different TLS versions.

Future work. It seems possible that one could extend our analysis to include TLS configu-
rations where long-term keys are shared across multiple versions but a single fixed ciphersuite
(i.e. that TLS 1.2 and TLS 1.0 can reuse long-term keys in the same ciphersuite configuration).
However in order to do so requires extensive modification of the negotiation framework to more
closely resemble the multi-ciphersuite setting [BDK+14]. This remains a significant practical
limitation on long-term key reuse across ciphersuites.

Proposed revisions to TLS in the current draft of TLS 1.3 [Res15] seem to make the protocol
resistant to cross-ciphersuite and cross-version attacks. The main change is that, in TLS 1.3, the
value signed using the long-term secret key now includes (the hash of) all handshake messages,
including the negotiated version and ciphersuite. As a result, the multi-ciphersuite composition
framework of Bergsma et al. [BDK+14] should be applicable to both multi-version and multi-
ciphersuite configurations of TLS: a signing oracle for a single sub-protocol could be constructed
to avoid signing objects that would be valid in another sub-protocol, defeating the first step
of the cross-ciphersuite attack. This could then imply negotiation-authentication security of
TLS 1.3 with shared long-term keys. A thorough analysis is required to show this categorically,
however.

Our techniques can also be applied to other protocols that negotiate cryptographic parameters
or versions, the Secure Shell (SSH) protocol being a prime candidate. While SSH does have
two versions, they are largely incompatible, and current best-practices including disabling v1
support, so there is little value in studying SSH version negotiation. However, SSH also supports
multiple cryptographic algorithms, and our framework can easily be applied to SSH algorithm
negotiation. Since the parties authenticate their entire transcript, including both the client’s and
server’s algorithm preferences, our negotiation-authentication theorem readily implies that SSH
has secure ciphersuite negotiation if it has secure authentication, which it does by the recent
results of Bergsma et al. [BDK+14].
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A Proofs

A.1 Proof of Theorem 1 (negotiation-authentication)

[⇒] Show that Advacce-auth
NP‖SPn (A) ≤ Advneg,ω

NP‖ #�SP,n(A).

We wish to show that if NP‖ # �

SP has secure negotiation of n, then NP‖SPn has secure authenti-
cation. By Definition 6, every session π where the user has negotiated to NP‖SPn and accepted
maliciously is also a session where π has insecurely negotiated NP‖SPn. (i.e. By our definition,
authentication is a sub-condition of negotiation). Thus Advacce-auth

NP‖SPn (A) ≤ Advneg,ω

NP‖ #�SP,n(A).

[⇐] Show that Advneg,ω

NP‖ #�SP,n(A) ≤ Advacce-auth
NP‖SPn (A).

We wish to show that if a session π has secure authentication, then π has secure negotiation.
Consider a session π that has accepted, but not maliciously. Since NP‖SPn has secure authenti-
cation, and all messages in the negotiation phase are included in the session identifier sid then it
follows that A was passive in the negotiation phase of the session π. Thus π and its partner
negotiated in the presence of a passive adversary. By Precondition 2, we know that negotiation
is always optimal with respect to ω in the presence of a passive adversary. Thus π negotiated
optimally to the sub-protocol NP‖SPn, and thus Advneg,ω

NP‖ #�SP,n(A) ≤ Advacce-auth
NP‖SPn (A).

It follows that Advneg,ω

NP‖ #�SP,n(A) = Advacce-auth
NP‖SPn (A).

A.2 Proof of Corollary 1 (TLS ciphersuite negotiation)

To show that TLS ciphersuite negotiation (NPcs in Figure 1) is secure, we apply the negotiation-
authentication theorem. To do so, we must show that the protocol satisfies the two preconditions
of Theorem 1.

Precondition 1. Here we must show that all outputs of the ciphersuite negotiation protocol NPcs
are included in the session identifier sid used to determine matching sessions. The ClientHello

and ServerHello messages are the only two outputs of the ciphersuite negotiation protocol NPcs.
Both are included in the session identifier sid in the per-session variables as we can see in Figure
1, and thus all outputs of the ciphersuite negotiation phase are included in the session identifier,
so precondition 1 of the negotiation-authentication theorem is satisfied by TLS ciphersuite
negotiation.

Precondition 2. Now we must show that ciphersuite negotiation protocol NPcs is always
optimal in the presence of a passive adversary. Recall that for ciphersuite negotiation in TLS, the
optimality function is ωcs(π.

#�c , π̂. #�c ) = min{π̂.ci : π̂.ci ∈ π. #�c } (equation (2)). As seen in Figure 1,
in the presence of a passive adversary, the client ciphersuite list ClientHello.CipherSuite
is identical to the client’s π. #�c . Hence, an honest server computes the optimal version π̂.c =
min{π̂.ci : π̂.ci ∈ ClientHello.CipherSuite} = min{π̂.ci : π̂.ci ∈ π. #�c }. Furthermore, in the
presence of a passive adversary, the server-selected ServerHello.ciphersuite received by the
client is identical to π̂.c, and thus

π.c = π̂.c = min{π̂.ci : π̂.ci ∈ π. #�c } = ωcs(π.
#�c , π̂. #�c ) ,

so precondition 2 of the negotiation-authentication theorem is satisfied by TLS ciphersuite
negotiation.
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A.3 Proof of Corollary 2 (TLS no-fallback version negotiation)

To show that TLS version negotiation without fallback (NPv in Figure 2) is secure, we apply the
negotiation-authentication theorem. To do so, we must show that the protocol satisfies the two
preconditions of Theorem 1.

Precondition 1. First we must show that all outputs of the no-fallback version negotiation
protocol NPv are included in the session identifier sid used to determine matching sessions. This
is very straightforward: the ClientHello and ServerHello messages are the only two outputs
of the version negotiation protocol NPv. Both are included in the session-identifier sid in the
per-session variables as we can see in Figure 2, and thus all outputs of the version negotiation
phase are included in the session identifier, so precondition 1 of the negotiation-authentication
theorem is satisfied by no-fallback version negotiation.

Precondition 2. Now we must show that the no-fallback version negotiation protocol NPv
is always optimal in the presence of a passive adversary. Recall that for version negotia-
tion in TLS, the optimality function is ωvers(π.

#�v , π̂. #�v ) = max{π. #�v ∩ π̂. #�v } (equation (3)).
As seen in Figure 2, in the presence of a passive adversary, the nominated client version
ClientHello.client version is identical to the client’s max{π. #�v } Hence, an honest server
computes the optimal version π̂.v = max{v ∈ π̂. #�v : v ≤ client version} = max{v ∈ π̂. #�v :
v ≤ max{π. #�v }} = max{π. #�v ∩ π̂. #�v }. Furthermore, in the presence of a passive adversary, the
server-selected ServerHello.server version received by the client is identical to π̂.v, and thus,

π.v = π̂.v = max{π. #�v ∩ π̂. #�v } = ωvers(π.
#�v , π̂. #�v ) ,

so precondition 2 of the negotiation-authentication theorem is satisfied by no-fallback version
negotiation.

B Need for contiguous support of TLS version for fallback with
SCSV

In some implementations of TLS,4 users can select a non-contiguous subset of TLS version
support. For example, a user could—for some reason—enable TLSv1.2 and TLSv1.0, but not
TLSv1.1.

In relation to the SCSV, this can result in a connection attempt that could fail to accept
without adversarial interaction. Consider the following scenario: suppose a client user selects
TLSv1.2 and TLSv1.0 to support, and attempts to connect to a server that only supports
TLSv1.1 and TLSv1.0, and will return a fatal handshake error for TLSv1.2. The client sends
a ClientHello with TLSv1.2. After the server fails to parse the TLSv1.2 handshake correctly, it
reply with a fatal handshake error message. The client falls back, sending a new ClientHello

message with its next highest supported version, TLSv1.0, and includes FALLBACK SCSV in the
ciphersuite list to indicate it is falling back. The server notes the SCSV and rejects the handshake
with inappropriate fallback as recommended in the SCSV proposal because the server’s
highest supported version (TLSv1.1) is higher than the client’s indicated version (TLSv1.0),
despite the fact that the optimal negotiated version would be TLSv1.0.

4The current version of Microsoft Internet Explorer (11) and previous versions allow users to configure which
subset of SSL/TLS versions are enabled (Internet options → Advanced → Security); Mozilla Firefox up to version
22 did as well. On the server side, Apache mod ssl, Microsoft IIS, and nginx all allow the server administrate to
select which subset of SSL/TLS versions to enable.
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