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Abstract. In secure multi-party shuffling, multiple parties, each holding an input, want to agree on a
random permutation of their inputs while keeping the permutation secret. This problem is important as
a primitive in many privacy-preserving applications such as anonymous communication, location-based
services, and electronic voting. Known techniques for solving this problem suffer from poor scalability,
load-balancing issues, trusted party assumptions, and/or weak security guarantees.
In this paper, we propose an unconditionally-secure protocol for multi-party shuffling that scales well
with the number of parties and is load-balanced. In particular, we require each party to send only a
polylogarithmic number of bits and perform a polylogarithmic number of operations while incurring
only a logarithmic round complexity. We show security under universal composability against up to
about n/3 fully-malicious parties. We also provide simulation results showing that our protocol im-
proves significantly over previous work. For example, for one million parties, when compared to the
state of the art, our protocol reduces the communication and computation costs by at least three orders
of magnitude and slightly decreases the number of communication rounds.

1 Introduction

Shuffling a sequence of values is a fundamental tool for randomized algorithms; applications include
fault-tolerant algorithms, cryptography, and coding theory. In secure multi-party shuffling (MPS)
problem, a group of parties each holding an input value want to randomly permute their inputs
while ensuring no party can map any of the outputs to any of the input holders better than
can be done with a uniform random guess. An MPS protocol is a useful primitive for achieving
privacy and robustness in many applications such as anonymous communication [Cha81], location-
based services [GG03], electronic voting [Nef01], secure auctions [FA00], and general multi-party
computation [BGT13].

Despite many applications of MPS, we are not aware of any technique that can be used to
achieve a scalable and secure MPS protocol. We believe this is of increasing importance with the
growth of modern networks. Moreover, most protocols lack load-balancing – a crucial requirement
for protocols running in large networks. With the rise of sophisticated cyber-attacks, it is now
essential to provide provable guarantees against strong adversaries. Also, relying on trusted parties
has become a major security issue in today’s world.

In this paper, we address these concerns by proposing a scalable and load-balanced protocol for
MPS that is unconditionally-secure against malicious attacks and does not rely on trusted parties.

Our Contribution. We first propose a formal definition of security for MPS. Our definition is
different from the standard definition of security for multi-party computation (MPC) [BGW88],
where a group of parties each holding a private input want to compute a known function over their
inputs, without revealing any more information about their inputs than what is revealed by the
output of the function. Instead of focusing on inputs privacy, we base our definition on the secrecy
of the output permutation.

? This is the extended version of the paper published in the proceedings of the 22nd International Colloquium on
Structural Information and Communication Complexity (SIROCCO), Montserrat, Spain, 2015.
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Next, we propose an unconditionally-secure MPS protocol that scales polylogarithmically with
the number of parties, tolerates malicious faults, and is load-balanced. Simulations of our protocol
suggest that it compares favorably with the current state of the art in terms of communication
cost, computation cost, and the number of communication rounds.

In our protocol, we achieve sublinear per-party communication complexity by requiring each
party to only communicate with polylogarithmic-size groups of parties rather than with all par-
ties. This approach, however, introduces important technical challenges to our model; the most
important one is to guarantee the adversary cannot break the security of our protocol via coali-
tions of corrupted parties in more than one group, when we share the same secret information
with the parties in these groups. Some prior work solve this by relaxing the load-balancing require-
ment [BGT13], the resiliency bound [ZMS14], or practical efficiency [DKMS12]. We propose a novel
technique called share renewal without relaxing any of these requirements.

When a protocol is concurrently executed alongside other protocols, one requires to ensure
this composition preserves the security of the protocol.1 Since our goal is to design modular MPS
protocols that can be flexibly used with other protocols, we show security of our protocol under
the universal composability framework as described by Canetti [Can01].

Our Model. Consider n parties P1, ..., Pn in a fully-connected synchronous network with private
and authenticated channels. We assume the parties have no access to any trusted party and/or to
any reliable broadcast channel. We consider a malicious adversary who corrupts at most t < n of
the parties and can see (and analyze) the entire traffic in the network, but cannot see the content
of messages transmitted between uncorrupted parties since we assume private links. The corrupted
parties not only can gossip their information with other corrupted parties but also can deviate
from the protocol in any arbitrary manner, e.g., by sending invalid messages or remaining silent.
We finally assume that the adversary is static meaning that it has to select the set of corrupted
parties at the start of the protocol.

Problem Statement. Let F be a finite field, and π : {1, ..., n} → {1, ..., n} denote a permutation;
a one-to-one and onto function that maps a sequence of n elements (x1, ..., xn) ∈ Fn to another
sequence (xπ(1), ..., xπ(n)) ∈ Fn. For i ∈ {1, ..., n}, every party Pi holds an input xi ∈ F. A multi-
party shuffling (MPS) protocol allows these parties to agree on a permutation π of the sequence
(x1, ..., xn). We consider two variants of this problem. In the first variant, which we call single-output
MPS, each party Pi is required to receive only one of the shuffled inputs xπ(i). In the second variant,
which we call all-output MPS, each party receives the entire output sequence (xπ(1), ..., xπ(n)). We
now define our notion of security.

Definition 1. An MPS protocol is said to be t-secure if and only if, in the presence of a malicious
adversary corrupting up to t < n of the parties, the protocol ensures

– Unlinkability: the adversary can guess π correctly with probability at most 1
(n−t)! . We refer to

the set of possible permutations from which the adversary tries to guess the secret permutation
π as the unlinkability set.

– Correctness: each party is guaranteed that the output it receives is one of the inputs (for single-
output MPS) or contains all (and only all) the inputs (for all-output shuffle).

– Output delivery: corrupted parties cannot prevent honest parties from receiving their output.

1 An adversary attacking several protocols that run concurrently can cause more harm than by attacking stand-alone
executions of these protocols [Can01].



Secure Multi-Party Shuffling 3

In this paper, we consider a relaxed version of Definition 1. This allows us to achieve the highest
level of efficiency in our protocol in exchange of a very small increase in the success probability of
the adversary.

Definition 2. We say an MPS protocol is almost t-secure if and only if in the presence of a
malicious adversary corrupting up to t < n of the parties, the protocol guarantees correctness and
output delivery, and that the adversary can guess π correctly with probability at most 1

(n−t)! (1 + δ),

where δ = o(1) is called the deviation factor.

1.1 Our Results

We prove the following main theorem in Section 4.

Theorem 1. There exists a universally-composable MPS protocol such that with probability 1 −
O(n−3), it guarantees the following properties:

– The protocol is almost t-secure against a computationally-unbounded malicious adversary with
static corruptions, where t < (1/3− ε)n, for some positive constant ε.

– The deviation factor is O(2−2
k
√
logn

), for some constant k > 1.

– Each party sends Õ(1) bits and computes Õ(1) operations.2

– The protocol terminates after O(log n) rounds of communication.

In Section 3.4, we also construct a computationally-secure variant of Theorem 1 to observe (via
simulations) how much cryptographic techniques can influence practical efficiency of our protocol.
This protocol provides the same guarantees as Theorem 1 except for a polynomially time-bounded
adversary. We provide our simulation results in Section 5.

1.2 Related Work

Shuffling in the multi-party setting has already been studied, primarily in the context of mix-nets.
As first defined by Chaum [Cha81], a mix-net consists of a chain of servers (called mixes) that
randomly reorder a sequence of messages in a way that the correlation with the corresponding
input messages remains hidden. To ensure honest behavior in the malicious setting, a verifiable
shuffling [Nef01,AW07] technique is often used, where each mix is asked to prove correctness of its
shuffles without leaking how the shuffle was performed.

Unfortunately, Mix-nets and verifiable shuffling techniques rely on cryptographic assumptions.
Moreover, mix-nets require semi-trusted servers and are known to be vulnerable to traffic-analysis
attacks [PW86]. In traffic analysis, a global adversary maps messages to their senders and recipients
by monitoring the traffic exchanged between parties. Protocols such as [RS93,BFT04] attempt to
solve this with provable guarantees. However, they are either complicated and scale linearly with the
number of parties [RS93], or are not secure against malicious attacks and an adversary monitoring
all communication channels [BFT04].

Chaum [Cha88] uses MPC to introduce the dining cryptographers network (DC-net) for achiev-
ing unlinkability 3 between inputs and outputs; a crucial requirement for both anonymous commu-

2 The symbol Õ is used as a variant of the big-O notation that ignores the logarithmic factors. Thus, f(n) = Õ (g(n))
means f(n) = O

(
g(n) logk g(n)

)
, for some k.

3 Pfitzmann and Hansen [PK01] define “Unlinkability of two or more items means that within this system, these
items are no more and no less related than they are related concerning the a priori knowledge.” This means the
probability of those items being related stays the same before and after the run within the system.
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Table 1. Comparison of MPS techniques

Protocol
Adversarial

Power

Malicious

Adversary?

Fraction

of Parties

Controlled

Fraction

of Links

Monitored

MPS

Security
Latency Bandwidth

Easy to

Implement?

Chaum [Cha81] Computational No O(1)† See note‡ See note§ polylog(n) polylog(n) Yes

Rackoff and Simon [RS93] Computational No O(1)† All Statistical£ polylog(n) Õ(n) No

Berman et al. [BFT04] Computational No O(1)† O(1) Statistical£ polylog(n) polylog(n) Yes

Boyle et al. [BGT13] Computational Yes 1/3− ε All Almost polylog(n) Õ(n) No

Dani et al. [DKMS12] Unconditional Yes 1/3− ε All Almost O(logn) Õ(
√
n) No

This paper Unconditional Yes 1/3− ε All Almost O(logn) Õ(1) Yes

†This protocol assumes the rest of parties are trusted.
‡[PW86] shows traffic-analysis attacks on this protocol if all links are monitored by the adversary.
§Originally supposed to generate perfect shuffles but known attacks reduce shuffle security.
£Measures the statistical distance between the distribution generated by the system and the
uniform distribution [RS93].

nication and MPS. He uses a simple MPC technique to design an unconditionally-secure anonymous
broadcast protocol called . When a party P wants to broadcast a message M anonymously, all par-
ties participate in a multi-party sum with input zero except P who participates with its input M .
As a result of MPC, all parties learn the sum of the inputs (i.e., M) without any party being able
to trace the output to P . The DC-net eliminates the two limitations of Mix-nets: cryptographic
assumptions and traffic-analysis vulnerability.

Although the original DC-net allows only one participant to broadcast at a time, there are
variants such as [vABH03] that implement all-to-all anonymous broadcast and thereby enable multi-
party shuffling of the inputs. Unfortunately, DC-nets suffer from collision and jamming attacks.
Although several work address these issues [vABH03,GJ04,CGWF13], they either do not scale well
with the number of parties [vABH03,GJ04] or require a few highly-available servers [CGWF13].

MPS is closely related to data-oblivious protocols [GO96]. A protocol is data-oblivious if its
control flow is independent of input data. Such a protocol can be used to anonymize access pat-
terns or prevent an adversary from taking over a certain fraction of protocol inputs. Customized
shuffling techniques are designed in the context of oblivious RAMs [GO96], oblivious database
manipulation [LWZ11], oblivious sorting [Zha11,Goo11,HKI+12], and evaluation of sublinear func-
tions [BGT13].A multi-party sorting protocol such as that of [Zha11,HKI+12] can be used to per-
form MPS. Although these protocols scale well with n, they scale poorly with the number of parties.

Rackoff and Simon [RS93] show that if all parties send at each time step, then the traffic-analysis
problem can be solved using MPC. This means that a general MPC scheme such as [BGW88]
that can securely compute any functionality (including shuffling), can be used to design an MPS
protocol with traffic-analysis resistance. Although much theoretical progress has been made in the
MPC literature to achieve polylogarithmic overhead [BGT13,DKMS12], there is a lack of practical
solutions, especially for large number of parties. Moreover, most of these techniques cannot be
easily implemented due to a lack of detailed protocol specifications.

In Table 1, we compare our main protocol with several other ones that can be used to solve the
MPS problem. To make a fair comparison with the MPC protocols of [BGT13,DKMS12], we use
their techniques to compute our own shuffling functionality described in Section 3. In this table,
by bandwidth we mean the communication complexity per shuffled message delivered.
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2 Preliminaries

We now define our notation and describe the tools used throughout this paper.

Notation. For prime p, let Fp denote a finite field with p elements. We say an event occurs with
high probability, if it occurs with probability 1− 1/nc, for some positive constant c.

Verifiable Secret Sharing. A secret sharing protocol allows a party (called the dealer) to share
a secret among n parties such that any set of t or less parties cannot gain any information about
the secret, but any set of at least t + 1 parties can reconstruct it. A verifiable secret sharing
(VSS) protocol is a secret sharing protocol with the additional property that after the sharing
phase, a corrupted dealer is either disqualified or the honest parties can reconstruct the secret,
even if shares sent by corrupted parties are spurious. In our protocol, we use the VSS scheme of
Ben-Or et al. [BGW88]. We refer to the sharing protocol of this scheme as VSS-Share and to its
reconstruction protocol as VSS-Reconst.

The VSS scheme of [BGW88] is based on Shamir’s secret sharing [Sha79]. In this scheme, the
dealer shares a secret s among n parties by choosing a random polynomial f(x) of degree t such
that f(0) = s. For all i ∈ [n], the dealer sends f(i) to the i-th party. Since at least t+ 1 points are
required to reconstruct f(x), no coalition of t or less parties can reconstruct s. A secret sharing
scheme is linear if given two shares ai and bi of secrets a and b, ci = ai + bi is a valid share of
c = a+ b.

Theorem 2 ([BGW88]). There exists a synchronous linear VSS scheme for t < n/3 that is
unconditionally-secure against a static malicious adversary.

Quorum Building. King et al. [KLST11] give a protocol that can be used to bring all parties
to agreement on a collection of n quorums. A quorum is a set of N = O(log n) parties, where
it is guaranteed that at most a fixed fraction of the parties in the set are corrupted. In general,
one can use any BA algorithm (such as [BGH13]) to build a set of quorums in the way described
in [KLST11].

Theorem 3 ([KLST11,BGH13]). There exists an unconditionally-secure protocol that brings all
honest parties to agreement on n quorums with probability 1−O(n−3). The protocol has Õ(n) amor-
tized communication and computation complexity over the number of parties, and it can tolerate up
to (1/3 − ε)n corrupted parties, for any positive ε. Each quorum is guaranteed to have T < N/3
corrupted parties.

We refer to this protocol as Build-Quorums. Several recent MPC schemes [BGT13,ZMS14] make
use of quorums to achieve scalability. We are particularly inspired by Dani et al. [DKMS12].

Sorting Networks. A sorting network is a network of comparators. Each comparator is a gate
with two input wires and two output wires. When two values enter a comparator, it outputs
the lower value on the top output wire, and the higher value on the bottom output wire. Aj-
tai et al. [AKS83b] describe an asymptotically-optimal O(log n) depth sorting network. However,
this network is not practical due to large constants hidden in the depth complexity. Leighton and
Plaxton [LP90] propose a probabilistic sorting circuit with depth 7.44 log n that sorts a randomly
chosen input permutation with very high probability meaning that it sorts all but σ · n! of the n!

possible input permutations, where σ = 1/22
κ
√
logn

, for some constant κ > 0.4

4 This gives a Monte Carlo guarantee: for (1 − σ)n! of input permutations, the circuit sorts correctly, but for the
rest σn! permutations, it simply fails and gives no guarantees.
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Secure Comparison. Given two linearly secret-shared values a, b, Damg̊ard et al. [DFK+06] pro-
pose an efficient protocol for computing a new secret-shared value ρ = (a ≤ b) meaning that ρ is 1
if a ≤ b and 0 otherwise. Their protocol is unconditionally secure, has O(1) rounds, and requires
O(`) invocations of a secure multiplication protocol, where ` is the bit-length of elements to be
compared. We denote this protocol by Compare. For multiplication of secret-shared values, we use
the protocol of Ben-Or et al. [BGW88] with the simplifications of Gennaro et al. [GRR98]. By
plugging the VSS of Theorem 2 into the protocol of [GRR98], we achieve an unconditionally-secure
multiplication protocol, which we denote by Multiply.

Secure Broadcast In the malicious setting, when parties have only access to secure pairwise
channels, a protocol is required to ensure secure (reliable) broadcast. Such a broadcast protocol
guarantees all parties receive the same message even if the broadcaster (dealer) is corrupted and
sends different messages to different parties. It is known that a Byzantine agreement protocol can
be used to perform secure broadcasts. Braud-Santoni et al. [BGH13] describe the following result.
In our proofs, we refer to this algorithm by BA.

Theorem 4 ([BGH13]). There exists an unconditionally-secure protocol for performing secure
broadcasts among n parties. The protocol has Õ(n) amortized communication and computation
complexity, and it can tolerate up to (1/3− ε)n corrupted parties, for any positive ε.

The algorithm of [BGH13] achieves this result by relaxing the load-balancing requirement.
If concerned with load-balancing, one can instead use the load-balanced Byzantine agreement of
King et al. [KLST11] with O(

√
n) blowup.

3 Our Protocol

We now describe our MPS protocol. Consider two finite fields Fp and Fq of prime orders p and q
respectively. The high-level idea is as follows: for each party Pi holding an input xi ∈ Fp, a uniform
and independent random value ri ∈ Fq is chosen to form an input pair (ri, xi), where i ∈ [n]. Then,
the sequence of pairs ((r1, x1), ..., (rn, xn)) is sorted according to the first elements of the pairs. We
show that, for sufficiently large prime q, this algorithm randomly shuffles the sequence of inputs
(x1, ..., xn) with high probability.

To compute this functionality securely, we construct the circuit shown in Figure 1, which we
denote by M. This circuit consists of the probabilistic sorting circuit of [LP90] augmented by
n input gates; the functionality of each gate is computed by a quorum. M is created jointly by
all parties before the protocol starts during an input-independent setup phase. Then, it is jointly
evaluated by all parties possibly many times to shuffle many input sequences5.

The circuit M is constructed in the following way. First, we create n quorums Q1, ..., Qn each
with N = O(log n) parties. We assign each party Pi to Qi, for all i ∈ [n]. This quorum is responsible
for receiving Pi’s input xi and choosing a random value ri on behalf of Pi. Now, let C denote the
probabilistic sorting network of [LP90] and m = Θ(n log n) be the number of gates in C.

For all j ∈ [m], we assign the j-th gate of C to Q(j mod n). This quorum is later used for secure
evaluation of the gate’s functionality. For simplicity of notation, we assume the quorums associated
with the output gates of C are Q1, ..., Qdn/2e.

6 When used to receive inputs of M, we refer to

5 This setup phase is information-theoretically secure and does not rely on one-time pads. Thus, the same M can
be used any number of times for shuffling many input sequences.

6 Note that a quorum can be re-used any number of times for local computations as long as its inputs for each use
are secret-shared independently from other uses.
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Fig. 1. MPS circuit

Q1, ..., Qn as input quorums. When used to send outputs ofM to all parties, we refer toQ1, ..., Qdn/2e
as output quorums.

Creating the probabilistic sorting circuit C requires O(log2 n) random bits known to all parties.
We generate these bits by asking one of the quorums to agree on a sequence R of O(log2 n) random
bits, and then send R to all parties via a binary tree of quorums. This randomness is then used
by the parties to agree on the structure of C using the random butterfly tournament procedure
described in [LP90].

To ensure privacy, every quorum in M receives and maintains its inputs in a secret-shared
format, i.e., each party receives only a share of each input rather than the actual input. Moreover,
all computations in these quorums are performed over secret-shared values. When we say a party
VSS-shares (or secret-shares) a value s in a quorum Q (or among a set of parties), we mean the
party participates as the dealer with input s in the protocol VSS-Share with all parties in Q (or in
the set of parties). As a result, the parties agree on a random polynomial f(x) such that f(0) = s,
and the i-th party receives f(i) as his verified share of s.

Protocol 1 shows our main protocol, where M is evaluated level-by-level until the final out-
puts are generated by the output quorums. For all i ∈ [n], parties in the output quorum Qi send
their shares directly to Pi who reconstructs the corresponding secret xπ(i), where π denotes the
permutation generated by the circuit.

It is left to implement two subprotocols used in Protocol 1: Renew-Shares and Ran-Gen. In
Section 3.1, we describe Renew-Shares as a protocol that allows parties of a quorum to securely
send a secret-shared value to parties of another quorum. In Section 3.2, we describe Ran-Gen as a
protocol that allows a group of parties to agree on a uniformly random value. We prove the security
of Protocol 1 (and Theorem 1) in Section 4. In particular, we show that for sufficiently large k > 0
and q = Ω(kn2 log n), this protocol provides almost t-secure MPS with high probability.



8 Mahnush Movahedi, Jared Saia, and Mahdi Zamani

Protocol 1 Secure Multi-Party Shuffling Scheme

Inputs. For all i ∈ [n], party Pi holds an input xi. Let C denote the probabilistic sorting network
of [LP90] and d denote its depth.

Goal. Parties jointly compute a random shuffle of their inputs.

The protocol:

1. Setup.

(a) Parties run Build-Quorums to agree on n quorums Q1, ..., Qn.

(b) Parties in Q1 run Gen-Rand and VSS-Reconst repeatedly to generate a sequence R of
Θ(log2 n) random bits.

(c) Parties in Q1 send R to all other quorums in the following way. For all i ∈ {2, .., n}, parties
in Qi receive R from Qbi/2c, and then send it to all parties in Q2i and Q2i+1.

(d) For all i ∈ [n] and j ∈ [m], parties assign Qi to Pi and Q(j mod n) to the j-th gate of C, and
connect the gates based on the random butterfly tournament described in [LP90] and the
random sequence R.

2. Input Sharing. Party Pi VSS-shares his input xi with Qi.

3. Random Generation. Parties in input quorum Qi perform the following steps:

(a) Run Gen-Rand to generate a random secret-shared value ri ∈ Fq, where q > 3
2kn

2 log n for
any k > 0.

(b) Run Renew-Shares to send the secret-shared pair (ri, xi) to Qdi/2e.

4. Sorting. C is evaluated level-by-level starting from the input gates. For each gate G in C and
quorum Q assigned to G, parties in Q perform the following steps:

(a) Comparison. Let (r, x) and (r′, x′) be the secret-shared inputs of G. The parties run
Compare to securely compare the secret-shared values r, r′. Let ρ = (r ≤ r′) be the resulting
secret-shared value. The parties compute the output secret-shared pairs (s, y) and (s′, y′)
from

s = ρ · r + (1− ρ) · r′, y = ρ · x+ (1− ρ) · x′

s′ = ρ · r′ + (1− ρ) · r, y′ = ρ · x′ + (1− ρ) · x

For every addition of secret-shared values a, b, parties locally compute a+ b. For every
multiplication, they run Multiply.

(b) Output Resharing. Parties run Renew-Shares to send secret-shared values s, y, s′, y′ to the
parent quorum.

5. Output Delivery. For all i ∈ [n− 1], let (si, yi) and (si+1, yi+1) be the pairs of secret-shared
values the output quorum Qdi/2e computes in the previous step.

(a) Each party in this quorum sends his share of yi to party Pi and his share of yi+1 to party
Pi+1.

(b) Parties Pi and Pi+1 run VSS-Reconst to reconstruct yi and yi+1 respectively.
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3.1 Share Renewal

Once the computation of each gate is finished, parties in the quorum associated with that gate send
the secret-shared result to any quorums associated with gates that need this result as input. Let
Q denote a quorum at which the computation of a gate has finished, and let Q′ denote a quorum
that requires the output of that computation. In order to secret-share the result to Q′ without
revealing any information to any individual party (or to any coalition of corrupted parties in both
Q and Q′), a fresh sharing of the result must be distributed in Q′. If s is secret-shared using a
polynomial f(x) of degree t, then a fresh sharing of s is a new secret sharing of s defined using
another polynomial g(x) of degree t chosen uniformly and independently at random. We refer to
the problem of generating a fresh sharing of a secret-shared value among a new set of parties as
share renewal.

Handling the share renewal problem efficiently and robustly is challenging. Dani et al. [DKMS12]
solve it by masking the result in Q using a fresh random value and unmasking it in Q′. Although
their approach is secure against up to T < N/3 corrupted parties in each quorum, they do not
provide an explicit construction and simple constructions seem very expensive in terms of both
communication and computation costs.7

Boyle et al. [BGT13] overcome this problem by sending encrypted inputs to only one quorum
which does all of the computation using fully-homomorphic encryption. This is not load-balanced,
as it incurs a large computation and communication overhead to parties in that quorum. Za-
mani et al. [ZMS14] propose a simple technique for this problem that is, unfortunately, secure only
against up to T < N/6 corrupted parties in each quorum.

We now describe a novel technique for share renewal that is secure against up to T < N/3
corrupted parties in each quorum. Let s denote the output of Q that is secret-shared among parties
in Q using a random polynomial f(x) of degree t. Our technique is based on the observation that if
every share of s is reshared using a fresh random polynomial, then a specific linear combination of
the new shares defines a new random polynomial g(x) such that g(0) = s. This was first observed
by Gennaro et al. [GRR98] as a simple method for polynomial randomization and degree-reduction
in the multiplication protocol of [BGW88].

Let g(x) = s + a1x + ... + aTx
T . Our goal is to calculate the coefficients a1, ..., aT . Follow-

ing [GRR98], we write


1 1 · · · 1

1 2 · · · 2N−1

...

1 N · · · NN−1



s

a1
...

aN

 =


f(1)

f(2)

...

f(N)

 ,

where aT+1, · · · , aN = 0. The matrix above is an N -by-N Vandermonde matrix that is non-
singular and hence is invertible. Let

[
λ1 λ2 · · · λN

]
be the first row of the inverse matrix. Thus,

s = λ1f(1) + ... + λNf(N). For all i ∈ [N ], consider a fresh polynomial hi(x) of degree T , where
hi(0) = f(i). We define g(x) =

∑N
i=1 λihi(x). Since g(0) = λ1f(1)+...+λNf(N) = s, the polynomial

g(x) defines a fresh sharing of s. Using this, we define our share renewal protocol Renew-Shares in
Protocol 2.

7 Their approach relies on the existence of an unmasking circuit securely evaluated by parties in Q′. Such a circuit
must implement an error-correcting technique which requires many multiplication gates.
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Protocol 2 Renew-Shares
Inputs. A set of parties P1, ..., PN jointly hold a secret-shared value s, i.e., a polynomial f(x) of
degree T < N/3 is defined such that f(0) = s, and for all i ∈ [N ], Pi holds f(i).

Goal. Generate a fresh sharing of s among another group of parties P ′1, ..., P
′
N . This means that

the protocol must calculate a polynomial g(x) of degree T uniformly and independently at random
such that g(0) = s, and for all j ∈ [N ], P ′j holds g(j).

The protocol:

1. Each party Pi runs Reshare to VSS-share f(i) among P ′1, ..., P
′
N using a random polynomial

hi(x) of degree T such that hi(0) = f(i).

2. Each party P ′j locally computes its share of s from g(j) =
∑N

i=1 λihi(j).

In the first step of Renew-Shares, we ask each party to reshare its share f(i) by running a
protocol called Reshare. This protocol ensures that every corrupted party shares its correct share
f(i) instead of some random or maliciously-chosen value. Asharov and Lindell [AL11] implement
a protocol (called subshare) that ensures this resharing process is done robustly. We refer to this
protocol as Reshare. In Section 4, we prove Renew-Shares is UC-secure against at most T < N/3
corrupted parties in each quorum.

3.2 Random Generation

We define protocol Gen-Rand using a simple and well-known technique for generating uniformly
random secret which is done by adding shares of uniformly random secrets received from all parties.
Protocol 3 describes the protocol.

Protocol 3 Gen-Rand
Goal. A set of parties P1, ..., PN want to agree on a secret-shared value r chosen uniformly at
random from Fq, for some prime q.

The protocol:

1. For all i ∈ [N ], party Pi chooses ρi ∈ Fq uniformly at random and VSS-shares it among all N
parties.

2. For all j ∈ [N ], let ρ1j , ..., ρNj be the shares Pj receives from the previous step. Pj computes

rj =
∑N

k=1 ρkj .

3.3 Remarks

In the following, we discuss alternative approaches that could be used to design different MPS
protocols from Protocol 1.

All-Output MPS. Protocol 1 describes a single-output MPS construction, where each party re-
ceives only one element of the output sequence. Although this is useful in many applications such as
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data-oblivious protocols that often use MPS as an intermediate step, an all-output MPS protocol
can be used in some applications such as anonymous broadcast. To achieve all-output MPS, the
output delivery step of Protocol 1 becomes as follows. For all i ∈ [n− 1], parties in the output
quorum Qdi/2e run VSS-Reconst to reconstruct yi and yi+1 and then send (yi, yi+1) to all n parties.
Each party receiving a set of N pairs from each output quorum, chooses one pair via majority
filtering and considers it as the output of that quorum.

Remark on Deterministic Sorting Networks. While the probabilistic sorting network of [LP90]
is sufficient for us to achieve an almost t-secure MPS with logarithmic latency (Theorem 1), one
can instead use a deterministic sorting network such as those of [AKS83a,Bat68] to achieve t-secure
MPS (i.e., uniform shuffling) at the expense of increased latency, communication, and computation
costs. We are not aware of a sorting network that can result in better asymptotic and practical costs
than the sorting network of [LP90] in terms of latency, communication, and computation costs.

Remark on Permutation Networks. One approach for solving MPS is to securely evaluate a
permutation network instead of obliviously sorting random values. A permutation network is a
network of swappers, where each swapper is a gate with two inputs and two outputs; it permutes
the inputs randomly with probability 1/2. A permutation network with n input wires is typically
used to generate a random permutation of n values. A network consisting entirely of switches
with swapping probability of 1/2 cannot generate uniform permutations of n values, because for a
network with m swappers, there are 2m different outcomes. Since n! is not a power of 2, some of
the possible n! permutations are generated with higher probability than others.

Waksman [Wak68] suggests an O(n log n) time and memory algorithm for generating unbi-
ased permutations. The idea is to first choose a permutation uniformly at random and then com-
pute a proper setting of swappers that represents the permutation.8 Unfortunately, it is not clear
how this algorithm can be implemented efficiently in a load-balanced multi-party setting. Czu-
maj et al. [CKLK01] propose a permutation network with O(1/n2) statistical distance from the
uniform distribution. To the best of our knowledge, this network provides the smallest distance
among known networks with polylog(n) depth. Still, this result cannot be used to achieve an al-
most t-secure MPS (as in Definition 2) because in worst case, the adversary can guess the correct
permutation with probability 1/n! +O(1/n2) that is ω(1/n!).

3.4 Cryptographic Variant of Protocol 1

We now describe a computationally-secure variant of Protocol 1 using two cryptographic subpro-
tocols: the VSS protocol of [KZG10] (known as eVSS ) and the multiplication protocol of [GRR98].
Since eVSS generates commitments over elliptic curve groups, it requires smaller message sizes than
other cryptographic VSS schemes such as [GRR98].

Theorem 5 ([KZG10]). There exists a constant-round linear VSS scheme for t < n/2 secure
against a computationally-bounded adversary.

Theorem 6 ([GRR98]). There exists a constant-round multiplication protocol secure against a
computationally-bounded malicious adversary corrupting up to n−1

2 parties.

Theorem 7. By plugging the VSS of Theorem 5 and the multiplication protocol of Theorem 6 into
Protocol 1, each party is required to send Õ(1) messages of size ` = O(κ+ log n) each and compute
Õ(`) operations, where κ is the security parameter. The protocol has latency O(log n).

8 Here, we assume each swapper has a control bit that when it is set, the swapper always swaps its two inputs,
otherwise it keeps their order.
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In Section 5, we empirically compare this cryptographic variant with Protocol 1.

4 Security Proofs

The error probability in Theorem 1 comes entirely from the following steps of Protocol 1 failing to
output correct results with some probability:

– Setup: Protocol Build-Quorums may fail to create good quorums. Theorem 3 shows this failure
happens with probability o(1).

– Random Generation: It is possible that two or more input quorums choose exactly the same
random elements from Fq. In this situation, we say a collision happens. Collisions increase the
probability that the adversary can correctly guess the secret permutation generated by the
protocol. Lemma 2 proves that, for sufficiently large q, failure due to collisions happens with
probability o(1).

– Sorting: The sorting circuit of [LP90] may fail to sort correctly with probability o(1).

All other components of our protocol are deterministic and thus have no error probability. For
simplicity, we assume the three steps above return without failure.9 However, even assuming the
sorting step of Protocol 1 returns without failure, the adversary can still take advantage of the
a priori knowledge that a σ fraction of the input permutations are never sorted by the circuit,
to reduce the set of possible input permutations; thus increasing his chance of correctly guessing
the secret permutation. In Lemma 1, we show this a priori knowledge increases the chance of the
adversary in correctly guessing the secret permutation by only a small (i.e., o(1)) amount. Hence,
Protocol 1 achieves an almost t-secure MPS. We prove this lemma in Section 4.

Lemma 1. Protocol 1 implements an almost t-secure MPS.

In Lemma 2, we find suitable values for q (the size of the field of random values) such that the
probability of collision is bounded by a sufficiently small value. We prove this lemma by a simple
application of the Chernoff bound in Section 4.

Lemma 2. For some prime q, let Fq be the field of random elements generated in the Random
Generation step of Protocol 1. The probability that a collision happens between any two parties is
o(1) if q = Ω(kn2 log n), for some k > 0.

We prove the security of Protocol 1 in the universal composability framework. To this end, we
define a hybrid model based on the modular composition theorem [Can01], and argue that, for
any adversary that interacts with our protocol, there exists a simulator such that no environment
can tell apart whether it is interacting with a run of the hybrid protocol and the adversary, or
with a run of the ideal model of our protocol and the simulator. The following lemma is proved in
Section 4.1.

Lemma 3. Up to the output delivery step, Protocol 1 guarantees the following:

1. Any set of t < (1/3− ε)n parties cannot learn any information about the protocol inputs other
than what they can jointly learn solely from their set of inputs.

9 For simplicity in our proofs, we assume the subprotocol Build-Quorums is run only once, and it does not run
concurrently with any other protocols.
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2. Any set of t < (1/3− ε)n parties cannot prevent the protocol from succeeding.

3. The security is maintained under universal composability.

We now prove Theorem 1. Throughout this section, whenever we talk about a protocol that runs
among N = O(log n) parties belonging to a quorum, we denote the set of indices of the corrupted
parties in this quorum by I. We start by proving Lemma 1.

Proof. Let X = (x1, ..., xn) be the input sequence and Y = (y1, ..., yn) be the output sequence gen-
erated by Protocol 1 such that, for all i ∈ [n], yi = xπ(i), where π : [n]→ [n] is the permutation
mapping X to Y . To prove Protocol 1 is almost t-secure, we show that the adversary can guess π
correctly with probability at most 1

(n−t)! (1 + o(1)). We do this by measuring the information leaked
by the protocol about π to an adversary controlling at most t parties.

Before proceeding, we remark that the set of all permutations (each as a function f : [n]→ [n])
over n values is always the same regardless of the values themselves. Formally, let A and B denote
any two arbitrary sets, SA denote the set of all permutations of elements in A, and SB denote
the set of all permutations of elements in B. Then, SA = SB. This is because a permutation is
essentially a function mapping every position in a sequence to another position in that sequence,
and the set of all such functions over n values {1, ..., n} is always the same. Throughout this proof,
we let S denote the set of all possible permutations over n values. Clearly, |S| = n!.

Let H denote the unlinkability set which is the set of all permutations from which the ad-
versary tries to guess π, where |H| ≤ |S|. In fact, the larger H, the smaller the chance of the
adversary in breaking the security of the protocol. If the protocol did not leak any information,
then |H| = |S| = n!. To show this, let X+ denote the sequence of inputs to the sorting circuit
denoted by C. This sequence contains the elements of X augmented by the random values r1, ..., rn
generated in the Random Generation step of Protocol 1; thus X+ = ((r1, x1), ..., (rn, xn)). Let
Y + = ((s1, y1), ..., (sn, yn)) denote the sequence that C outputs. We say an arbitrary sequence
Z+ = ((t1, z1), ..., (tn, zn)) is equal to Y (and denote Z+ = Y +) if and only if yi = zi, for all i ∈ [n].

In fact, Z+ = Y + if and only if ti is the i-th smallest element in {r1, ..., rn} conditioned on
knowing the i−1 smallest elements. Note that although the inputs to C are values chosen uniformly
and independently at random from Fq, the set of permutations that each can map the inputs of
C to its outputs is still S because there are n input positions and n output positions. Thus, the
number of possible permutations mapping X+ to Y + is n · (n − 1) · ... · 1 = n! = |S|. Since for
every input sequence X the protocol builds exactly one augmented sequence X+, the number of
permutations mapping X to Y that the protocol can generate is also n!.

Even though Protocol 1 is capable of generating all n! permutations (that exist in S), it leaks
some information allowing the adversary to rule out two subsets of permutations from S making
H smaller than S. These subsets are as follows:

1. R1: The largest subset of S that the adversary can obtain by learning t protocol inputs and
their order in the output sequence. This is revealed after the output delivery step of Protocol 1
by the coalition of t corrupted parties. By fixing t positions in the input sequence, the adversary
rules out |R1| = n!− (n− t)! permutations from S.

2. R2: A subset of S consisting of a σ fraction of the permutations in S. These are the permutations
that cannot be sorted by C. Thus, the adversary rules out |R2| = σ|S| = σn! permutations from
S.

In Lemma 4, we show that, in each run, Protocol 1 chooses a permutation from S uniformly
and independently at random. Intuitively, this means that, from the adversary’s point of view,
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the elements of R2 are uniformly distributed over S. Formally, let ψ denote the random variable
corresponding to the permutation that the protocol randomly chooses from S. Lemma 4 shows that
the adversary has no control over the sequence of random values (r1, ..., rn). This means that the
events ψ ∈ R1 and ψ ∈ R2 are statically independent. Thus,

Pr(ψ ∈ R1 ∧ ψ ∈ R2) = Pr (ψ ∈ (R1 ∩R2))

= Pr(ψ ∈ R1) · Pr(ψ ∈ R2)

= Pr(ψ ∈ R1) ·
|R2|
|S|

= σPr(ψ ∈ R1).

Since Pr(ψ ∈ R1) = |R1|
|S| and Pr (ψ ∈ (R1 ∩R2)) = |R1∩R2|

S ,

|R1 ∩R2| = σ|R1|.

In Lemma 3, we prove that, other than t input values and their order in the output sequence,
Protocol 1 does not reveal any information about the inputs to the adversary. This means that the
adversary cannot learn more information about π other than what it learns from R1 and R2. Thus,

|H| ≥ |S| − |R1 ∪R2|
= |S| − |R1| − |R2|+ |R1 ∩R2|
= n!− (n!− (n− t)!)− σn! + σ (n!− (n− t)!)
= (1− σ)(n− t)!.

We now show that, from the adversary’s point of view, the elements of H are all equally likely
to be the secret permutation. In Lemma 4, we show that the Random Generation step of Protocol 1
securely generates a uniform and independent sequence (r1, ..., rn) that is completely unknown to
the adversary. Since the protocol chooses the permutation π from H according to this random
sequence, π is also chosen uniformly and independently at random.

Let ξ ∈ H denote the random variable corresponding to the permutation guessed by the adver-
sary. The probability that the adversary guesses the correct permutation π is

Pr(ξ = π) =
1

|H|
≤ 1

(1− σ)(n− t)!

=
1

(n− t)!

(
1 +

σ

1− σ

)
=

1

(n− t)!

(
1 +

1

22κ
√
logn − 1

)
≤ 1

(n− t)!

(
1 + 2−2

k
√
logn
)

=
1

(n− t)!
(1 + o(1))

In the third line, we set σ = O(2−2
κ
√
logn

) from [LP90], for any constant κ > 0. The fourth line is

correct for any constant k > 1. The last line is correct because 2−2
k
√
logn

= o(1). Therefore based
on Definition 1, Protocol 1 is almost t-secure.
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Lemma 4. The Random Generation step of Protocol 1 generates a sequence (r1, ..., rn), where each
element is chosen uniformly and independently at random from Fq, and the adversary does not learn
anything about the sequence.

Proof. Based on the security of Gen-Rand shown in Lemma 6, each input quorum Qi agrees on a
uniform and independent random value ri chosen from Fq. Since at most T < N/3 of the parties in
Qi are corrupted, and ri is kept in the secret-shared format, the adversary cannot learn anything
about the sequence and/or maliciously set/change the sequence.

We now prove Lemma 2. Based on the security of Gen-Rand shown in Lemma 6, all elements
generated by the input quorums in the random generation step of Protocol 1 are chosen uniformly
at random and independent of all other random elements generated throughout the protocol. Let
Pi and Pj be two parties and ri, rj ∈ Fq be the random values assigned to them respectively by
their corresponding input quorums. The probability that ri = rj is 1/q. Let Xij be the following
indicator random variable and Y be a random variable giving the number of collisions happening
between any two parties. We write

Xij =

{
1, ri = rj

0, otherwise
, Y =

∑
i,j∈[n]

Xij .

Using linearity of expectations,

E(Y ) = E
( ∑
i,j∈[n]

Xij

)
=
∑
i,j∈[n]

E(Xij) =
1

q

(
n

2

)
=
n(n− 1)

2q
.

We want to find an upper bound on the probability of collisions using the Chernoff bound that is

Pr(Y ≥ (1 + α)E(Y )) ≤ e−
α2E(Y )

3 .

To ensure that no collision happens with high probability, we need to have (1 + α)E(Y ) < 1

while e−
α2E(Y )

3 < 1
nk

, for any k > 0. Choosing α < 1
E(Y ) − 1 and solving the inequalities for E(Y )

we get

e−
α2E(Y )

3 <
1

nk
⇒ e−

α2E(Y )
3 < e−k logn ⇒ 1− α2E(Y )

3
< −k log n ⇒

(α+ 1)2E(Y )

3
> k log n ⇒ E(Y ) <

1

3k log n
.

Since E(Y ) = n(n−1)
2q < 1

3k logn , solving this for q gives the bound q > 3
2kn

2 log n and α < 3k log n− 1.

To complete the proof of Theorem 1, we need to show that, up to the output delivery step,
Protocol 1 does not reveal any information about the inputs to any party. We prove this in Lemma 3
using the universal composability framework [Can01] briefly reviewed in Section 4.1.
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4.1 Security Under Composition

The UC framework is based on the simulation paradigm [Gol00], where the protocol is considered
in two models: ideal and real. In the ideal model, the parties send their inputs to a trusted party
who computes the function and sends the outputs to the parties. We refer to the algorithm run by
the trusted party in the ideal model as the functionality of the protocol. In the real model, parties
run the actual protocol that assumes no trusted party. We refer to a run of the protocol in one of
these models as the execution of the protocol in that model.

A protocol P securely computes a functionality F if for every adversary A in the real model,
there exists an adversary S in the ideal model, such that the result of a real execution of P with A
is indistinguishable from the result of an ideal execution with S. The adversary in the ideal model,
S, is called the simulator.

The simulation paradigm provides security only in the stand-alone model. To prove security
under composition, the UC framework introduces an adversarial entity called the environment,
denoted by Z, who generates the inputs to all parties, reads all outputs, and interacts with the
adversary in an arbitrary way throughout the computation. The environment also chooses inputs
for the honest parties and gets their outputs when the protocol is finished.

A protocol is said to UC-securely compute an ideal functionality F if for any adversary A that
interacts with the protocol there exists a simulator S such that no environment Z can tell whether
it is interacting with a run of the real protocol and A, or with a run of the ideal model F and S.

Now, consider a protocol P that has calls to ` subprotocols P1, ...,P` which are already proved
to be UC-secure. To facilitate the security proof of P, we can use the modular composition the-
orem [Can00]. This theorem states that, in order to prove the security of P, it is sufficient to
compare the ideal model to a hybrid model (instead of the real model), where the subprotocols are
assumed to be ideally computed by a trusted third-party. This hybrid model is usually called the
(P1, ...,P`)-hybrid model because it involves both a real protocol execution and an ideal trusted
third-party computing the subprotocols.

4.2 Proof Sketch

Before proceeding to the proof, we remark that the error probability in Theorem 1 comes entirely
from the possibility that Build-Quorums or the threshold counting procedure may fail to output
correct results. All other components of our algorithm are deterministic and thus have no error
probability. We also assume that, at the beginning of our MPC protocol, the parties have already
agreed on n good quorums, and the threshold counting procedure is performed successfully.10

As in [Gol04], we refer to the security in the presence of a malicious adversary controlling t
parties t-security. For every gate u ∈ M, we let Qu denote the quorum associated with u, and Iu
denote the set of the corrupted parties in the quorum associated with u. Also, let I denote the set
of all corrupted parties, where |I| < t.

In the context of perfectly-secure protocols, Kushilevitz et al. [KLR10] show Theorem 8, which
helps us derive the UC-security of some of our building blocks. This theorem targets perfectly-secure
protocols that are shown secure using a straight-line black-box simulator. A black-box simulator is
a simulator that is given only oracle access to the adversary (see [Gol00] Section 4.5 for a detailed
definition). Such a simulator is straight-line if it interacts with the adversary in the same way as
real parties meaning that it proceeds round by round without ever going back.

10 For simplicity, we assume the primitive Build-Quorums is run only once, and it does not run concurrently with
other protocols.
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Theorem 8 ([KLR10]). Every protocol that is perfectly-secure in the stand-alone model and has
a straight-line black-box simulator is UC-secure.

Our goal is to prove the UC-security of Protocol 1. Following the modular composition theorem,
we first define the ideal functionalities shown in Table 2 that correspond to the subprotocols used in
Protocol 1. We then prove that Protocol 1 is t-secure in the (FBA, FVSS-Share, FVSS-Reconst, FMultiply,
FCompare, FRenew-Shares, FGen-Rand)-hybrid model. Finally, we use Theorem 8 to infer the UC-security
of Protocol 1.

In order to prove the t-security of Protocol 1 in the hybrid model, we first show that all of
our subprotocols are UC-secure. Similar to the above approach, we first prove t-security of every
subprotocol in its corresponding hybrid model using a straight-line black-box simulator and then
use Theorem 8 to infer its UC-security. To prove the t-security of a protocol Π, we describe a

Table 2. Ideal functionalities

Functionality Implemented by Refer to

FBA Protocol BA Theorem 4
FVSS-Share Protocol VSS-Share Theorem 2
FVSS-Reconst Protocol VSS-Reconst Theorem 2
FMultiply Protocol Multiply Protocol 6.17 of [AL11]
FReshare Protocol Reshare Protocol 6.8 of [AL11]
FCompare Protocol Compare Comparison protocol of [DFK+06]
FRenew-Shares Protocol Renew-Shares Protocol 2
FGen-Rand Protocol Gen-Rand Protocol 3

simulator SΠ that simulates the real protocol execution by running a copy of Π in the ideal model.
For each call to a secure subprotocol π, the simulator calls the corresponding ideal functionality
Fπ. A view of a corrupted party from execution of a protocol is defined as the set of all messages
it receives during the execution of that protocol. At every stage of the simulation process, SΠ adds
the messages received by every corrupted party in that stage to its view of the simulation. This is
achieved by running a copy of Π for each corrupted party with its actual input as well as by running
a copy of Π for each honest party with a dummy input.11 The view of the adversary is then defined
as the combined view of all corrupted parties. Finally, we argue that the view of the adversary from
the execution of the hybrid model is indistinguishable from its view of the simulation.

Lemma 5. Subprotocols BA, VSS-Share, VSS-Reconst, Reshare, Multiply, and Compare are UC-
secure.

Proof. Lindell et al. [LLR06] show that any BA protocol in the standard model (such as the
protocols of [BGH13,KLST11]) is secure under concurrent general composability. Using Theorem 8,
since the security proofs of VSS-Share, VSS-Reconst, Reshare, and Multiply given in [AL11] use
straight-line black-box simulators, these protocols are UC-secure. Finally, Compare is shown to be
UC-secure in [DFK+06].

The ideal functionality FGen-Rand is given in Protocol 4. At least N − T of the inputs ρ1, ..., ρN
are sent by uncorrupted parties and thus are chosen uniformly and independently at random from
Fq. Hence, r =

∑N
i=1 ρi is also a uniform and independent random element of Fq.

11 SΠ learns neither the actual inputs nor the actual outputs of the honest parties.
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Protocol 4 FGen-Rand

Goal. For a gate u ∈M, generate a random value r ∈ F and VSS-share it among parties P1, ..., PN
in the quorum associated with u.

Functionality:

1. Receive inputs ρ1, ..., ρN ∈ F from P1, ..., PN respectively. For every i ∈ [N ], if Pi does not send
an input, then define ρi = 0.

2. Calculate r =
∑N

i=1 ρi and invoke FVSS-Share to send a share ri of r to Pi.

Lemma 6. The protocol Gen-Rand is UC-secure.

Proof. We prove the t-security of Gen-Rand in the FVSS-Share-hybrid model which is similar to
Protocol 3 except that every call to VSS-Share is replaced with a call to the ideal functionality
FVSS-Share. The corresponding simulator SGen-Rand is given in Protocol 5.

Protocol 5 SGen-Rand
Inputs. For a gate u ∈ M, the inputs {ρj}Pj∈Iu of the corrupted parties P1, ..., PN in the quorum
associated with u.

Simulation:

1. For every Pi ∈ (Qu − Iu) (i.e., for every honest party Pi), call FVSS-Share with dummy input 0.
Let si1, ..., s

i
N denote the outputs.

2. For every Pj ∈ Iu,

(a) Run FVSS-Share with input ρj . Let ρj1, ..., ρ
j
N denote the outputs. For every k ∈ [N ], add ρkj

to the view of Pj .

(b) Compute rj =
∑N

k=1 ρ
k
j and add rj to the view of Pj .

The views of the corrupted parties in the hybrid execution and the simulation are indistin-
guishable because the only difference between the two views is that SGen-Rand generates the shares
from dummy input 0 instead of actual inputs. Since FVSS-Share generates uniform and independent
random shares from any input, the two views are identically distributed. Following Theorem 8,
since our simulator is straight-line and black-box, Gen-Rand is UC-secure.

Lemma 7. The protocol Renew-Shares is UC-secure.

Proof. The corresponding ideal functionality FRenew-Shares is shown in Protocol 6. In this function-
ality, we denote the ideal functionality of Reshare by FReshare which is equal to F subshareV SS defined
in [AL11]. Using this functionality, a set of parties can verifiably secret-share values that are them-
selves shares. If a corrupted party Pi provides an invalid secret-sharing of its share si, or it remains
quiet (in which case FRenew-Shares sets si = ⊥), F subshareV SS defines a new sharing that represents si
and uses it in place of the invalid (or missing) sharing. See [AL11] for more details.
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Protocol 6 FRenew-Shares

Goal. Given a secret s shared among a group of parties P1, ..., PN , generate a fresh sharing of s
among another group of parties P ′1, ..., P

′
N .

Functionality:

1. Receive inputs s1, ..., sN from P1, ..., PN respectively. For every i ∈ [N ], if Pi does not send an
input, then define si = ⊥.

2. For every i ∈ [N ], invoke FReshare to generate a sharing of si over a polynomial hi(x) of degree
T such that hi(0) = si.

3. For every j ∈ [N ], compute g(j) =
∑N

i=1 λjhi(j) and send g(j) to P ′j .

We prove in the (FVSS-Share, FReshare)-hybrid model which is similar to Protocol 2 except that
every call to VSS-Share and Reshare are replaced with calls to the ideal functionalities FVSS-Share

and FReshare respectively. The corresponding simulator SRenew-Shares is given in Protocol 7.

Protocol 7 SRenew-Shares
Inputs. The inputs {sj}j∈I and outputs {g(j)}j∈I of the corrupted parties.

Simulation:

1. For every i /∈ I, call FReshare with dummy input 0. Let si1, ..., s
i
N denote the outputs.

2. For each j ∈ I,

(a) Run FReshare with input sj . Let sj1, ..., s
j
N denote the outputs. For every k ∈ [N ], add skj to

the view of Pj .

(b) Compute g(j) =
∑N

k=1 λjhk(j) and add g(j) to the view of Pj .

Let Q and Q′ be two quorums involved in the share renewal procedure, where parties in Q want
to send a secret-share value s to parties in Q′. Consider a corrupted party P . First, if P /∈ (Q ∪Q′),
then elements of VIEWP are independent of the shares Q sends to Q′. Moreover, elements of VIEWP

are independent of the output of Q′ since Q′ also renews its outputs.

Second, if P ∈ (Q ∪Q′), VIEWP consists of at most two secret-shares of s defined using two
independently random polynomials. The view of a corrupted party P in Q′ only contains subshares
(i.e., shares of shares) of s that reveal nothing about the original shares. Using these subshares, P
can reconstruct only one share of the secret over a new random polynomial that is independent of
the shares of the parties in Q. The adversary can obtain at most N/3 shares of any secret-shared
value during FReshare; N/3 shares of s come from corrupted parties in Q and N/3 shares come from s
being secret-shared in Q′ using another random polynomial. Since FReshare generates a new random
polynomial, the first set of N/3 shares are independent of the second set of N/3 shares. Since least
N/3 + 1 shares are required for reconstructing the secret, the two views are indistinguishable.

We are now ready to prove Lemma 3.

Proof. We prove the security of Protocol 1 in the (FBA, FVSS-Share, FVSS-Reconst, FMultiply, FCompare,
FRenew-Shares, FGen-Rand)-hybrid model. We proved the security of all subprotocols in Lemma 5,
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Lemma 6, and Lemma 7. The last step of the proof is to show that Protocol 1 is secure in the (FBA,
FVSS-Share, FVSS-Reconst, FMultiply, FCompare, FRenew-Shares, FGen-Rand)-hybrid model. This is done by an
induction over all gates of the sorting circuit. The view of the adversary VIEWI from simulation is
simply constructed by collecting all shares held by corrupted parties in the quorums associated with
every gate of the circuit. Based on Theorem 8, since we have proved the t-security of Protocol 1
using a straight-line black-box simulator, the protocol is UC-secure.

4.3 Cost Analysis

We first compute the cost of each step of the protocol separately and then compute the total
costs. Let ν1(n) and ν2(n) denote the communication and computation complexity of VSS-Share
respectively when it is invoked among n parties. For our unconditional Protocol 1, we assume
VSS-Share implements the sharing protocol of Theorem 2, and for our cryptographic MPS, we as-
sume VSS-Share implements the sharing protocol of VSS of Theorem 5. Both of these VSS protocols
take constant rounds of communication.

– Setup. The communication and computation costs are equal to those costs of the quorum build-
ing algorithm of Theorem 3 which is Õ(1) for each party. This protocol takes constant rounds
of communication.

– Input Sharing. This step invokes VSS-Sharing n times among N = O(log n) parties. So, this
step sends O(n · ν1(N)) bits and performs O(n · ν2(N)) operations. Since the VSS scheme is
constant-round, this step also takes constant rounds of communication.

– Random Generation. Gen-Rand sends O(N · ν1(N)) messages, performs O(N · ν2(N)), and has
constant rounds.

– Sorting. The sorting network [LP90] has O(n log n) comparators and depth O(log n). So, the
communication cost of this step is equal to the communication and computation cost of running
O(n log n) instantiations of Compare and Renew-Shares. Compare requires O(log q) invocation
of Multiply (see [DFK+06]) which sends O(N4 · ν1(N)) messages and computes O(N4 · ν2(N))
operations. Renew-Shares also sends O(N ·ν1(N)+N3) messages and computes O(N ·ν2(N)+N3)
operations. Hence, the sorting step sends O(n log n · log q · N4 · ν1(N)) messages computes
O(n log n · log q · N4 · ν2(N)). Since the sorting circuit has depth O(log n), and Compare takes
constant rounds, this steps takes O(log n) rounds of communication.

– Output Delivery. For each output quorum, the costs of output delivery is equal to the commu-
nication and computation costs of sending N elements to one of the parties. The party then
locally reconstructs the output by running VSS-Reconst over at most N shares. Thus, the total
communication and computation complexity of this step is O(n ·N). This step takes only one
round of communication.

– Total. Since q = Ω(kn2 log n), for a constant k, we consider q = O(n3) and log q = O(log n).
Using the VSS of Theorem 5, we get ν1(N) = ν2(N) = N2 = O(log2 n). Thus, our cryptographic
MPS protocol sends O(n log8 n) messages of size ` = O(κ+log n) each and computes O(n` log8 n)
operations. This proves Theorem 7. For the costs of Theorem 1 (i.e., our unconditional result),
since ν1(N) = ν2(N) = O(poly(N)), Protocol 1 sends Õ(n) bits and computes Õ(n) operations.
In both cases, the output delivery step costs O(n log n) field elements. Finally, in both cases,
the protocol requires O(log n) rounds of communication.
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Fig. 2. Communication cost (left), computation cost (middle), and the number of communication rounds (right)

5 Simulation Results

To study the feasibility of our scheme and compare it to previous work, we simulated a proof-
of-concept prototype of our protocol (and the cryptographic variant described in Section 3.4)
along with two others that are based on a similar model to ours. These protocols are due to
Dani et al. [DKMS12] and Boyle et al. [BGT13]. To the best of our knowledge, these protocols are
the most efficient in terms of communication cost, computation cost, and the number of rounds
for large networks. Since the protocols of [DKMS12] and [BGT13] are general MPC algorithms,
we use them for computing our (single-output) shuffling functionality described in Section 3. We
are interested in evaluating our protocols for large networks; thus, our choice of protocols for this
section is based on their scalability for large values of n.

The prototypes are written in C#, using .NET Framework 4.5, NTL 6.1, GMP 6.0, PBC12

0.5.14, and PolyCommit13 libraries. We ran the simulations on an Intel Xeon E5 machine running
Windows 8.1. We simulated our cryptographic protocol for inputs chosen from the field of integers
with a 160-bit prime; this ensures about 80 bits of security. We set the parameters of our protocols
in such a way that we ensure the probability of error for the quorum building algorithm of [BGH13]
is smaller than 10−5. For the sorting circuit, we set k = 2 to get σ < 10−8 for all values of n in
the experiment. Clearly, for larger values of n, the error becomes superpolynomially smaller, e.g.,
for n = 225, we get σ < 10−300. For all protocols evaluated in this section, we assume cheating (by
corrupted parties) happens in every round of the protocols. This is done by having t = bn/3c of
the parties send random message in every round of the protocols.

Figure 2 illustrates the simulation results obtained for various network sizes between 25 and 230

(i.e., between 32 and about 1 billion). To get a system-independent estimation of the computation
costs, we implemented a wrapper that counts the number of processor instructions evaluated during
the execution of each protocol. We repeat each experiment five times and report the average for
each network size. To better compare the protocols, the vertical and horizontal axis of all plots are
scaled logarithmically.

In Figure 2, we report results from three different versions of our protocols. The first plot
(marked with triangles) refers to our unconditionally-secure protocol (Protocol 1). The second plot
(marked with circles) represents the cryptographic variant of Protocol 1 described in Section 3.4.
The third plot (marked with diamonds) shows the cost of our unconditionally-secure protocol with
amortized (averaged) setup cost. To obtain this plot, we run the setup phase of Protocol 1 once

12 http://crypto.stanford.edu/pbc
13 https://crysp.uwaterloo.ca/software

http://crypto.stanford.edu/pbc
https://crysp.uwaterloo.ca/software
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and then use the setup data to run the online protocol 100 times. The total number of bits sent
was then divided by 100 to get the average cost.

We observe that our protocol performs significantly better than the prior work. For example,
for n = 215 (about 33 thousand parties), our amortized protocol requires each party to send about
128MB of data, while the protocols of [BGT13] and [DKMS12] each send more than one terabyte
of data per party. For the computation cost, our amortized protocol requires each party to perform
about one billion operations, while the other protocols require each party to perform more than
1013 operations. Finally, our amortized protocol requires about 500 rounds of communication, while
the protocols of [BGT13] and [DKMS12] require about 1500 and 4100 rounds of communication
respectively.

6 Conclusion

We described a multi-party shuffling protocol that is fully decentralized and tolerates up to t < (1/3− ε)n
malicious faults. Moreover, our protocol is load-balanced and can tolerate traffic-analysis attacks.
The amount of information sent and the number of computations performed by each party scales
polylogarithmically with the number of parties. Scalability is achieved by performing local commu-
nications and computations in groups of logarithmic size.

Several open problems remain. First, can we decrease the number of rounds of our protocol
using a smaller-depth sorting circuit? For example, since our protocol sorts uniform random num-
bers, it seems possible to use a smaller depth non-comparison-based sorting circuit like bucket sort.
Second, can we improve performance even further by detecting and blacklisting parties that exhibit
adversarial behavior? Finally, can we adopt our results to the asynchronous model of communica-
tion? We believe that this is possible for a suitably chosen upper bound on the fraction of faulty
parties.
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