Improved Linear Hull Attack on Round-Reduced SIMON with
Dynamic Key-guessing Techniques

Huaifeng Chen!, Xiaoyun Wang!»2*

! Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China
2 Institute of Advanced Study, Tsinghua University, Beijing 100084, China
hfchen@mail.sdu.edu.cn, xiaoyunwang@mail.tsinghua.edu.cn

Abstract. SiMON is a lightweight block cipher family proposed by NSA in 2013. It has drawn many
cryptanalysts’ attention and varieties of cryptanalysis results have been published, including differential,
linear, impossible differential, integral cryptanalysis and so on. In this paper, we give the improved linear
attacks on all reduced versions of SIMON with dynamic key-guessing technique, which was proposed to
improve the differential attack on SIMON recently. By establishing the boolean function of parity bit
in the linear hull distinguisher and reducing the function according to the property of AND operation,
we can guess different subkeys (or equivalent subkeys) for different situations, which decrease the
number of key bits involved in the attack and decrease the time complexity in a further step. As a
result, 23-round SiMON32/64, 24-round SiMON48/72, 25-round S1MON48/96, 30-round SiMoON64/96,
31-round SiMON64/128, 37-round SIMON96/96, 38-round SIMON96/144, 49-round SIMON128/128, 51-
round SIMON128/192 and 53-round SIMON128/256 can be attacked. As far as we know, our attacks
on most reduced versions of SIMON are the best compared with the previous cryptanalysis results.
However, this does not shake the security of SIMON family with full rounds.

1 Introduction

In 2013, NSA proposed a new family of lightweight block cipher with Feistel structure, named as SIMON,
which is tuned for optimal performance in hardware applications [1]. The SIMON family consists of various
block and key sizes to match different application requirements. There is no S-box in the round function.
The round function consists of AND, rotation and Xor (ARX structure), leading to a low-area hardware
requirement.

Related Works. SIMON family has attracted a lot of cryptanalysts’ attention since its proposition. Many
cryptanalysis results on various versions of SIMON were published. For differential attack, Alkhzaimi and
Lauridsen [13] gave the first differential attacks on all versions of SIMON. The attacks cover 16, 18, 24, 29,
40 rounds for the versions with block size 32, 48, 64, 96 and 128 respectively. At FSE 2014, Abed et al. [9)
gave differential attack on variants of SIMON reduced to 18, 19, 26, 35, 46 rounds with respective block size
32, 48, 64, 96 and 128. At the same time, Biryukov et al. [10] gave differential attack on several versions of
SIMON independently. And 19-round SIMON32, 20-round SIMON48, 26-round SIMONG64 were attacked. Then
Wang et al. [14] proposed better differential attacks with existing differentials, using dynamic key-guessing
techniques. As a result, 21-round SIMON32/64, 23-round SIMON48/72, 24-round SIMON48/96, 28-round SI-
MONG64 /96, 29-round SIMONG64 /128, 37-round SIMON96/96, 37-round SIMON96/144, 49-round SIMON128 /128,
49-round SIMON128/192, 50-round SIMON128/256 were attacked.

For the earlier linear cryptanalysis, 11, 14, 16, 20, 23-round key recovery attacks on SIMON with block
size 32, 48, 64, 96, 128 were presented in [8]. Then, Alizadeh et al. [15] improved the linear attacks on
13-round SIMON32, 15-round SIMON48, 19-round SIMONG64, 28-round SIMON96, 35-round SIMON128. Re-
cently, Abdelraheem et al. [6] took advantage of the links between linear characteirstics and differential
characteristics for SIMON and found some linear distinguishers using differential characteristics found earlier.
They presented various linear attacks on SIMON with linear, multiple linear, linear hull cryptanalysis. The
linear hull cryptanalysis has better attack results, which can attack 21-round SIMON32/64, 20-round SI-
MON48/72, 21-round SIMON48/96, 27-round SIMON64/96, 29-round SIMON64/128, 36-round SIMON96/144,

* Corresponding Author

48-round SIMON128/192 and 50-round SiMON128/256. Then, with the Mixed-integer Linear Programming
based technique, Shi et al. [7] searched new linear trails and linear hulls, and 21, 21, 29 rounds for SI-
MON32/64, SIMON48/96, SIMONG4,/128 were attacked respectively. Also, Sun et al. [12] found a 16-round
linear hull distinguisher of SIMON48, with which he attacked 23-round SIMON48/96. Ashur [20] introduced a
new way to calculate the correlations of short linear hulls and provided a more accurate estimation for some
previously published linear trails. He gave multiple linear cryptanalysis on 24-round SIMON32/64, 23-round
SIMON48/72, 24-round SIMON48/96, 24-round SIMONG64,/96 and 25-round SIMONG64/128. However, it uses
the correlation when all the subkeys are zero as the expected correlation under random key situations, which
is not exact. Moreover, if the potential of each linear hull of the cipher is smaller than that of random per-
mutations, then the combination of these linear hulls can not distinguish between the cipher and a random
permutation.

Table 1: Summary of Linear Hull Attacks on SIMON

Cipher Total Rounds|Attacked rounds| Data Time Reference
3056 55.56
21 2 2 6
SIMON32/64 32 21 -8 - 7
23 27T I[P I O 25187 A% 259 7] Section 4.2
20 244A11 270,61 [6]
SIMON48/72 36 24 247.92 2()9.E)ZONEE+ 2()7. ‘JA + 25()E AppendiX B
21 24411 270,61 [6]
21 - - 7
SiMoN48/96 36 23 AT 92 99292 [[12]]
55 TIZ[IO + 259594 + 2VE |Appendix B
27 262.53 288.53 [6]
SiMoN64/96 42 30 2035 FITBONE + 29024 1+ 2°E |Appendix B
29 262.53 2123.53 6
SIMON64/128 44 29 - - 7
31 265.55 2115.55TwO _,’_ 2119402‘4 + 212UE AppendiX B
SIMON96/96 52 37 2952 207914 1 % | Appendix B
36 294.2 212&5 [6]
SIMON96/144 54 33 25T [QI IONE + 295914 + 250K |Appendix B
SiMON128/128 68 49 21276 27T A 4 21E Appendix B
183 5TZ6:6 5I876 [6]
Smon128/192 69 51 I QTS ONE + 2777 A + 2°7E |Appendix B
=0 5TZ6:6 52428 [6]
SIMON128/256 & 53 27T PYONE + 2277 A + 2°°E |Appendix B

&7 means not given

> TWO means two rounds encryption or decryption
¢ A means addition

4 E means encryption of attacked rounds

¢ ONFE means one round encryption or decryption

Also, there are some results with other attack models, such as impossible differential cryptanalysis [15-18],
zero-correlation cryptanalysis [16] and integral cryptanalysis [16].

Our Contributions. In this paper, we give the improved linear hull attacks on all reduced versions of
SiMON family with dynamic key-guessing technique, which was proposed initially to improve the differential
attack on SIMON [14], using existing linear hull distinguishers. In linear attack, one important point is to
compute the empirical correlations (bias) of the parity bit, which derives from the Xor-sum of the active
bits at both sides of the linear hull distinguisher, under some key guess. Our attack on SIMON improves this
procedure efficiently.

The non-linear part in the round function of SIMON is mainly derived from the bitwise AND (&) operation
while it has a significant feature. For details, if one of the two elements is equal to zero, the result of their AND
will be zero, no matter what value the other element takes. For a function f = fi(x1, k1)& fo(xa, ke), if we

GUESS k; at first, and SPLIT the all = 21|22 into two cases: case 1, fi(x1,k1) = 0; case 2, f1(z1, k1) =1,
there is no need to guess the key bits ks in case 1, since f = 0 holds for any value of f5 in case 1. Then,
we can compute the correlations in each case with less time and at last, we COMBINE the two correlations
together for corresponding key k = kq||ko.

At first, we give the boolean representations for the parity bit in the linear distinguisher of SIMON. And
then we apply the GUESS, SPLIT and COMBINE technique in the calculation of the empirical correlations,
which mainly exploits the dynamic key-guessing idea to reduce the number of subkey bits guessed signifi-
cantly. For example, in the attack on 21-round SIMON32, 32 subkey bits are involved. With above technique,
we can only guess 12.5 bits from the total 32-bit subkey on average to compute the correlations.

As a result, the improved attack results are shown as follows. We can attack 23-round SIMON32/64,
24-round SIMON48/72, 25-round SIMON48/96, 30-round SIMONG64/96, 31-round SIMON64/128, 37-round SI-
MON96/96, 38-round SIMON96/144, 49-round SIMON128/128, 51-round SIMON128/192 and 53-round SI-
MON128/256. This improves the linear attack results for all versions. From the point of number of rounds
attacked, the results on most versions are best up to now. The existing and new linear hull attack results
on SIMON are summarized in Table 1. Also, we implement the 21-round attack on SIMON32. In the attack,
we can decrease the 32 subkey bits involved in the attack by 8 bits. The experiments show that the attack
success probability is about 27.7% using 23! plaintext-ciphertext pairs.

The paper is organised as follows. In section 2, we introduce the linear (hull) cryptanalysis and give the
description of SIMON family. Section 3 gives the dynamic key-guessing technique used in the linear crypt-
analysis. Then the improved attacks on SIMON32/64 and all other variants are given in section 4. Finally, we
conclude in section 5. Appendix A gives the time complexities to calculate the empirical correlations in some
simple situations. In Appendix B, we give the improved attacks on other variants of SIMON. The source code
of the implementation of 21-round attack on SIMON32 is given in Appendix C.

2 Preliminaries

2.1 Linear Cryptanalysis and Linear Hull

Fs denotes the field with two elements and I} is the n-dimensional vector space of Fy. Let g : Fy — Fs be a
Boolean function. Let B(g) = Zzem(—l)g(’:). The correlation ¢(g) of g and 0 (in the following paper, when

we say the correlation of a function, it means the correlation of this function and 0) is defined by

c(g)=27" Y (-1 =27"B(g). (1)

z€Fy

(In some situations of the remainder of this paper, we regard B(g) as the correlation for simplicity of
description.) The bias of g is defined by half of ¢(g), which is represented as €(g) = 1c(g).

Linear cryptanalysis [2] is a powerful cryptanalytic method proposed in 1993 to cryptanalysis DES. At
first, one tries to find a good linear approximation involving some plaintext bits, ciphertext bits and the
subkey bits as follows

a-Pop-C=v-K, (2)

where «, 3,7 are masks and P,C, K represent the plaintext, ciphertext and keys. 'good’ means that the
probability of the linear approximations is far away from 1/2, which is the probability in random situations.
In other words, higher absolute of bias e(a- P @® 8- C @ v - K) leads to better linear crypanalysis result in
general. Algorithm 1 and Algorithm 2 in [2] are two attack models exploiting the linear approximation as
distinguisher. (’)(6%) known plaintexts are needed in the key-recovery attacks.

Then in 1994, Nyberg [4] studied the linear approximations with same input mask « and output mask
B, and denoted them as linear hull. The potential of a linear hull is defined as

ALH(o,8) =) é(a-P®B-Coy-K)=¢. (3)

The effect of linear hull is that the final bias € may become significantly higher than that of any individual
linear trail. Then the linear attacks with linear hull require less known plaintexts, i.e., O(E%)

Selguk and Bigak [5] gave the estimation of success probability in linear attack for achieving a desired
advantage level. The advantage is the complexity reduction over the exhaustive search. For example, if m-bit
key is attacked and the right key is ranked ¢-th among all 2 candidates, the advantage of this attack is
m — loga(t). Theorem 2 in [5] described the relation between success rate, advantage and number of data
samples.

Theorem 1 (Theorem 2 in [5]). Let Ps be the probability that a linear attack, as defined by Algorithm-
2 in [2], where all candidates are tried for an m-bit subkey, in an approzimation of probability p, with N
known plaintext blocks, delivers an a-bit or higher advantage. Assuming that the approximation’s probablity
is independent for each key tried and is equal to 1/2 for all wrong keys, we have, for sufficiently large m and
N,

r= [Oz, (®)

—2v/N|p—1/2|+P-1(1—2—a—1)

independent of m.

2.2 Description of SIMON

SIMON is a family of lightweight block cipher with Feistel structure designed by NSA, which is tuned for
optimal performance in hardware applications [1]. The SIMON block cipher with an n-bit word (hence 2n-bit
block) is denoted SIMON2n, where n is limited to be 16, 24, 32, 48 or 64. The key length is required to be
mn where m takes value from 2,3 and 4. SIMON2n with m-word key is referred to SIMON2n/mn. There are
ten versions in the SIMON family and the detailed parameters are listed in Table 2.

block size (2n)|key size (mn)|rounds

32(n=16) | 64 (m=4) | 32
B 72 (m=3) | 36
8 (=20 =0 36
- 96 (m =3) | 42
64(n=32) Hogm=a u
_ 96 (m=2) | 52
96 (n=48) =31 54
128 (m=2)| 68
128 (n = 64) [192 (m =3) | 69

256 (m =4) | 72 Xr Xp

Table 2: The SimoN Family Block Ciphers Fig. 1: Round Function of SiMoN

Before introducing the round functions of SIMON, we give some notations of symbols used throughout
this paper.

X" 2n-bit output of round r (input of round r + 1)

X7 left half n-bit of X"

X7 right half n-bit of X"

KT subkey used in round r + 1

T; the i-th bit of z, begin with bit 0 from right (e.g., X7 is the LSB of X7)
Ziy,...ip the XOR-sum of z; for i = iq,i2,...,4 (e.g., xo,1 = To ® x1)

r & i left circulant shift by ¢ bits of x

@® bitwise XOR

& bitwise AND

F(z) F(z)=(z <)&z« 8))® (z « 2)
The r-th round function of SIMON2n is a Feistel map

Frro1 Ty x Fy — Fy x F,

(Xp L XE) = (XL, XR)

where X5, = X7 ' and X} = F(X;)@ X}, '@ K"'. The round function of SIMON is depicted in Figure 1.
Suppose the number of rounds is T, the whole encryption of SIMON is the composition Fyr-10---0Fy10Fgo.
The subkeys are derived from the master key. The key schedules are a little different depending on the key
size. However, the master key can be derived from any m consecutive subkeys. Please refer to [1] for more
details.

3 Time Reduction in Linear Cryptanalysis for Bit-Oriented Block Cipher

For bit-oriented block cipher, such as SIMON, the operations of round function can be seen as the concatena-
tion of some boolean functions. For example, in SIMON32, the O-th bit of X7} is a boolean function of some
bits of X"~! and subkeys as follows,

Xio=Xip&X e X[e Xp o Ki" 5)

Other bits in X} have similar boolean representations and the bits in X}, are same with the bits in X7~ ",
The boolean representation of one bit can be extended to multiple rounds.

3.1 Linear Compression

In Matsui’s improved linear cryptanalysis [3], the attacker can pre-construct a table to store the plaintexts
and ciphertexts. We call this pre-construction procedure as linear compression, since the purpose is to reduce
the size of efficient states by compressing the linear part. The detail of the compression is as follows.

Suppose z is a [1-bit value derived from the n-bit plaintext or ciphertext and k is a l-bit value derived
from the subkey. y € Fy is a boolean function of z and k, y = f(z, k). Let V]z] stores the count number of
x. We define B*(y) with counter vector V and function y = f(x, k) for k as

B*(y) = (~1)/"PV[a]. (6)

xT

So, B¥(y) is the correlation of y with 2 under key guess k. One needs to do 21172 computations of function
f to calculate the correlations of y for all & with a straight-forward method at most. If 4 is linear with some
bits of z and k, the time can be decreased.

For simplicity, let @ = 2’||zg, k = k'||ko and y = xo © ko @ f1(a’, k"), where both xg and kg are single
bits. The correlation of y under some k is

BY(y) = (—1)* Y () V]|o] - Via'||1]). (7)

x’

It is obvious the correlations of y under same k' and different ky have same absolute value, and they are
different just in the sign. So if we compress the x¢ bit at first according to V'[2'] = V[2/||0] =V [/|[1], B¥ (v/)
with counter vertor V'’ and function y’ = ¢’(2’, k") for k' can be computed with 2/1+2=2 calculations of f;.
And the correlation B¥(y) can be derived directly from B*(y) = (—1)% B* (3'). We define ko the related
bit. If the absolute correlations are desired, the related bit kg can be omitted directly, since it has no effect
on the absolute values.

If y is linear with multiple bits of z and k, the linear bits can be combined at first, then above linear
compression can be applied. For example, y = (o D ko) ® -+ ® (z: ® ki) ® fr(2”, k") where 2", k" are the
other bits of x and k respectively. We can initialize a new counter vector V'[z”||z(] where xf is 1-bit value
of the xor sum of xg,x1,...,x:. We set V'[2"||z(] = Zzo@_“@xt:% Vx]. Let ki = ko @ - - - @ ky. The target
value y becomes y = z(, @ k, ® fi(«”, k") with counter vector V'[z”||x(], which is the case discussed above.

3.2 Dynamic key-guessing in linear attack: Guess, Split and Combination

Suppose one want to compute B*(y) with counter vector V and boolean function y = f(z, k), along with
the definitions in the above section. With a straight-forward method, the time to compute B¥(y) is 21+t If

Guess Ko |fa(z, kallke) SB
= k
y= Ik 7 sa e ksllke)

Fig. 2: When k¢ is known, the set of x can be splitted to two sets. f is independent of kg in set S4 and independent
of ka in set Sp.

for different values of x, different key bits of k are involved in function f(z, k), the time to calculate B*(y)
can be decreased.

For simplicity, let k = kqg||ka|lks||kc, where kg, ka, kg, kc are IS 1,15 and IS bits (IS +14 I8 +15 = 15)
respectively. Suppose when k¢ is known, the all x can be splitted into two sets, i.e. S4 with V4 elements and
Sp with Np elements (N4 + Np = 21). And when = € Sa, f(z,k) = fa(x,kal|kc) which is independent of
kp; when x € Sg, f(z,k) = fg(x,kp||kc) which is independent of k4 (See Figure 2). Then, B*(y) can be
obtained from the following combination

B*(y) = Z (_1)fA(kaA||kC)V[x] + Z (_1)fs(r,ks\\kc)v[x] (8)

z€SA zeESp

for some guessed k¢. The time to compute S (—1)fa@kallke) V7 [g] for the 2 € S4 needs N 25+ 4 caleu-
lations, while 32(—1)78(@*5lkc)V[4] for 2 € Sp needs Np2!s +15+15 . The combination needs 2" additions.
So the time complexity in total is about

NA21§+1§‘+Z§+N321§+z§+l§+212

which improves the time complexity compared with 201 F¢2,

The AND operation in SIMON will generate the situations discussed above. Let x,k € F% and y =
fz, k) = (20 ® ko)&(x1 @ k1). V]x] denotes the count number of x. With a straight-forward method, the
calculation of correlations for all k need time 222 = 2%, If one side of the AND in f(z,k) is 0, ¥ would be
0 without knowing the value in the other side. Exploiting this property, we can improve the time complxity
for calculating the correlations. At first, we guess one bit of k, e.g. kg. Then we split the x into two sets and
compute the correlations in each set. At last, we combine the correlations according to the keys guessed.

— GUESS kg and SPLIT the x into two sets
e For the z with z¢ = ko, initialize a counter Ty and set Ty = V[0||zo] + V[1]|xo]
e For the z with xy = ko®1, initialize a counter T7 and set 11 = V'[0||zo]—V[1]|z0] (Linear compression)
e COMBINE B(y) = Tp + (—=1)"'Ty (k; is a related bit)

So in total, it needs 2(1 + 1 + 2) = 22 additions to compute the correlations for all the k, which improves
the time complexity compared to the straight-forward method. Although there are 2 bits of k involved in
the attack, we guess only one bit and make some computations while another bit is just involved in the final
combination. This can be viewed as that we reduce the number of key bits guessed from 2 to 1. Morever,
this technique adapts to some complicated boolean functions and more key (or equivalent key) bits can be
reduced significantly. Some cases have been discussed in Appendix A.

4 Linear Cryptanalysis on SIMON

In this section, we will give the improved procedure of linear attack on SIMON using existing linear hull
distinguishers for all versions of SIMON

4.1 Linear Hulls of SIMON

Some linear hulls have been proposed recently in [6,7,12], and they are displayed in Table 3. Abdelraheem
et al. [6] took advantage of the connection between linear- and differential- characteristics for SIMON and
transformed the differential characteristics proposed in [8,10] to linear characteristics directly. Similarly, dif-
ferentials can be transformed to the linear hulls. Also, they found a new 14-round linear hull for SIMON32/64,

Table 3: Linear Hulls for SIMON

BS Input Active Bits Output Active Bits ALH |[#R|Ref.
32 Xi6 XS 273189113 1 6]
X1 X 2 13 |]
Xi,o XZL+8147 X;{+é4 93256 14 [6]

7 7 7 7 7 TFI5 i T v iFIs iFIs it I5 [5—44.11
48| Xp 7, X111, X010 XRo Xkt | X Xps ' Xp o s Xplirs Xpag |2 15 | [6]
X7,+lo X'L+lo Xz+lo X’L+1o X1+L) 2—4228

Xz,GvX£,147X£,187X2,22>X;{,16 Lo L’m’X]ffls’ R,18777R207 15 | [7]
R,22

X1, Xb 5 Xb 21, XRoos X Xreo, Xi s 2772116 [[12]

64 X120, X104, X X Xia0, Xpaa 27%2°%1 21 | [6]

X7, XX X X [2T |

X135, X% 27, X131, XR,20 X2 Xp 2 X5 27938122 7]

7 7 7 7 7 T30 v it30 Y it30 yit30 3 iF30 | 5—94.2
96 | X1 2, X134, X138, X1 a2: Xr36 | Xpo > X140 X146 XR0 s XRA0 | 2 30 | [6]

7 7 T 7 7+4T1 14471 7+4T1 1+41 7+4T1 —126.6
128] XI5 X158 Xi62Xreo | Xr60:Xro Xr2 s Xrss: Xpieo |2 41 | [6]

* BS means the block size of SIMON; #R means the number of rounds for the linear hull

by constructing squared correlation matrix to compute the average squared correlation. Shi et al. [7] searched
the linear characteristics with same input and output masks using the Mixed-integer Linear Programming
modelling, which was investigated to search the differential characteristics for bit-oriented block cipher [11]
and then extended to search the linear characteristics (hull) later [12].

Similar to the rotational property of integral distinguishers and zero-correlation linear hull shown in [16],
more linear hulls can be constructed as follows.

4 4 i i it+r i+r i+ i+r
Property 1. Assume that XL,jg’ . ,XLJ?O,XRJ.&, e ’XR,j,}l — XL’].%, .. ’XL’j?z’ XR_’jg, ... 7XR7j?3 is a r-
round linear hull with potential € for SIMON2n, where 53, . . . ,j?mj&, e ,jtl1 Je 7jé,jg’7 . ,jf’s €{0,...,n—
1}. Let j2* = (jP+s) mod n, wherep =0,...,3,¢=0,...,t,, then for 0 < s < n—1, we have that the poten-
tial of the r-round linear hull X¢ ., ..., X% , X¢ . X0 o XU X X X
Ljg™ 0 Ly T Ryt T Ry Lo " Ly R TR

for SIMON2n is also &2.

Observe the two 13-round linear hulls of SIMON32 in Table 3 and we can find they are in fact the rotations
of same linear hull. The potential of X} o — X}%'} is estimated as 2736 in [6] while that of X} ; — X}FJ

is estimated as 273019 in [7]. The difference may come from the different search methods and different linear
trails found. Since SIMON32 has small block size, we can test the bias (potential) of the 13-round linear hull
experimentally. In the experimentation, we choose 600 keys randomly, and compute the corresponding bias

from the whole plaintexts. The results are shown in the following table.

Table 4: Experimental bias for the 13-round linear hull of Simon32

& =|p—1/2]* [Number[Number/600
€2 > 9272710 7 0.012
227419 > 62 2 2—2&19 21 0035
228419 > 62 2 2—29.19 58 0_097
2291 < 2 > 9—30.19 79 0.12
23010 2 > 9=3LI9 g 0.173
eZ < 273119 338 0.563

From the table, we know that about 26.4% of the keys have ¢2 > 273919 Sg 230-19 ig g little optimistic
for the other 73.6% keys . However, this linear hull distinguisher is interesting and in the following, we will
give the key recovery procedure using this linear hull. Also, we implement the 21-round attack on SIMON32
and the results shows that we can decrease the candidate key space by 8 bits when the potential under the
real key is large.

4.2 Improved Key Recovery Attack on SIMON32/64

We exploit the 13-round linear hull proposed in [7] to make key recovery attack on round-reduced SIMON32.
The linear hull is

i i+13
X5 Xgp13-

We mount a key recovery attack on 21-round SIMON32/64 by adding four rounds before and appending four
rounds after the distinguisher. Here let P = X*~* be the plaintext and C = X’T17 be the corresponding
ciphertext. Suppose the subkeys involved in the first four rounds are Kp and those in the last four rounds
are K. Then X2,5 is a function of P and Kp, Xi,s = E(P, Kp). Similarly, X};‘fg = D(C, K¢) is a function
of C and K¢. Let S be the set of N plaintext-ciphertext pairs obtained, the empirical correlation under
some key Kp, K¢ is

1
e P ©)

pPCeS

Table 5: 4 rounds before X} 5 for SIMON32

x | Representation of x; k |Representation of k;

zo [Xis ® KENEXT) @ Xp s @ X0 [Kis" @ K7 0 K7 @ K3~
OX 5 SKy

L1 Xfﬁl D (XZ{;&X};;) D X}?o4 k1 Ké%

@y | Xp7 & (Xpo&Xi 1) @ Xpy ko Ky "

s [X7 & (Xp g &Xp) & X5y ks |K;~"

T4 XZL_141 @ (X1L_142&X2_54) D X}l%_143 k4 Ki;;4

L5 XZL_144 D (XZ145&X2_§1) D le%—(;l D X2_24 ks K8_4 D K;_3

wo | Xpis ® (XL o&Xg) @ Xy ke |KG

L7 X2784 D (X2794&X7:T24) D X;z7140 k7 Kif

vs [X7 & (Xp & XN @ Xpg @ X || ks [Ky " @ Kip”

@y | Xpi @& (Xpo&X7 1) ® Xy ko [K3

1—4 1—4 1—4 1—4
XL,14 E'i (XL_,ls&XL,s_) D XR,O
B(Xp 3 &X] 1) & X5 4
T11 XZL_145 D (XlL?04&X1L?94) D X}Z%_14 D XJZ:_; k11 Ki_4 D K§_3

ko | KoK oKl e K2

212 [Xp o ® (XD &X7 1) © Xpy k2 |[K5 "
13 X;:94 D (X]Z:140&X1{34) D X;{141 kis Ki;4
T14 Xz_s4 D (XZL_94&XZL_24) D X;%_140 D X2_142 k14 Kig4 D Kgg

Xp7 & (X[&XT)@ Xy
&(Xp & Xp) & X5
16 [X7 © (X o &Xp 1) & Xpy @ Xpy [[kie [KG " @ K577
! Notice: 10 = T3 D T5,T15 = Ta D T8
2 X% is the plaintext P, K™%, ..., K*"! are the subkeys used in the initial
four rounds, i.e. Kp
3 In the description of the paper, zp = = = (zo,...,%16),kp = k = (ko, ..., k16)

kis | Kot @ KiP @ Kig' @ Ki3®

In a further step, Xi,s can be represented as X2,5 = f(z, k) where

flz, k) =20 D ko ® (1 ® k1)&(x2 B k2)) @ (23 © k3)& (x4 ® k4a))D

(25 ® ks & ((z6 © ko)& (27 @ k7)))&(x5 ks © (w9 B ko)&(27 @ k7)))]D

{(x10 ® k10 ® ((x6 ® k)& (27 D k7))

(211 @ k11 © (212 ® k12)&(213 D k13)))& (214 © k1a © (3 © k3)&(x13 @ k13)))])&
(215 ® k15 © (27 © kr)&(z9 @ ko))

(214 © k14 D (713 @ k13)&(23 © k3))) & (216 D k16 D (23 © k3)& (24 © k4)))])}

Table 6: 4 rounds after X;;rllf for SIMON32

x | Representation of x; k |Representation of k;

T (EUEXE) 6 X B X, (KT e KT 6 K 6 K
OXps B

o1 X546 (X &Xg & Xpa” oy [KT

w2 [Xps ® (KXo &Xpo) @ Xp ko [K(TT°

w3 [Xio @ (X1 &Xpa)@ X1y ks [Ki3™°

v | Xih' ® (X &Xp) @ Xy ka [K3TT°

v Xy (X TRy & Xy B X[R KA B K™

ro [XAT6 (G X & X ko [K

w7 [Xio' @ (X1 &Xpho) @ Xis ' ky [K5TT°

7 [X7 © (X & X) @ Xy @ X | b [R ™ @ K™

@y |Xpg @ (Xpo&Xps) & X, ko [KiTT°

TFTT 17 TFIT TFIT

XR,6_+?97 (XR_,L;QXR,O_JBSB XL,s
K3 1 3

@(Xf; L &XR’147)® X1L7 12 7 7 16 5

L11 X;?-,t} @(Xlzij_s &X;%+1)@Xﬁg @X?n k11 K5+ @Kﬁr

i+16 i+15 i+16 i+14
Z10 koK' o Kii"P o Kif'" ¢ KiY

17 T+17 T+17 T+17 1+16
T12 XR,817€B(XR 917&XR 217)@XL 10 k12| K1 &

7+ 7+ T+ 7+ T+
w13 | Xph ' @ (XRho &Xp00) @ X1 k13| K3

T KT (X Xy 10) @ Xy @ X1 [l Ky & Ky ™
XS (e X Xy
SR XD) @ X
Fro [X5 6 (X g X3) 6 Xy & X o Ky 6 K™
! Notice: £10 = T3 ® T5,T15 = T4 P T8
2 X7 i5 the ciphertext C, K13 ... K16 are the subkeys used in the last four
rounds, t.e. K¢
3 In the description of the paper, ¢ = x = (zo, ..., 216), kc = k = (ko, .. ., k16)

le K:7ll+16 @ K§+15 @ Ké+16 @ Ké+14

where the representation of x and k are 17-bit value shown in Table 5. With the same way, Xlz%+11§> can also
be represented as f(x, k) where the corresponding x and k are described in Table 6. To distinguish them,
let xp,kp be the x,k described in Table 5 and x¢, kc be the x,k described in Table 6. The N plaintext-
ciphertext pairs in S can be compressed into a counter vector V[zp, z¢], which stores the number of 2p, z¢.
Then there is

1
Chp.he = 37 Y (F)ferkneitekly iz, 2. (10)

Tp,rc

Notice that f(x,k) is linear with zo @ ko. According to the linear compression technique, the 0-th bit of zp
and z¢ could be compressed initially. Suppose that 25 is the 16-bit value of zp without the 0-th bit (same
representations for zy,, kp, k(). Initialize a new counter vector V4 which has values

Vilep,ap) = Y (=1)"P0 oV zp, ac]. (11)

TP,0,TC,0

Then the correlation becomes

1 ’ ’ ’ ! ’ ’
Ckpke = N D (1) kRO e ROV [, 2]

T'p, Ty
1 1o ’ 1o ’
= S D S RV), ol (12)
Te z’y

where f’ is part of f, i.e. f(x, k) =z0 D ko @ f'(¢', k), 2" = (x1,...,216), k' = (k1,..., Kk16).

So we can guess k> (16-bit) at first and compress the plaintexts into a counter. Then guess ki, (16-bit)
to decrypt the appending rounds, to achieve the final correlations. In the following, we introduce the attack
procedure in the forward rounds in detail. The procedure to compute Zx;j(—l)f/(””%’k})%[sc'lp, xy] for each

), is same with the procedure to compute B* (y) with some counter vector V{[’] and boolean function f’.
Counter vector V{ is part of counter vector V3. For each specific z,

Vll[$/] =W [x/’ 'r/CL

which means V/[z'] takes value of Vi[z/p, x(;] where 2, = 2’ and z(, is fixed. Morever, there are relations

that 210 = x3 ® x5, 215 = 24 ® s in Table 5,6, which means there are only 14 independent bits for 2’ (25
!

or Zp).

Compute B¥ (y) with counter vector V/[z'] and Boolean function f’. (For simplicity, we define
this procedure as Procedure A.) Although 2’ is a 16-bit value, there are only 2'4 possible values for z’ as
explained above. We use the guess, split and combination technique to decrease the time complexity to
compute B¥ (y) with counter vector V;[2’] and boolean function y = f’, for 2'6 key vaules &’

1. Guess ki, k3, k7 and split the plaintexts into 8 sets according to the value (1 @ k1, 23 ® k3, x7 ® k7). The
simplification for f’(a’, k') after guessing some keys are shown in Table 7. The representation of f;; are

Table 7: Simplification for f'(z’, k") after guessing ki1, ks, kr

Guess |71 @ k1,23 ® k3, z7 @ k7| f' |Related Bit

03050 fOO

0,0,1 fo1
0,1,0 fio k4
0,1,1 f11 ka
ki, ks, kr 1,0,0 foo k2
1,0,1 for ko
1,1,0 f10 k274
1,11 fi1 k2.4

as follows,
foo =((z5 @ k5)& (28 D ks)) ® {(z10 ® k10 @ [(x11 D k11 D ((z12 D k12)& (213 D K13)))

&(z14 ® Kk14)])&(215 © k15 @ [(214 © k14)& (216 © K16)]) },

for =((z5,6 ® ks,6)& (3,0 ® ks,9)) ® {(x6,10 ® ks,10 D [(z11 D k11 ® ((x12 ® k12)
&(x13 ® k13)))& (214 ® k14)])& (29,15 D k9,15 D [(x14 ® k14)& (216 D k16)]) },

fro =((zs ® ks)&(xs @ ks)) ® {(z10 ® k10 ® [(z11 D k11 ® ((z12 D k12)& (213 D k13)))
&(z13,14 ® k13,14)])& (215 B k15 B [(z13,14 D Kk13,14)& (4,16 D ka,16)]) },

f11 =((z5,6 ® ks,6)&(s,0 B ks,0)) & {(z6,10 B k6,10 D [(x11 ® k11 D ((z12 ® k12)& (213
@ k13)))& (213,14 D k13,14)])& (29,15 D ko,15 B [(13,14 D k13,14)& (24,16 B ka,16)]) }-

The counter vectors for x’ can be compressed in a further step according to the new representations of
f'. For example, if (z1 ® k1,23 ® ks, z7 ® k7) = (0,0,0), f/ will be equal to the formula fyo, which is
independent of xo, x4, xg, Tg9. SO we compress the corresponding counters into a new counter Vygg, and

Voools, T, 10 — T16] = Z Vi [2'].

z1=k1,x3=k3,x7=Kk7,22€F2,24€F2,26€F2,x9€EF2

Notice x19 = x3 D x5, so there are 8 independent x bits for x5, xg, x190 — r16. Notice x15 = x4 D xg, for
some fixed value of x5, xs,r19 — T16, there are 7 times addition in above equation. So generating this
new counter vector needs 28 x 7 additions.

We give another example to illustrate the situations with related key bit. If (z1 ® k1, 23 D ks, z7 D k7) =
(1,0,0), there is f' = (z2 ® k2) & foo. Notice in this subset, f’ is linear with o @ ks and x5 can be
compressed into the new counters with related key ko. So the new counter vector Vi is as follows,

Vioo|s, T8, T10 — T16] = Z (=1)"V/[2"].

z1=k1®1,x3=k3,v7=k7,22€F2,24€F2,26€EF2,29EF2

10

Also, there are 8 independent x bits for x5, xg, x19 — z16. For each fixed s, xg, x190 — 16, the new counter
can be obtained with 7 additions according to above equation.

The procedures to generate the new counter vectors for other cases are similar as that of case (1 ®
k1,23 @ ks, x7 ® k7) = (0,0,0) or (1,0,0). Morever, the time complexity to split the plaintexts and
construct new counter vectors is same for each case. Observing the four functions foo, fo1, f10 and fi1,
we know that they are with same form. In the following step, we explain the attack procedure of case
(1 @ k1,23 ® k3, z7 ® k7) = (0,0,0) in detail and the others can be obtained in the same way.

Note that, there are 9 subkey bits in each function of fyg, fo1, fi0 and f11 after guessing k1, k3, k7. So
this can be viewed as that 3 +9 = 12 subkey bits are involved in the attack while there are 16 subkey
bits are involved initially in f’. In the following, the number of key bits can be reduced in a further step.
. For foo, guess ks, k14 and split the plaintexts into 4 sets according to the value (x5 @ ks, x14 © k14). The
simplification for fyy after guessing some keys are shown in Table 8.

Table 8: Simplification for foo after guessing ks, k14

Guess |Value foo Related Bit
0,0 (x10 ® k10)&(z15 @ k1s)
ks kia 0,1 [(z10,11 D k10,11 D ((z12 B k12)& (13 D k13)))& (215,16 D K15,16)
’ 1,0 (x10 @ k10)&(z15 D k1s5) ks
1,1 [(z10,11 @ k10,11 ® (212 @ k12)& (213 ® k13)))& (215,16 D K15,16) ks

The time complexity of computing the counters’ value B¥s:ks-k10=kis(y) with counter vector Vg and
function fyg is as follows:
(a) Guess ks, k14 and split the states into four parts
1. ($5 () k‘5,£L'14 D k14) = (0,0)
A. Since x19 = x3 ® x5, x5 = k5 and x3 = k3 (the first case in Table 7), so the xz1¢ here is fixed.
There is one variable bit z15 to store. Let V) [z10, Z15] store the number of (219, 715). There
is

Voool£10, 715] = > Vooo[ws, 25, T10 — @16]- (13)

$5=k5,$14=k14

There are two possible values for (z19,215) here and for each value, the above sum needs
2% —1 additions (5 variable bits (g, 211, Z12, 713, T16)). So generating the new counter vector
needs 2 x (2° — 1) = 26 — 2 additions.

B. Computing Bg(‘)‘)’kls (y) with new function (the first case in Table 8) and vector V{:
If k1o = 210, Bug®™™** (y) = Viiol10, 0] + Vi lno, 1;
if k19 = 210 ® 1, Bea®*(y) = (=1)%5 (VY [210,0] — V% [210,1]). So in total there are no
more than 22 additions.

ii. ($5 @ ks, x14 D]4)14) = (O7 1)

A. There are 4 variable bits (210,11, Z12, 13, Z15,16) to store. Let Vo%lo[xw’u, T12,%13, T15,16) store

the counter number of (10,11, %12, 13, %15,16). There is

Valolr10,11, T12, 213, T15,16] = Z Vooo[s, s, T10 — Z16)- (14)

z5=ks5,214=k14®1

For each possible value of (210,11, Z12, Z13, Z15,16), the above sum needs 22 — 1 additions (2
free variables (zs, z15), 10 is fixed, 11 = 10 S T10,11, T16 = T15 B T15,16). S0 generating the
new counter vector needs: 24 x (22 — 1) = 26 — 2% additions.
B. Partial Bglw’“’k”’kl?"kls’w (y) with new function and vector V: 25:6 additions. (See f5 in
Appendix A)
1ii. (935 D k5,1‘14 D k14) = (170)

11

A. Similar to the first case in Step (2(a)i), let Vihh [z10, 215] store the number of (219, 715). There
is

Vooo 10, T15] = Z Vooo(—1)"*[x5, x5, 210 — Z16]- (15)

r5=ks5,x14=k14

So generating the new counter vector also needs 2 x (2° — 1) = 26 — 2 additions. kg becomes
a related bit.
B. Partial Bf2°*%(y) with new function and vector Vg9 22 additions (same with case (0,0)).
iv. (1'5 D k5,ZL'14 D k14) = (].,].)
A. Similar to the second case in Step (2(a)ii), let Vioy[®10,11, 12, T13, T15,16] Store the counter
number of ($10711,$12, .7313,33‘15,16). There is

Voo 10,11, T12, 213, T15.16] = Z (—=1)"*Vooo[zs, 28, T10 — Z16)- (16)
r5=ks5,214=k14®1

So generating the new counter vector needs: 24 x (22 — 1) = 26 — 2% additions. kg becomes a
related bit.
B. Partial By1o1 712737516 (1) with new function and vector Viil: 2564 additions. (See f; in
Appendix A)
(b) For each of 2° keys involved in fqo, partial B¥s-Fs:F10=F1s () with function y = fyo and counter vector
Vooo under key guess ks, k14 is

Bks,ks,klo—klg(y) _ (Bg(l)()akls (y) + B(I)Vll(),ll;kInglBak?lS,lG (y)) (17)
+ (_1)ks (Bféo;]flf) (y) + Bgio,u,km,kw,kw,m (y))

We can add Bé%”’kls (y) and Bglw’“’k”’k””kl"”w (y) at first, then add Bféo’k”‘ (y) and Bgio’“’klz’kls’km’m (y),
at last add the two parts according to the index value and kg. The combination phase needs
26 426 4 97 = 28 additions in total when ks, k14 are fixed.
(¢) In total, there are
22 % ((2° =242 420 -2 4 2504) 24 2%) m 21119

additions to compute B¥s-Fs:F10=k16 (y) for all 22 possible key values. Note that, about 1 subkey bit is
guessed in the first (or third) step of step 2a. In the second (or forth) step of step 2a, 1.5 subkey bits
are guessed on average. So, although there are 9 subkey bits in total, only 2+4(1+41+1.5+1.5)/4=3.25
bits on average are guessed with dynamic key-guessing technique.

3. The time of computing B¥' (y) with counter vector V{[2/] and boolean function f’ is shown in Table 9.
T1 denotes the time of seperation of the plaintexts according to the guessed bit of k. T5 denotes the time
of computation in the inner part. 73 is the time in the combination phase. When k1, k3, k7 are fixed, in
each case, 77 = 2% x 7 as explainted in Step 1. T, is 2119 as explained in Step 2. There are 13 bits for
k' except ki, ks, k7, leading to T3 = 2'3 x 7. For all guesses of ki, ks, k7, the total time is about 21946
additions.

In Step 1, 3 key bits are guessed and the plaintexts are splitted into 8 situations. For each situation, 3.25
key bits are guessed as explained above. So on average, about 3 4 3.25 = 6.25 subkey bits are guessed in this
procedure, while there are 16 subkey bits involved.

21-round attack on SiMON32/64. Adding four rounds and appending four rounds after the 13-round
linear hull distinguisher, we give the 21-round linear attack on SIMON32/64. The estimated potential of the
linear hull is €2 ~ 273919 in [7], which is a little optimistic for more than half of keys. In the attack, we use
N = 23119 plaintext-ciphertext pairs. According to Theorem 1, the relation between the bias and success
probability is shown in Table 10 when using 2319 plaintext-ciphertext pairs. So according to Table 4 and
Table 10, the expected success probability of the attack is larger than

0.012 % pg + 0.035 % p1 + 0.097 * pa + 0.12 % py + 0.173 * py ~ 0.22,

12

Table 9: Time Complexity of computing Bk,(y) with counter vector V{[z'] and boolean function f’

Guess |x1 @ k1,23 @ ks, 7 @ k7| f'| Related Bit h 7 Time T
0,0,0 foo o8 5 7]l 19
0,0,1 f01 2° x 7 211‘19
07170 flO k4 28 x 7 211‘19
0,1,1 fi1 ka 28 x 7[21117 13
ki ks, kr 1,0,0 Too ks %[t 2T X7
1,0,1 f01 k2 28 x 7[211 17
1,1,0 f10]4:2’4 28 x 7[21117
1,1,1 fi1 k24 28 x 7|2t 19
Total Time (28 x 74+ 2109 x 8+ 218 x 7) x 25 = 21970

Table 10: Relation between bias and success probability using 23!'1? data and setting advantage a = 8

€2 =227 19pg ~ 1.000
€2 =28 p, ~0.997
€2 =279 19p, ~ 0.864
e =2
e =2

30T, "~ 0.477
STI90), ~ 0.188

and it is smaller than
(0.012 + 0.035) * pg + 0.097 % p1 + 0.12 % py 4+ 0.173 x p3 = 0.33.

There are 32 subkey bits involved in this attack. With our attack method, only about 6.25 + 6.25 = 12.5
bits are guessed on average, which reduces the number of key bits greatly.
Attack:

1. Compress the N plaintext-ciphertext pairs into the counter vector Vi [2/p, 2};] of size 214114,

2. For each of 2 z/,
(a) Call Procedure A. Store the counters according to zy and k)

3. For each k» of 2'¢ possible values.
(a) Call procedure A. Store the counters according to k% and k.

4. The keys with counter values ranked in the largest 23278 = 224 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1)N = 23119 times compression (2) 24 x 21946 = 23346 5qditions. (3)2'¢ x 21946 = 23546 additions.
So the time to compute the empirical bias for the subkeys involved is about 235-#* while that given in [6]
with similar linear hull is 263:6%. The time is improved significantly. Step (4) is to recovery the master key,
which needs 26478 = 256 21-round encryptions. However, [6] does not give this step.

Also we implemented the 21-round attack on SIMON32 using 231 plaintext-ciphertext pairs. (The ex-
haustive search part of the attack is not included since it would take about 264~8 = 256 encryptions, which
takes too much time.) In the implementation, we set the main key randomly and collect 2311 plaintext-
ciphertext pairs (data collection part), then use the dynamic key-guessing techniques to recover 8-bit key
information for the 32 subkey bits (recovery part). We store the 2328 = 224 keys with large bias in set S as
the right key candidates, then compute the real 32 subkey bits from the main key and check whether it is in
S. In the implementation, about 5GB memory is needed. The data collection part (2319 encryptions) takes
about 11 minutes and the recovery part takes about 11 minutes too (using Intel(R) Xeon(R) CPU E5-2620,
2.00GHz). 1000 experiments were done and 277 of them were successful. This derives that the experimental
success probability is about 27.7%, which is consistent with the expected success probability.

22-round attack on SIMON32/64. Add one more round before the 21-round attack, we can attack
22-round of SIMON32/64. There are 13 active key bits involved in round i — 5, which is x; = (K5 ° —

13

K K5 Ki™ — Ki5° Ki7% Kiz5), to obtain the z represented in Table 5.
Attack:

1. Guess each of 213 k;
(a) Encrypt the plaintexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232+13-8 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

— 237

Time: (1.a)2'® x N = 2419 one-round encryptions. (1.b) 213 x 23584 = 24881 4qditions. (2) Exhaustive
phase needs about 26478 = 256 22-round encryptions. So the total time is about 2°6 22-round encryptions
and 24884 additions.

23-round attack on SIMON32/64. Add one more round before and one round after the 21-round attack,
we can attack 23-round of SIMON32/64. There are 13 active key bits involved in round 4 + 17, which is
Ko = (KT — KT KT KT — KT KT K, to obtain the o represented in Table 6.
Attack:

1. Guess each of 213F13 k1 ||ky

(a) Encrypt the plaintexts by one round and decrypt the ciphertexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

932426-8 _ 950

Time: (1.a)226 x N = 2571 two-round encryptions. (1.b) 226 x 23584 = 26184 4qditions. (2) Exhaustive
phase needs about 26478 = 256 23-round encryptions. So the total time complexity is about 2°6-3 23-round
encryptions and 261-34 additions.

4.3 Improved Key Recovery Attack on Other Variants of SiMON

With the dynamic key-guessing technique shown in above attack, we can also improve the linear hull attacks
on all other variants of SIMON. The linear hulls used are displayed in Table 3. For SIMON48, we exploit
the 22-round linear hull proposed in [12], which covers most rounds up to date. For SIMON64, the 21-round
linear hull with potential 27%2:53 proposed in [6] is used in the attack. Also, the 31-round (resp. 40-round)
linear hull for SIMON96 (resp. SIMON128) in [6] are used to attack corresponding variant. The detail of these
attacks is given in Appendix B and the improved results for these variants are listed in Table 1.

4.4 Multiple Linear Hull Attack on SiMON

Combining multiple linear cryptanalysis [19] and linear hull together, one can make multiple linear hull
attack with improved data complexity. Our attack technique can be used in the multiple linear hull attack
of SIMON well. According to the rotational property, Property 1, of SIMON, lots of linear hulls with high
potential can be found. For example, the two 13-round linear hulls for SIMON32 in Table 3 are rotations of
same linear hull.

Suppose that the time to compute the bias for one linear hull is 7; and data complexity is . If m linear
hulls with same bias are used in the multiple linear hull attack, the data complexity would be decreased to
N /m. But the time complexity would increase to m7; + 2%, where K is the size of the independent key bits
involved in all m linear hull attacks. For example, there are 32 independent key bits involved in the 21-round
attack of SIMON32 with linear hull ng — X};‘fg . The data complexity is 23!'1? known plaintext-ciphertext

pairs and the time needs about 23°84 additions to get the bias. When another linear hull XAG — Xg'llf

is taken in to make a multiple linear hull attack, the data size will decrease to 23919, There are also 32
independent key bits involved in this linear hull attack. But, the total independent key size of both linear
hulls is 48. So the time to compute the bias for the multiple linear hull attack with above two linear hulls
needs about 236-% additions and 24® combinations.

14

5 Conclusion

In this paper, we gave the improved linear attacks on all the reduced versions of SIMON family with dynamic
key-guessing techniques. By establishing the boolean function of parity bit in the linear hull distinguisher
and reducing the expressions of function according to the property of AND operation, we decrease the num-
ber of key bits involved in the attack and decrease the attack complexity in a further step. As a result,
we can attack 23-round SIMON32/64, 24-round SIMON48/72, 25-round SIMON48/96, 30-round SIMON64 /96,
31-round SIMON64/128, 37-round SIMON96,/96, 38-round SIMON96/144, 49-round SIMON128/128, 51-round
SIMON128/192 and 53-round SIMON128/256. The differential attack in [14] and our linear hull attack are
bit-level cryptanalysis results, which provide the more efficient and precise security estimation results on
SIMON. It is mentioned that, the bit-level cryptanalysis combining with dynamic key-guessing techniques are
applicable to more light-weight block ciphers and hash functions etc.

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, Louid Wingers. The Simon
and Speck Families of Lightweight Block Ciphers. 2013

2. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. EUROCRYPT 1993, LNCS 765, pp. 386-397.
Springer- Heidelberg, 1994

3. Mitsuru Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard. CRYPTO 1994. LNCS
839, pp. 1-11. Springer- Heidelberg, 1994

4. Kaisa Nyberg. Linear Approximation of Block Ciphers. EUROCRYPT 1994, LNCS 950, pp. 439-444. Springer-
Heidelberg, 1995

5. Ali Aydin Selguk, Ali Bigak. On Probability of Success in Linear and Differential Cryptanalysis. SCN 2002. LNCS
2576, pp. 174-185. Springer- Heidelberg, 2003.

6. Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda A. Alkhzaimi, Mohammad Resa Aref, Nasour Bagheri,
Praveen Gauravaram, Martin M. Lauridsen. Improved Linear Cryptanalysis of Reduced-Round Simon. IACR
Cryptology ePrint Archive 2014/681, 2014

7. Danping Shi, Lei Hu, Siwei Sun, Ling Song, Kexin Qiao, Xiaoshuang Ma. Improved Linear (Hull) Cryptanalysis
of Round-reduced Versions of StMoN. TACR Cryptology ePrint Archive 2014/973, 2014

8. Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential Cryptanalysis of Reduced-Round Simon.
TIACR Cryptology ePrint Archive, 2013/526, 2013.

9. Farzaneh Abed, Eik List, Jakob Wenzel, and Stefan Lucks. Differential Cryptanalysis of Reduced-Round Simon
and SPECK. In FSE (2014)

10. Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential analysis of block ciphers SIMON and SPECK.
FSE 2014

11. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Ling Song. Automatic Security Evaluation and
(Related-Key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other
Bit-Oriented Block Ciphers. ASTACRYPT 2014, LNCS 8873, pp. 158-178. Springer- Heidelberg, 2014

12. Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Danping Ma, Ling Song, Kai Fu.
Towards Finding the Best Characteristics of Some Bit-oriented Block Ciphers and Automatic Enumeration of
(Related-Key) Differential and Linear Characteristics with Predefined Properties and Its Applications. IACR
Cryptology ePrint Archive 2014/747, 2014

13. Hoda A. Alkhzaimi, Martin M. Lauridsen. Cryptanalysis of the SIMON Family of Block Ciphers. IACR Cryp-
tology ePrint Archive 2013, 543 (2013)

14. Ning Wang, Xiaoyun Wang, Keting Jia, Jingyuan Zhao. Differential Attacks on Reduced SIMON Versions with
Dynamic Key-guessing Techniques. IACR Cryptology ePrint Archive 2014, 448 (2014)

15. Javad Alizadeh, Hoda A. Alkhzaimi, Mohammad Reza Aref, Nasour Begheri, Paraveen Gauravaram, Abhishek
Kumar, Martin M. Lauridsen, and Somitra Kumar Sanadhya. Cryptanalysis of SIMON Variants with Connec-
tions. In RFIDsec’14, LNCS, 8651, pp.1-20. Springer- Heidelberg, 2014.

16. Qingju Wang, Zhigiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and Yosuke Todo. Cryptanalysis of
Reudced-round SIMON32 and SIMON48. INDOCRYPT 2014.

17. Zhan Chen, Ning Wang, Xiaoyun Wang. Impossible Differential Cryptanalysis of Reduced Round SIMON. IACR
Cryptology ePrint Archive 2015/286 (2015)

18. Boura, C., Naya-Plasencia, M., Suder, V. Scrutinzing and improving impossible differential attacks: Applications
to Clefia, Camellia, Lblock and Simon. ASTACRYPT 2014. pp. 179-199. Springer- Heidelberg, 2014

15

19. Alex Biryukov, Christophe De Canniére, Michaél Quisquater. On Multiple Linear Approximations. CRYPTO
2004, LNCS 3152, pp. 1-22, Springer- Heidelberg, 2004

20. Tomer Asgur. Improved Linear Trails dor the Block Cipher SIMON. TACR Cryptology ePrint Archive 2015/285
(2015)

A Time complexity in some situations

In this section, we give the time complexities of computing the counters B*(y) for some simple functions of
y = f(x, k). This would be the deepest layer’s operation in the linear attack to SIMON. Notice in the following,
"Guess’ denotes the bits guessed at first. The second column z; @ k; denotes the value of x; which is used
in the splitting phase. The third column denotes the new representation of the target function according to
the value of x; @ k;. 'RB’ is the related bit (defined in Section 3). T} denotes the time of seperation of the
plaintexts according to the guessed bit of k. T5 denotes the time of computation in the inner part. T3 is the
time in the combination phase. Total Time is the final time complexity, which is twice of the sum of all 17,75
and Tj3. Notice that 77,75 and T3 represent the number of addition operations. For simplicity, we denote fx
the function with same form of f. For example, if f1 = (xo @ ko)&(z1 @ k1) and f] = (zo © ko)&(x3 @ k3),
we say f1 is with form f1*. The calculation of B(y) for the functions with same form have same procedures
and time complexties.

1. fl = (l‘o D ko)&(l’l D k‘l)

Guess o D :ZCO f1 RB T1 T2 T3
0 0 1
Ko I [0]k |1 2
Total Time 2x (1+1+2)=23

2. fo=((zo P ko) ® ((z1®k1)&(x2 B k2)))&((23 B k3) D ((x1 @ k1)& (x4 B ka)))

Guess|z1 @ k1| fo [RB| T1 |Ts T3
i 0 |[fix 22 x 3|23 91
! T [fix] [22x3[2°
Total Time 2 x ((2% x 34 23) x 24 2%) = 2616
3. f3 = ((zo ® ko)&(21 @ k1)) @ ((z2 © k2) ® (23 © k3)& (24 @ ka)))&((25 © ks) © (23 D k3)&(z6 @ ko))
Guess|zg @ ko| f3 |[RB| T} 15 T3
I 0 |fox| [2° x1|26%6 o6
0 I [fox| ky |20 x 126750
Total Time 2 x ((2° x 14 2646) x 2 4 20) = 2925

4. fy = (LL'O () ko) (5] (1’1 ©® kl)&(xz @ kz)

Guess|zo| f4 |[RB| T1 |13 Ts
Ji¥| ko |22 x 1]23] 23
Total Time |22 + 23 + 23 = 2432

5. f5 = (0 @ ko)&((@1 & k1) ® (w2 @ k2)&(z3 B k3))

Guess|zg @ ko| f5 |[RB| T} T Ts
0 |0 235 —1 3
ko 1 f4* o432 2
Total Time 2 x (23— 142832 4 23) =261
6. fo = ((z0 @ ko)&(1 ® k1)) ® ((z2 © k2) ® (23 © k3)& (21 @ k1)) &((24 @ ka) © (23 D k3)&(25 © k5)))
Guess xr1 D kl fg RB T1 T2 Td

0 |[fox| [2%x1]2562
L [fsx] ko [2% x 1]2502
Total Time 2 x (2% +2°6%) x 2+ 2°) = 2836

k1 25

16

7. fr=[2o@ko® ((21Dk1)&(22Dk2)) D ((23Dk3 D (24D ka)&(25Dks))) & (26 Dhe D (w5 D ks)& (27D kr))))]&
[xs @ ks ® ((x2 Dka)& (29 B ko)) B (26 Dke ® (25 B ks)&(x7 B k7)))& (210 B k10D (27 B k7)& (211 Dk11))))]

Guess |xo ® ko, x5 P ks, x7 ® k7| f7 |RB T Ty T3
0,0,0 fax 25 x (2% —1)[26:%6
0,0,1 fox 2% x (21 —1)[26-76
0,1,0 Sax 25 x (21 —1)[26-76
0,1,1 fax 2% x (21 —1)[26-76 9
Rz, s, bz 1,0,0 fax| |27 x (28 —1)[2570 2 X
1,0,1 fox| |2 x (21 —1)[25%
1,1,0 Sox 2% x (2% —1)[26-%6
1,1,1 Sox 25 x (21 —1)[26-76
Total Time 23 x ((2° x (21— 1) +2596) x 8 429 x 7) = 215:99
8. fs=fr® ((x12® k12 ® (71 © k1) &(w2 © k2)))& (213 D k13 © ((22 ® k2)&(w9 D ko))))
Guess |xo @ ko, x5 @ ks, x7 B k7| fs |[RB T T T3
0,0,0 fa* 27 x (2% —1)[29-%5
0,0,1 fox| |27 x (2T =1)[2°F
0,1,0 f3x 2T x (2T —1)[29%
7 z 9.25
has ko | {7 2T
1,0,1 f3* 2T x (2T —1)[29%
1,1,0 x| 27 x (2F—1)[2°F
11 x| 27 x (2F—1)[2°F
Total Time 23 x (27 x (21 —1) +29%) x 8 + 21T x 7) = 21808

Case 1 gives the time complexity when y = f(z,k) = (xg ® ko)&(x1 @ k1). We explain Case 2 in detail
and the others are similar. f5 is a function of 5-bit value x and k. Suppose V[z] denotes the number of x.
After kq is guessed, the representation of fo will be simplified for z1 = k; and 21 = k1 ® 1. If z1 = kq, there
is fo = f9 = (20 ® ko)& (w3 @ k3) which is with form f; . Initialize a new counter vector Vg[x°] where 2V is of
2-bit. Set Volz®] = >, _ B p— V[z]. There are three additions for each 2° and in total T} = 22 x 3.
If x4 = k; @ 1, there is fo = f3 = (0.2 ® ko2)& (23,4 © k3 4) which is also with form f;*. Similarly, initialize
a new counter vector Vi[z!] where x! is of 2-bit. Set V;[zl] = me:zé,zs,inth@l Vz]. There are three
additions for each z! and in total T} = 22 x 3. The function in the inner part is with form f;* for both
situations and it is easy to know Tp = 23 according to Case 1. Let Bg"’ks (y) be the B(y) with counter
vector Vp and function f9 for kg, ks. Let Bf"‘Q’kB"‘(y) be the B(y) with counter vector Vi and function f3
for koo, ks4. When ky is fixed, B(y) for k is BEo*s (y) + Bf“’z’ks"‘ (y). Since there are 4 independent bits of
k when k; is fixed, leading to T3 = 2%, which is the complexity of combination. In total, the time is twice of
(22 + 23) + 24, since there are two possible guesses for k;.

The related bit (RB) is generated in linear compression. For example in Case 3, when zo @ ko = 1, f3
is linear with x; @ k1. As explained in Section 3, x; is compressed and ki becomes a related bit. In Case
4, linear compression is done before any key guess, leading to the compression of bit xy and generation of
related bit k.

B Improved Linear Attacks on SIMON48, SIMON64, SIMON96, SIMON128

B.1 Linear Attack on SIMON48/K
The linear hull we used to attack SIMON48/K is
Xi,l S X2,5 D Xz,zl D Xziz,z?, - Xf,rllﬁ D XZ+16 @ X§%+21§

which is proposed in [12], with potential €2 = 274492,

17

Table 11: 3 rounds before X}, ; @ X7 5 @ X7 21 ® X§ 03 for SIMON48

Zo

7—3 7—3 7—3 7—3 7—3
XL,lS ® XR,17 @ (XL,16&XL,9) D XR 5 @

(XZL_43&X2T231) D Xzia_231 D (Xi_SB&Xiffs)

Ky P oK o Kjg" o K

05 0| & . S . ,
0 @Kg—B @ Kél—d @Kg—l @ Kél_l

L1 XTOB D X;{; D (XZLTf&X}:fs) k1 K573
T2 X]Z:137 D X;%’:lsg D (XE138&XIZ:131) ks Kgs
T3 Xi_fe & X}x’,_138 D (X2_137&XZL_130) ks Kis_?’
T4 Xz_gs D X;?,_lgl D (XZ130&X2_33) k4 KH3
L5 XZLEBO D X;;,232 D (X£7231&X27134) D Xl{(? ks Kéf D Kéiz
L6 X27231 & X;233 D (X27232&XZL135) ke K§§3
L7 X]Z:134 D Xf{fa D (XE135&XIZ:83) k7 Kigs
s XZL_133 D X;%_135 D (X2_134&X2_73) D XZLT137 kg KES D K{;2
L9 X2_73 D X;?,_g D (XZLjsg&XEE) ko K§_3
10 X;fos @ X;;; D (XZTla&XZTfEE) D X2743 k1o Kéig’ D Kiiz
T11 XZ[13 D X;{SB D (Xzszg&XZLng) k1 K:Z;B
T12 X;:138 D X;;,230 D (XZT139&XIZ:132) k12 KéS?’
13 XIL_137 @ X;%_139 D (X2_138&XZL_131) @ XZL_231 k13 KSS @ Kél_Q
T14 XZL_131 D X;a_,33 D (XE_132&XZL_53) k14 KE:S
L15 X27136 D X};,?)s D (X£7137&X27130) D X27230 k1is Kg?) D K%Q
L16 X27130 D X;z7132 D (Xflgl&XzLjf) k16 Kgs
L17 X]Z;QS D Xlzzfgl D (X£7130&X2733) D X]Z;133 ka7 KHB D ng
w8 X7 & Xps & (Xp/&X750) kis [K5~

Similar to the attack on SIMON32, at first we give the procedure to compress the plaintexts, then the pro-
cedure to compress the ciphertexts. Add 3 rounds before the distinguisher. According to the representations
for z,k in Table 11, X7 | & X} 5 ® X 5 @ X} o3 can be represented as

2o D ko D ((x1 ® k1)&(z2 D k2)) ® (23 B k3)&(xs ® ky))®

(25 @ ks @ ((z6 © ko)& (27 & k7)) &(28 ® ks © (27 & k)& (29 © k9))))®

((z10 ® k10 ® (11 @ k11)& (212 © K12)))&(213 © k13 © (212 © k12)& (214 © F14))))D
(15 @ k15 @ (22 @ k2)&(216 ® k16)))& (217 @ k17 © (216 D F16)& (718 @ k1g))))

Compress the plaintexts: (Procedure SIMON48-Head) At first compress the data samples into a counter

vertor V]z; — x1s],

then DO

1. For each 23 — x14

(a) Guess the keys related to x1 —x9, z15 — 215 and compress z1 — 2, 15— 15 as the Case fg in Appendix
A. There are 6-bit keys (k1 — ko, k15 — k13) to store, and the time is about 2836 So here the memory
is about 26 x 2!2 counters, and the total time is about 212 x 2836 = 220.36,

2. For each key ki — ko, k15 — kig

(a) For each x19 — z14

i. Guess the keys related to 3 — x9 and compress x3 — xg9 as Case f3 in Appendix A. There are
7-bit keys (k3 — ko) to store, and the time is about 2°-25. So here the memory is about 26+7 x 25
counters, and the total time is about 26+5 x 2925 = 92025,

3. For each key kl — kg, k'15 — klg

(a) Guess the keys related to x19 —x14 and compress x19 —x14 as Case f2 in Appendix A. There are 5-bit
keys (k1o — k14) to store, and the time is about 264, So here the memory is about 2'3+5 counters,
and the total time is about 213 x 26-46 = 219:46,

4. Total time is 220-36 4. 22025 4 21946 — 921.66 qditions. Memory is about O(2'8).

18

Table 12: 4 rounds after XlLJrl16 @ XZ+16 @ X]i;,rglf for SIMON48

1+20 7+20 7+20 7+20 7+20 1+20 7+20 7+19 17 1+16
XR’B'4-330)(1"54-225 (X 4—2&5)(R b)_‘_g%X -s-2§9 K © Xz K1'+19 . K1'+19 . Kz?hs i+17
K3 1 7 K3 i 1 1 1 1
zo |B(Xp16&XEy) @ XL 21 D (XR 50 &XR 13) ko | Ky Lo © K 5. 10 © K 318 © K o
K O KT KZ @ K3
7
TFI0 5 N0 o 720 720 19
z1 | Xpe @ X1 hs @ (Xpir&XR0) ki | K5
72 [Xps" @ X;hy & (Xp 1o &X2") ka [Ki T
20 20 20 20 19
3 XH XH (le%+1 &X;{+18) ks K?
'L+2O z+20 7+20 7,+20 7119
e T s
k3 1 k3 1 k2 K2 K2
o5 | Xpoo & X5 (XR 21 &XR 11) ® XRo ks | K33~ @ K
1+20 1+20 20 720 TF19
Te | Xp 2L XL 2230 & (Xg %%&XR 1250) ke | K33 o
142 H— [RE 1+ TES
L7 XR Xihe ® (Xpis&XES) k7 | Kig
T Xz*f? (Xp 1 & X5 ””) ® Xpir ks K @ Kip
To X7,+2O z+20 (X1+2O&X%+120) k‘g Ké+19
20 20 g 20 20 70 9 T8
10 X1+ @XZ+ ® (Xg Z+ &X;%+18) z+4 k| Ky ¥ @ KT
T11 X1+20 1+20 (X};—QQO&X;;_ES) kll KH—IQ
’L+ 1+20 1+20 1+20 z+19
e uLE1 L6
7+ 'L+ 7+ 7+ 7+ z+ 7+
T13 XR 11 L13 (XR 12&XR5)@XR21 kis Kig ™7 & Ky
1+20 z+20 20 20 iF19
e et
K3 K2 7 1 1 K2 K2
z15| Xy T3 XL+1280 (Xg 1270&XR+12%) ® Xgs0 kis K1_8~_19 ® Ky
1+ 7 i+ @ 7
S Sy e) T
z17|Xpo X B (Xpio&Xis) @ Xpis k7| K17~ @ Kig
'L+20 'L+20 7+20 7,+20 7119
18| Xp 20 +20 (XR 420&XR+22%) 20 5 F20 F20 i K5+19 FI18 F19 FI7
+ 7 T+ 7 7 7 7 7 7 7 7
T19 XJZ% 16 XL 18 (XR 17&XR 10) XL 22 (XR 21&XR 14) k1o KIS 69Kzo 69K22 69K22
X1+20 z+20 (X1+20&X1+20)) Xz+20 * k‘ Kz+19 e Kz+18
Ty L S e e
+ i+ i+ i+ i+ i+ i+ i+ i+ i+ i+
x| Xps @ X & (Xp 1O&XR3) O X5 O (X & XG0) ||k |[KiT "0 Kiz " Ky~ @ Kiy
Too X’L+2O D X'H—QO (X1+20&X;.{+2220) k22 Ké+19
Tos3 X'H»:?O 'L+20 (X;{+30&X;Q+22{)) @ X7,+20 k’23 Ké+19 @ K’Z?+18

If we append four rounds at the end of the linear distinguisher,

i+16
XR 23

2o ® ko ® (21 @ k1)&(z2 @ ko)) ®

can be represented as

according to Table 12, X;7'® @ X710 @

(x5 ® ks)& (24 ® ka))®

(w5 @ ks © ((z6 ® ko) & (w7 ® k7)))& (28 © ks © (27 ® k7)&(w9 D ko)) D

(
(
{
(
&

(x21 @ ka1
(

@ (w16 D k16)& (18 © K18))D
(x20 fas) k20 D ((£C14 D k14)&($22 & ng)))&(.’EQd D k23 ©® ((1’22 @ k22)&(x6 2] kG)))))}

(210 @ k10 @ (211 D k11)& (212 D k12))) & (213 © k13 D (12 D k12)& (214 © F14)))D
(715 © k15 © (24 © ka)& (216 © k16))) & (717 © k17 © (216 D k16)&(T18 © K1g)))®
(190 ® k19 ® ((24 ® ka)&(x16 D k16))P

(213 @ k13 @ (212 © k12)& (214 D k14)))& (220 D koo D (w14 © k14)& (222 © k22)))))

Compress the ciphertexts: (Procedure SIMON48-Tail) To simplify our description, we introduce the sit-
uations that the XOR for the guessed k bit and corresponding = bit is zero in Step 2 to Step 8, since the
representation of the target parity bit in another situation has same form with it. At first compress the data
samples into a counter vertor V[zy — x23], then DO

1. For each of 23 — x93
(a) Compress x1 — x2 as Case f; in Appendix A. There is 2-bit key (k1 — k2) to store and the time is

LN

23. So this step needs memory 2% counters and total time is about 22! x 23
Guess k4. Since x4 @ k4 = 0, 3 can be compressed. The time is about 2!? additions.
Guess k7. Since z7 @ k7 = 0, z9 can be compressed. The time is about 2'7 additions.

= 2%,

4. Guess ks. Since x5 @ ks = 0, g can be compressed. The time is about 2!° additions.

19

Guess k12. Since 12 @ k12 = 0, £11 can be compressed. The time is about 2'3 additions.

Guess kgs. Since 95 @ kag = 0, 214, 2 can be compressed. The time is about 2'° x 3 additions.

Guess kig. Since z16 ® kig = 0, 15 can be compressed. The time is about 28 additions.

Guess k5. Since 215 @ k15 = 0, 217 can be compressed. The time is about 2° additions.

After above guessing and split, remained bits for = and k are bit 10, 13, 19, 20, 21, 23. We can compress
them as Case fg in Appendix A. The time is 2336,

10. Calculate the other situations similar to that above.

© 00N> o

Time is estimated from the inner part to outer part. Step 9 needs about Ty = 2836 additions. In Step 8, the
two cases, x15 @ k15 = 0, 15 ® k15 = 1 have same time complexity and there are two possible guesses for
k15. So the total time for Step 8 and 9 is Ty = 2 x ((2° + Tp) x 2 + 27) = 21983 where 27 is the time for
combination. Similarly, the time for Step 2 to Step 9 is as follows.

Step Time

89| Tyg=2x((2°+Tp) x 2+27) = 21083
79 Tr=2x((25+1Tg) x2+2%) =280
6-9 [T =2 x (210 x 3+ Tx) x 2 + 212) = 21582
5-9 [Ts =2 x ((213 4 Tp) x 2+ 211) = 21818
49 Ty=2x (27 +T5) x 2 + 216) = 22047
39| T3 =2x (2" +Ty) x 2+ 218) =22271
2-9 [To =2 x (219 x 3+ T3) x 2 + 220) = 22191

So in total, the time is 22491 x 22 4 224 &~ 22799 The memory is about O(22?) counters.

23-round attack on SIMON48/72. We add three rounds before and four rounds after the 16-round linear
distinguisher to attack 23-round SIMON48/K. Suppose we use N = 8¢~ 2 = 247-92 known plaintext-ciphertext
pairs. Set advantage a = 16. The success probability would be 0.909. At first, compress the N plaintext-
ciphertext pairs to 2'8+23 counters according to Table 11, 12. Suppose the plaintext be compressed to zp
and ciphertext be compressed to z¢.

1. For each of 223 z¢
(a) Call Procedure SIMON48-Head, and store the counters according to the keys used in the forward
rounds
2. For each of 2% keys involved in the forward rounds
(a) Call Procedure SIMON48-Tail, and store the counters according to the keys used in the backward
rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 223 x 22166 — 24466 5qditions; 2. 218 x 22709 = 24509 3dditions. So it needs 24466 4 245.09 — 245.89
additions to get the correlations. 3. Since the size of master key is 72, the exhaustive phase needs 272716 = 256
23-round encryptions.

24-round attack on SIMON48/72. Expand one more round before X"*_3. The key bits of K*~* involved
to obtain the z represented in Table 11 are x; = (Ki* — K™% Ki™* — Ki5*), in total 22 bits.

1. Guess each of 222 k;
(a) Encrypt the N plaintexts by one round
(b) Do as first two steps of the 23-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 222 x N = 29992 one-round encryptions. (1.b) 222 x 21589 = 267-89 aqditons. 2. Since the size
of master key is 72, the exhaustive phase needs 272716 = 256 24-round encryptions. So in total the time is
about 29%34 encryptions and 267-8% additions.

25-round attack on SIMON48/96. Expand one more round before X*~3 and one more round after X 20,

The key bits of K**2° involved to obtain the x represented in Table 12 are ky = (KiH20 — KEH20 K20
KiF18) in total 22 bits.

20

1. Guess each of 2% k||

(a) Encrypt the N plaintexts by one round
(b) Do as first two steps of the 23-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 2 x N = 29292 two-round encryptions. (1.b) 244 x 24589 = 28989 aqditons. 2. The exhaustive
phase needs 2°6716 = 280 925_round encryptions. So in total the time is about 28828 encryptions and 289-89
additions.

B.2 Linear Attack on SIMON64/K

The linear hull we used to attack SIMON64/K is
X2,20 D X2,24 D Xliﬁa,22 — Xf,rgzl D X}?,gol & X?,2241
which is proposed in [6], with potential €2 = 2762:53,
If we add four rounds before the linear hull, accodring to Table 13, X} oo ® X} o4 ® X§ o, can be
represented as

To B ko & ((x1 @ k1)& (w2 ® k2)) & (23 @ k3)&(x4 ® ka)) & (w5 & ks5)&(x6 D ke))®
(27 ® ky & ((z6 ® ko) & (23 @ kg)))&(x9 B ko B ((x8 @ ks)&(x10 ® k10)))®

{(@11 ® k11 & (w6 ® ke)& (28 @ ks))D

(212 ® k12 © (213 © k13)&(214 © K14)))& (215 S k15 © (713 B K13)& (216 D K16))))
&

(17 ® k17 ® (28 B kg)&(x10 D Kk10))P

(215 @ k15 @ (w13 ® k13)&(216 D k16)))& (218 ® k1 © (w16 D k16)& (219 © k19))))
{(w20 © k2o © ((z21 © k21)&(r22 @ k22))®

(w23 @ kas © (724 © k2a)&(w25 @ kas)))& (226 D ke © ((w25 © kas)&(war @ ka7))))
&

(w28 @ kog © ((z22 @ ka2)& (229 D k29))®

(226 © kas © (w25 D ks)&(war D kar)))&(230 © k30 © (w27 D kor)& (231 © k31)))) }-

Since x11 = 21 ® x7 and 17 = x2 D X9, there are 30 independent bits for x and 32 independent bits for k.

Compress the plaintexts: (Procedure SIMON64-Head) At first, compress the plaintexts into a counter
vector V[z1 — x31] using the linear compression technique. There are 229 elements for V. To simplify our
description of attack, the xg, k¢ with underline above are regarded as new variables g, kf.

1. For each x3 — x3;
(a) Compress z1,x2. Since x1 = 27 B 211,22 = Tg B x17, there is only one value for x1, z5. There is 2-bit
key to store (ki, ko), and the time is 22. So here the memory is about 229 x 22 = 23! counters and
total time is 229 x 22 = 231,
2. For each ki, ko, x5 — 231
(a) Compress x3,x4 as the Case fi in Appendix A. There is 2-bit key to store (ks, k4), and the time is
23. So here the memory is about 229 x 22 = 23! counters and total time is 229 x 23 = 232,
3. For each k1 — k4, 26 — 231
(a) Compress x5, zg. Since zg = g, there is only two values for x5, zg. There is 1-bit key to store (ks)
since kj = kg becomes a related bit, which will be determined in the following steps. The time is 23.
So here the memory is about 230 x 2! = 23! counters and total time is 230 x 23 = 233,
4. For each kl - k5,.1320 — I31
(a) Compress xg — 19 as Case fg in Appendix A. There is 14-bit key to store (kg — k19)and the time is
21808 G5 here the memory is about 2'7 x 24 = 23! counters and total time is 2!7 x 218:08 = 235.08
5. For each k1 — kig

21

Table 13: 4 rounds before X}, o0 ® X} 24 ® X§ 9o for SIMONG4

X ztzjo o X zfl} o X 21424@ (X z}“g&X zj;j B Xp 14D
XL 24 @ XL 20 @ (XL 21&XL 14) EB XR,22

ko

Ky ©Kis @ Kjg° © Ky @
Kyp @ Koyt @ Kyt @ Koy

oy [X7 @ (X s & X7 1) © Xp o ki K"

T2 X2_140 D (XZL_141&XZL_44) D X;%_142 ko Ki2_4

T3 XE_143 D (XZL_144&XZ74) D X;%_145 ks K15_4

w4 [Xy o & (X 7 &X70) & Xp g ka |Kg"

s Xz7241 D (XZLT242&X7:7145) D X1127243 ks K§§4

wo | X714 & (X 5&X7 §) & XG 1 ko |Kig*

7 X2_147 D XIL_143 @ (XIL_lt&XE_;) D XIZ%_145 k7 Ki;g D Kg4

28 | Xi 0 (X g&Xi Do Xp o ks |[Ky *

29 | Xi 70D Xie ® (Xp7&X7) ® Xpg ko [Kio® @ Ky *

210 Xp o © (X7 &X756) © Xy kio| K5 *

o | (X7 & X7) & Xpio & X775 & (X7 u&X77) & Xip s [k [Ki7° @ Kig” & K" & Ki5”
L12 X2_148 D XZL_144 @ (X£_145&X£_84) D XIZ%_146 k12 Kigs D Kio_'él

13 Xi‘é‘ @ (X2_94&X2_24) @ X;:c_140 k13 Ki&“

L14 Xffls D (Xzifla&xl{;) D X}l%7147 k14 Kf;‘l

015 X7y O X7 © (X g &X7 1) @& Xpy ks [K17~ & Ko™

w16 X7 1 ® (X7 2 &X 1 57) @ Xpy kio| K5

o1 | (XX N6 X @ X0 & (X7 &Xp N e Xpy kir|K" o K" @ Kyt o Ky
w18 Xy & Xio & (X & X 06) & Xp o kis| K, ® Ky~

L19 X£7246 @ (X1Lf247&X7:7240) D X}Z27248 k19 K§§4

20| (X7 58X 15) @ X5y & X157 & (X 15 & X7 1) & Xy i || koo | K51 & Ko™ @ K" @ Koy '
T21 X27148 D (X£7149&X1{142) D X1l~{240 ka1 K£54

T22 X2_141 D (XZL_142&XZL_54) D X}l%_143 ka2 K{;l

23 X£_242 D Xz_148 D (XZT149&X2_142) D X;%_,240 ka3 K52_3 D K554

L24 X£7149 @ (X1Lf240&X7:7143) @ X;27241 ka4 K§;4

L25 XZT142 D (X]Z:143&XZLT64) D X;{,144 kas Kﬁzl

26 Xz_145 & X£_141 D (X1L_142&X£_54) D XIZ%_143 ka6 Kis_g D K{;4

war| X5 @ (X &X731) ® Xppr Jr kar | K7

28 (Xffls&X}:sLl) D X;{,fls D X27140 D (X27f1&XZT44) D X}la7142 kas Kﬁg D Kigz D Kie?l D Kg4
w20 Xp oy © (X7 5 &X7 50) & Xig ko | Kg

30| Xia ® X7, & (X5 &X]50) ® Xpg kao| Ky~ & K"

31 X2_340 @ (X£_341&X1L_244) D Xll%_(;l k31 Ké_4

T11 =21 D T7, 217 = T2 D o,

22

(a) Compress x99 —x31 as Case f7 in Appendix A. There is 12-bit key to store (kqg — k31)and the time is
21599 G5 here the memory is about 2! x 212 = 23! counters and total time is 219 x 215:99 = 234.99,
6. The total time is about 23¢-31 additions and memory is O(23!).

Compress the ciphertexts: (Procedure SIMON64-Tail) Add four rounds after the distinguisher, the rep-
resentation of X}’;)FSOI &) X};fﬁ &) Xif;zl is same as that of Xi,% &) X£724 &) X}imza except that the new
representations for z and k are shown in Table 14. Compress the ciphertexts to a counter vector V[z; — x31]
at first. Then do as the compressing procedure SIMONG4-Head.

Table 14: 4 rounds after X}f;ol @ Xﬁril @ X%{QQ for SiMoNG4

SRR e XTE e Xy g8 (RN E)6 XT0e N EHEL TR LT RELEHE
X o X o (XEex i) o X K5 o K™ o K 6 K™

o X (X R) X, Ky

72 [X0 © (G X) © Xy ha [R5

7 X ® (Xp Xy & Xy B [K

2 [X2 ® (& X) © Xp ki [RL

vy [X T (X X) X, b R

v [X 0 O X X, ko [

o X e X & (XX) & NI by K3 6 K™

7 X2 0 (X DX) & X ks [R5

v [Xy (X TN & X b KT B KE™

ST R DGO oKy ™

o (X TEXE) © Xp i © X & (N BEX5) & Xp [k K™ 0 K3 = 0 Kig ™ @ K™

e[X X3 & (X Xy) & X b K 6 K™

T [X80 (X e X2 & Xy st

X © (XX) & Xy | K"

e X X6 (X ey) & X b | K6 Ky

o X T (X TRy)6 X, ol Ki

o | XX) 0 X5 0 XE S 6 (X P &Xe) @ X |k | Kii ™ © K1 6 KT & K™

2| X5 6 X & (X P eXE) & Xps Fas [6 By

e X & (X By)6 X o [R5

oo [(X DX 2) 6 X6 X 22 (X X 20) & Xy [Ka ™ 8 K7 6 K™ 6 g™

e X (O B & X b [K3e™

e X T (X X) X K3y

e X O X 6 (X Xy) X b K3 6 KR

e X 6 (X Xy)6 X | Ky ™

v X3 7 O X) X, | K1

e [X 2 X & (X Xy) 6 X b K27 6 KT

oo X2 (X PR Xy)6 X, 2 b |[KE

s | BN 2 6 X0 6 X7 (e X) @ Xy | K1 6 K 6 K376 K™

v [X 1 X PR) X b [KE™

oo X T X (X Py) & X b [KL & K™

vl X & Xy) & X i

T11 =21 D a7, 17 = T2 D X9

29-round attack on SIMON64/96. We add four rounds before and after the 21-round linear distinguisher
to attack 29-round SIMONG64/96. Suppose we use N = 2¢~2 = 263:53 known plaintext-ciphertext pairs. Set
advantage a = 8. The success probability would be 0.477. At first, compress the N plaintext-ciphertext pairs
to 229729 counters according to Table 13 and 14. Suppose the plaintext be compressed to zp and ciphertext
be compressed to z¢.

1. For each of 2%° z¢

23

(a) Call Procedure SIMONG4-Head, and store the counters according to the keys used in the first four
rounds
2. For each of 23! keys involved in the first four rounds
(a) Call Procedure SIMONG4-Tail, and store the counters according to the keys used in the last four
rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 229 x 236:31 = 26531 5qditions; 2. 231 x 23631 = 26731 additions. So it needs 26°-31 4 267-31 — 967.62
additions to get the bias for the subkeys. 3. The exhaustive phase needs 2968 = 288 29-round encryptions.

30-round attack on SIMONG64/96. Expand one more round before Xi_4.. The key bits of Ki_5 involved
to obtain the x represented in Table 13 are r; = (K ° — Ky °, Ki™° — Kiy® Kir® Kis® Kig® Kir®), in
total 26 bits.

1. Guess each of 226 k,
(a) Encrypt the N plaintexts by one round. Compress the internal states to a counter vectr of size
(b) Do as first two steps of the 29-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule

258,

Time: (1.a) 226 x N = 28953 one-round encryptions. (1.b) 226 x 26762 = 293:62 additons. 2. The exhaustive
phase needs 296—8 = 288 30-round encryptions. So in total the time is about 28813 encryptions and 293-62
additions.

31-round attack on SIMON64/128. Expand one more round before X*~* and one more round after
X**25, The key bits of K2 involved to obtain the x represented in Table 14 are

Ky = (Ké+25 _ K i K;;“%,K;'I%,K;g%,l(ég%, Ké'f%),
in total 26 bits.
1. Guess each of 2°2 ky]|ko
(a) Encrypt the N plaintexts by one round and decrypt coresponding ciphertext by one round. Compress
the internal states to a counter vectr of size 2°8.

(b) Do as first two steps of the 29-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 252 x N = 2!15:53 two-round encryptions. (1.b) 252 x 26762 = 2119-62 3qditons. 2.The exhaustive
phase needs 2288 = 2120 31.round encryptions. The total time is about 2'29-% encryptions and 2!!9-62
additions.

B.3 Linear Attack on SIMON96/K
The linear hull used to attack SIMON96/K is

i i i i i i+30 i+30 430 i+30 i+30
X1o® XL 34 ® XL 3g® XL 4o ® Xpge = X1 &X' X ig ®Xps & Xpio,

which is proposed in [6] with potential 27942,
If we add three rounds before the linear hull, according to Table 15, X%,z EBXJ%’34 @Xz,gg EBXE’42 @ngﬁ
can be represented as

o B ko ® ((x1 ® k1)&(z2 B k2)) & ((ws ® k3)& (24 ® ka)) & (5 ® ks)& (26 & ko))

D ((z7 B kr & (w8 D ks)&(xg B kg)))&(x10 D k10 B ((T9 & ko) & (711 D K11))))

@ (212 D k12 D (26 D ko)& (213 © F13))) & (214 D k14 © (213 © Fk13)&(215 D k15))))
@ ((x16 D k16 D (217 @ k17)&(w18 @ k1g)))& (219 © k19 ® (w18 @ k18)& (220 @ k20))))
D (221 ® ko1 © (w2 © k2)&(w22 D ka2)))& (223 D koz D (w22 @ kao)& (224 © k24))))

24

Table 15: Add 3 rounds before X} 5 & X7 34 ® X 35 ® X 42 D Xk 36 for SIMONIG

Xis ® (X7 &X7 5) © Xpoy ® (X7 558 X7 50) ® Xz 150

K, oKy 0K, oKy ”

Zo (ij431&XE334) S Xli{,jtS D X;:434 D (XZT435&X2T338) D Xg,;o ko @K§52 D KiEQ D Kigg S Kggg
DX s ® (X7 0& X170 DRy @ Ky @ Kas ' @ Ky

L1 X;{f} D XET435 D (X27436&X27339) k1 KZ?’

L2 XIZ?,7430 & stgs D (X27339&X1f332) ko Kia3

T3 XIZ%_331 @ Xlezgg D (Xz_iSSO&XZLTQs:S) ks K§I3

T4 le?,_234 D XZL?232 D (Xz_233&XZL_136) k4 Kéf’

s X;;??Q D X}:337 D (X27338&X27331) ks K§§3

Te XIZ?::?z D XZTSSO D (st‘o’l&XZfzi) kg K§53

27 [Xy ® X745 ® (X 6&X730) & X7 7 ke |[Ki7° @ Ki°
s Xlzit_os D X£T436 & (XZLT437&X1L_430) ks K(Z)_3

L9 le:c_i D XZL?339 D (XE_430&X2_333) ko KZJB

L10 X;j’o D XZTSSS D (X27339&X27332) D X}:432 k1o Ki53 D KZL;Q
L11 X;?::i D X2T332 D (XESBS&XZLTQSG) k11 K§Z3

T12 X122_331 & X1L_239 D (Xz_sgo&X]t_Qgs) D X1L_333 k12 K§;3 D K:Z'sEQ
L13 Xlzit_zgs & X;:233 D (XZ_234&XZL_137) ks Kés_B

T14 X}ZQ_234 D XZL?232 D (Xz_Qgs&XZL_E@) D Xle236 k14 K§Z3 D KSEQ
L15 X;l?’s D XZT136 D (X27137&X27130) k15 Kg?)

T16 Xg??s D X2T333 D (XE334&XZLT237) D X2T337 k16 K§g3 D K;;Q
r17 Xll%_:ssﬁ & X2_334 D (X2_335&X£_238) k17 K§6_3

r18 Xzz?._239 @ X;:237 D (XE_238&X2_231) ks K;s;g

L19 X;{238 D XZT236 D (X27237&XZ;230) D XZT??O k19 K§§3 D K§52
20 XJZ27232 D X}:230 D (X27231&X27134) k2o K553

T21 Xg??g D X2T337 D (XZTSSS&XETS%) D XE431 ka1 K§§3 D K}JQ
T22 XIZ%_333 D X1LT331 D (X2_332&XZL_235) ka2 Kgg?’

23 Xzz?,_§2 @ X;:330 D (X2_331&X2_234) D XZT334 kas K:§2_3 D K§4_2
T24 X;{236 D X2T234 D (X27235&X27138) k24 K§g3

25

Compress the plaintexts: (Procedure SIMON96-Head) At first, compress the plaintexts into a counter
vector V[z1 — x24] using the linear compression technique.

1. For each x3 — x99
(a) Compress 1, %, x21 — 24 as Case fg in Appendix A. There is 6-bit key (k1, ko, ko1 — k24) to store and
time is 2836, So here the memory is about 2'8 x 26 = 224 counters and total time is 218 x 28-36 = 226.36
2. For each T3,T4,T7 — T11,T16 — T20, k‘l, kJ27 k‘gl - k24
(a) Compress x5, xg, 12— 215 as Case fg in Appendix A. There is 6-bit key (ks, kg, k12 — k15) to store and
time is 2836, So here the memory is about 218 x 26 = 224 counters and total time is 218 x 28:36 = 226.36,
3. For each T16 — 20, kl, /{22, k5, kﬁ, /{512 — 143157 kgl - k24
(a) Compress x3, x4, 27 — 211 as Case f3 in Appendix A. There is 7-bit key (ks, k4, k7 — k11) to store and
time is 2°-2%. So here the memory is about 2'7 x27 = 224 counters and total time is 217 x 29-25 = 226:25
4. For each kl — k15, k21 — k24
(a) Compress x16 — T29, as Case fy in Appendix A. There is 5-bit key (k1 — k20) to store and time is
2646 S0 here the memory is about 219 x 2° = 224 counters and total time is 219 x 26-46 = 92546,
5. The total time is about 22815 additions and memory is O(224)

If we add four rounds after the linear hull, according to Table 16,
can be represented as

i+30 z+30 z+30 i+30 1+30
XL, XL ,42 XL 46 XR XR4O

2o @ ko D (21 @ k1)&(z2 ® k2))®

(23 ® ks @ (22 ® ka)&(x5 @ ks5)))& (26 © ki © (25 © ks)&(27 D k7))

(28 @ ks @ ((x9 @ ko)&(x10 @ k10)))&(711 @ k11 @ (210 © Kk10)&(T12 © k12))))D
(213 ® k13 @ (w14 @ k14)& (215 © k15)))& (216 © k16 © (215 © k15)& (217 D k17))))®
{(z18 © k1 @ ((w19 © K19)& (220 D k20)

(221 @ ko1 © ((wa2 @ kao)& (223 @ k23)))&(w24 © koy © ((223 D ka3)& (w25 D k2s))))) &
(26 D kae ® ((wa0 D kao)&c(x27r D kar))®

(224 © Koy © (w23 D k23)& (a5 © kas)))&(w28 © kag © (w25 D kas)& (220 © kag))))) } &
{(z30 @ k30 ® (231 @ k31)& (15 D k15)

()

()

()

(32 @ k32 @ ((w20 @ k20)& (w27 © ka7)))& (233 © k3z @ ((x27 ® kor)& (134 @ ka4))))) &
w35 @ k35 ® (215 @ k15)& (217 © k17))®
(233 @ k33 B (w27 ® kor)& (234 B k34)))& (236 B kse B (234 B kza)&(x37 © k37)))))}

Compress the ciphertexts: (Procedure SIMON96-Tail) At first, compress the ciphertexts into a counter
vector V[z; — x37] using the linear compression technique. To simplify our description of attack, we regard
the xog, x27 with underline as new variables xb, x57. It is the same with ko and ko7.

1. For each =g — z37
(a) Compress x; — x7 as Case f3 in Appendix A. There is 7-bit key (k; — k7) to store and time is 2°-2°.
So here the memory is about 239 x 27 = 237 counters and total time is 230 x 29:25 = 239:25,
2. For each r13 — 37, kl - :ZC7
(a) Compress xg — 212 as Case f2 in Appendix A. There is 5-bit key (ks — k12) to store and time is
So here the memory is about 232 x 2° = 237 counters and total time is 232 x 26:46 — 93846,
3. For each 18,219, Thg, T21 — T26, Loy, Tag, T29, k1 — K12
(a) Compress x13 — 17,20, T27, T30 — 37 as Case fr in Appendix A. There is 15-bit key (ki3 —
k17, koo, ka7, k3o — ks7) to store and time is 2!898. So here the memory is about 224 x 21% = 239
counters and total time is 224 x 218.08 — 942.08
4. For each kl - k17, k‘go, k‘27, k‘go - k‘37
(a) Compress T18, T19, Thy, T21 — 26, Thy, T2, L29, as Case fr7 in Appendix A. There is 10-bit key (k1s, k19,
ka1 — kog, kos, kag) to store and time is 21599 G here the memory is about 227 x 219 = 237 counters
and total time is 227 x 21599 = 242.99

26.46

26

Table 16: Add 4 rounds after XZ+30 ® XZ+ @ Xﬂﬁ?

o) Xz+30 D X

1430
R,40

for SIMON96

1134

X1+34 D Xz+34 D (X7.+34&XR 42)) X?—f(é)l) X?ff@ Kz+33 e K;:BZS,@ K;;SO—IBZS,@ K‘g—33
o0 |(KEREXIEE) 0 X1 0 (XXt © Xi e o [R5 @ K5 @ Kt
Xpgr ® (X3 & X e oKy © Kot @ Kif™
o X e XU & (X e X LS
22 [® XLt @ (X s Xy o) b K™
7 [X, e (N X o & Xpo o [Ry 8 K
o Xy © Xy © (X 7 & X) R [Kg ™
o IR e (g s (K
7o [Xy ® XL o & (Xy Xy 2 & X o [Kii ™ 0 K™
o Xy ® Xy © (g Xy) Bl
7o [T8 Xy o (X 51X, 5 & X b Ky B K™
7o [Xy o ® (X X0 b (K™
P10| X35 B Xy ® (X X g 30) T K3y ™
11| Niag & Xpap © (Xt &XG00) & Xy Fu K™ @ Ki™
12| Xjpn © Xlo6 ® (Xpgon &X1) k12| K50 ™
23| X3 & Xpap © (Xp n&X) @ Xy Fas | Kig ™ & Kig ™
T Xy @ Xy @ (Xp eX g0 F1a [K50 ™
215 | X o7 © Xp g0 & (X pu&Xioy) ks K35
w16 Xjie © Xpiaw ® (Xpggr& Xjpn) @ X ki | Ko™ @ K3g™
7Ky © Xy © Xy X) R | K3
s X X) 0 (X X) 6 X 6 (X X [| Ky ™ 6 K™ 6 K™ 6 K™
10| Xi i @ Xan ® (Xp 3 &Xp 35 i
w20 | Xy & X7 & (X ye & X5,) Fao 31
221 | Xy @ Xﬁff (Xioa3 & X 06) & Xigi b [y K
r2 [Xy © Xj 0 ® (N Xy) Faa| K
223 | X6 @ 2*338“ © (X &X G50) b |y,
[X © X © (X o X 3) & X b K76 K
w25 | X oo & X1 & (X g0 & XG5y) bas [,
o [& X o & (XX & Xy & (X [K™ & K™ & K™ & K™
721X n © Xy © (Xyan&X) o |3
28| Xam ® Xp 5 © (Xp & X5 33) © Xpi b K™ 8 K™
20| X ® Xy © (Xp 3 kX i o) i
oo K 0 X T (X X) & X (X e[[Ryt ™ K™ K™ K™
71 [X gy © X g © (pygn X030 o [
waa|Xp o @ Xp o @ (Xp X pon) © Xgor b K™ 8 K
25 [X © Xy © (Xjan X) & Xpyiy s [Kg ™ & Ky ™
T34 X @ Xp oy @ (Xp3n X i) K3
e K 0 X (X X 1) © X (X e[[Kt ™ K™ K™ K™
235 | Xz © Xpign ® (Xpggr & X i) @ X5y b K0 K,
57| Xi 11 © Xp g ® (Xp 1 &X g5) o |1

27

5. The total time is less than 237! additions and memory is O(239).

37-round attack on SIMON96,/96. We add three rounds before and four rounds after the 30-round linear
distinguisher to attack 37-round SIMON96/K. Suppose we use N = 2¢~2 = 2952 known plaintext-ciphertext
pairs. Set advantage a = 8. The success probability would be 0.477. At first, compress the N plaintext-
ciphertext pairs to 224137 counters according to Table 15 and 16. Suppose the plaintext be compressed to
zp and ciphertext be compressed to z¢.

1. For each of 237 z¢

(a) Call Procedure SIMON96-Head, and store the counters according to the keys used in the first three
rounds

2. For each of 224 keys involved in the first three rounds

(a) Call Procedure SIMON96-Tail, and store the counters according to the keys used in the last four
rounds

3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 237 x 22815 = 265.15 5qditions; 2. 224 x 24371 = 26771 additions. So it needs 26715 4 26771 — 967.94
additions to get the bias for the subkeys. 3. The exhaustive phase needs 2968 = 288 37_round encryptions.
So in total the time is about 2%% encryptions and 267-%4 additions.

38-round attack on SIMON96,/144. Expand one more round before X?_3. The key bits of Ki‘_4 involved
to obtain the x represented in Table 15 are k1 = (K Kigt Kipt Kigt — Kigh Kigt — Kigt Kzt —
Kyt Kiz* — Ki2%), in total 31 bits.

1. Guess each of 23! k;

(a) Encrypt the N plaintexts by one round. Compress the internal states to a counter vectr of size 251

(b) Do as first two steps of the 37-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 23! x N = 21262 one-round encryptions. (1.b) 23! x 26794 = 29894 aqditons. 2.The exhaustive
phase needs 2'44—8 = 2136 38 round encryptions. So in total the time is about 2'3¢ enxryptions and 29894
additions.

B.4 Linear Attack on SIMON128/K

The linear hull used to attack SIMON128/K is
X2,2 2 Xﬂss D X2,62 D Xzi?,,ﬁo - Xﬁélol D X}?,FQM @ Xj{ésl & Xg,rézl,
which is proposed in [6] with popential 271266,

28

Table 17: 4 rounds beofre XLQ &) X£’58 &) X2762 &) Xf?,,eo for StMON128

K3 &Ky @Ky "o K5, @ Kig

Lo XZ 2 Xy, 540 = X;{542 @ (XZ 541&XZ 444) = XL 54 D X}:548 ko @Kégg @ K; ' késl & Kéz !
1 XZ 643@XR1 O (X1 4&X2 547) k1 Ki_4

z2 | X7 56@ RSS@(XZ 547&XZ 540) ko Ké§4

3 XZL 51 D Xg, 53@(XZL 542&XZ 445) ks Ké§4

x4 | X 44@XR46@(X£ 445 Xiss) ka [Kig

vs | X7 540@XR 07@(XL OG&XZ 449) ks Kg#

w6 | X 48@XR SOEB(XL 49&X2 442) ke Kg54

r7 XL 59 ® Xk 61 ® (X7 640&X2 543) Xi 63 ke Ké;4 D Kégg

ws | Xp 60®XR o2 D (X7 641&X£ 544) kg Kéf

zo | X 53@XR 55@(X£ 544 X7, 447) ko Kés_4

z10| X7 . QQ@XR 04@(X2 043 Xp. 446)@X 546 k1o K§Z4@K§6_3

z11 | X7 46@XR 4869(XL 47&XZ 440) k11 KZL§4

T12 XL 44 X R 46 @ (XZ 445&X2 348) L 48 k12 Kié“ D Kigg

w13 X1 45®XR 47@(X2 446&X£ 349) k13 KZL;‘l

r14| X} 38@ R4O@(XZL 508X 35) ki | Kio”

T15 XE 51 ® Xk 53@(X2 ¢42 X7, 440)@X 545 k15 554@1(;5_

T16| X7 . 52@XR 54@(XL 93&X2 446) k1s Kéf‘

ri7 XE 59®XR 61 @(XZL 640&XZ 543) 11?,14@(XZL 04&XZL 547) k17 KT‘!@K(Z{AL@K&‘:B@K{?Z
T18 Xi 60 D XR 62 © (XL 641&X£ 544) 2,04 k1s Ké;l D K(TS

z19| X7 (,41 D XR 63 ® (X7 042 X7 545) k1o Ké§4

20 XL 549X R a6 ® (X 549 X7, 448) kao 554

r21 XZ 543 @ XR 55 D (Xi 544&X2 447) D XL 57 ka1 Ké§4 D KQ;B

Toa | X 47®XR 49@()(2 448&X2 441) ka2 KZ1§4

23 Xf 52®XR 54@(X£ 543&X£ 446) R58® (XL 547&X£ 540) ka3 KL44@K @KégS@K;)gQ
T24 XL 46@ R48€B(XZ 447&X2 440) X£ 5%) ka4 Kz7184@Ké03

25 Xi 40 ® XR 12 D (XL 441&XZL 344) kas K2154

L26 XlL 541 @XR 53@(XL 52&X2 445) R57EB (Xi 546&X2 449) kag Ké§4@Ké;4€BKés_3@Ké;2
La7 XZ 15 ® Xk, 47@(X2 446 X7, 349) ® Xp, fg ka7 KZL9_4@K153

28 XZ 39 D XR 41 (X7, 40&XZ 343) kas KZL;4

29 XZ 444 @ XR 46 D (XZ 445&X2 348) R 50 ® (XZ 449&X2 442) kag Kié“ D K§54 b KAES D K;,EQ
z30| X 38@XR 40@(X2 349&XZL 52) ® XL fz kso| Ky " @ Kiy°

z31 | X7 32@XR 34@(XL 33&X2 246) ks1 K§Z4

32 XE 55 EBXR 57@(X2 o46 XE 449) RGI ® (XE 640&X2 ;3) k32 5_4@1((251_4@1(53@[{%1_2
x33| X7 49@XR 51 (X JO&XZ 443) ks3 K§I4

T34 XE 56 @ XR 58 © (X1 547&X£ 540) @ XL 60 ksa Kg;l D Kéag

x35| X 57®XR 59@(X£ 548&XZL 541) kss Kg§4

L36 XIL 540@XR 52 EB(XZL 541&XZ 444) kse Ké2_4

T37| X7 49@XR 51 ® (X 540 X7, 443)@X ;3 k37 Kgf4@K§>;3

38 XZ 443 @ XR 45 D (Xi 444&X2 347) kss KZL§4

39 XJZ; 48®XR 50@()(2 449&XJZ; 442)€B 1254EB (XE 543&X2 446) k3o Kg04@K @Kggs@KgZQ
T40 Xf 42®XR 44@(X£ 443&X£ 346) kao Ki:l

T41 XZL 442 D XR 44 D (Xz fs&XZL 340) D Xi fc ka1 KLI4 D Kigg

L2 XL 36 D Xp. 38 (X1, 347&X2 340) kaa K§8_4

Notice: z17 = 1 @ T7, %23 = T2 @ T10,T26 = T5 D T15, T2g = Te D T12

29

If we add four rounds before the linear hull, according to Table 17, X} , @ X} o @ X} 4, ® X§ 4o can be
represented as

zo ko ® ((x1 @ k1)&(x2 @ k2)) ® (23 @ k3)& (w4 @ k) ® (x5 ® ks)& (26 ® k))D
(7 ® k7 ® ((xs ® kg)& (29 D k9)))&(x10 B k10 D (w9 D ko)& (211 B k11))))D

(212 © k12 © (213 © k13)& (214 © k14)))&(715 © k15 © (213 D k13)& (216 D K16)))) D
{(z17 © k17 © (w8 © k) &(wg D ko)) D

(218 © k18 © (w10 © k19)& (220 D k20)))&(w21 @ ka1 & (w20 D koo)& (22 © ka2)))))&
(w23 @ ko3 ® ((zg ® ko)&(x11 @ k11))®

(221 @ ko1 © ((w20 @ k20)& (222 © k22)))&(w24 © Koy © (222 © ka2)& (225 k2s))))) D
{(w26 D ks © (213 © k13)&(r16 D k16))D

(210 @ k10 © (w9 D ko)&(w11 @ k11)))& (227 © kot @ (w11 © k11)& (228 kog)))))&
(@29 ® koo ® ((z13 @ k13)& (214 ® k14))®

(227 @ ko7 © (w11 @ F11)& (228 © k2g)))&(w30 D k30 © (228 © kag)& (w34 k34))))) 1D
{(w32 ® k32 ® ((z2 @ k2)&(x33 ® k33))®

(234 @ k3s © (w35 D k3s5)& (236 D k36)))&(w37 © kar @ (w36 D k3e)& (38 © k3g)))))&
(39 © k39 © (233 © k33)& (x40 D ka0))®

(237 @ k37 © (w36 @ k36)& (238 © k3g)))&(wa1 © kar @ (238 D kzg)& (w42 D k42))))) }

Compress the plaintexts: (Procedure SIMON128-Head) At first, compress the plaintexts into a counter
vector V[x; — x42]. In fact, there are 238 elements for vector V, since 17 = x1 @ &7, Tog = Tz O T19, Tag =
T5 @ x15 and xo9 = xg D x12. To simplify our description, we introduce the situations that the XOR for
the guessed k bit and corresponding x bit is zero in Step 2 to Step 9, since the representation of the target
parity bit in another situation has same form with it. zs, ks with underline shown above are regarded as new
variables x5, kb, independent of x4, ko.

1. Guess ki, ko, ks, k¢

(a) x1,x2,25,x6 can be removed and the index value for counter vectors becomes z, x3, x4, T7 — T4o.
There are 23® new counters and the counter values are refreshed according to (w1 ® k1)& (2o @ k2)) ®
((z5 @ ks5)& (26 D kg)). The time is 238 x 2% = 242 simple calculations.

2. Guess ki3. Since 213 ® ki3 = 0, 214, 216 can be compressed. The time is 23% x 3 additions.
3. Guess kg. Since zg ® kg = 0, g can be compressed. The time is 232 additions.
4. Guess kag. Since o9 @ kag = 0, 219 can be compressed. The time is 23! additions.
5. Guess kao. Since 299 ® koo = 0, 25 can be compressed. The time is 222 additions.
6. Guess kag. Since o5 ® kag = 0, z11, 234 can be compressed. The time is 226 x 3 additions.
7. Guess ksg. Since 236 ® ksg = 0, z35 can be compressed. The time is 224 additions.
8. Guess ks3. Since z33 ® kg3 = 0, 9 with underline and x40 can be compressed. The time is 222 additions.
9. Guess ksg. Since 33 @ ksg = 0, 242 can be compressed. The time is 220 additions.
10. After above guess and split, remained bits for x and k are bit 3,4,7,10,12,15,17,18,21,23,24,26,27,29,30,32,

34,37, 39,41. We can compress T3, T4, %17, T18, T21,L23, Tos as case fz in Appendix A. The time is 2'3 x
29- 25 _ 222 25 Then we compress x7, 10, Tag, Ta7, 29, T30 as case fg in Appendix A. The time is 2'4 x
2836 — 922.36 " At last, we compress T12, 15, £32, L34, T37, L39, T41 as case fg in Appendix A. The time is
913 o 99.25 _ 222 25

11. Calculate the other situations as above.

Time is estimated from the inner part to outer part. Step 10 needs about T} = 22387 additions. In Step 9,
the two cases, x3s @ kss = 0, x38 @ k3g = 1 have same time complexity and there are two possible guesses
for k3. So the total time for Step 9 and 10 is Ty = 2 x ((220 + T10) x 2+ 221) = 226:95 where 22! is the time
for combination. Similarly, the time for Step 2 to Step 10 is as follows.

30

Step Time
9-10] Ty =2 x ((2%9 + T1p) x 2 + 2%1) = 22605
8-10 Tg =2x ((222 + Ty) x 2+ 2%) = 25821
7-10 =2 x ((27% + Tg) x 2 + 2%°) = 23036
6-10 T6 =2x ((2%5 x 3+ T7) x 2 + 2%) = 23267
(
((

5-10] T5 =2 x ((2%7 + Tg) x 2 4 230) = 23188
4-10 T4 =2 x (25T + Ts) x 2+ 232) = 23706
3-10 =2 x ((2% + Ty) x 24 2%7) = 2392
2-10 T = 2 x ((2% x 3+ T3) x 2+ 237) = 241:56

So in total, the time is 241-56 x 24 4 242 ~ 24568 The memory is about O(2*?) counters.

Compress the ciphertexts: (Procedure SIMON128-Tail) Since the input active bits and output active
bits in the linear hull distinguisher for SIMON128 are one-to-one, the representation for X2+6401 X}Q‘;l &)
Xﬁég X}3+6421 expanding four rounds (see Table 18) are same with that for X7 , ® X} 53 @ X} 50 © X} 40-

So at first compress the ciphertexts into a counter vector V[z; — 243], then do as Procedure SIMON128-Head.

49-round attack on SIMON128/128. We add four rounds before and after the 41-round linear hull
distinguisher to attack 49-round SIMON128/K. We use N = 2¢2 = 2'27-6 known plaintexts. Set advantage
a = 8. The success probability would be 0.477. At first, compress the plaintext-ciphertext pairs to 238+3%
counters according to Table 17 and Table 18. Suppose the plaintext be compressed to zp and ciphertext be
compressed to zc.

1. For each of 238 z¢

(a) Call Procedure SIMON128-Head, and store the keys used in the first four rounds
2. For each of 2*2 keys involved in the first four rounds

(a) Call Procedure SIMON128-Tail, and store the keys used in the last four rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 238 x 24568 — 983.68 y(ditions. 2. 242 x 245:68 = 287:68 G4 the total time to compute the bias is
283.68 4 987.68 ~ 987.77 3 The exhaustive phase needs 22878 = 2120 49.round encryptions. The total time is
about 220 encryptions and 28777 additions.

51-round attack on SIMON128/192. We add five rounds before and after the 41-round linear hull distin-
guisher to attack 51-round SiMON128/K. Compared with the 49-round attack, we expand one more round
at each side. To get the z represented in Table 17, we should know the 0,2, 26, 30,32 — 34,36 — 63 bits (35
bits) of Xt ° and the 1,34, 38,40 — 42, 44 59,61 — 63 bits (25 bits) of X3 °. Notice that the input parity
bit of the hnear hull is linear with X1L o and this bit can be compressed at first. So we can compress the
plaintexts into one counter vector with 234+25 = 259 elements. The key bits involved in round i — 5 are the
0,26, 30, 32— 34,36 —63 (34 bits) of K*~°. Similarly, we can compress the ciphertexts to a counter vector with
259 elements and there are 34 bits of K*t4% involved. So, at first, we compress the the plaintext-ciphertext
pairs to a counter vector of size 259159 = 2118,

1. Guess the 234 bits of K*~°
(a) Encrypt the plaintexts by one round and compress the states into a counter vector of size 23859 = 297
2. Guess the 234 bits of K?+45
(a) Decrypt the ciphertexts by one round and compress the states into a counter vector of size 23838 =
276
3. Do as Step 1 and 2 in the 49-round attack
4. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 2118 x 234 = 2152 ope-round encryptions. 2. 297 x 234434 = 2165 gne-round encryptions. 3. 268 x
28777 = 915577 additions. So the total time to compute the bias is 292 4+ 2165 ~ 2165 one-round encryptions
and 22577 additions, which is approximately equal to 2'5% one-round encryptions. 4. The exhaustive phase
needs 219278 = 2184 51_round encryptions. The total time is about 2'%* encryptions and 21577 additions.

31

Table 18: 4 rounds after Xi‘f‘éol @ XZ+41 @ X};:é; @ X;fg; for SIMON128

i i i i i ; ; K1+44 2 K1+42 2 K1+43 e K1+43 2 K1+42
no X 0 X3 @ Xl @ Crtexgth o Xt o xip [KRS LD IS K L K
2
R TS TR R

7.+44 z+44
XR 56 L 58

’L+44 z+44

1+44
R a7 R 50 ko

58

X'L+44 Xz+44

'L+44 2+44
T3 | AR 51 L.53 X

'L+44
R 52 R 45 ks K

7,+44 7,+44

7,+44 'L+44
X R 45 R 38

z+44
R,44 L 46 k4 K

L+44 z+44

’L+44 z+44
X R 56 R 49

z+44
R,55 L 57 ks K

1+44
R,48 L 50 R 49 R 42 ke K

X’L+44 Xz+44

’L+44 z+44
L7 | AR 59 L.61 X

z+44 z+44 1+43
R60 R53 R63 ke K61 @K

X'L+44 Xz+44

'L+44 2+44
T8 AR 60 L.,62 X

'L+44
R 61 R 54 ks K

X7,+44 z+44 1+44 7,+44

z+44
R,53 L 55 ko Ks5

R54 R47

o (X
o (
o (X
o (X
X7,+44 z+44 (1+44 1+44
o (
o (
o (X
(1+44 z+44

X1+44 z+44

XA AT z+43
ras ® X5y k10| K e K;

10 R53 &X R e

R 56
14 44 44 41 41
Xz+ D Xz-‘r @(1+ H— kll Ki;_

T11| AR 46 L.,48 rar & X k10

X’L+44 Xz+44 X’L+44 z+44

z+44 1+44 1+43
T12| Xp a4 D Xpye @(R,45 R38 R48 k12 Kig™ © Ky

X’L+44 Xz+44 X'L+44 2+44

1144
w13| Xp's © X707 @ (XR 6 R39 k13| K7

X1+44 Xz+44 (1+44 z+44

PR VS
R,38 L,40 R 39 R 32 k14 K4o

X1+44) Xz+44 (X1+44 2+44

z+44 L+44 L+43
R,51 L.,53 R,52 R,45 kis K K

R 55
14 44 44 41 41
X1+ D Xz+ @(1+ H— k16 K%Z_

R,52 L,54 Ro& R46

X’L+44 Xz+44 X’L+44 H—44

z+44 1144 1+44 T+44 T+44 1+43 T+42
17| Xp 59 © X161 @(R,60 R53 X @(X &XR57) k17K1 O Kol @ Kgg © Ky

X7,+44 Xz+44 X'L+44 7,+44

7,+44 1144 1143
218 Xig0 D Xpoo ® (XRer Xps1) D Xp kig|Kgy ™~ @ K

X1+44 Xz+44 (1+44 1+44

z+44
R,61 L,63 R,62 R 55 k19| Kg

THIT AT iFaTg 2+44
Xpss ® X 56 @ (R55 Xras

k,20 Kz+44
1+44 z+44 ’L+44 1+44 z+44 1+44 1+43
XRoJ @X (Ro4 R47 Ra7 ko1 K @Ksﬁ

1+44 1+44 'L+44 7,+44 7,+44 1144 1+44 'L+44 1144 1143 1142
X X X L58 EB(XRS7&XR50) k23K G K™ @ Kgs @ Ky

w23 Xig50 ® X5y ® (XRss& R46
Xt g it (X1+44 7,+44 ;{4?61 Tooa K1+44 Kg#?’

R46 D XL 4s R,AT R,40

i+44 i+44 AT 1+44 2+44
XR4O XL 42 (R41 R34 kas K

1+44 1+44 ’L+44 z+44 z+44 7.+44 1+44 1+44 1+44 1+43 T+42
XRol@XLo‘S @(RQQ R4o L57 @(RQG&XR49) k%K @K @K @K

X'L+44 X'L+44 @ (X'L+44 2+44

z+44 'L+44 'L+43
27| Xpas © X 7 R,46 R,39 R 49 ka7 Ky & Ky

X;Q+;;151 @ Xz+44 @ ('L+44 7,+44 k28 K1+44

L.,41 R40 R33

1+44 7,+44

7,+44 z+44
X R 44 R 37

¥4
R,43 L 45 kss K45

T T A g z+44 X o (A a4 z+44 44 43 IEp)
L29 XR,44 L ,46 (R, 45 R 38 L ,50 (R,49 &XRAZ) koo | Ky K50 D K48 D K50
REEE z+44 1+44 1+44 z+44 1+44 F43
z30| Xp 38 D X1'ao B (Xpao& XF3o Xpoao kao|Kyg ™~ ® Ki3
X1+44 z+44 (’L+44 z+44 k K1+44
T s 3;124 X ?ﬁl z :El R %31 zvis vvs vvis 2L vvis vvis a3 %)
7+ 7+ 7+ 2+ z+ 71+ 7+ 'L+ 7+ 7+ 7+
®32| Xp 55 © X157 (XR 56 R49 X1 P (XR GO&XR,53) ksa | K & Kgi ~ @ K5~ @ Kgy
7,+44 'L+44 7,+44 7,+44 z+44
233 Xiao ® X5 ® (XR50& R 43 kss| K3
- @+44 NI g x g z+44 XA z+44 43
T34 | X 5431 Xr 5484 & (Xg 541 Xk 50 X k60 ksa| Ky - & Kgg
7+ z+ 1+ H— H—
z35| Xp 57 ® X5 B (Xpss& Xrs1 kss | Ky
X’L+44 Xz+44 (X’L+44 z+44 k Kz+44
L36|-A R 50 L.52 R,51 R44 36|59
'L+44 z+44 'L+44 2+44 z+44 1144 1143
€37 XR 49 XL 51 (XR 50 R43 R53 ks7 K51 ™ & Kgs

1+44 z+44 Xy z+44 X g (XA =S 44 =S 43 E=v)
39 XR48 L5O R49 R42 L54 (RSS&XR 46) kso|Kgg ™™ @ Kgy @ K53 @ Kgj

X7,+44 D Xz+44 @ (1+44 1+44

144
R.,42 L.44 R 43 R 36 kao K44

40

1+44 1+44 ’L+44 z+44 z+44 'L+44 1+43
%41 | Xp a0 @ X'y 69(XR43 R36 X ka6 ka1 | K} @ Ky

)
)
)
)
)
) ®
)
)
) @
)
) D
)
)
) @
)
) D
) D
)
)
) ®
oo X T X 6 (X X) Fas[Kiy ™
) D
)@
)
)@
) @
)
)@
) ®
)
) ®
)
)@
)
)
) D
)
) @
)
) D
)

1+44 1+44 'L+44 2+44 'L+44
Ta2| Xiae © Xpas @ (Xp5r &X R,30 kaz| K3

Notice: x17 = x1 @ @7, T23 = T2 @ T10,T26 = L5 D 9015,1329 = T6 D T12

32

53-round attack on SIMON128/256. We add six rounds before and after the 41-round linear hull distin-
guisher to attack 53-round SiMON128/K. Compared with the 51-round attack, we expand one more round
at each side. The 1,18, 22,24 — 26,28 — 63 bits (42 bits) of K*=¢ and K**4° are involved in the attack.

1. Guess the 242142 bhits of K6 K46 involved

(a) Encrypt the plaintexts by one round and decrypt the corresponding ciphertext by one round
2. Do as Step 1-3 in the 51-round attack
3. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 21276 x 284 = 22116 two-round encryptions. 2. 2'6% x 284 = 2249 gpe-round encryptions and 2197-77
additions. So the total time to compute the bias is about 224 one-round encryptions and 2'°7-77 additions.
3. Since K = 256, the exhaustive phase needs 2256—8 = 2248 53.round encryptions. The total time is about
224801 encryptions and 2'%5-77 additions.

C Implementation of the 21-round attack on SIMON32

//SIMON.H

#ifndef SIMON_H_

#define SIMON_H_

extern const int z[5][62];

/*simon32x/

typedef unsigned int uint32;

#define rotateleft32(x,1l) (((x<<1l) |(x>> (16-1))) & OxFFFF)
#define rotateright32(x,1) (((x>>1) |(x<< (16-1))) & OxFFFF)
extern const int c32;

uint32 func32(uint32 x);

void round32(uint32 in[2], uint32 out[2], uint32 k);

void round32_inv(uint32 in[2], uint32 out[2], uint32 k);

void key32(uint32 k[32]);

void ENC32(uint32 in[2],uint32 out[2], uint32 subkey[32], int rN);
#endif

//SINON. cpp
#include "SIMON.H"
const int z[5][62] = {
{t,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0,
1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0},
{t+,0,0,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,0,
1,0,0,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,0%},
{t,0,1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,0,0,
0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,1,0,1,1,0,1,1,0,0,1,1},
{t,1,0,1,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0,
0,0,1,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,0,0,0,0,1,1,1,1},
{1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,
0,0,1,0,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,0,1,1,1,0,1,1,1,1}
};
const int ¢32 = (1<<16) - 4;
uint32 func32(uint32 x){
uint32 y = rotateleft32(x,1);
y &= rotateleft32(x,8);
y "= rotateleft32(x,2);
return y;
}
void round32(uint32 in[2], uint32 out[2], uwint32 k){//[0]left, [1]right
out [1] = in[0];
out [0] = in[1] -~ func32(in[0]) ~ k;

33

void round32_inv (uint32 in[2], uint32 out[2], uint32 k){
out [0] = in[1];
out [1] = in[0] -~ func32(in[1]) ~ k;
}
void key32(uint32 k[32]){
for(int i=4; i < 32; ++i){
k[i] = rotateright32(k[i-1], 3);

k[i]l ~= k[i-3];
k[i] ~= rotateright32(k[il, 1);
k[i] = ¢32 =~ z[0][i-4] -~ k[i-4];

}
}
void ENC32(uint32 in[2],uint32 out[2], uint32 subkey[32], int rN=32){//The whole
32-round encryption of SIMON32/64
uint32 tmp [2];
tmp [0] = in[0];
tmp [1] = in[1];
for(int i=0; i<rN; ++i){
round32 (tmp, out, subkeyl[i]);
tmp [0] = out[0];
tmp [1] = out[1];

//VERIFY.H
#ifndef VERIFY_H_
#define VERIFY_H_
#include "SIMON.H"
#define TAKE_BIT(x, pos) (((x) >> (pos)) & 0x1)
#define COMPRESS_HEAD_xO (XL, XR) \
(TAKE_BIT (XL, 13) ~ TAKE_BIT(XR, 15) -~ TAKE_BIT(XL, 1) -~ TAKE_BIT(XL, 5) ~ (
TAKE_BIT (XL, 14) & TAKE_BIT(XL, 7)))
#define COMPRESS_HEAD_x1 (XL, XR) (TAKE_BIT(XL, 14) ~ TAKE_BIT(XR, 0) ~ (TAKE_BIT
(XL, 15) & TAKE_BIT(XL, 8)))
#define COMPRESS_HEAD_x2 (XL, XR) (TAKE_BIT(XL, 7) -~ TAKE_BIT(XR, 9) -~ (TAKE_BIT
(XL, 8) & TAKE_BIT(XL, 1)))
#define COMPRESS_HEAD_x3 (XL, XR) (TAKE_BIT(XL, 2) ~ TAKE_BIT(XR, 4) -~ (TAKE_BIT
(XL, 3) & TAKE_BIT(XL, 12)))
#define COMPRESS_HEAD_x4 (XL, XR) (TAKE_BIT(XL, 11) ~ TAKE_BIT(XR, 13) ~ (TAKE_BIT
(XL, 12) & TAKE_BIT(XL, 5)))
#define COMPRESS_HEAD_x5(XL, XR) \
(TAKE_BIT (XL, 14) ~ TAKE_BIT(XR, 0) ~ (TAKE_BIT(XL, 15) & TAKE_BIT(XL, 8)) -~
TAKE_BIT (XL, 2))
#define COMPRESS_HEAD_x6 (XL, XR) (TAKE_BIT(XL, 15) ~ TAKE_BIT(XR, 1) -~ (TAKE_BIT
(XL, 0) & TAKE_BIT(XL, 9)))
#define COMPRESS_HEAD_x7 (XL, XR) (TAKE_BIT(XL, 8) -~ TAKE_BIT(XR, 10) ~ (TAKE_BIT
(XL, 9) & TAKE_BIT(XL, 2)))
#define COMPRESS_HEAD_x8 (XL, XR)\
(TAKE_BIT(XL, 7) ~ TAKE_BIT(XR, 9) ~ (TAKE_BIT(XL, 8) & TAKE_BIT(XL, 1)) -~
TAKE_BIT (XL, 11))
#define COMPRESS_HEAD_x9 (XL, XR) (TAKE_BIT(XL, 1) ~ TAKE_BIT(XR, 3) ~ (TAKE_BIT
(XL, 2) & TAKE_BIT(XL, 11)))
#define COMPRESS_HEAD_x10(XL, XR) (TAKE_BIT(XL, 14) -~ TAKE_BIT(XR, 0) -~ TAKE_BIT(
XR, 4)\
~ (TAKE_BIT(XL, 15) & TAKE_BIT(XL, 8)) -~ (TAKE_BIT(XL, 3) & TAKE_BIT(XL, 12)))
#define COMPRESS_HEAD_x11 (XL, XR)\
(TAKE_BIT (XL, 15) -~ TAKE_BIT(XR, 1) -~ (TAKE_BIT(XL, 0) & TAKE_BIT(XL, 9)) -~
TAKE_BIT(XL, 3))

34

#define COMPRESS_HEAD_x12(XL, XR) (TAKE_BIT(XL, 0) -~ TAKE_BIT(XR, 2) -~ (TAKE_BIT
(XL, 1) & TAKE_BIT(XL, 10)))
#define COMPRESS_HEAD_x13(XL, XR) (TAKE_BIT(XL, 9) -~ TAKE_BIT(XR, 11) -~ (TAKE_BIT
(XL, 10) & TAKE_BIT(XL, 3)))
#define COMPRESS_HEAD_x14 (XL, XR)\
(TAKE_BIT(XL, 8) ~ TAKE_BIT(XR, 10) ~ (TAKE_BIT(XL, 9) & TAKE_BIT(XL, 2)) -~
TAKE_BIT (XL, 12))
#define COMPRESS_HEAD_x15(XL, XR) (TAKE_BIT(XL, 7) -~ TAKE_BIT(XR, 9) ~ TAKE_BIT(
XR, 13)\
~ (TAKE_BIT(XL, 8) & TAKE_BIT(XL, 1)) -~ (TAKE_BIT(XL, 12) & TAKE_BIT(XL, 5)))
#define COMPRESS_HEAD_x16 (XL, XR)\
(TAKE_BIT(XL, 1) ~ TAKE_BIT(XR, 3) ~ (TAKE_BIT(XL, 2) & TAKE_BIT(XL, 11)) -~
TAKE_BIT (XL, 5))
#define KEY_HEAD_kO (KO, K1, K2, K3) (TAKE_BIT(KO, 15) ~ TAKE_BIT(K1, 1) ~ TAKE_BIT
(K1, 5) -~ TAKE_BIT(K2, 3) -~ TAKE_BIT(K3, 5))
#define KEY_HEAD_k1 (KO, K1, K2, K3) (TAKE_BIT(KO, 0))
#define KEY_HEAD_k2 (KO, K1, K2, K3) (TAKE_BIT(KO, 9))
#define KEY_HEAD_k3 (KO, K1, K2, K3) (TAKE_BIT(KO, 4))
#define KEY_HEAD_k4 (KO, K1, K2, K3) (TAKE_BIT(KO, 13))
#define KEY_HEAD_k5 (KO, K1, K2, K3) (TAKE_BIT(KO, O) ~ TAKE_BIT(K1, 2))
#define KEY_HEAD_k6 (KO, K1, K2, K3) (TAKE_BIT(KO, 1))
#define KEY_HEAD_k7 (KO, K1, K2, K3) (TAKE_BIT(KO, 10))
#define KEY_HEAD_k8 (KO, K1, K2, K3) (TAKE_BIT(KO, 9) ~ TAKE_BIT(K1, 11))
#define KEY_HEAD_k9 (KO, K1, K2, K3) (TAKE_BIT(KO, 3))
#define KEY_HEAD_k10(KO, K1, K2, K3) (TAKE_BIT(KO, 0) ~ TAKE_BIT(K1, 2) ~
TAKE_BIT (KO, 4) -~ TAKE_BIT (K2, 4))
#define KEY_HEAD_k11(KO, K1, K2, K3) (TAKE_BIT(KO, 1) -~ TAKE_BIT(K1, 3))
#define KEY_HEAD_k12(XK0, K1, K2, K3) (TAKE_BIT(KO, 2))
#define KEY_HEAD_k13(KO, K1, K2, K3) (TAKE_BIT(KO, 11))
#define KEY_HEAD_k14 (X0, K1, K2, K3) (TAKE_BIT(KO, 10) ~ TAKE_BIT (K1, 12))
#define KEY_HEAD_k15(KO, K1, K2, K3) (TAKE_BIT(KO, 9) ~ TAKE_BIT(K1, 11) -~
TAKE_BIT (KO, 13) ~ TAKE_BIT (K2, 13))
#define KEY_HEAD_k16(KO, K1, K2, K3) (TAKE_BIT(KO, 3) -~ TAKE_BIT(K1, 5))
#define COMPRESS_HEAD (XL, XR, x0O_linear, x_otheri14)\

x0_linear = COMPRESS_HEAD_xO (XL, XR) ; \
x_other14 = COMPRESS_HEAD_x16 (XL, XR) ; \
x_other14 = (x_other14 << 1) -~ COMPRESS_HEAD_x14 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x13(XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x12(XL, XR); \
x_other14 = (x_other14 << 1) -~ COMPRESS_HEAD_x11 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x9 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x8 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x7 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x6 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x5(XL, XR); \
x_other14 = (x_other14 << 1) -~ COMPRESS_HEAD_x4 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x3 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x2 (XL, XR); \
x_other14 = (x_other14 << 1) ~ COMPRESS_HEAD_x1(XL, XR);
#define COMPRESS_TAIL (XL, XR, xO_linear, x_otheri14, XL_shift, XR_shift) \
XL_shift = (((XL >> 8) ~ (XL << 8)) & OxFFFF);\
XR_shift = (((XR >> 8) ~ (XR << 8)) & OxFFFF);\
COMPRESS_HEAD (XR_shift, XL_shift, xO_linear, x_otheri4);
#define KEY_HEAD(KO, K1, K2, K3, kO_linear, k_otheri16)\
kO_linear = KEY_HEAD_kO (KO, Ki, K2, K3); \
k_other16 = KEY_HEAD_k16 (KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k15(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k14 (KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k13 (KO, K1, K2, K3); \

35

k_other16 = (k_other16 << 1) -~ KEY_HEAD_k12(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k11(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k10(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) ~ KEY_HEAD_k9(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k8 (KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k7 (KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) ~ KEY_HEAD_k6 (X0, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k5(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k4 (KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) ~ KEY_HEAD_k3(XKO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k2(KO, K1, K2, K3); \
k_other16 = (k_other16 << 1) -~ KEY_HEAD_k1 (KO, K1, K2, K3);
#define KEY_TAIL(KO, K1, K2, K3, kO_linear, k_other16, KO_shift, Ki_shift,
K2_shift, K3_shift)\
KO_shift = (((KO >> 8) ~ (KO << 8)) & OxFFFF);\
Ki_shift = (((K1 >> 8) ~ (K1 << 8)) & OxFFFF);\
K2_shift = (((K2 >> 8) =~ (K2 << 8)) & OxFFFF);\
K3_shift = (((K3 >> 8) ~ (K3 << 8)) & OxFFFF);\
KEY_HEAD (KO_shift, K1_shift, K2_shift, K3_shift, kO_linear, k_otheri6);

uint32 function_fp(uint32 x_14bits,
uint32 function_f00(uint32 x_8bits,
uint32 function_f3_append(uint32 x_4bits,

uint32 k_16bits);
uint32 k_9bits,
uint32 k_4bits);

uint32 x3);

void simon32_4rounds_enc (uint32 in[2], uint32 out[2], uint32 k[4]);

void simon32_4rounds_dec(uint32 in[2], uint32 out[2], uint32 k[4]);

void correlation_function_fp_OPTIMIZE (int data[1<<14], int corr_K[1<<16]);

void correlation_function_fOO_OPTIMIZE(int datal[1<<8], int corr_K[1<<9], int x3);
void correlation_function_f3_append_ OPTIMIZE(int data[16], int corr_K[16]);

void correlation_function_fp_GENERAL(int data[1<<14], int corr_K[1<<16]);

void correlation_function_fOO_GENERAL (int data[256], int corr_K[512], uint32 x3);
void correlation_function_f3_append_GENERAL (int data[16], int corr_K[16]);

#endif

//VERIFY.cpp
#include "VERIFY.H"
<cstring>
<iostream>
using namespace std;

#include
#include

uint32 function_fp(uint32 x_14bits,

uint32 x[17], k[17];

x[1] = TAKE_BIT(x_14bits,
x[2] = TAKE_BIT(x_14bits,
x[3] = TAKE_BIT(x_14bits,
x[4] = TAKE_BIT(x_14bits,
x[5] = TAKE_BIT(x_14bits,
x[6] = TAKE_BIT(x_14bits,
x[7] = TAKE_BIT(x_14bits,
x[8] = TAKE_BIT(x_14bits,
x[9] = TAKE_BIT(x_14bits,
x[10] = x[3] ~ x[5];

x[11] = TAKE_BIT(x_14bits
x[12] = TAKE_BIT(x_14bits
x[13] = TAKE_BIT(x_14bits
x[14] = TAKE_BIT(x_14bits
x[15] = x[4] ~ x[8];

x[16] = TAKE_BIT(x_14bits
k[1] = TAKE_BIT(k_16bits,
k[2] = TAKE_BIT(k_16bits,
k[3] = TAKE_BIT(k_16bits,

>

H

3

>

3

0);
1)
2);
3);
4);
5);
6);
7);
8);

9);

10);
11)
12)

13);
0);
1)
2);

36

uint32 k_16bits){

k[4] = TAKE_BIT(k_16bits, 3);
k[5] = TAKE_BIT(k_16bits, 4);
k[6] = TAKE_BIT(k_16bits, 5);
k[7] = TAKE_BIT(k_16bits, 6);
k[8] = TAKE_BIT(k_16bits, 7);
k[9] = TAKE_BIT(k_16bits, 8);
k[10] = TAKE_BIT(k_16bits, 9);
k[11] = TAKE_BIT(k_16bits, 10);
k[12] = TAKE_BIT(k_16bits, 11);
k[13] = TAKE_BIT(k_16bits, 12);
k[14] = TAKE_BIT(k_16bits, 13);
k[15] = TAKE_BIT(k_16bits, 14);
k[16] = TAKE_BIT(k_16bits, 15);
for(int i=1; i<=16; ++i){

x[i] ~= k[il;
}
uint32 x1_2 = x[1] & x[2];
uint32 x3_4 = x[3] & x[4];
uint32 x6_7 = x[6] & x[7];
uint32 x7_9 = x[7] & x[9];

uint32 x12_13 = x[12] & x[13];
uint32 x3_13 = x[3] & x[13];
x[14] = x[14] -~ x3_13;
x[16] = x[16] ~ x3_4;
x[15] = x[15] -~ x7_9;
x[11] = x[11] -~ x12_13;
x[10] = x[10] ~ x6_7;
x[5] = x[5] -~ x6_7;
x[8] = x[8] -~ x7_9;
uint32 out = (x[10] ~ (x[11] & x[14]1)) & (x[15] ~ (x[14] & x[16]));
out ~= (x[5] & x[8]1);
out ~= x1_2;
out ~= x3_4;
return out;

}

uint32 function_f00(uint32 x_8bits, uint32 k_9bits, uint32 x3){
uint32 x[17];
uint32 k[17];
x[5] = TAKE_BIT(x_8bits, 0);
x[8] = TAKE_BIT(x_8bits, 1);
x[11] = TAKE_BIT(x_8bits, 2);
x[12] = TAKE_BIT(x_8bits, 3);
x[13] = TAKE_BIT(x_8bits, 4);
x[14] = TAKE_BIT(x_8bits, 5);
x[15] TAKE_BIT(x_8bits, 6);
x[16] = TAKE_BIT(x_8bits, 7);
x[10] = x3 -~ x[5];
k[5] = TAKE_BIT(k_9bits, 0);
k[8] = TAKE_BIT(k_9bits, 1);
k[10] = TAKE_BIT(k_9bits, 2);
k[11] = TAKE_BIT(k_9bits, 3);
k[12] = TAKE_BIT(k_9bits, 4);
k[13] = TAKE_BIT(k_9bits, 5);
k[14] = TAKE_BIT(k_9bits, 6);
k[15] = TAKE_BIT(k_9bits, 7);
k[16] = TAKE_BIT(k_9bits, 8);

uint32 out;
for (int i=0;
x[i] = x[i

i<17;

++i){

1 -~ k[il;

37

}

uint32 function_f3_append(uint32 x_4bits,

}

}

uint32 x15 = x[15] ~ (x[14] & x[16]);
uint32 x11 = x[11] -~ (x[12] & x[131);
x11 = x11 & x[14];

uint32 x10 = x11 -~ x[10];

out = x[5] & x[8];

out = out ~ (x10 & x15);

return out;

//f3(z, k) = (z0 ~ kO ~ (z1 ~ k1)8(z2
uint32 x[4], k[4];
for (int i=0; i<4; ++i){

x[i] = TAKE_BIT(x_4bits, i);

k[i] = TAKE_BIT(k_4bits, i);

x[i] = x[i] -~ k[i];

}

uint32 out;

out = x[1] & x[2];
out =out ~ x[0];
out = out & x[3];

return out;

void simon32_4rounds_enc (uint32 in[2],

}

uint32 tmp[2];
tmp [0] = in[0];
tmp [1] = in[1];
for(int i=0; i<4;
round32 (tmp, out,
tmp [0] = out [0];
tmp [1] = out[1];

++i){

k[i]);

}

void simon32_4rounds_dec(uint32 in[2],

}

void correlation_function_fp_OPTIMIZE (int data[1<<14],

uint32 tmp[2];

tmp [0] = in[0];

tmp [1] = in[1];

for(int i=0; i<4; ++i){
round32_inv (tmp, out, k[i]);
tmp [0] = out[0];
tmp [1] = out[1];

}

uint32 k[17];
uint32 eight;
uint32 eightO,
i vooo [256],
V100 [256],

eightl, eight2, eight3
V001 [256], V010 [256],
V101 [256], V110[256],
K000 [512], KOO1[512], KO010[512],
K100 [512], K101[512], K110[512],
case000_001, case010_011,
int case000_001_010_011,
for(uint32 k1_3_7=0; k1_3_7 < 8;

k[1] = TAKE_BIT(k1_3_7, 0);

k [3] TAKE_BIT(k1_3_7, 1);

k[7] = TAKE_BIT(k1_3_7, 2);

int
int
int
int
int

casel00_101,
casel00_101_
++k1_3_7)1

uint32 k_4bits){
~k2)) 8 (z3 - k3)

uint32 out[2], uint32 k[4]){

uint32 out[2], uint32 k[4]){

int corr_K[1<<16]){

, eight4,
V011 [256];
V111 [256];
K011 [512];
K111 [512];
casell10_111;
110_111;

eightb, eight6, eight7;

uint32 K16_k1_3_7 - k[1] | (k[3] << 2) | (k[7] << 6);

memset (VOOO, O, sizeof (int) *256) ;

38

memset (VOO1,
memset (V010 ,
memset (VO11,
memset (V100,

sizeof (int) *256) ;
, sizeof (int) *256) ;
sizeof (int) *256) ;
, sizeof (int) *256) ;
memset (V101 , , sizeof (int) *256) ;
memset (V110, , sizeof (int) *256) ;
memset (V111, 0, sizeof (int) *256) ;
for (uint32 data000=0; data000<256; ++data000){
eight = k[1];

-

O O O O OO

eight |= (k[3] << 2);

eight |= ((TAKE_BIT(data000, 1) ~ TAKE_BIT(data000, 6)) << 3);
eight |= (TAKE_BIT(data000, 0) << 4);

eight |= (k[7] << 6);

eight |= (TAKE_BIT(data000, 1) << 7);

eight |= ((data000 & 0x3C) << 7);

eight |= (TAKE_BIT(data000, 7) << 13);

eight0 = eight;

eightl = eightO =~ 0x0002;

eight2 = eight0O ~ 0x0020;

eight3 = eightO0 =~ 0x0100;

eight4 = eightO =~ 0x0022;

eightb = eight0 =~ 0x0102;

eight6 = eightO0 = 0x0120;

eight7 = eightO0 =~ 0x0122;

V000 [data000] = dataleightO] + dataleightl] + dataleight2] + dataleight3]
dataleight4] + dataleight5] + dataleight6] + dataleight7];

eight0 = eight ~ 0x0001;

eightl = eight0 =~ 0x0002;

eight2 = eight0 ~ 0x0020;

eight3 = eightO0 =~ 0x0100;

eight4 = eightO0 ~ 0x0022;

eight5 = eight0 -~ 0x0102;

eight6 = eightO0 =~ 0x0120;

eight7 = eight0 =~ 0x0122;

V100 [data000] = datal[eightO] - dataleightl] + dataleight2] + dataleight3]
datal[eight4] - dataleight5] + datal[eight6] - dataleight7];

eight0 = eight ~ 0x0040;

eightl = eight0 ~ 0x0002;

eight2 = eight0O =~ 0x0030;

eight3 = eight0 =~ 0x0180;

eight4 = eight0 -~ 0x0032;

eightb = eightO0 =~ 0x0182;

eightG = eight0 =~ 0x01BO;

eight?7 eight0 =~ 0x01B2;

VOOl[dataOOO] = datal[eightO0] + dataleightl] + dataleight2] + dataleight3]
dataleight4] + dataleight5] + dataleight6] + dataleight7];

eight0 = eight ~ 0x0041;

eightl = eight0O =~ 0x0002;

eight2 = eightO0 =~ 0x0030;

eight3 = eight0 -~ 0x0180;

eight4 = eight0O =~ 0x0032;

eightb = eight0 =~ 0x0182;

eight6 = eight0 ~ 0x01BO;

eight7 = eightO =~ 0x01B2;

V101 [data000] = datal[eightO] - dataleightl] + dataleight2] + dataleight3]
datal[eight4] - dataleight5] + datal[eight6] - dataleight7];

eight0 = eight =~ 0x0004;

eight0 ~= (TAKE_BIT(eight, 11) << 12);

eight0 ~= (TAKE_BIT(eight, 3) << 13);

39

eightl = eightO0 ~ 0x0002;

eight2 = eightO0 =~ 0x0020;

eight3 = eightO0O ~ 0x0100;

eight4 = eightO0 ~ 0x0022;

eightb = eight0 =~ 0x0102;

eight6 = eightO0 ~ 0x0120;

eight7 = eight0 ~ 0x0122;

V010 [data000] = dataleightO] + dataleightl] + dataleight2] + dataleight3] +

datal[eight4] + datal[eight5] + datal[eight6] + dataleight7];
if (1 == TAKE_BIT(eight, 3)){
V010 [data000] = 0 - V010[data000];

}

eight0 = eight ~ 0x0005;

eight0 ~= (TAKE_BIT(eight, 11) << 12);
eight0 ~= (TAKE_BIT(eight, 3) << 13);

eightl = eight0 =~ 0x0002;
eight2 = eight0 =~ 0x0020;
eight3 = eightO0 ~ 0x0100;
eight4d = eight0 =~ 0x0022;
eightb = eight0 =~ 0x0102;
eight6 = eightO0O ~ 0x0120;
eight7 = eight0 =~ 0x0122;

V110 [data000] = datal[eightO] - datal[eightl] + dataleight2] + dataleight3] -
dataleight4] - dataleight5] + dataleight6] - dataleight7];
if (1 == TAKE_BIT(eight, 3)){
V110[data000] = 0 - V110[data000];

}

eight0 = eight =~ 0x0044;

eightO ~= (TAKE_BIT(eight, 11) << 12);
eight0 ~= (TAKE_BIT(eight, 3) << 13);

eightl = eight0 -~ 0x0002;

eight2 = eightO0 ~ 0x0030;

eight3 = eight0 =~ 0x0180;

eight4 = eight0 ~ 0x0032;

eightb = eightO0 ~ 0x0182;

eight6 = eight0O ~ 0x01BO;

eight7 = eight0 ~ 0x01B2;

V011 [data000] = dataleightO] + dataleightl] + dataleight2] + dataleight3] +

dataleight4] + dataleightb5] + dataleight6] + dataleight7];
if (1 == TAKE_BIT(eight, 3)){
V011 [data000] = 0 - VO11[data000];

}

eight0 = eight =~ 0x0045;

eight0 ~= (TAKE_BIT(eight, 11) << 12);
eight0 ~= (TAKE_BIT(eight, 3) << 13);

eightl = eight0 ~ 0x0002;
eight2 = eightO0 ~ 0x0030;
eight3 = eight0 =~ 0x0180;
eight4 = eight0 ~ 0x0032;
eightb = eightO0 ~ 0x0182;
eight6 = eightO0 =~ 0x01BO;
eight7 = eightO0 ~ 0x01B2;

V111 [data000] = dataleightO] - dataleightl] + dataleight2] + dataleight3] -
datal[eight4] - dataleight5] + datal[eight6] - dataleight7];
if (1 == TAKE_BIT (eight, 3)){
V111[data000] = 0 - V111[data000];
}

40

}
correlation_function_fOO0O_OPTIMIZE(V0O0OO, K000, k[3]);
correlation_function_fOO_OPTIMIZE(V0OO1, K001, k[3]);
correlation_function_fOO_OPTIMIZE(V010, K010, k[3] ~ 0x1);
correlation_function_fOO_OPTIMIZE(VO11, KO11, k[3] -~ 0x1);
correlation_function_fOO_OPTIMIZE(V100, K100, k[3]);
correlation_function_fOO_OPTIMIZE(V101, K101, k[3]);
correlation_function_fOO_OPTIMIZE(V110, K110, k[3] -~ 0x1);
correlation_function_fOO_OPTIMIZE(V111, K111, k[3] -~ 0x1);
for(uint32 k6_9=0; k6_9 <4; ++k6_9){
k[6] = k6_9 & O0x1;
k[9] = TAKE_BIT(k6_9, 1);
uint32 K16_k6_9 = (k[6] << 5) | (k[9] << 8);
for(uint32 key_9_bits=0; key_9_bits < 512; ++key_9_bits){
k[5] = TAKE_BIT(key_9_bits, 0);
k[8] = TAKE_BIT(key_Q_bitS, 1);
k[13] = TAKE_BIT(key_Q_bitS, 5);
uint32 K16_k5_8_10_T0_16 = (k[5] << 4) | (k[8] << 7) | ((key_9_bits & O
x1FC) << 7);
uint32 key00 = key_9_bits;
uint32 key0l = key_9_bits ~ k[6] ~ (k[9] << 1) -~ (k[6] << 2) ~ (k[9] << 7)

case000_001
casel00_101
k[4] = 0;
uint32 K16_k4 = (k[4] << 3);
uint32 keyl0 key_9_bits ~ (k[13] << 6) ~ (k[4] << 8);
uint32 keyll key_9_bits ~ keyO0l1l ~ keylO;
case010_011 K010 [key10] + KO11l[keyl1];
casel110_111 = K110[key10] + Ki11l[keyl1l];
case000_001_010_011 = case000_001 + case010_011;
casel00_101_110_111 = casel00_101 + casel110_111;
uint32 K16 = K16_k5_8_10_TO0_16 | K16_k6_9 | K16_k1_3_7 | K16_k4;

1]

K000 [key00] + K001 [keyO1l;
K100 [key00] + K101 [keyO01];

corr_K[K16] = case000_001_010_011 + casel100_101_110_111;
corr_K[K16 -~ 0x2] = case000_001_010_011 - casel100_101_110_111;
k[4] = 1;

K16_k4 = (k[4] << 3);

keyl0 = key_9_bits ~ (k[13] << 6) ~ (k[4] << 8);

keyll = key_9_bits ~ keyO0Ol1l =~ keylO0;

case010_011 = KO010[key10] + KO11[keyl11l];

casel110_111 = K110[key10] + Ki111l[keyl1l];

case000_001_010_011 = case000_001 - case010_011;
casel00_101_110_111 = casel00_101 - casel110_111;

K16 = K16_k5_8_10_T0_16 | K16_k6_9 | K16_k1_3_7 | K16_k4;
corr_K[K16] = case000_001_010_011 + casel100_101_110_111;
corr_K[K16 -~ 0x2] = case000_001_010_011 - casel100_101_110_111;

}

void correlation_function_fOO_OPTIMIZE(int datal[1<<8], int corr_K[1<<9], int x3){
int VOO [2];
int VO1[16];
int V10[2];
int V11[16];
uint32 x10;
int case00_k10_15[4];
int case01_k10__11_12_13_15__16[16];

41

int casel10_k10_15[4];
int casel1l1_k10__11_12_13_15__16[16];
uint32 tmp;
uint32 case00, caseOl, casel0, casell;
for(uint32 k5_14=0; k5_14 < 4; ++k5_14){
uint32 K9_k5_14 = ((k5_14 << 5) ~ k5_14) & 0x41;
case00 = ((k5_14<<4) ~ k5_14) & 0x21;
memset (VOO, 0, sizeof (int) *2);
memset (VO1, 0, sizeof (int) *16) ;
memset (V10, 0, sizeof (int) *2);
memset (V11, 0, sizeof (int)*16);
for(uint32 idx_data=0; idx_data<256; ++idx_data){
switch (((idx_data & 0x21)~case00)){
case 0x00: //(0,0)
VOO[TAKE_BIT(idx_data, 6)] += datalidx_datal;
break;
case 0x20: //(0,1)
tmp = TAKE_BIT(k5_14, 0) -~ x3 -~ TAKE_BIT(idx_data, 2);

tmp |= ((idx_data&0x18) >> 2);
tmp |= (((idx_data&0x80) >> 4)~((idx_data&0x40) >> 3));
VO1[tmp] += datal[idx_datal;
break;
case 0x01: //(1,0)
if ((idx_data & 0x02) == 0){
V1O [TAKE_BIT(idx_data, 6)] += datal[idx_datal;
Yelseq
V10 [TAKE_BIT(idx_data, 6)] -= datalidx_datal;
}
break;

case 0x21: //(1,1)
tmp = TAKE_BIT(k5_14, 0) =~ 0x1 -~ x3 ~ TAKE_BIT(idx_data, 2);

tmp |= ((idx_data&0x18) >> 2);
tmp |= (((idx_data&0x80) >> 4)~((idx_data&0x40) >> 3));
if ((idx_data & 0x02) == 0){
Vii[tmp] += datal[idx_datal;
Yelsedq
Vi1l [tmp] -= datalidx_datal;
}
break;
}
}
x10 = TAKE_BIT(k5_14, 0) ~ x3; //x10 = x5 ~ z3
case00_k10_15[x10] = VOO[0] + VOO[1]; //k10 = z10, k15 = 0
case00_k10_15[x10 -~ 0x2] = case00_k10_15[x10]; //k10 = 10, k15 = 1
case00_k10_15[x10 ~ 0x1] = VOO[O] - VOO[1]; //k10 = 10 ~ 1, k15 = 0
case00_k10_15[x10 ~ 0x3] = VOO[1] - VOO[O0]; //k10 = 10 -~ 1, k15 = 1

//case0l (zb = kb, z14 = k14 =~ 1)
correlation_function_£f3_append_OPTIMIZE(VO1l, case0O1_k10__11_12_13_15__16);
//casel0 (x5 = k& ~ 1, x1f = ki14)

x10 = TAKE_BIT(k5_14, 0) -~ 0x1 -~ x3 ; //xl10 = z5 ~ z3
casel0_k10_15[x10] = Vvi0[0] + Vi0[1]; //kl10 = z10, k15 = 0
casel0_k10_15[x10 ~ 0x2] = casel0_k10_15[x10]; //k10 = 210, k15 = 1
casel0_k10_15[x10 ~ 0x1] = V10[0] - V10[1]; //k10 = 10 ~ 1, k15 = 0
casel0_k10_15[x10 ~ 0x3] = Vi10[1] - Vi0[0]; //k10 = 210 ~ 1, k15 = 1

//casell
correlation_function_f3_append_OPTIMIZE(V11, casell_k10__11_12_13_15__16);
for(uint32 key_6_bits=0; key_6_bits < 64; ++key_6_bits){
uint32 K9_k10_T0_13_15_16 = (((key_6_bits & 0x30) << 1) | (key_6_bits & O0xOf
)) << 2;//k16, k15, _, k13, k12, ki1, k10, _,

42

uint32 k10_15 = key_6_bits & Ox1;

k10_15 |= ((key_6_bits & 0x10) >> 3);

uint32 k10__11_12_13_15__16 = ((key_6_bits ~ (key_6_bits >> 1)) & 0x1);
k10__11_12_13_15__16 |= ((key_6_bits & 0xC)>>1);

k10__11_12_13_15__16 |= (((key_6_bits>>2) -~ (key_6_bits >>1)) & 0x08);

int cO0 = case00_k10_15[k10_15] + case01_k10__11_12_13_15__16[
k10__11_12_13_15__161;

int ¢l = casel0_k10_15[k10_15] + casell_k10__11_12_13_15__16[
k10__11_12_13_15__161];

uint32 key_9_bits = k5_14 & Ox1;

key_9_bits |= ((key_6_bits & OxF) << 2);
key_9_bits |= ((k5_14 & 0x2) << 5);
key_9_bits |= ((key_6_bits & 0x30) << 3);
uint32 K9 = K9_k5_14 | K9_k10_T0_13_15_16;
corr_K[K9] = c0 + ci;

corr_K[K9 =~ 0x2] = c0 - ci;

}
}
void correlation_function_f3_append_ OPTIMIZE (int datal[16], int corr_K[16]){
//f3 = (z10_11 =~ k10_11 - (z12°k12) & (z13 ~ k13)) & (xz15_16 ~ k15_16)
uint32 xx;
int caseO;
int casel[4];
int c0, c1;
for(uint32 k15_16 = 0; k15_16 <=1 ; ++k15_16){
xx = k15_16 << 3;
case0 = datal[zxx] + datal[xx ~ 0x1] + datal[xx ~ 0x2] + datal[xx ~ 0x3] +
datal[xx -~ 0x4] + datalxx -~ 0x5] + datalxx -~ 0x6] + datalxx =~ 0x71];
casel [0] = datalxx - 0x8] - datalxx -~ 0x9];
casel [1] datal[xx -~ OxA] - datalxx ~ OxB];
casel [2] = datalxx - 0xC] - datalxx -~ 0xD];
casel [3] = datalxx -~ O0xE] - datalxx -~ 0xF];
cO = casel[0] + casel[2]; //z12 = k12 = 0

cl = casel[1] - casel[3]; //zi12 = k12 = 1

corr_K [xx] = cO + ci1; //k13 = 0

corr_K[xx ~ 0x4] = cO - c1; //k13 = 1

corr_K[xx -~ 0xl1] = case0 - corr_K[xx 1; //k13 = 0, k12 = 0, k10_11 =
corr_K[xx] = case0 + corr_Kl[xx 1; //k13 = 0, k12 = 0, k10_11 =
corr_K[xx -~ 0x5] = case0 - corr_K[xx ~ 0x4]; //k13 = 1, k12 = 0, k10_11 =
corr_K[xx -~ 0x4] = case0 + corr_K[xx -~ 0x4]; //k13 = 1, k12 = 0, k10_11 =
c0 = casel[1] + casel[3];

cl = casel[0] - casel[2];

corr_K[xx - 0x2] = cO + c1; //k13 = 0; k12 = 1, k10_11 = 0

corr_K[xx - 0x6] = cO - ci; //k13 = 1; k12 = 1, k10_11 = 0

corr_K[xx =~ 0x3] = case0 - corr_K[xx ~ 0x2]; //k13 = 0, k12 = 1, k10_11 =
corr_K[xx -~ 0x2] = case0 + corr_K[xx ~ 0x2]; //k13 = 0, k12 = 1, ki10_11 =
corr_K[xx -~ 0x7] = case0 - corr_K[xx ~ 0x6]; //k13 = 1, k12 = 1, k10_11 =
corr_K[xx -~ 0x6] = case0 + corr_K[xx ~ 0x6]; //k13 = 1, k12 = 1, k10_11 =

}
}
void correlation_function_fp_GENERAL(int data[1<<14], int corr_K[1<<16]){
memset (corr_K, 0, sizeof (int) * (1<<16));
uint32 out;
for(uint32 key=0; key < (1<<16); ++key){
for(uint32 idx_data = 0; idx_data < (1<<14); ++idx_data){
out = function_fp(idx_data, key);
if (out == 0){
corr_K[key] += datal[idx_datal;

43

S O

S N O

Yelse{
corr_K[key]l -= datal[idx_datal;
}
}
}

}
void correlation_function_fOO_GENERAL (int data[256], int corr_KI[512], uint32 x3){
memset (corr_K, 0, sizeof(int) * 512);
uint32 out;
for(uint32 key=0; key < 512; ++key){
for(uint32 idx_data = 0; idx_data < 256; ++idx_data){
out = function_f00(idx_data, key, x3);

if (out == 0){

corr_K[key] += datal[idx_datal;
Yelse{

corr_K[key]l -= datalidx_datal;
}

}
}
}
void correlation_function_f3_append_GENERAL (int data[16], int corr_K[16]){
memset (corr_K, 0, sizeof (int) * 16);
uint32 out;
for(uint32 key=0; key < 16; ++key){
for (uint32 idx_data = 0; idx_data < 16; ++idx_data){
out = function_f3_append(idx_data, key);
if (out==0){
corr_K[key] += datal[idx_datal;
}else if (out == 1){
corr_K[key]l -= datal[idx_datal;
}

//recovery.cpp
#include "VERIFY.H"
#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <vector>
#include <algorithm>
typedef long long int64;
#define MEMORY O
#define TIME 1
#define argument MEMORY //memory optimized, this takes more time
//#define argument TIME //memory mnot optimized, this takes less time
using namespace std;
struct corr{

uint32 kP_kC; //16 MSB 4is the kP; 16 LSB is the kC

int count;

void pri(){

cout <<hex<<setw (4) <<(kP_kC >> 16)<<" "<<setw(4)<<(kP_kC&O0xFFFF)<<" "<<dec<<
count;

}
}s
bool Comp(const corr &a, const corr &b){

return (a.count > b.count);

44

}
bool sucsess(vector<corr> &vc, int kP_kC){
for (int i=0; i<(vc.size()); ++i){
if (vc[i].kP_kC == kP_kC){
return true;

}
}
return false;
}
const int cst_1_rl_14 = (1<<14);

const int64 dataSize = 2449771427;//(2°31.19)
void simon32_21rounds_enc(uint32 in[2], uint32 out[2], uint32 k[32], int
uint32 tmp[2];
tmp [0] = in[0];
tmp [1] = in[1];
for (int i=SR; i<SR+21; ++i){
round32 (tmp, out, k[i]);
tmp [0] = out [0];
tmp [1] = out[1];
}
}
int abs(int x){return ((x > 0) ? x : (0-x));}
void data_collection(uint32 k[32], int** v);
void correlation_compute(int* data[1<<14], vector<corr> &out, int argu);
int main(int argc, char **xargv){
uint32 key[32];
srand (time (NULL)) ;
key [0] =(uint32)random () &Oxffff;
key [1] =(uint32)random()&0xffff;
key [2] =(uint32)random()&Oxffff;
key [3] =(uint32)random()&Oxffff;

COUL << m e e e e - "<<endl;
cout <<"| Select the main key randomly... [\n";
cout.fil1(’0?);
cout <<"| key [0]="<<hex<<setw (4) <<key [0] <<"
[\n";
cout<<"| key [1]="<<hex<<setw (4) <<key [1]<<"
\n";
cout <<"| key [2]="<<hex<<setw (4) <<key [2] <<"
[\n";
cout<<"| key [3]="<<hex<<setw (4) <<key [3]<<"
[\n";
COUL KM mm e e e - "<<endl;

cout <<endl;

key32 (key) ;

uint32 KP, KC;

uint32 KOP, KOC;

uint32 KC_shiftO, KC_shiftl, KC_shift2, KC_shift3;
KEY_HEAD (key [1] ,key [2] ,key [3] ,key[4], KOP, KP);

SR) {

KEY_TAIL (key[21] ,key[20], key[19], key[18], KOC, KC, KC_shiftO, KC_shift1,

KC_shift2, KC_shift3);
uint32 KP_KC = ((KP<<16) | KC);

int**x data = new int*[1<<14];
for(int i=0; i<(1<<14); ++i){
datal[i] = new int[1<<14];
¥
time_t t;
time (&t);
cout<<"Data collection begins. TIME: "<<ctime (&t)<<endl;

45

data_collection(key, data);

time (&t);

cout<<"Data collection finishes. TIME: "<<ctime (&t) <<endl;
time (&t);

cout<<"Correlation computation begins: "<<ctime (&t)<<endl;

vector<corr> vc;

correlation_compute (data, vc, argument);

time (&t);

cout<<"Correlation computation finishes: "<<ctime (&t)<<endl;

if (sucsess(vc, KP_KC)){
cout <<"SUCCESS\n";

}elseq
cout <<"FAIL\n";

}

for(int i=0; i<(cst_1_r1_14); ++i){
delete[] datalil;

}

delete[] data;

return O0;

}
void data_collection(uint32 k[32], intx*x*x v){

for(int i=0; i< cst_1_rl1_14; ++i){

for(int j=0; j<ecst_1_rl_14; ++j){
v[il[j]l = 0;

}

}

uint32 x0, xP;

uint32 yO0, yP;

uint32 pll[2];

uint32 cl[2];

uint32 cl_L, cl_R;

for(int64 dS = 0; dS < dataSize; ++dS){
//pl[0] ((uint32)random()) & 0xffff;
//pl[1] = ((wint32)random()) & Ozffff;
pl[0] = (dS>>16) & OxFFFF;
pl[1] = dS&OxFFFF;
simon32_21rounds_enc(pl, cl, k, 1);
COMPRESS_HEAD (pl[0], pl[1], x0, xP);
COMPRESS_TAIL(c1[0], c1[1], yO, yP, cl_L, cl_R);

if (x0 == y0){
v[xP][yP] += 1;
}elsed{
v[xP][yP] -= 1;
}

}
}
void correlation_compute (int* data[1<<14], vector<corr> &out, int argu){
corr zero;
zero.count = -1;
out .push_back(zero) ;
vector<corr>::iterator it;
int **ck = new intx*[1<<14];
for (int i=0; i<(1<<14); ++i){
ck[i] = new int[1<<16];
}
int tmp [1<<14];
int kk[1<<16];
corr x;
for(int i=0; i<cst_1_rl_14; ++i){

46

correlation_function_fp_OPTIMIZE(datal[il, ck[il]);
}
time_t t;
for (int j=0; j<(1<<16); ++j){

for(int 1i=0; i<(1<<14); ++i){

tmp[i]l = ck[i][j]1;

}

correlation_function_fp_OPTIMIZE (tmp, kk);

for (int i=0; i<(1<<16); ++i){

x.kP_kC = (((uint32)i) << 16);
x.kP_kC |= ((uint32)j);
x.count = abs(kk[i]);
out .push_back(x);
}
if (argu == MEMORY){
if((j & OxFF) == O0xFF){
sort (out.begin(), out.end(), Comp);
//cout<<out.size()<<endl;
if (out.size () > (1<<24)){
out.erase (out.begin () +(1<<24), out.end());
}
}
}

}
sort (out.begin(), out.end(), Comp);
//cout<<out.size()<<endl;
if (out.size() > (1<<24)){
out.erase (out.begin()+(1<<24), out.end());
}
for(int i=0; i<(1<<14); ++i){
deletel[] ck[il;
}
delete[] ck;

//test_verify.cpp

#include "VERIFY.H"

#include <cstdlib>

#include <iostream>

#include <cstring>

using namespace std;

struct argu_error{
argu_error () {}
void usage (){

cout<<"./test --head:\n"
<<"\tIllustrate the correctness of Table 5 and function f(x,k).\n";

cout<<"./test --tail:\n"
<<"\tIllustrate the correctness of Table 6 and function f(x,k).\n";
cout<<"./test --correlation:\n"

<<"\tIllustrate that the optimized method to compute the correlation of °’
fp(x1_16,k1_16)° is right.\n"
<<"\t(£(x,k)=x0"k0"fp(x1_16,k1_16))\n";
cout<<"./test --time:\n"
<<"\tCompare the time complexity of computing the correlations of ’fp’ using
OPTIMIZED and GENERAL methods.\n";
}
}s
void test_tabled4_function_f ();
void test_table5_function_f ();

47

void test_correlation_fp();
void time_compare () ;
void test_fp_3round();
void test_correlation_fp_3round();
int main(int argc, char **xargv){
try{
string argument;
if (argc < 2){ throw argu_error();}

argument = argv[1];

if (argument == "--head")({
test_tabled_function_f () ;

}else if(argument == "_-tail"){
test_table5_fun on_f ();

}else 1f(argument == "--correlation"){
test_correlation_fp();

}else if (argument == "--time"){
time_compare () ;

}elsed{

throw argu_error ();
}
}
catch(argu_error& e){
e.usage () ;
}
return O;
}
void test_table4_function_f (){
srand (time (NULL)) ;
uint32 X[2];
uint32 Y[2];
uint32 K[4];
uint32 x0, kO, x_other14, k_16bits;

cout <<"
| = o
"<<endl;
cout <<"| This is to test the correctness of Table 4 and function f.
| "<<endl;
cout <<"| X~{i-4} and K[i-4],K[i-3],K[i-2],K[i-1] are set randomly.
| "<<endl;
cout <<"| In the following, the second column is the output of function ’f’
using the representation in Table 4. | "<<endl;
cout <<"| The third column is the ’X~i_{L,5}’, which is computed using 4-round
encryption. | "<<endl;
cout <<"
| = o o o o L L L ________
"<<endl;
for(int i=0; 1<20; ++i){
X[0] = random() & OxFFFF;
X[1] = random() & OxFFFF;
K[0] = random() & OxFFFF;
K[1] = random() & OxFFFF;
K[2] = random() & OxFFFF;

K [3] random () & OxFFFF;

COMPRESS_HEAD (X[0],X[1],x0, x_otheri4d);

KEY_HEAD(K[0] ,K[1] ,K[2],K[3],k0,k_16bits);

simon32_4rounds_enc (X,Y,K); //4-round encryption, Y is the
output (Y[0], Y[1])

uint32 f1 = x0 ~ function_fp(x_other14, k_16bits) ~ kO; //f1 = f(z,k) = z0
k0O - fp(z1_16, k1_16)

48

uint32 f2 = (Y[0]>>5) & Ox1; //f2 = Y[0]_5 = Y_{L,56}
if (£1 1= £2){
cout <<"TEST "<<i<<": FAILED\n";
cout <<X[0]<<"\t"<<X[1]<<endl;
cout <<K[0]<<"\t"<<K[1]1<<"\t"<<K[2]<<"\t"<<K[3]<<endl;
cout <<f1<<"\t";
cout <<f2<<endl;
Yelseq
cout <<dec;
cout<<"test"<<1+i<<":\t\t"<<f1<<"\t"<<f2<<"\t 0K \n";
}
}

void test_table5_function_f (){

srand (time (NULL)) ;

uint32 X[2];

uint32 Y[2];

uint32 K[4];

uint32 x0, kO, x_otherl4, k_16bits;
uint32 tmpl, tmp2, tmp3, tmpé;

cout <<"
| = m o o o o o o o e
"<<endl;

cout <<"| This is to test the correctness of Table 5 and function f.

| "<<endl;
cout <<"| X~{i+17} and K[i+16] ,K[i+15] ,K[i+14] ,K[i+13] are set randomly.
| "<<endl;

cout<<"| In the following, the second column is the output of function ’f°
using the representation in Table 5. | "<<endl;

cout <<"| The third column is the X~ {i+13}_{L,5}’, which is computed using 4-
round decryption. | "<<endl;

cout <<"
| = o o o oo o]
"<<endl;

for(int i=0; 1<20; ++i){

X[0] = random() & OxFFFF;
X[1] = random() & OxFFFF;
K[0] = random() & OxFFFF;
K[1] = random() & OxFFFF;
K[2] = random() & OxFFFF;

K[3] = random() & OxFFFF;
COMPRESS_TAIL(X[0],X[1],x0, x_other14, tmpl, tmp2);
KEY_TAIL(K[O0],K[1],K[2],K[3],k0,k_16bits, tmpl, tmp2, tmp3, tmpd);
simon32_4rounds_dec (X,Y,K); //4-round decryption, Y is the
output (Y[0], Y[1])
uint32 f1 = x0 ~ function_fp(x_other14, k_16bits) ~ kO; //f1 = f(z,k) = z0 ~
k0 -~ fp(z1_16, k1_16)
uint32 £f2 = (Y[1]1>>13) & O0x1; //f2 = Y[1]_13 = Y_{R,13}
if (f1 1= £2){
cout <<"TEST "<<i<<": FAILED\n";
cout <<X[0]<<"\t"<<X[1]<<endl;
cout <<K[0]<<"\t"<<K[1]1<<"\t"<<K[2]<<"\t"<<K[3]<<endl;
cout <<f1<<"\t";
cout <<f2<<endl;
Yelseq
cout <<dec;
cout<<"test"<<1+i<<":\t\t"<<Ff1<<"\t"<<f2<<"\t 0K \n";
}

49

}

void test_correlation_fp(){

}

cout <<"
| = o o o o e e e
n";
cout <<"| This is to illustrate that the correlation of ’fp(x,k)’ under ’k°’
got from the optimized method [\n";
cout <<"| is equal to that from the general method. The counter number of ’x’
is set randomly (<16). For 20 [\n";
cout <<" | random given ’k’, the corresponding correlations are given. The
first column is got from the optimized [\n";
cout <<"| method; the second column is from the general method.
\n";
cout <<"| This program will take several minutes...
\n";
cout <<"
| = o m o oo o o o
n";

srand (time (NULL)) ;
int DATA[1<<14];
int CORRELATION_OPTIMIZE[1<<16];
int CORRELATION_GENERAL [1<<16];
int flag = 0;
for (int i=0; i<(1<<14); ++i){
DATA[i] = random() & OxF;
}
correlation_function_fp_ OPTIMIZE (DATA, CORRELATION_OPTIMIZE);
Correlation_function_fp_GENERAL(DATA, CORRELATION_GENERAL) ;
for (int i=0; i<(1<<16); ++i){

if (CORRELATION_OPTIMIZE[i] !'= CORRELATION_GENERAL[i]){
flag = 1;
break;

}

X
int i=0;
while (1<20){
int j=random () &0xFFFF;
cout <<"key=0x"<<hex<<j<<":\t"<<dec<<CORRELATION_OPTIMIZE[j]l<<"\t"<<
CORRELATION_GENERAL [j]l<<endl;
++1;
}
if (1 == flag){
cout<<"The optimized method is wrong!\n";
Yelsed{
cout<<"The optimized method is right!\n";

}

void time_compare (){

time_t T1, T2, T3, T4;

srand (time (NULL)) ;

int DATA[1<<14];

int CORRELATION_OPTIMIZE[1<<16];

int CORRELATION_GENERAL [1<<16];

for(int i=0; i<(1<<14); ++i){
DATA[i] = random() & OxF;

¥

T1 = time (NULL);

correlation_function_fp_ OPTIMIZE (DATA, CORRELATION_OPTIMIZE);

T2 = time (NULL);

50

T3 = time (NULL);

cout<<"Time to compute the correlations of ’fp’ for all the ’k’ using OPTIMIZED
method: tl1 = "<<difftime (T2, T1)<<" seconds"<<endl;

correlation_function_fp_ GENERAL (DATA, CORRELATION_GENERAL);

T3 = time (NULL);

cout<<"Time to compute the correlations of ’fp’ for all the ’k’ using GENERAL
method: t2 = "<<difftime (T3, T2)<<" seconds"<<endl;

for(int i = 0; i<(1<<16); ++i){
correlation_function_fp_ OPTIMIZE(DATA, CORRELATION_OPTIMIZE);

}
T4 = time (NULL) ;
cout <<"

n";
cout<<"2~16 * t1 is:\n";
cout<<"Time to compute the correlations of ’fp’ for all the ’k’ using OPTIMIZED

method: t3 = "<<difftime (T4, T3)<<" seconds"<<endl;
}
#Makefile
0OBJECTS_VERIFY = VERIFY.o test_verify.o SIMON.o
OBJECTS_RECOVERY = SIMON.o recovery.o VERIFY.o

all: VERIFY RECOVERY
RECOVERY: $(0OBJECTS_RECOVERY)

g++ -03 -march=native $(0BJECTS_RECOVERY) -0 recovery
recovery.o: VERIFY.o recovery.cpp

g++ -03 -march=native -c recovery.cpp -o recovery.o
VERIFY: $(0OBJECTS_VERIFY)

g++ -03 -march=native $(0BJECTS_VERIFY) -o verify
VERIFY.o: SIMON.o VERIFY.H VERIFY.cpp

g++ -03 -march=native -c VERIFY.cpp -o VERIFY.o
test_verify.o: VERIFY.o test_verify.cpp

g++ -03 -march=native -c test_verify.cpp -o test_verify.o
SIMON.o: SIMON.H SIMON.cpp

g++ -03 -march=native -c SIMON.cpp -o SIMON.o
clean:

rm *.o0

Use "make", we will get two executable files:

— verify

This is to verify the correctness of our expression and method in the paper
— recovery

This is to attack 21-round (round 2 to 20) Simon32

Usage:

— verify
e ./test —head
Lllustrate the correctness of Table 5 and function f(x,k)
o ./test —tail
Illustrate the correctness of Table 6 and function f(z,k)
o ./test —correlation
Illustrate that the optimized method to compute the correlation of f'(w1-16,k1-16) is Tight
(f(z,k) =20 D ko ® f'(z1-16,k1-16)
e ./test —time:
Compare the time complexity of computing the correlations of f'(x1—16, k1—16) using OPTIMIZED and GEN-
ERAL methods
— recovery

o1

e ./recovery
Generatea random key and 22**° plaintext-ciphertext pairs (round 2 to 20), then compute the bias for all the
key and store the 2278 = 224 candidates with large bias in set S, at last check whether the right key is in S

52

