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Abstract. We initiate a systematic treatment of the communication complexity of conditional disclosure of
secrets (CDS), where two parties want to disclose a secret to a third party if and only if their respective inputs
satisfy some predicate. We present a general upper bound and the first non-trivial lower bounds for conditional
disclosure of secrets. Moreover, we achieve tight lower bounds for many interesting setting of parameters for
CDS with linear reconstruction, the latter being a requirement in the application to attribute-based encryption.
In particular, our lower bounds explain the trade-off between ciphertext and secret key sizes of several existing
attribute-based encryption schemes based on the dual system methodology.

1 Introduction

We revisit a fundamental question in the foundations of cryptography: what is the communication
overhead of privacy in computation? This question has been considered in several different models and
settings [12, 41, 2, 14]. In this work, we focus on a very simple and natural model where non-private
computation requires very little communication (just a single bit), whereas the best upper bound for
private computation is exponential.

Namely, we consider two-party conditional disclosure of secrets (CDS) [19] (c.f. Fig 2), a general-
ization of secret sharing [44, 23]: two parties want to disclose a secret to a third party if and only if
their respective inputs satisfy some fixed predicate P. Concretely, Alice holds x, Bob holds y and they
both share a secret α ∈ {0,1} (along with some additional private randomness), whereas Carol knows
x, y but not α. Alice and Bob want to disclose α to Carol iff P(x, y) = 1. How many bits do Alice and
Bob need to communicate to Carol? In the non-private setting, Alice or Bob can send α to Carol, upon
which Carol computes P(x, y) and decides whether to output α or ⊥. This trivial protocol with one-bit
communication is not private because Carol learns α even when the predicate is false; in fact, the best
upper bound we have for CDS for general predicates requires that Alice and Bob each transmits 2Ω(|x|+|y |)

bits [7]. Here, we are interested not only in the total communication from Alice and Bob to Carol, but also
in trade-offs between the length of Alice’s message `A and that of Bob’s message `B.

Connection to Attribute-based Encryption. Attribute-based encryption (ABE) [43, 20] is a new paradigm
for public-key encryption that enables fine-grained access control for encrypted data. In attribute-based
encryption, ciphertexts are associated with descriptive values x in addition to a plaintext, secret keys
are associated with values y , and a secret key decrypts the ciphertext if and only if P(x, y) = 1 for
some boolean predicate P. Note that x and y are public given the respective ciphertext and secret key.
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Here, y together with P may express an arbitrarily complex access policy, which is in stark contrast to
traditional public-key encryption, where access is all or nothing. The simplest example of ABE is that of
identity-based encryption (IBE) [45, 8, 13] where P corresponds to equality. The security requirement
for attribute-based encryption enforces resilience to collusion attacks, namely any group of users
holding secret keys for different values learns nothing about the plaintext if none of them is individually
authorized to decrypt the ciphertext. This should hold even if the adversary adaptively decides which
secret keys to ask for.

In [47], Waters introduced the powerful dual system encryption methodology for building adaptively
secure IBE in bilinear groups; this has since been extended to obtain adaptively secure ABE for a large
class of predicates [31, 35, 38, 33, 30, 40]. In recent works [3, 48], Attrapadung and Wee presented
a unifying framework for the design and analysis of dual system ABE schemes, which decouples the
predicate P from the security proof. Specifically, the latter work puts forth the notion of predicate
encoding, a private-key, one-time, information-theoretic primitive similar to conditional disclosure of
secrets, and provides a compiler from predicate encoding for a predicate P into an ABE for the same
predicate using the dual system encryption methodology. Moreover, the parameters in the predicate
encoding scheme and in CDS correspond naturally to ciphertext and key sizes in the ABE. In particular,
Alice’s message corresponds to the ciphertext, and Bob’s message to the secret key. For these applications,
we require that Alice’s and Bob’s messages are linear functions of the shared randomness, and also
that Carol computes a linear function of the messages to reconstruct the secret α. These applications
consider linear functions over Zp where p is the order of the underlying bilinear group; in this work,
we focus on lower bounds for the case p = 2 although our techniques do hold for general p. Note that
while the parameters for ABE schemes coming from predicate encodings are not necessarily the best
known parameters, they do match the state-of-the-art in terms of ciphertext and secret key sizes for
many predicates such as inner product, index, and read-once formula.

CDS Parameters. Unlike in traditional communication complexity where the primary measure is the
total communication from Alice and from Bob, we make a more fine-grained distinction between the
lengths of Alice’s and Bob’s messages `A and `B. For instance, in the application to ABE, `A and `B
correspond to ciphertext and secret key sizes respectively. Note that for ABE ciphertext and key sizes, we
ignore the contributions from the descriptive values x, y as well as multiplicative factors in the security
parameter.1 We are particularly interested in three regimes of parameters for (`A,`B):

– How small can `B be when `A is constant? This corresponding to minimizing key sizes for schemes
with constant-size ciphertexts;

– How small can `A be when `B is constant? This corresponding to minimizing ciphertext sizes for
schemes with constant-size keys;

– How small can max(`A,`B) be? This corresponds to minimizing the overall parameter sizes of the
scheme.

We also care about the complexity of the reconstruction function as computed by Carol, as a function of
the messages from Alice and Bob; as noted earlier, for ABE, we will require linear reconstruction.

1 The latter suppresses the distinction between counting bits and group elements, and also between working over Z2 vs Zp ,
where p is the order of the underlying bilinear group.
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Fig. 1. Summary of our upper and lower bounds for linear CDS, where `A and `B denote the length of the messages from Alice
and Bob respectively. We marked the tight lower bounds with an asterisk ∗.

Prior works. There have been several works studying CDS protocols (and strengthenings thereof) for a
large class of predicates [19, 3, 48, 22]: the best general upper bound achieves both linear reconstruction
and communication that is linear in the size of the smallest (arithmetic) branching program computing
the predicate [19, 22]. However, we basically do not have any techniques for proving lower bounds on
the communication complexity of CDS protocols. Here, even the probabilistic method or a counting
argument does not seem to yield meaningful lower bounds for a random function (in contrast, these
techniques do yield meaningful lower bounds for circuit complexity of a random function).

1.1 Our results

We initiate a systematic treatment of the communication complexity of conditional disclosure of
secrets (CDS). We present a general upper bound and the first non-trivial lower bounds for conditional
disclosure of secrets, summarized in Fig 1. Moreover, we achieve tight lower bounds for many interesting
setting of parameters for CDS with linear reconstruction, the latter being a requirement in the applica-
tion to attribute-based encryption; this addresses an open problem posed in [48]. Very informally, for
CDS with linear reconstruction, we obtain lower bounds of the form:

`A ·`B ≥ “communication complexity of P”

For example, for inner product on n-bit vectors, we have `A ·`B =Ω(n). Our lower bounds partially ex-
plain the trade-off between ciphertext and secret key sizes of several existing attribute-based encryption
schemes based on the dual system methodology, c.f. [31, 35, 39, 48, 3, 10].

Proof techniques. Since we want to argue about the lengths of the messages of Alice and Bob to Carol,
the first idea would be to look at the communication complexity of the predicate P [49, 29]. Informally,
communication complexity measures how many bits of information about x and y we need to transmit
in order to compute P(x, y) (c.f. Fig 2). Namely, Alice holds x and Bob holds y and each of them sends
a message to a third party Carol who wants to compute P(x, y). We also allow all three parties to share
public randomness w . The goal is to minimize the communication from Alice and Bob to Carol, and there
is no privacy requirement. There is now a large body of works in communication complexity giving tight
upper and lower bounds for a large class of predicates. For instance, a classic result from communication
complexity tells us that to compute the inner product of two vectors x,y ∈ {0,1}n , each of Alice and Bob
must send n −Ω(1) bits [11]. That is, we need to know essentially all of x and all of y in order to compute
their inner product.
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Fig. 2. Pictorial representation of CDS and communication complexity.

Our goal is to leverage the rich literature on lower bounds for communication complexity to
obtain lower bounds for CDS. Namely, we want to transform any CDS Πcds for a predicate P into a
communication complexity protocolΠcc for P with only a small blow-up in communication complexity.
The crucial distinction between CDS and communication complexity is that Carol knows x, y inΠcds but
not inΠcc (as shown in Fig 2).

The first attempt would be to show that a Πcds for a predicate P is also a Πcc for P. Fix x, y to denote
the inputs to Πcc. That is, we would like to argue that Alice’s message together with Bob’s message in a
CDS (even without x, y) must completely determine P(x, y). Intuitively, this ought to be the case because
if the CDS messages are consistent with both values of P(x, y), then they must simultaneously uniquely
determine α (via correctness) and hide α (via privacy), a contradiction. Indeed, if this worked out, we
would have a lower bound of the form

`A+`B ≥ “communication complexity for P”

Unfortunately, the above statement is false for inner product. The above statement implies a lower bound
of 2n−Ω(1) bits for inner product, but we have a CDS for inner product with n+1 bits! It is instructive to
understand why the above attempt fails. The issue arises in using correctness of CDS to argue that Alice’s
and Bob’s message must determineα: specifically, it is necessary for Carol to specify inputs x ′, y ′ in order
to reconstruct α from Alice’s and Bob’s messages. In fact, different inputs (x ′, y ′) could yield different
values for α. We need to fix this issue.

– The first idea is to have Alice inΠcc also send the secretα; Carol then tries all possible (x ′, y ′) for which
P (x ′, y ′) = 1 and output 1 iff for some x, y the reconstructed secret indeed equalsα. By the correctness
of CDS, Carol will output 1 when P (x, y) = 1. However, there could be false positives, since even when
P (x, y) = 0, there could be inputs (x ′, y ′) for which P (x ′, y ′) = 1 and the reconstructed secret matches
α, upon which Carol will incorrectly output 1. In fact, privacy tells us that Carol will recover a random
value for the secret for each choice of (x ′, y ′), and with pretty good probability, at least one of them
will match α.

– The second idea is to avoid false positives by having Alice and Bob run the CDS protocolΠcds N times,
with fresh independent private randomness and secrets across the repetitions. As before, Carol will
try all possible (x ′, y ′) for which P (x ′, y ′) = 1 and output 1 iff for some x ′, y ′ the reconstructed secret
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equalsα in all repetitions of the protocol. By the correctness of CDS, Carol will always output 1 when
P (x, y) = 1. On the other hand, if P (x, y) = 0, a straight-forward union bound over (x ′, y ′) ∈ P−1(1)
tells us Carol outputs 1 with probability at most P−1(1) ·2−N , since Carol recovers a random value in
each repetition. For inner product, we need to take a union bound over 22n−1 possible pairs, which
requires running N = 2n −1 copies of the CDS protocol Πcds; the communication complexity of Πcc

is then 2n −1 times that of Πcds. This does not yield any non-trivial lower bound for Πcds since we
have an upper bound of 2n for communication complexity.

Here comes our key observation: we can substantially reduce the number of repetitions needed if
the CDS protocol Πcds has small communication complexity! Suppose Πcds has total communication
`A + `B ¿ n bits. Observe that the reconstruction function computed by Carol in Πcds is a function
from {0,1}`A+`B to {0,1}. Now, instead of having Carol in Πcc enumerate over all possible (x, y), she will
instead enumerate over all functions from {0,1}`A+`B to {0,1}, and output 1 iff for some function the
reconstructed secret equals α in all N repetitions. By the correctness of CDS, Carol will always output 1
when P (x, y) = 1. Moreover, there are 22`A+`B possible functions, which means we will need to run 2`A+`B

copies ofΠcds inΠcc; this already implies aΩ(logn) lower bound for inner product! Moreover, if the CDS
Πcds admits linear reconstruction, then Carol in Πcc will also need to enumerate over all 2`A+`B linear
functions from {0,1}`A+`B to {0,1}, which means we only need to run `A +`B copies ofΠcds inΠcc; this in
turn yields aΩ(

p
n) lower bound for inner product.

We obtain our lower bounds on CDS for concrete predicates by instantiating the above argument
with existing lower bounds in communication complexity [36, 28, 24, 42, 4, 11] (c.f. Section 5). For prefix
and read-once monotone span programs, we present tight lower bounds, c.f Appendix D.

Implications for dual system ABE. As observed in [3, 48, 10], underlying most
“information-theoretic” dual system ABE schemes for a predicate P is a CDS for the same predicate,
and our lower bounds apply to ciphertext and secret key sizes for these dual system ABE schemes. On the
other hand, we do have ABE schemes based on a “computational” dual system argument, such as those in
[32, 34, 9, 3, 27], many of which are more efficient and do avoid the lower bounds in this work. Informally,
underlying the “computational” dual system argument is a computational analogue of CDS, where the
privacy requirement is computational rather than information-theoretic. As it turns out, formalizing the
right notion of computational privacy in CDS is quite tricky.

Recall that CDS guarantees privacy of the secret α whenever P(x, y) = 0, and in the application to
ABE, we require that privacy holds even if x, y are chosen adaptively, namely Alice’s input x may be
chosen depending on Bob’s input y and Bob’s message, and vice versa. Now, if the privacy guarantee
is information-theoretic and perfect, then privacy for non-adaptive choices of x, y implies privacy for
adaptive choices2; this equivalence dissipates as soon as we relax the privacy requirement to be statistical
or computational. The “right” notion of computational privacy for use in ABE schemes is that of “doubly
selective” security [3, 34], where “doubly” refers to the two possibilities depending on whether x or y
is chosen first. Unsurprisingly, proving3 and using doubly selective security require substantially more

2 The easiest way to see this is via complexity leveraging: an adaptive distinguisher with advantage ε can be converted into
a non-adaptive distinguisher with an exponential loss in ε via random guessing. Since any non-adaptive distinguisher has
advantage 0, we must have ε= 0 to begin with.

3 Typically, this entails two separate reductions, one for x being chosen first and the other for y . In [34], these correspond
to selectively secure key-policy and ciphertext-policy ABE schemes; in [3], these correspond to so-called selective and co-
selective security.
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delicate security reductions, and in most cases, stronger and less desirable q-type assumptions. This
raises the natural question of whether the increased complexity in these proofs and assumptions are
inherent, or simply a failure to find more clever and efficient CDS with information-theoretic privacy.
Our work rules out the latter option.

1.2 Discussion

Perspective. Note that our set-up is quite different from previous lower bounds for private computation
in the literature; to the best of our knowledge, this is the first super-constant lower bound in a setting
where the price of privacy in computation is always bounded. For instance, in interactive secure two-
party computation, some functions are impossible to compute securely [12], so the cost of privacy is
infinite for these functions (whereas ours is bounded for all predicates). For secure computation in the
FKN model [15, 14], we do not have any techniques for super-constant gaps. For locally decodable codes,
there is no gap for privacy in some ranges of parameters, for instance, when we want to minimize one-
way communication from the client and communication from the server is essentially “free”; here, the
server needs to send the entire database, whether or not we care about client privacy.

Additional related work. There is a large body of work on lower bounds on share sizes in secret-
sharing (c.f. [5, Section 5]). Most of these works rely on Shannon-type inequalities on entropy of random
variables, which do not seem applicable to our setting. Roughly speaking, in secret sharing, Carol
either gets a share or not, whereas Alice and Bob in CDS can do more complex computations than
simply computing shares and then deciding whether to send each share to Carol. The recent work
of Data, Prabhakaran and Prabhakaran [14] draws upon tools from information theory to obtain new
communication complexity lower bounds for secure computation in three-party setting. In their model
which allows multiple rounds of interaction, the problem we consider admits a secure protocol with
a single bit of communication, and their techniques do not yield better bounds in the non-interactive
setting.

Open problems. We conclude with a number of open problems:

– explore the power of non-linear reconstruction in CDS (that is, positive results, c.f. [6, 46]);

– tight lower bounds for inner product with linear reconstruction (which we conjecture to beΩ(n));

– obtain better lower bounds for multi-bit secrets (which is related to lower bounds for secret sharing
for multi-bit secrets), or obtain upper bounds that are better than the naive “direct product”
construction;

– improve the upper or lower bounds in CDS for read-once span programs for constant `A or constant
`B. A related problem is to prove stronger communication complexity lower bounds for general span
programs (which may not be read-once).

2 Preliminaries

Notations. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S or from
a distribution. Throughout this paper, we denote by log the logarithm of base 2.
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2.1 Conditional disclosure of secrets

We recall the notion of conditional disclosure of secrets (CDS), c.f. Fig 2. The definition we give here is
for two parties Alice and Bob and a referee Carol, where Alice and Bob share randomness w and want
to conditionally disclose a secret α to Carol. The general notion of conditional disclosure of secrets has
first been investigated in [19]. Two-party CDS is closely related to the notions of predicate encoding
[48, 10] and pairing encoding [3]; in particular, the latter two notions imply two-party CDS with linear
reconstruction.

Definition 1 (conditional disclosure of secrets (CDS) [19, 48]). Fix a predicate P : X× Y → {0,1}. A
(`A,`B)-conditional disclosure of secrets (CDS) for P is a triplet of deterministic functions (A,B,C)

A :X×W×D→ {0,1}`A , B :Y×W×D→ {0,1}`B , C :X×Y× {0,1}`A × {0,1}`B →D

satisfying the following properties:

(reconstruction.) For all (x, y) ∈X×Y such that P(x, y) = 1, for all w ∈W, and for all α ∈D:

C(x, y,A(x, w,α),B(y, w,α)) =α

(privacy.) For all (x, y) ∈X×Y such that P(x, y) = 0, and for all C∗ : {0,1}`A × {0,1}`B →D,

Pr
w←W,α←RD

[
C∗(

A(x, w,α),B(y, w,α)
)=α]

≤ 1

|D|
Note that the formulation of privacy above with uniformly random secrets is equivalent to standard
indistinguishability-based formulations (c.f. Section A).

A useful measure for the complexity of a CDS is the complexity of reconstruction as a function of the
outputs of A,B, as captured by the function C, with (x, y) hard-wired.

Definition 2 (C-reconstruction). Given a set C of functions from {0,1}`A×{0,1}`B →D, we say that a CDS
(A,B,C) admits C-reconstruction if for all (x, y) such that P(x, y) = 1, C(x, y, ·, ·) ∈C.

Two examples of C of interest are:

– Call is the set of all functions from {0,1}`A×{0,1}`B →D; that is, we do not place any restriction on the
complexity of reconstruction. Note that |Call| = |D|2`A+`B .

– Clin is the set of all linear functions over Z2 from {0,1}`A × {0,1}`B → D; that is, we require the
reconstruction to be linear as a function of the outputs of A and B as bit strings (but may depend
arbitrarily on x, y). This is the analogue of linear reconstruction in linear secret sharing schemes and
is a requirement for the applications to attribute-based encryption [48, 3, 10]. In Appendix B, we show
that any scheme where A and B compute linear functions (again, analogue of linear secret-sharing
schemes and a requirement for many cryptographic applications) also satisfies linear reconstruction.
Note that |Clinear| ≤ |D|`A+`B for |D| ≥ 2.

Remark 1. Note that while looking at C, we consider C(x, y, ·, ·), which has (x, y) hard-wired, and takes an
input of total length `A+`B. In particular, it could be that C runs in time linear in |x| = |y | = n, and yet
`A = `B =O(logn) so C has “exponential” complexity w.r.t. `A+`B.

Definition 3 (linear CDS). We say that a CDS (A,B,C) is linear if it admits Clin-reconstruction.
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2.2 Communication complexity

The description of communication complexity in Fig 2 actually refers to the “simultaneous message”
model, where A and B each sends a message to C. For our actual proof, it suffices to consider one way
communication complexity, where there is no C, but either A sends a single message to B or B sends
a single message to A. We now proceed to recall the basic definitions for communication complexity
[49, 29], specifically one-way communication complexity with one-sided error [1, 28, 37].

Definition 4 ([28, 49]). A one-way (A→B) communication protocol for a predicate P :X×Y→ {0,1} is a
pair of deterministic functions (A,B) where

A :X×W× {0,1}`→ {0,1}, B :Y×W× {0,1}`→ {0,1},

and the following properties are satisfied for every (x, y) ∈X×Y:

– If P(x, y) = 1, then Prw←RW[B(y, w,A(x, w)) = 1] = 1
– If P(x, y) = 0, then Prw←RW[B(y, w,A(x, w)) = 0] ≥ 1/2.

The one-way communication complexity of P, denoted by RA→B(P), is the minimum ` over all one-way
communication protocols (A,B) for P.

We also denote by RB→A(P) the minimum ` over all one-way (B→A) communication protocols (A,B),
where

A :X×W× {0,1}`→ {0,1}, B :Y×W× {0,1}`→ {0,1},

and the following properties are satisfied for every (x, y) ∈X×Y:

– If P(x, y) = 1, then Prw←RW[A(x, w,B(y, w)) = 1] = 1
– If P(x, y) = 0, then Prw←RW[A(x, w,B(y, w)) = 0] ≥ 1/2.

3 CDS for General Predicates

We present a general upper bound for linear CDS for any predicate:

Theorem 1 (generic upper bounds for linear CDS). Given any predicate P : {0,1}n × {0,1}n → {0,1}, for
any t ≤ 2n , there exists a linear (t ,2n/t )-CDS for P with D= {0,1}. In particular, there exists a (1,2n)-CDS,
a (2n ,1)-CDS, a (2n/2,2n/2)-CDS for P, all three of which are linear.

The result improves upon the (2n/2,2n/2)-CDS (but not linear) given in [7]; our construction is also
considerably simpler.

Proof (sketch). The construction follows from a standard reduction of any general predicate to the
INDEX predicate on 2n-dimensional vectors: Alice treats the truth table P(x, ·) as a vector of length 2n

and Bob treats y ∈ {0,1}n as an index, so that the INDEX predicate returns P(x, y). Then, we can use the
(t ,2n/t )-linear CDS for the INDEX predicate on 2n-dimensional vectors in [17, 10] (c.f. Appendix C). ut

More generally, for any predicate P : X×Y→ {0,1}, we have a (t ,min(|X|, |Y|)/t )-linear CDS, by treating
either x or y as an index depending on whether |X| ≤ |Y| or not. This is essentially optimal for linear
reconstruction, since we prove a tight lower bound for INDEX: {0,1}n × [n] → {0,1} in Section 5.
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4 Lower Bounds for CDS

In this section, we present our lower bounds on the communication complexity of CDS.

Theorem 2 (lower bounds for linear CDS). LetP :X×Y→ {0,1} be a predicate. For all linear (`A,`B)-CDS
of P with |D| ≥ 2, we have

`A · (`A+`B+1) ≥RA→B(P) and `B · (`A+`B+1) ≥RB→A(P).

We then derive our lower bounds for linear CDS by using existing lower bounds on one-way communi-
cation complexity; see Section 5. In fact, our techniques are fairly general and also yield lower bounds on
non-linear CDS.

Theorem 3 (lower bounds for general CDS). LetP :X×Y→ {0,1} be a predicate. For all (`A,`B)-predicate
CDS of P with |D| ≥ 2, we have

`A+`B ≥ 1

2
log

(
RA→B(P)+RB→A(P)

)
.

While the lower bounds for general CDS are exponentially smaller than those for linear CDS, we still do
obtain non-trivial logarithmic lower bounds for many concrete predicates.

4.1 Main lemma

We obtain both lower bounds via a general reduction from CDS for a predicate P to one-way communi-
cation protocols for the same predicate; the communication cost of the reduction depends crucially on
the complexity of reconstruction (c.f. Definition 2):

Lemma 1 (main technical lemma). LetP :X×Y→ {0,1} be a predicate. Then, any (`A,`B)-CDS forPwith
|D| ≥ 2 and which admits C-reconstruction satisfies

(log |C|+1) ·`A ≥RA→B(P) · log |D| and (log |C|+1) ·`B ≥RB→A(P) · log |D|

Theorem 2 then follows from instantiating the lemma with C := Clin, where log |Clin| = (`A+`B) · log |D|.
Similarly, Theorem 3 uses C :=Call where log |Call| = 2`A+`B · log |D|.

Proof (of Lemma 1). Let N := log |C|+1
log |D| . We build a one-way communication protocol (Ã,B̃) for the

predicate P as follows:

– Sample wi ←R W,αi ←R D for i = 1, . . . , N and set

w := (w1,α1, . . . , wN ,αN )

– Alice computes
Ã(x, w) := (A(x, w1,α1), . . . ,A(x, wN ,αN ))

– Bob outputs 1 iff there exists a function C∗ ∈C such that

C∗(
A(x, wi ,αi ),B(y, wi ,αi )

)=αi , ∀ i = 1, . . . , N
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We proceed to analyze the protocol (Ã,B̃).

– Completeness. Suppose P(x, y) = 1. Then, by the reconstruction property, the function C∗(·) :=
C(x, y, ·) ∈C satisfies

C∗(A(x, wi ,αi ),B(y, wi ,αi )
)=αi , ∀ i = 1, . . . , N

for all (w1,α1, . . . , wN ,αN ). Therefore, B̃ outputs 1 with probability 1.

– Soundness. Suppose P(x, y) = 0. Fix C∗ ∈C. For each i = 1, . . . , N , α-privacy implies that

Pr
wi ,αi

[
C∗(

A(x, wi ,αi ),B(y, wi ,αi )
)=αi

]
≤ 1

|D|

Since the (wi ,αi ) are chosen independently at random, we have

Pr
w1,α1,...,wN ,αN

[
C∗(

A(x, wi ,αi ),B(y, wi ,αi )
)=αi , ∀ i = 1, . . . , N

]
≤ 1

|D|N

By a union bound over all |C| functions C∗ ∈C, we have

Pr
[
B̃ outputs 1

]
≤ |C| · |D|−N ≤ 1/2

by our choice of N .

It is straightforward to check that Ã sends log |C|+1
log |D| ·`A bits to B̃. Similarly, we can build a (B̃,Ã) protocol

for P, where B̃ sends log |C|+1
log |D| ·`B bits to Ã. This completes the proof. ut

Remark 2 (extensions). It is easy to see that the reduction also works for CDS with imperfect recon-
struction and weak privacy. If the gap between the probability of reconstructing α when P(x, y) = 1

and the probability of recovering α when P(x, y) = 0 is δ, then it suffices to take N := O
(

1
δ log |C|

)
via

a straightforward application of the Chernoff bound. The ensuing randomized protocol for communica-
tion complexity will then have a two-sided error.

Remark 3 (beyond linear CDS). Note that the bounds of Theorem 2 are much more general than just for
linear CDS. For instance, if we require that reconstruction be carried out by circuits of size `c for some
constant c (where ` := `A+`B), or by polynomials of degree c, then we get lower bounds of the form

`A+`B =Ω
(
(RA→B(P)+RB→A(P))1/(c+1)

)
4.2 Lower bounds for multi-bit secrets

We now look at CDS where the secret α is a multi-bit string; that is, D is of the form {0,1}d , for d ≥ 1.
There is a trivial upper bound for d-bit secrets obtained by running d times a CDS for single-bit secrets.
Note, of course, that hiding a secret of size d = 1 is the easiest case, since we can simply embed this secret
to a larger d-bit string by randomly adding d −1 bits and use the CDS for the secret of size d . Hence, the
lower bounds on the message lengths of the CDS for a secret of size d = 1 still hold for the CDS of secret
of size d ≥ 1. We would like a lower bound that grows with d .

Here, we prove that for any non-trivial predicate P, for any (`A,`B)-CDS of P, both `A and `B need
to be at least d . A trivial predicate is one whose output is completely determined by either x or y (e.g. the

9



output of the predicate is the first bit of x), for which there is a protocol with `A +`B = d . The intuition is
that in any non-trivial predicate, Alice’s message essentially serves as the secret key for a one-time pad,
which is needed to “unlock” α ∈ {0,1}d from Bob’s message. This means that Alice’s message must itself
be at least d bits.

It is easy to see that the lower bound is tight for the equality predicate. For all other non-trivial
predicates, it remains an open problem to close the gap between lower and upper bounds for CDS of
multi-bit secrets.

Theorem 4. Let D := {0,1}d , and let P : X×Y → {0,1} be a non-trivial predicate that depends on both
inputs x and y; that is, there exists x∗ ∈X, such that P(x∗, ·) is not constant on Y, and there exists y∗ ∈ Y

such that P(·, y∗) is not constant on X. Then, for any (`A,`B)-CDS of P, we have

`A ≥ d and `B ≥ d .

Proof. We begin with the lower bound on `A . Let x0, x1 ∈X be such that

P(x0, y∗) = 0 and P(x1, y∗) = 1

Let C∗ : {0,1}`A+`B → {0,1}d be a randomized function defined as follows: on input mA ∈ {0,1}`A and
mB ∈ {0,1}`B ,

– picks a message m ←R {0,1}`A at random (and ignores mA);
– outputs C(x1, y∗,m,mB).

By α-reconstruction for P(x1, y∗) = 1, for all α ∈D, w ∈W, we have

C
(
x1, y∗,A(x1, w,α),B(y∗, w,α)

)=α.

Therefore, for all α ∈D, w ∈W, we have

Pr
m←R{0,1}`A

[
C

(
x1, y∗,A(x1, w,α),B(y∗, w,α)

)=α and m =A(x1, w,α)
]
= 1/2`A

Thus,

Pr
w←W,α←RD, coins of C∗

[
C∗(

A(x1, w,α),B(y∗, w,α)
)=α]

≥ Pr
w←W,α←RD,m←R{0,1}`A

[
C

(
x1, y∗,A(x1, w,α),B(y∗, w,α)

)=α and m =A(x1, w,α)
]
= 1/2`A

Since C∗ ignores mA, this means that for all mA, and in particular for mA =A(x0, w,α), we have

Pr
w←W,α←RD, coins of C∗

[
C∗(

A(x0, w,α),B(y∗, w,α)
)=α]

≥ 1/2`A

On the other hand, by α-privacy for P(x0, y∗) = 0, we have

Pr
w←W,α←RD, coins of C∗

[
C∗(

A(x0, w,α),B(y∗, w,α)
)=α]

≤ 1/2d

10



Combining the two preceding inequalities, we have 1/2`A ≤ 1/2d and thus,

`A ≥ d .

For the same reason,
`B ≥ d .

ut

5 Concrete predicates

In this section, we describe how we can combine the results in the previous section with lower bounds in
one-way communication complexity to obtain the results in Figure 1. Each of these predicates has been
studied in prior works on attribute-based encryption. For each of these predicates, we obtain non-trivial
lower bounds for general (`A,`B)-CDS of the form:

`A+`B =Ω(logn).

We focus hence-forth on lower bounds for linear (`A,`B)-CDS, where linearity is over Z2. In the
applications to ABE, we will typically work with linear functions over D = Zp (where log p is linear in
the security parameter), in which case we lose a multiplicative log p factor in the lower bounds.

Index, Prefix. We consider the following predicates:

– Index: X := {0,1}n ,Y := [n] and
Pindex(x, i ) = 1 iff xi = 1

That is, x is the characteristic vector of a subset of [n]. In the context of ABE, this corresponds to
broadcast encryption [16].

– Prefix: X := {0,1}n ,Y := {0,1}≤n and

Pprefix(x,y) = 1 iff y is a prefix of x

In the context of ABE, this corresponds to hierarchical identity-based encryption [18, 21].

For both predicates, we have tight bounds for one-way communication complexity:

RA→B(P) =Θ(n) and RB→A(P) =Θ(logn)

given in [36, 28] for index, and Appendix D for prefix.

By Theorem 2, this means that any linear (`A,`B)-CDS for any of the two predicates must satisfy

`A(`A+`B+1) =Ω(n).

This immediately yields

– `B =Ω(n) if `A =O(1) and more generally, `B =Ω(n/`A) for any `A = o(
p

n);

– `A =Ω(
p

n) if `B =O(1);

11



– max(`A,`B) =Ω(
p

n).

The first and third lower bounds are tight, as we have a linear (t ,n/t )-CDS for any t ∈ [n], in [10, 48, 3] for
index, and in Appendix C for prefix.

Disjointness, Inner product. We consider the following predicates:

– Disjointness: X=Y := {S ⊆ [n]} and

Pdisj(X ,Y ) = 1 iff X ∩Y =;

In the context of ABE, this is related to a special case of fuzzy IBE [43].

– Inner Product [26]: X=Y :=Zn
p and

PIP(x,y) = 1 iff x>y = 0

For both predicates, we have tight bounds for one-way communication complexity:

RA→B(P) =Θ(n) and RB→A(P) =Θ(n)

given in [24, 42, 4] for disjointness, in [11] for inner product. By Theorem 2, this means that any linear
(`A,`B)-CDS for any of the two predicates must satisfy

`A(`A+`B+1) =Ω(n) and `B(`A+`B+1) =Ω(n).

This immediately yields

– `B =Ω(n) if `A =O(1);

– `A =Ω(n) if `B =O(1);

– max(`A,`B) =Ω(
p

n).

The first and second lower bounds are tight, as we have matching upper bounds in [10, 48, 3]. In
Appendix C, we exhibit a linear (t ,n−t+O(1))-CDS for these predicates, for any t ∈ [n]. It is open whether
a CDS with overall parameter size of O(

p
n) is possible.

Read-once monotone span programs. We consider the following predicate:

– Read-once monotone span program: X := {0,1}n , Y := Zn×n
p is a collection of read-once monotone

span programs [25] specified by a matrix M of height n and

PMSP(x,M) = 1 iff x satisfies M

Here, x satisfies M iff (1,0, . . . ,0) lies in the row span of {M j : x j = 1} where M j is the j ’th row of M. In
the context of ABE, this corresponds to key-policy ABE for access structures [20].

In Appendix D, we prove tight lower bounds for one-way communication complexity:

RA→B(P) =Θ(n) and RB→A(P) =Θ(n2).

12



By Theorem 2, this means that any linear (`A,`B)-CDS for both predicates must satisfy

`A(`A+`B+1) =Ω(n) and `B(`A+`B+1) =Ω(n2).

This immediately yields

– `B =Ω(n) if `A =O(1);

– `A =Ω(n2) if `B =O(1);

– max(`A,`B) =Ω(n).

The third lower bound is tight, as we have matching upper bounds in [10, 48, 3] exhibiting a linear (n,n)-
CDS for the predicate. It is open what the optimal parameters are when we keep either the key or the
ciphertext size constant.

Acknowledgments. We would like to thank Amos Beimel, Yuval Ishai and Sophie Laplante for insightful
and inspiring discussions.
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A Equivalence of two definitions ofα-privacy

In [48] the notion ofα-privacy is stated differently than in Section 2.1. We show that the two definition of
α-privacy are in fact equivalent. That is, we show that the two following statements are equivalent:

1. For all (x, y) ∈X×Y such that P(x, y) = 0, for all C∗ : {0,1}`A × {0,1}`B →D,

Pr
w←W,α←RD

[
C∗(

A(x, w,α),B(y, w,α)
)=α]

≤ 1

|D| .

2. For all (x, y) ∈X×Y such that P(x, y) = 0, and for all α ∈D, the joint distribution A(x, w,α),B(y, w,α)
perfectly hides α. That is, for all α,α′ ∈D, the following joint distributions are identically distributed:{

x, y,α,A(x, w,α),B(y, w,α)
}

and
{

x, y,α,A(x, w,α′),B(y, w,α′)
}

where the randomness is taken over w ←R W.

Proof. Throughout the proof, fix (x, y) ∈X×Y such that P(x, y) = 0.

1. implies 2. : Suppose that there exist α,α′ ∈ D such that the following joint distributions are not
identically distributed:{

x, y,α,A(x, w,α),B(y, w,α)
}

and
{

x, y,α,A(x, w,α′),B(y, w,α′)
}

where the randomness is taken over w ←R W. Then, there exists an adversary A that can distinguish
between these two distributions with advantage ε> 0, that is, such that

Pr
w←RW

[A
(
x, y,α,A(x, w,α),B(y, w,α)

)= 1]− Pr
w←RW

[A
(
x, y,α,A(x, w,α′),B(y, w,α′)

)= 1] = ε

From A, we build a function C∗ : {0,1}`A × {0,1}`B →D such that

Pr
w←W,b←RD

[
C∗(

A(x, w,b),B(y, w,b)
)= b

]
> 1

|D| .

The function C∗ has (α,α′, x, y) hard-wired into it and is defined as follows:

C∗(mA,mB) :=
{
α if A(x, y,α,mA,mB) = 1

α′ if A(x, y,α,mA,mB) = 0
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We have:

Pr
w←W,b←RD

[
C∗(

A(x, w,b),B(y, w,b)
)= b

]
= Pr

w←W,b←RD

[
A

(
x, y,α,A(x, w,b),B(y, w,b)

)= 1 and b =α
]

+ Pr
w←W,b←RD

[
A

(
x, y,α,A(x, w,b),B(y, w,b)

)= 0 and b =α′
]

= Pr
w←W

[
A

(
x, y,α,A(x, w,α),B(y, w,α)

)= 1
]
·1/|D|

+ Pr
w←W

[
A

(
x, y,α,A(x, w,α′),B(y, w,α′)

)= 0
]
·1/|D|

= Pr
w←W

[
A

(
x, y,α,A(x, w,α),B(y, w,α)

)= 1
]
·1/|D|

+
(
1− Pr

w←W

[
A

(
x, y,α,A(x, w,α′),B(y, w,α′)

)= 1
])

·1/|D|
= 1/|D|+1/|D| ·ε
> 1/|D|

2. implies 1. : Suppose that there exists a function C∗ : {0,1}`A × {0,1}`B →D such that

Pr
w←W,b←RD

[
C∗(

A(x, w,b),B(y, w,b)
)= b

]
> 1

|D| .

We need to exhibit a pair (α,α′) ∈D2 together with a distinguisher A that is able to distinguish the
two following distributions:{

x, y,α,A(x, w,α),B(y, w,α)
}

and
{

x, y,α,A(x, w,α′),B(y, w,α′)
}

where the randomness is taken over w ←R W.

We choose an arbitrary α′ ∈D (that is, the following is true for all α′ ∈D). Observe that

Pr
α←RD,w←W

[
C∗(

A(x, w,α),B(y, w,α)
)=α]

− Pr
α←RD,w←W

[
C∗(

A(x, w,α′),B(y, w,α′)
)=α]

= Pr
α←RD,w←W

[
C∗(

A(x, w,α),B(y, w,α)
)=α]

− 1

|D| > 0

By an averaging argument, this means that there exists α ∈D for which

Pr
w←W

[
C∗(

A(x, w,α),B(y, w,α)
)=α]

− Pr
w←W

[
C∗(

A(x, w,α′),B(y, w,α′)
)=α]

> 0

We can then construct a distinguisher A as follows:

A(x, y,α,mA,mB) :=
{

1 if C∗(mA,mB) =α
0 otherwise

Clearly, the distinguisher A has a positive advantage in distinguishing the two distributions{
x, y,α,A(x, w,α),B(y, w,α)

}
and

{
x, y,α,A(x, w,α′),B(y, w,α′)

}
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ut

B Strongly linear CDS satisfy linear reconstruction

It is natural to restrict the functions A and B to be linear functions in w when W is a vector space. We
give the notion of strongly linear CDS, similar to the predicate encoding definition given in [48].

Fix a prime p. Let (A,B,C) be an (`A,`B)-CDS for P :X×Y→ {0,1}, where X and Y may depend on p.
We say that (A,B,C) is strongly p-linear if it satisfies the following properties:

(input domains.) D :=Zp , and W :=Z`Wp for some integer `W.

(output domains.) The output of A and B are vectors over Zp : they belong to Z`Ap and Z`Bp , respectively.

(Alice linearity.) For all x ∈X, A(x, ·, ·) is a linear function of (w,α).

(Bob linearity.) For all y ∈Y, B(y, ·, ·) is a linear function of (w,α).

Lemma 2. For any predicate P, any prime p, and any strongly p-linear CDS (A,B,C) for P, we have the
following property:

(linear α-reconstruction.) For all (x, y) such that P(x, y) = 1, there is a Zp -linear function Lx,y : Z`A
p ×

Z
`B
p →Zp such that for all w ∈W and for all α ∈D:

Lx,y (A(x, w,α),B(y, w,α)) =α

Proof. By p-linearity, we know that for every x ∈X, y ∈ Y, there exists matrices Ax ,By such that for every
α ∈D,w ∈W:

A(x, w,α) = Ax

(α
w

)
and B(y, w,α) = By

(α
w

)
This means that  α

mA

mB

=
e1

Ax
By

(
α
w

)
By a standard argument from linear algebra, this means that for all x, y :

– if e1 ∈ span
(

Ax
By

)
, α is uniquely determined given mA,mB, x, y , for all α,w. This would violate α-

privacy, which means P(x, y) = 1.

– if e1 ∉ span
(

Ax
By

)
,α is uniformly random given mA,mB, x, y , for a uniformly random (α,w). This would

violate α-reconstruction, which means P(x, y) = 0.

Hence, P(x, y) = 1 iff e1 ∈ span
(

Ax
By

)
. Moreover, if e1 ∈ span

(
Ax
By

)
, then there exists a row vector v ∈ Z`A+`Bp

such that

e1 = v
(

Ax

By

)
=⇒ v

(
mA

mB

)
= e1

(α
w

)
=α

The linear function Lx,y is that given by multiplying by the vector v. ut
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C Concrete Strongly Linear CDS

For completeness, we extend here several strongly linear CDS (as defined in Appendix B) from [3, 48] in
order to provide a trade-off between the lengths of the two messages. In these CDS, it suffices for Bob to
know α, and we remove α from Alice’s inputs (this only makes the upper bounds stronger).

Throughout this appendix, p is a given prime. For all vectors u, we denote by |u| the size of u, by ui

the i ’th coordinate of vector u, and for any matrix M, we denote by Mi , j the (i , j )’th entry of M. Finally,
we denote by Z≤n

p (resp. Z<n
p ) the set of vectors of length at most n (resp. less than n).

Equality. Here, X=Y :=Zp and
PEq(x, y) = 1 iff x = y

strongly linear (1,1)-CDS:

– W :=Zp ×Zp .

– A(x, (u, v)) := ux + v ∈Zp

– B(y, (u, v),α) := uy + v +α ∈Zp

– C(x, y,c,d) := d − c

For α-privacy, we exploit the fact that ux + v,uy + v are pairwise independent when x 6= y .

Remark 4 (multi-bit secret CDS). Note that we can handle larger space D such as D := Zd
p , for d > 1, by

simply using d CDS for equality, each with independent randomness. That is:

– W := (Zp ×Zp )d .

– A
(
x, ((u1, v1), . . . , (ud , vd ))

)
:= (u1x + v1, . . . ,ud x + vd ) ∈Zd

p

– B
(
y, ((u1, v1), . . . , (ud , vd )), (α1, . . . ,αd )

)
:= (α1 +u1 y + v1, . . . ,αd +ud x + vd ) ∈Zd

p

– C(x, y,c,d) := d−c

Note that this multi-bit secret CDS for equality is optimal, according to Theorem 4.

Inner Product (IP)

Predicate [26]: Here, X=Y :=Zn
p and

P(x,y) = 1 iff x>y = 0

strongly linear (n − t +1, t +1)-CDS:

– W :=Zn
p ×Zp ×Zp ;

– A(x, (w,u,u′)) :=
(∑t

i=1 xi wi +u′,u

(xt+1...
xn

)
+

(wt+1...
wn

))
∈Zn−t+1

p

– B(y, (w,u,u′)) :=
(
u

(y1...
yt

)
+

(w1...
wt

)
,
∑n

i=t+1 yi wi −u′+α
)
∈Zt+1

p

– C(x,y, (c ′,c), (d,d ′)) := d ′+ c ′−
(x1...

xt

)>
d−c>

(yt+1...
yn

)
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Correctness: Suppose P(x,y) = 1. Observe that

C
(
x,y,A(x, (w,u,u′)),B(y, (w,u,u′))

)= (
n∑

i=t+1
yi wi +α−u′)+ (

t∑
i=1

xi wi +u′)−
t∑

i=1
xi wi −

n∑
i=t+1

yi wi −ux>y

=α−ux>y

=α

We use the fact that x>y = 0 in the last equality.

Privacy: The constructions exploit the following simple algebraic fact: given x,y,ux+w,y>w+α,

– if x>y = 0, then we can recover α.

– if x>y 6= 0, then α is masked by ux>y.

Index predicate (Broadcast encryption)

Predicate [16]: Here, X := {0,1}n ,Y := [n] and

P(x, i ) = 1 iff xi = 1

That is, x is the characteristic vector of a subset of [n]. For notational convenience, we rewrite the
predicate as follows: X := ({0,1}n/t )t ,Y := [t ]× [n/t ] and

P((x1, . . . ,xt ), (i1, i2)) = 1 iff x>
i1

ei2 = 1

where (i1, i2) is the unique pair of integers satisfying i = (i1−1) ·n/t +i2 and 0 < i2 ≤ n/t , and (e1, . . . ,en/t )
is the standard basis of Zn/t

q .

strongly linear (t ,n/t )-CDS [17]:

– W :=Zt
p ×Zn/t

p .

– A(x, (w,u)) := (w1 +x>
1u, . . . , wt +x>

t u) ∈Zt
p

– B((i1, i2), (w,u)) := (wi1 +α) ·ei2 +u ∈Zn/t
p

– C(x, (i1, i2),c,d) := x>
i1

d− ci1

Correctness. Suppose P(x, (i1, i2)) = 1. Observe that

C
(
x, (i1, i2),A(x, (w,u)),B((i1, i2), (w,u))

) = x>
i1

(
(wi1 +α) ·ei2 +u

)−wi1 −x>
i1

u =α

Privacy. Privacy follows readily from the fact that:

– For all j 6= i1, w j +x>
j u reveals no information about u;

– If x>
i1

ei2 = 0, then α is perfectly hidden given xi1 , (α+wi1 ) ·ei2 +u, and wi1 +x>
i1

u.
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Prefix. Here, X := {0,1}n ,Y := {0,1}≤n and

Pprefix(x,y) = 1 iff y is a prefix of x

For notational convenience, we rewrite the predicate as follows: X := ({0,1}n/t )t , Y = ({0,1}n/t )<t ×
{0,1}≤n/t and

P((x1, . . . ,xt ), (y1, . . . ,yt2 )) = 1 iff t ≥ t2 ∧xi = yi for i = 1, . . . , t2 −1 ∧yt2 is a prefix of xt2 .

We also write W :=Zn
p ×Zt

p as (Zn/t
p ×Zp )t .

strongly linear (t ,n/t )-CDS:

– W := (Zn/t
p ×Zp )t .

– A(x, (w,u)) := (x>
1w1 +u1, . . . ,x>

t wt +ut ) ∈Zt
p .

– B(y, (w,u),α) :=
(∑t2−1

i=1 (y>
i wi + ui ) +

(yt2
0

)>
wt2 + ut2 +α, (wt2 )|yt2 |+1, . . . , (wt2 )n/t

)
∈ Zn/t−|yt2 |+1

p , where(yt2
0

)
∈Zn/t

p , and (wt2 )|yt2 |+1, . . . , (wt2 )n/t are the last n/t −|yt2 | coordinates of wt2 .

– C(x,y,c, (d ′,d)) := d ′+∑n/t−|yt2 |
j=1 d j (xt2 )|yt2 |+ j −∑t2

i=1 ci , where (xt2 )|yt2 |+1, . . . , (xt2 )n/t are the last n/t −
|yt2 | coordinates of xt2 .

Correctness. Suppose y is a prefix of x. Observe that

C(x,y,A(x, (w,u)),B(y, (w,u),α)) =α+
t2−1∑
i=1

(y>
i wi +ui )+

(yt2
0

)>
wt2 +ut2 +

n/t∑
i=|yt2 |+1

(xt2 )i (wt2 )i −
t2∑

i=1
(x>

i wi +ui )

=α+
(yt2

0

)>
wt2 +ut2 +

n/t∑
i=|yt2 |+1

(xt2 )i (wt2 )i − (x>
t2

wt2 +ut2 )

=α

We use the fact that yi = xi for all i = 1, . . . , t2 −1 in the second equality, and the fact that yt2 is a prefix of
xt2 in the last equality.

Privacy. Suppose y is not a prefix of x. One of the following is true:

1. y j 6= x j for some j ≤ t2 −1, which implies that x>
j w j +u j and y>

j w j +u j are pairwise independent.

2. yt2 is not a prefix of xt2 , which implies that x>
t2

wt2 +ut2 and
(yt2

0

)>
wt2 +ut2 are pairwise independent.

Privacy follows readily.

Disjointness. Here, X=Y := {S ⊆ [n]} and

Pdisj(X ,Y ) = 1 iff X ∩Y =;.
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As a warm-up, here is a linear (n,n+1)-CDS: Alice sends {wi : i ∉ X }, Bob sends {w j : j ∉ Y } along with
α+w1 + ·· ·+wn . (The messages are padded to vectors of length n and n +1 respectively.) Correctness
and privacy follow readily from the fact that

X ∩Y =;⇐⇒ X̄ ∪ Ȳ = [n]

where X̄ is the set complement of X .

strongly linear (t +1,n − t +1)-CDS:

– W :=Zn+1
p

– A(X , (w,u)) := (
{wi : i ∈ X̄ ∩ {1, . . . , t }},u +∑

i∈X∩{t+1,...,n} wi
)

(padded to a vector in Zt+1
p )

– B(Y , (w,u),α) := (
α+u +∑

i∈Y ∩{1,...,t } wi , {wi : i ∈ Ȳ ∩ {t +1, . . . ,n}}
)

(padded to a vector in Zn−t+1
p )

– C(X ,Y , (c,c ′), (d ′,d)) := d ′−∑
i∈Y ∩{1,...,t } wi − c ′+∑

j∈X∩{t+1,...,n} w j .

Correctness is straightforward.

Privacy. Suppose P(X ,Y ) = 0 so that X ∩Y 6= ;. Fix j ∈ X ∩Y . One of the following is true:

1. j ∈ {1, . . . , t }, therefore, α is masked by w j .
2. j ∈ {t +1, . . . ,n}, therefore, u is masked by w j , and α is masked by u.

D Lower bound on the communication complexity of predicates.

For completeness, we describe here the lower bounds on the one-way communication complexity of
Pprefix and PMSP. Note that the upper bounds are given by the trivial protocols.

First, we present a straightforward lemma that allows us to lower bound the randomized one-way
communication complexity of a predicate, where the correctness is over the public coins used in the
protocol, by its distributional one-way communication complexity, where we consider deterministic
protocols whose correctness is over a probability distribution over the inputs. This lemma is implied
by a theorem due to Yao [50].

Lemma 3 ([50]). Let P : X×Y→ {0,1} be a predicate, and (A,B) be a one-way (A→ B) communication
protocol for P, with

A :X×W→ {0,1}`, B :Y×W× {0,1}`→ {0,1}.

For all distributions µ over X×Y, there exists a deterministic protocol (Ã,B̃) of same communication
complexity as (A,B), such that

Pr
(x,y)←Rµ

[B̃(y,Ã(x)) =P(x, y)] ≥ 1−δ/2

where δ := Pr
(x,y)←Rµ

[P(x, y) = 0]. A similar statement holds for one-way (B→A) protocols.

Proof. We know that
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– for all (x, y) ∈X×Y such that P(x, y) = 1,

Pr
w←RW

[B(y, w,A(x, w)) = 1] = 1

– for all (x, y) ∈X×Y such that P(x, y) = 0,

Pr
w←RW

[B(y, w,A(x, w)) = 0] ≥ 1/2.

Therefore,

Pr
w←RW,(x,y)←Rµ

[B(y, w,A(x, w)) =P(x, y)]

= Pr
w←RW,(x,y)←Rµ

[B(y, w,A(x, w)) = 1|P(x, y) = 1] · Pr
(x,y)←Rµ

[P(x, y) = 1]

+ Pr
w←RW,(x,y)←Rµ

[B(y, w,A(x, w)) = 0|P(x, y) = 0] · Pr
(x,y)←Rµ

[P(x, y) = 0]

≥ 1 · (1−δ)+1/2 ·δ
= 1−δ/2

By an averaging argument, there exists a w∗ ∈W such that

Pr
(x,y)←Rµ

[B(y, w∗,A(x, w∗)) =P(x, y)] ≥ 1−δ/2.

The deterministic protocol (Ã,B̃) is the protocol (A,B) where the random string w ∈W is fixed to w∗. ut

The second lemma, due to Nayak [36], gives a lower bound on the distributional complexity of the
augmented index predicate, which is an easier version of the index predicate, and which will be used
to prove lower bounds on the one-way communication complexity of Pprefix.

Augmented index. Here, X := {0,1}n ,Y := [n]× {0,1}≤n and

PAug.index(x, (i ,y)) = 1 iff (y = (x1, . . . , xi−1))∧ (xi = 1).

Lemma 4 ([36]). Let X := {0,1}n ,Y := [n]× {0,1}≤n and ε ∈ [0,1]. Let µ∗ the following input distribution

µ∗ : x ←R {0,1}n , i ←R [n],y := (x1, . . . , xi−1).

Then, for any deterministic one-way (A→B) protocol (A,B) of communication complexity ` with

Pr
(x,(i ,y))←Rµ∗

[
B

(
(i ,y),A(x)

)=PAug.index
(
x, (i ,y)

)]≥ 1−ε,

we have
`≥ (1−H(ε))n

where H is the binary entropy function.
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Also, for any deterministic one-way (B→A) protocol (A,B) of communication complexity ` with

Pr
(x,(i ,y))←Rµ∗

[
A

(
x,B(i ,y)

)=PAug.index
(
x, (i ,y)

)]≥ 1−ε,

we have
`=Ω(logn)

The same bounds hold for Pindex on the uniform distribution x ←R {0,1}n , i ←R [n].

We can now prove the lower bounds on the one-way communication complexity of Pprefix and PMSP.

Prefix. Here, X := {0,1}n , Y := {0,1}≤n and

Pprefix(x,y) = 1 iff y is a prefix of x

Theorem 5. For all n, we have

RA→B(Pprefix) ≥ (1−H(1/4))n and RB→A(Pprefix) =Ω(logn)

Proof. We reduce PAug.index to Pprefix. In high level, we show that a deterministic one-way communica-
tion protocol for Pprefix for a specific input distribution µ, implies a deterministic one-way communica-
tion protocol with the same communication forPAug.index and the distributionµ∗ in Lemma 4. Hence, the
lower bound on the communication complexity ofPAug.index, implies a lower bound for the distributional
one-way communication complexity of Pprefix for the distribution µ. By Lemma 3, this implies the same
lower bound for the randomized one-way communication complexity of Pprefix.

We start by defining the following input distribution µ for Pprefix,

µ : x ←R {0,1}n , i ←R [n],y := (x1, . . . , xi−1,1).

Note that for all (x,y) in the support of µ, we have (x,y) = (x, (x1, . . . , xi−1,1)) for some i ∈ [n] and

Pprefix(x, (x1, . . . , xi−1,1)) = 1 iff PAug.index(x, (i , (x1, . . . , xi−1)) = 1

First, we prove the statement aboutRA→B(Pprefix). Suppose there exists a deterministic one-way protocol
(A,B) for Pprefix with communication `, such that

Pr
(x,y)←Rµ

[B((x1, . . . , xi−1,1),A(x)) =Pprefix(x, (x1, . . . , xi−1,1))] ≥ 3/4.

From (A,B), we build a deterministic one-way protocol (Ã,B̃) for PAug.index on the input distribution

µ∗ : x ←R {0,1}n , i ←R [n],y := (x1, . . . , xi−1).

For all (x, (i ,y)) = (x, (i , (x1, . . . , xi−1))) in the support of µ∗, (Ã,B̃) is defined by:

– Ã(x) :=A(x);
– for all messages m ∈ {0,1}`, B̃((i , (x1, . . . , xi−1)),m) :=B((x1, . . . , xi−1,1),m).
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It is easy to check that

Pr
(x,(i ,y))←Rµ∗

[
B̃((i , (x1, . . . , xi−1)),Ã(x)) =PAug.index(x, (i , (x1, . . . , xi−1)))

]
= Pr

(x,y)←Rµ

[
B((x1, . . . , xi−1,1),A(x)) =Pprefix(x, (x1, . . . , xi−1,1))

]
≥ 3/4

Therefore, by Lemma 4,
`≥ (1−H(1/4))n.

Second, we prove the statement about RB→A(Pprefix). Suppose there exists a deterministic one-way
protocol (A,B) for Pprefix with communication `, such that

Pr
(x,y)←Rµ

[A(x,B(x1, . . . , xi−1,1)) =Pprefix(x, (x1, . . . , xi−1,1))] ≥ 3/4.

From (A,B), we build a deterministic one-way protocol (Ã,B̃) for PAug.index on the input distribution

µ∗ : x ←R {0,1}n , i ←R [n],y := (x1, . . . , xi−1).

For all (x, (i ,y)) = (x, (i , (x1, . . . , xi−1))) in the support of µ∗, (Ã,B̃) is defined by:

– B̃(i , (x1, . . . , xi−1)) := B((x1, . . . , xi−1,1));
– for all messages m ∈ {0,1}`, Ã(x,m) :=A(x,m).

It is easy to check that

Pr
(x,(i ,y))←Rµ∗

[
Ã(x,B̃(i , (x1, . . . , xi−1))) =PAug.index(x, (i , (x1, . . . , xi−1)))

]
= Pr

(x,y)←Rµ

[
A(x,B(x1, . . . , xi−1,1) =Pprefix(x, (x1, . . . , xi−1,1))

]
≥ 3/4

Therefore, by Lemma 4,
`≥Ω(logn).

ut

Read-once monotone span programs [25]. Here, X := {0,1}n ,Y :=Zn×n
p , and

PMSP(x,M) = 1 iff x satisfies M

where x satisfies M iff (1,0, . . . ,0) lies in the row span of {M j : x j = 1} where M j is the j ’th row of M.

Theorem 6. For all n, we have

RB→A(PMSP) ≥ 1−H(1/4)

4
n2.

Proof. We reduce Pindex to PMSP. In high level, we show that a deterministic one-way (B → A) com-
munication protocol for PMSP for a specific input distribution µ, implies a deterministic one-way
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communication protocol with the same communication forPindex with input sizeΩ(n2) and the uniform
input distribution. By Lemma 4, the lower bound on the communication complexity of Pindex implies a
lower bound for the distributional one-way communication complexity ofPMSP for the distributionµ. By
Lemma 3, this implies the same lower bound for the randomized one-way communication complexity
of PMSP.

For notational convenience, let n be even. We define the following input distribution µ for PMSP.

The matrix M ∈Zn×n
p , is distributed as follows:

– For all i ≤ n/2, Mi ,1 = 1.
– For all i ≤ n/2, and all 2 ≤ j ≤ n/2+1, Mi , j ←R {0,1}.
– For all i > n/2, Mi ,i−n/2+1 = 1.
– For all i > n/2, and all j 6= i −n/2+1, Mi , j = 0.
– for all i ∈ [n], and all j > n/2+1, Mi , j = 0.

The vector x ∈ {0,1}n is distributed as follows:

– For a random i ′ ←R [n/2], we have xi ′ := 1. For all i ≤ n/2, i 6= i ′, we have xi := 0.
– For a random i ′′ ←R [n/2], we have xn/2+i ′′ := 0. For all i > n/2, i 6= i ′′, xi := 1.

The matrix M and the vector x are shown in figure 3.

M :=



1 ∗ ∗ ∗
1 ∗ ∗ ∗
1 ∗ ∗ ∗
0 1 0 0

0 0 1 0

0 0 0 1

0 0

0 0

0 0

0 0

0 0

0 0


x :=



0

1

0

1

1

0


Fig. 3. Examples of M with n = 6 and x with i ′ = 2 and i ′′ = 3.

Note that for all (x,M) in the support of µ, for which xi ′ = 1 and xn/2+i ′′ = 0 for some i ′, i ′′ ∈ [n/2], we have

PMSP(x,M) = 1 iff Mi ′,i ′′+1 = 0.

Now, suppose there exists a deterministic one-way (B→A) communication protocol (A,B) forPMSP with
communication `, where A :X×W× {0,1}`→ {0,1}, B :Y×W→ {0,1}`, and

Pr
(x,M)∼µ

[A(x,B(M)) =PMSP(x,M)] ≥ 3/4.

From (A,B), we build a deterministic one-way (A→ B) protocol (Ã,B̃) for Pindex on the uniform input
distribution µ∗ defined as follows:

– M̃ ←R {0,1}n/2×n/2
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– (i ′, i ′′) ←R [n/2]× [n/2]

Note that this is a distribution which is uniform on strings of length n2/4 and uniform on an index in
[n2/4]. Moreover, for all inputs in the support of µ∗ we have

Pindex(M̃, (i ′, i ′′)) = 1 iff PMSP(x,M) = 1.

We can now define the protocol (Ã,B̃), for all (M̃, (i ′, i ′′)) in the support of µ∗, as:

– Ã(M̃) :=B(M), where M is in the support of µ and it is such that for all i ≤ n/2, and all 2 ≤ j ≤ n/2+1,
Mi , j = M̃i , j−1.

– for all messages m ∈ {0,1}`, B̃((i ′, i ′′),m) := A(x,m), where x is in the support of µ and it is such that
xi ′ := 1 and xn/2+i ′′ := 0.

It is easy to check that

Pr
(M̃,(i ′,i ′′))←Rµ∗

[
B̃((i ′, i ′′),Ã(M̃)) =Pindex(M̃, (i ′, i ′′))

]= Pr
(x,M)←Rµ

[
A(x,B(M)) =PMSP(x,M)

]≥ 3/4.

Therefore, by Lemma 4,

`≥ 1−H(1/4)

4
n2.

ut

Theorem 7. For all n, we have
RA→B(PMSP) ≥ (1−H(1/4))n.

Proof. We again reduce Pindex to PMSP. In high level, we show that a deterministic one-way (A → B)
communication protocol for PMSP for a specific input distribution µ, implies a deterministic one-way
communication protocol with the same communication for Pindex with input size n and the uniform
input distribution. By Lemma 4, the lower bound on the communication complexity of Pindex implies a
lower bound for the distributional one-way communication complexity ofPMSP for the distributionµ. By
Lemma 3, this implies the same lower bound for the randomized one-way communication complexity
of PMSP.

We define the following input distribution µ for PMSP.

The matrix M ∈Zn×n
p , is distributed as follows:

– For a uniformly random i ∈ [n], Mi ,1 = 1. All other elements of the matrix are 0.

The vector x ∈ {0,1}n is distributed uniformly.

Note that for all (x,M) in the support of µ with i ∈ [n] such that Mi ,1 = 1

PMSP(x,M) = 1 iff xi = 1.

Now, suppose there exists a deterministic one-way (A→B) communication protocol (A,B) forPMSP with
communication `, where A :X×W→ {0,1}` and B :Y×W× {0,1}`→ {0,1}, and
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Pr
(x,M)∼µ

[B(M,A(x)) =PMSP(x,M)] ≥ 3/4.

From (A,B), we build a deterministic one-way (A→ B) protocol (Ã,B̃) for Pindex on the uniform input
distribution µ∗ defined as follows:

µ∗ : x ←R {0,1}n , i ←R [n]

We can easily define the protocol (Ã,B̃), for all (x, i ) in the support of µ∗, as:

– Ã(x) :=A(x) .
– for all messages m ∈ {0,1}`, B̃(i ,m) := B(M,m), where M is in the support of µ, and it is such that

Mi ,1 = 1.

It is easy to check that

Pr
(x,i )←Rµ∗

[
B̃(i ,Ã(x)) =Pindex(x, i )

]= Pr
(x,M)←Rµ

[
B(M,A(x)) =PMSP(x,M)

]≥ 3/4.

Therefore, by Lemma 4,
`≥ (1−H(1/4))n.

ut
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