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Abstract

Statistical analysis of attacks on symmetric ciphers often require assuming the normal behaviour of a test
statistic. Typically such an assumption is made in an asymptotic sense. In this work, we consider concrete
versions of some important normal approximations that have been made in the literature. To do this, we
use the Berry-Esséen theorem to derive explicit bounds on the approximation errors. Analysing these error
bounds in the cryptanalytic context throws up several surprising results. One important implication is that
this puts in doubt the applicability of the order statistics based approach for analysing key recovery attacks
on block ciphers. This approach has been earlier used to obtain several results on the data complexities of
(multiple) linear and differential cryptanalysis. The non-applicability of the order statistics based approach
puts a question mark on the data complexities obtained using this approach. Fortunately, we are able to
recover all of these results by utilising the hypothesis testing framework. Detailed consideration of the error
in normal approximation also has implications for χ2 and the log-likelihood ratio (LLR) based test statistics.
The normal approximation of the χ2 test statistics has some serious and counter-intuitive restrictions. One
such restriction is that for multiple linear cryptanalysis as the number of linear approximations grows so does
the requirement on the number of plaintext-ciphertext pairs for the approximation to be proper. The issue
of satisfactorily addressing the problems with the application of the χ2 test statistics remains open. Normal
approximation of the LLR test statistics too has some problematic issues which limit its applicability. More
generally, the message of our work is that all cryptanalytic attacks should properly derive and interpret the
error bounds for any normal approximation that is made.
Keywords: block cipher, linear cryptanalysis, differential cryptanalysis, χ2 test, log-likelihood
test, order statistics, normal distribution.

1 Intoduction

Let X1, . . . , Xλ be independent and identically distributed random variables having mean µ and variance σ2 and
taking values from a finite non-empty set. Asymptotically, ((X1 + · · ·+Xλ)/λ− µ)/(σ

√
λ) follows the standard

normal distribution as λ → ∞. This is a consequence of the central limit theorem (CLT) and this asymptotic
result is commonly assumed in many papers on statistical analysis of attacks on symmetric ciphers.

For example, if the Xi’s follow Bernoulli(p) distribution, then it is well known that the normal approximation
is “good” if p is close to 1/2 and that it is “bad” if p is away from 1/2. For the typical situation of (single) linear
cryptanalysis, p is close to 1/2 and so the normal approximation is “good”; while for the typical situation of
(single) differential cryptanalysis, p is away from 1/2 and so the normal approximation is “bad”. These observa-
tions are mentioned in several papers in the literature which usually do not consider the error in approximation.
This basic scenario itself points to a somewhat counter-intuitive aspect even for linear cryptanalysis. For a weak
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cipher the value of p will be further away from 1/2 than for a strong cipher, but, the statistical analysis will be
able to say less about the weak cipher than about the strong cipher.

While the CLT is a basic result, there are other more complex situations in statistical cryptanalysis where
normal approximations are assumed. Almost invariably, such assumptions are justified by references to a book
or a paper in the area of mathematical statistics. On checking such references, one finds proofs which show the
statements to hold asymptotically. The error in approximation is mostly not discussed in details or, even if it is
mentioned, it is only considered in an asymptotic sense.

In cryptographic contexts, it is important to assess the error in the normal approximation for finite λ. It
should be possible to bound the error and analyse conditions on λ for which the approximation is meaningful.
The Berry-Esséen theorem is the right tool for doing this. Such an approach can be called a concrete analysis as
opposed to an asymptotic analysis. We note that in another branch of cryptography, namely provable security,
the distinction between asymptotic security and concrete security is considered to be important.

Our contributions

The goal of this work is to take a deep look at some of the normality assumptions that have been made in the
literature on block cipher cryptanalysis. Needless to say, considering all such works is beyond the scope of a single
paper. Nonetheless, we do consider some of the key techniques. These include results on order statistics and
the χ2 and the log-likelihood ratio (LLR) based test statistics. Our findings throw up some very surprising and
counter-intuitive facts which invalidates several previous works. In some cases, we are able to recover the results
following a different technique while in other cases, providing satisfactory replacements seem to be difficult.

For the convenience of describing our results, we set down some notation for the central quantities in crypt-
analytic attacks on block ciphers that will be required in our work. For linear cryptanalysis, prior analysis of the
block cipher will provide ` ≥ 1 linear approximations. If ` = 1, the attack will be called single linear cryptanalysis
or simply linear cryptanalysis, while if ` > 1, the attack will be called multiple linear cryptanalysis. Similarly,
for (multiple) differential cryptanalysis, the number of differentials will be denoted by ν ≥ 1 where the case of
ν = 1 denotes single differential cryptanalysis and the case of ν > 1 denotes multiple differential cryptanalysis.

The goal of a cryptanalytic attack is to recover the correct value of a target sub-key consisting of m bits.
Typically, an attack will provide a list of candidate values of the target sub-key. The attack is said to have
advantage a (1 ≤ a ≤ m) if the (expected) number of candidate values is 2m−a. The success probability of an
attack will be denoted by PS and is the probability that the correct value of the target sub-key is in the list of
candidate values produced by the attack. To mount an attack, a set of plaintext-ciphertext pairs are required.
The number of such pairs will be denoted by N and this number is called the data complexity of the attack. The
main goal of a statistical analysis of cryptanalytic attack is to be able to express N in terms of a, PS , m and
possibly ` or ν. This gives an idea of the number of plaintext-ciphertext pairs required to successfully mount an
attack.

Below, we present a summary of our results.

Critique of the order statistics based approach to key recovery attacks: Selçuk [33] had proposed an
approach to analyse key recovery attacks based on asymptotic normal behaviour of order statistics of a sequence
of random variables. We derive the concrete version of the normal approximation of the order statistics result.
Using this, we are able to essentially invalidate the order statistics based approach for analysing key recovery
attacks. In particular, if issues of convergence are taken seriously, then the order statistics based approach cannot
be applied if either m is small or m− a is small. So, if the attack targets a byte, then it becomes hard to justify
the application of the order statistics based approach. Even more intriguing is the dependence on m − a with
m fixed. An attack becomes sharper as the value of a grows. The error analysis shows that the deviation from
normal grows as the value of a grows. So, the applicability of the order statistics based approach to attacks with
advantage close to m is not clear.
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Selçuk had utilised the order statistics based approach to obtain expressions for the data complexities of
single linear and differential attacks. This approach was later followed by Hermelin et al [20] for multiple linear
cryptanalysis and by Blondeau et al [11] for multiple differential cryptanalysis. Both these works had obtained
expressions for data complexities. The criticisms of the order statistics based approach puts into doubt the
applicability of the data complexity results from [33, 20, 11].

Hypothesis testing based framework for key recovery attacks: We show that the data complexity
results from [33, 20, 11] can be recovered by following the hypothesis testing framework for analysing key recovery
attacks. This framework appears in the literature in the context of analysing distinguishing attacks and does not
seem to have been seriously considered for analysing key recovery attacks. We find this to be surprising, since
the hypothesis testing framework is simpler and avoids the restrictions of the order statistics based approach. In
re-deriving the results of [20, 11], we make use of normal approximations of a χ2-based and an LLR-based test
statistics used in these works which did not, however, consider issues related to the error in such approximations.

On the appropriateness of using the χ2 and the LLR-based test statistics: The χ2 based test statistics
used in [20, 11] requires several approximations. Carefully analysing these show some very surprising results. We
mention these as applied to multiple linear cryptanalysis. These also hold for multiple differential cryptanalysis,
though to a lesser extent.

1. As ` grows, the value of N should also grow. Considering N to be a measure of the difficulty of launching
an attack, this result is counter-intuitive, since having more linear approximations should help the attack
rather than make it more difficult.

2. The value of ` itself has to be relatively high. If only a few linear approximations are available, then the
χ2-based test statistics is inapplicable.

3. The joint distribution of the ` linear approximations must be close to the uniform distribution at every
point. This is surprising, since if the analysis of the block cipher uncovers a large deviation from uniform
at a certain point, then the χ2-based analysis is no longer applicable.

To a certain extent, some of these issues were passingly mentioned in the literature. To the best of our knowledge,
no detailed treatment of these issues and their implications appear earlier. On the other hand, even though we
are able to uncover these issues, the problem of satisfactorily addressing these issues remain open.

The LLR based test statistics used in [20, 11] also requires normal approximation. Analysis of this ap-
proximation provides a bound on the error in approximation. It is, however, difficult to obtain a closed form
expression for this bound. This makes it difficult to assess the quality of the normal approximation of the LLR
test statistics. Further, the mean and variance of the normal distribution are approximated in terms of the ca-
pacity of the probability distribution under the correct key hypothesis. This approximation requires the Taylor
series expansion. Analysing the condition for the Taylor series approximation to hold shows that the LLR based
approach may not be applicable in certain practical scenarios.

In view of the above, our work possibly raises more questions than it settles. Nevertheless, we believe that
these questions are important to the understanding of statistical cryptanalysis and hope that these will be
addressed in the future.

Previous works

Linear cryptanalysis for block ciphers was introduced by Matsui in [29] using a single linear approximation.
Subsequently, Matsui [30] showed how linear cryptanalysis can be improved when two linear approximations
were available. Independently, Kaliski and Robshaw [25] also showed that the availability of several linear
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approximations having the same key mask but different plaintext and ciphertext mask leads to an attack with
a lower data complexity. Both the attacks [30, 25] considered the linear approximations to be independent.
Analysis under the independence assumption of the linear approximations was later done in [8, 24]. Murphy [31]
pointed out that the independence assumption may not be valid.

A series of papers [2, 3, 23] carried out a systematic investigation of multiple linear cryptanalysis where the
linear approximations are not necessarily independent. The motivation of these works was to analyse and obtain
optimal distinguishers to distinguish between two distributions. This was done using the framework of hypothesis
testing. Several important techniques, including the log-likelihood ratio test, were successfully developed to build
optimal distinguishers.

Treatment of key recovery attacks using multiple linear approximation without requiring any independence
assumption on the linear approximations was carried out by Hermelin, Cho and Nyberg [20]. The work proposed
two methods, one based on the χ2 statistics and the other based on a log-likelihood ratio (LLR) test and computed
expressions for the data complexity of the corresponding methods. This work used the key ranking framework
initially proposed by Matsui [30] and employed the order statistics based approach outlined by Selçuk [33].

Differential cryptanalysis was proposed by Biham and Shamir [6] where a single differential was used. In
a later work [7], the authors improved the attack by considering together several differentials having the same
output difference. Kundsen [26] introduced the idea of truncated differential attacks using multiple differentials
with different output differences. The more general case of multiple differential attacks where both the input
and output differences can be different was considered by Blondeau and Gérard in [10]. Later Blondeau, Gérard
and Nyberg [11] considered multiple differential cryptanalysis with the same input difference but different output
differences. They used the LLR and the χ2 test statistic along with the ranking approach of Selçuk to obtain
expressions for data complexities of the attacks.

A general study of data complexity and success probability of statistical attacks was carried out in [12]. The
paper clearly identified the two approaches of hypothesis testing and key ranking.

Many works in the literature are concerned with obtaining linear approximations and differential characteris-
tics of practical block ciphers. These works do not affect the statistical theory behind the analysis and so are not
relevant in the current context. There have been several works which analyse the key dependent behaviour of
linear and differential characteristics [1, 9, 13, 15, 27]. These works also require approximations and the message
of the present work should also be applicable to these works.

Summary of the paper

In Section 2, we state the Berry-Esséen theorem in the form that is useful for our purposes. Using the Berry-
Esséen theorem, we derive an upper bound on the the normal approximation of order statistics. Section 3
provides a sketch of the background on block cipher cryptanalysis with emphasis on linear cryptanalysis. The
critique of the key recovery attacks using the order statistics based approach is given in Section 4. As mentioned
earlier, this puts the approach into doubt. The alternative hypothesis testing based framework for key recovery
attacks is outlined in Section 5. In Section 6 we re-derive the results on single and multiple linear cryptanalysis
appearing in [33] and [20] using the hypothesis testing based framework. Section 7 does the same for the results
on single and multiple differential cryptanalysis appearing in [33] and [11]. In re-deriving these results, we make
use of the χ2 and the LLR test statistics and associated approximations. In Section 8 we analyse in depth the
manner in which the χ2 test statistics is used and in Section 9 we consider the error in approximation of the
distribution of the LLR test statistics by the normal distribution. Finally, Section 10 concludes the paper.

2 Some Results on Statistics

In many situations it is required to approximate a scaled sum of random variables by the standard normal distri-
bution. Typically, the central limit theorem is used to justify such approximation. The quality of approximation
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is explicitly given by the Berry-Esséen theorem which is a standard result in probability theory [5, 17, 18]. The
form of this theorem that is required for our purpose is stated as follows [19].

Theorem 1. Suppose V1, . . . , Vλ are independent and identically distribution random variables with E[Vi] = 0,
E[V 2

i ] = σ2 and E[|Vi|3] = ρ < ∞. Let Dλ = (V1 + · · ·+ Vλ)/(
√
λσ) and Φ() be the distribution function of the

standard normal distribution. Then there is a positive constant C such that for all real x and positive integer λ

|Pr [Dλ ≤ x]− Φ(x)| ≤ Cρ

σ3
√
λ
. (1)

The best known upper and lower bounds on C are C < 0.4748 [34] and C ≥ 0.40973 [18] respectively. This
result can be used to obtain a concrete estimate of the goodness of approximation of the distribution of the
scaled sum of a sequence of Bernoulli distributed random variables by the standard normal distribution.

Corollary 1. Let Y1, . . . , Yλ be a sequence of independent Bernoulli(p) random variables, with p ∈ (0, 1) and let
c = 2(p− 1/2). Then for every real x and positive integer λ,∣∣∣∣Pr

[
(Y1 + · · ·+ Yλ)/λ− p

σ/
√
λ

< x

]
− Φ(x)

∣∣∣∣ ≤ Λp

λ1/2
(2)

where

Λp =
C × (p2 + (1− p)2)

(p(1− p))1/2
=
C × (1 + c2)

((1− c2))1/2
. (3)

Consequently, if the bound on the right hand side of (2) is at most 2−ε, then

λ ≥ 22εΛ2
p = 22εC2 × (p2 + (1− p)2)2

p(1− p)
= 22εC2 × (1 + c2)2

1− c2
. (4)

Note: In (1) and (2) the difference between the two probabilities is given by a upper bound. Our arguments
regarding tightness will be based on considering the upper bound to be less than some pre-specified quantity
2−ε. While this is a sufficient condition for the actual difference of probabilities to be less than 2−ε, it need
not be necessary. Obtaining tighter bounds may change some of the analysis and observations that we make.
We make two remarks regarding this aspect. First, one has to proceed with the currently best known bounds.
A similar approach is taken in provable security where one analyses the security of a scheme with respect to
the best known bounds. The second issue is that the Berry-Essén theorem has a long history and it is perhaps
unlikely that tighter bounds can be (easily) obtained.

Type of approximations: Suppose it is desired that the difference of the two probabilities in (2) is at most
2−ε. This is ensured by requiring the upper bound in (2) to be at most 2−ε. Depending on the value of p, this
gives rise to two types of conditions.

1. Condition-1: Suppose p ≈ 1/2. Then c ≈ 0 and Λp ≈ C which is independent of p. For λ ≈ C222ε, the
bound on the right side of (2) is ≈ 2−ε. In this case, the value of λ for which the approximation is good is
independent of c.

2. Condition-2: Suppose p is close to 0. Then 1− p ≈ 1 and p2 + (1− p)2 ≈ 1 and so Λp ≈ C/
√
p. So, for

λ ≈ C222ε/p, the bound on the right side of (2) is ≈ 2−ε. Similarly, if p is close to 1, for λ ≈ C222ε/(1− p),
the bound on the right side of (2) is ≈ 2−ε. In both cases, the value of λ for which the approximation is
good depends on p.

Approximations under the first condition are easier to ensure while approximations under the second condition
usually entail some (usually unstated) assumptions. Later we will see examples of approximations under both
types of conditions.
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2.1 Order Statistics

Definition 1. Let X1, X2, . . . , Xλ be independent and identically distributed random variables. Arrange the
values of X1, X2, . . . , Xλ in increasing order, resulting in X(1), X(2), . . . , X(λ). The statistic X(i) is called the i-th
order statistic of the sample X1, X2, . . . , Xλ.

The following is a well known result in the area of order statistics. We have reformulated the statement to
provide an explicit upper bound. The proof that we provide is based on ideas from Walker [35] in combination
with an application of the Berry-Esséen theorem. In the literature that we searched, we did not find the concrete
version of the result and the proof that we provide below.

Theorem 2. Let T1, . . . , Tλ be independent and identically distributed random variables following a distribution
function F (x) which is continuous and strictly increasing for 0 < F (x) < 1. Let T(1) ≤ T(2) ≤ . . . ≤ T(λ) be the
order statistics of T1, . . . , Tλ. Let q ∈ (0, 1) be a real number and ξq = F−1(q) and suppose that F ′ (ξq) = f (ξq)
exists and is positive. Let {r (λ)} be a sequence of integers such that

lim
λ→∞

λ−
1
2 (r (λ)− λq) = 0.

Let Wλ = λ
1
2 (T(r(λ)) − ξq). Then for each real number z,∣∣∣∣∣Pr[Wλ ≤ z]− Φ

(
zf(ξq)

σλ
+

(ζλ − λ−1/2(r(λ)− λq))
σλ

)∣∣∣∣∣ ≤ Λqλ
λ1/2

. (5)

Here qλ = F
(
ξq + z√

λf(ξq)

)
, ζλ = −z +

√
λ(qλ − q),

Λqλ = C ×
(1− qλ)2 + q2

λ

(qλ(1− qλ))1/2
(6)

and Φ() is the standard normal distribution function.
Consequently, as λ→∞ the sequence {Wλ} converges in distribution to N (0, q(1− q)/f2(ξq)).

Proof. Define Zλ = f(ξq)Wλ = λ1/2f(ξq)(T(r(λ)) − ξq) and note

Pr [Zλ ≤ z] = Pr

[
T(r(λ)) ≤ ξq +

z

λ
1
2 f (ξq)

]
. (7)

Define Ui = F (Ti) for i = 1, . . . , λ. Since T1, . . . , Tλ are independent and identically distributed, the random
variables U1, . . . , Uλ are also independent and identically distributed. Since F () is a distribution function, the
Ui’s take values in (0, 1). Also, since F (x) is strictly increasing, it is invertible. For any a ∈ (0, 1)

Pr [Ui ≤ a] = Pr [F (Ti) ≤ a] = Pr
[
Ti ≤ F−1 (a)

]
=

∫ F−1(a)

−∞
f (x) dx = F

(
F−1 (a)

)
= a.

This shows that the Ui’s are uniformly distributed in (0, 1). Further, since F (x) is strictly increasing, Ti < Tj
implies Ui = F (Ti) < F (Tj) = Uj . So, if π is a permutation of {1, . . . , n} such that T(i) = Tπ(i) then U(i) = Uπ(i),
i.e., the Ui’s preserve the order of the Ti’s and so, U(i) = F (T(i)). Applying F to both sides of the inequality
within the expression for probability on the right hand side of (7) we obtain:

Pr[Zλ ≤ z] = Pr[U(r(λ)) ≤ qλ]. (8)
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Define binary valued random variables Y1, . . . , Yλ such that Yi = 1 if Ui ≤ qλ and is 0 otherwise; further define
Aλ = Y1 + · · · + Yλ = #{i : Ui ≤ qλ}. The variables Yi’s are independent Bernoulli(qλ) distributed. Let
σ2
λ = E[(Yi − qλ)2] and ρλ = E[|Yi − qλ|3].

The event U(r(λ)) ≤ qλ represents the fact that there are at least r(λ) of the Ui’s which are less than qλ. This
is equivalent to the event Aλ ≥ r(λ). So,

Pr[Zλ ≤ z] = Pr[U(r(λ)) ≤ qλ] = Pr[Aλ ≥ r(λ)]. (9)

We now propose to use the Berry-Esséen theorem as given in Corollary 1. Define

Dλ =
(Y1 + · · ·+ Yλ)/λ− qλ

σ/
√
λ

.

From Corollary 1, for every real x and positive integer λ,

C × ρλ
σ3
λλ

1/2
≥ |Pr[Dλ < x]− Φ(x)| = |Pr[Dλ ≥ x]− Φ(−x)| . (10)

We connect the bound to Pr[Zλ ≤ z]. From the definition of Dλ it follows that Dλ = λ−1/2(Aλ−λqλ)/σλ and so

Pr[Zλ ≤ z] = Pr[Aλ ≥ r(λ)] = Pr

[
Dλ ≥ λ−1/2 r(λ)− λqλ

σλ

]
. (11)

We now take a more careful look at qλ. Define

ζλ =
z

f (ξq)

F
(
ξq + z

λ
1
2 f(ξq)

)
− q

z

λ
1
2 f(ξq)

− f (ξq)

 . (12)

Set ∆x = z/(λ1/2f(ξq)) and note that ∆x tends to 0 as λ tends to infinity. We have

lim
λ→∞

ζλ = lim
λ→∞

z

f(ξq)

(
F (ξq + ∆x)− q

∆x
− f(ξq)

)
=

z

f(ξq)

(
lim

∆x→0

F (ξq + ∆x)− q
∆x

− f(ξq)

)
= 0. (13)

The last equality follows from the fact that the derivative of F (x) at ξq exists and is equal to f(ξq). From (12)
we can write

qλ = F
(
ξq + z/(λ1/2f(ξq))

)
= q +

1√
λ

(z + ζλ). (14)

So, we have qλ tends to q as λ tends to infinity. Using the expression for qλ given by (14) in (11) we obtain

Pr[Zλ ≤ z] = Pr[Dλ ≥ (λ−1/2(r(λ)− λq)− ζλ)/σλ − z/σλ]. (15)

Setting x = λ−1/2(r(λ)− λq)/σλ − ζλ/σλ − z/σλ and substituting in (10) we obtain∣∣∣Pr[Zλ ≤ z]− Φ
(
z/σλ + (ζλ − λ−1/2(r(λ)− λq))/σλ

)∣∣∣ ≤ C × ρλ
σ3
λλ

1/2
. (16)

Note that Wλ = Zλ/f(ξq). Then from (16) we obtain∣∣∣Pr[Wλ ≤ z]− Φ
(
zf(ξq)/σλ + (ζλ − λ−1/2(r(λ)− λq))/σλ

)∣∣∣ ≤ C × ρλ
σ3
λλ

1/2
. (17)

This shows the desired bound.
For the last statement, it is sufficient to note that as λ → ∞ the following hold: σ2

λ → q(1 − q); ζλ → 0;
λ−1/2(r(λ)− λq)→ 0 (from the given condition).
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3 Background for Cryptanalysis

We provide a brief description of the relevant details of a block cipher. Based on this, we discuss the background
for linear cryptanalysis. The case of differential cryptanalysis is described later.

Iterated Block Cipher: A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n such that for each

K ∈ {0, 1}k, the function EK(·) ∆
= E(K, ·) is a permutation of {0, 1}n. The k-bit quantity K is called the secret

key; the n-bit input to the block cipher is called the plaintext; and the n-bit output of the block cipher is called
the ciphertext.

Most practical constructions of block ciphers are obtained by iterating one (or several) functions over several
rounds. The secret key is expanded using a function to obtain round keys. The input to and the output of each
round are n-bit strings and the round keys are also n-bit strings. Denote the round keys as k(0), k(1), . . ., and the

round functions as R
(0)

k(0)
, R

(1)

k(1)
, . . .. The round functions are bijections of {0, 1}n. Further, denote by K(i) the

concatenation of the first i round keys and E
(i)

K(i) the composition of the first i round functions, i.e.,

E
(i)

K(i) = R
(i)

k(i)
◦ · · · ◦R(0)

k(0)
= R

(i)

k(i)
◦ E(i−1)

K(i−1) .

A block cipher may have many rounds and a cryptanalytic effort may target only a few of these rounds.
Suppose that an attack targets r + 1 rounds. For a plaintext P , let C be the output after r + 1 rounds and B

be the output after r rounds. So, B = E
(r)

K(r)(P ) and C = R
(r)

k(r)
(B).

Relations between plaintext and the input to the last round: Detailed analysis of the structure of a
block cipher reveals one or more possible relations between a plaintext P ; the input to the last round B; and
possibly K(r), the concatenation of the first r round keys. Such relations can be in the form of a linear function
or in the form of a differential as we explain later. In most cases, the relations hold with some probabilities.
The probability is taken over uniform random choice of P . If there are more than one relations, then one may
have to consider the joint distribution of the probabilities that these relations hold. Obtaining relations and
their (possibly joint) distribution is a non-trivial task and often requires a great deal of experience and ingenuity.
These relations form the basic platform on which a statistical analysis of an attack can be carried out.

Target sub-key: A single relation between P and B will involve only a subset of the bits of B. If several
(or multiple) relations between P and B are known, it is required to consider the subset of the bits of B which
cover all the relations. Obtaining these bits from C will require a partial decryption of the last round. Such a
partial decryption will involve a subset of the bits of secret key (or of the last round key). Obtaining the correct
values of these key bits is the goal of the attack and these bits will be called the target sub-key and sometimes
to be the last round key bits. The number of such bits will be denoted by m. So, m key bits are sufficient to
partially decrypt C to obtain the bits of B which are involved in any of the relation between P and B. There
are 2m possible choices of the target sub-key bits out of which one is correct and all others are incorrect. The
requirement is to pick out the correct key. Let

M = 2m − 1 (18)

be the number of incorrect choices of the target sub-key.

Setting of an attack: Suppose there are N plaintext-ciphertext pairs (Pi, Ci), i = 1, . . . , N which have been
generated using the correct key and are available. The plaintexts P1, . . . , PN are supposed to be independent
and uniformly distributed over the plaintext space. For each choice κ of the last round key bits, it is possible
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to invert Cj to obtain the relevant bits of Bκ,j . The relevant bits are those which are required to evaluate the
relations discovered in the prior analysis of the block cipher. Note that Bκ,j depends on κ even though Cj may
not. If κ is the correct choice for the target sub-key, then Cj indeed depends on κ, otherwise Cj has no relation
to κ.

Given Pj and the relevant bits of Bκ,j it is possible to evaluate all the known relations. From the result of
these evaluations, one defines a test statistic Tκ. Since there are a total of 2m possible values of κ, there are also
2m random variables Tκ. These random variables are assumed to be independent and the distribution of these
random variables depend on whether κ is correct or incorrect. It is also assumed that the distributions of Tκ for
incorrect κ are identical. For an attack to be possible, it is required to obtain the two possible distributions of
Tκ – one when κ is the correct choice and the other when κ is an incorrect choice.

3.1 Linear Cryptanalysis

Assume that the analysis of the structure of the block cipher provides ` ≥ 1 linear approximations. These are

given by masks Γ
(i)
P ,Γ

(i)
B and Γ

(i)
K , for i = 1, . . . , `. The subscript P denotes plaintext mask; the subscript B

denotes mask after r rounds; and the subscript K denotes the mask for K(r). So, Γ
(i)
P and Γ

(i)
B are in {0, 1}n and

Γ
(i)
K is in {0, 1}nr. If ` > 1, then the attack is called multiple linear cryptanalysis and if ` = 1, we will call the

attack single linear cryptanalysis, or simply, linear cryptanalysis. Define

Li = 〈Γ(i)
P , P 〉 ⊕ 〈Γ

(i)
B , B〉; for i = 1, . . . , `. (19)

Inner key bits: For a fixed but, unknown key K(r), the quantity zi = 〈Γ(i)
K ,K

(r)〉 is a single unknown bit.

Denote by z = (z1, . . . , z`) the collection of the ` bits arising in this manner. The key masks Γ
(1)
K , . . . ,Γ

(`)
K are

known. So, z is determined only by the unknown key K(r). The bits represented by z are called the inner key
bits. The key K(r) is unknown but, fixed and so there is no randomness in K(r). Correspondingly, z is also
unknown but fixed and there is no randomness in z.

Consider a uniform random choice of P . The round functions are deterministic bijections and so the uniform
distribution on P induces a uniform distribution on B. Each Li is a random variable which can take the values
0 or 1. The randomness of Li arises solely from the randomness of P . Define the random variable X to be the
following:

X = (L1, . . . , L`). (20)

So, X is distributed over {0, 1}` and its distribution is determined by the distribution of the Li’s which in turn
is determined by the distribution of P .

A single linear approximation is of the form

Li = 〈Γ(i)
K ,K

(r)〉 = zi. (21)

Note that we are not assuming any randomness over the key K(r) and so the bits zi’s have no randomness even
though they are unknown. So, the distribution of Li ⊕ zi is determined completely by the distribution of Li.

Joint distribution parameterised by inner key bits: A linear approximation of the type given by (21)
holds with some probability over the uniform random choice of P . The random variables L1, . . . , L` are not
necessarily independent. The joint distribution of these variables is given as follows: For z = (z1, . . . , z`), and
η = (η1, . . . , η`) ∈ {0, 1}`, define

pz(η) = Pr[L1 = η1 ⊕ z1, . . . , L` = η` ⊕ z`] =
1

2`
+ εη(z) (22)
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where −1/2` ≤ εη(z) ≤ 1− 1/2`.

For each choice of z, we obtain the distribution p̃z
∆
= (pz(0), . . . , pz(2

`−1)), where the integers {0, . . . , 2`−1}
are identified with the set {0, 1}`. Let p̃ be the probability distribution p̃

∆
= p̃0` so that

p̃(η) = 1/2` + εη for η ∈ {0, 1}`. (23)

For the probability distribution p̃, define capacity C(p̃) as follows:

C(p̃) = 2` ×
∑

η∈{0,1}`
ε2η. (24)

A potential conflict of notation: It is customary in the cryptanalysis literature to denote capacity by C(p̃).
Similarly, it is customary in the literature on mathematical statistics to denote the constant in the Berry-Esséen
theorem by C. This creates a potential conflict of notation. Denoting either of these quantities by a different
symbol will be inconsistent with the respective literature. So, we decided to not change the conventions. Since
capacity C(p̃) will always be written as a function applied to a probability distribution p̃, hopefully, it will be
possible to differentiate it from just the symbol C used to denote the constant in the Berry-Esséen theorem.

Some notation: There are N plaintext-ciphertext pairs (Pj , Cj) for j = 1, . . . , N . For a choice κ of the target
sub-key, the Cj ’s are partially decrypted to obtain the relevant bits of Bκ,j . For κ ∈ {0, . . . , 2m−1}, j = 1, . . . , N
and i = 1, . . . , `, define

Lκ,j,i = 〈Γ(i)
P , Pj〉 ⊕ 〈Γ

(i)
B , Bκ,j〉; (25)

Xκ,j = (Lκ,j,1, . . . , Lκ,j,`). (26)

Consider the values of Xκ,j to be given by integers in the range 0 to 2` − 1. Define

Qκ,η = #{j : Xκ,j = η}, for η = 0, . . . , 2` − 1. (27)

So, for a fixed κ, the random variable Qκ,η is the number of occurrences of η in Xκ,1, . . . , Xκ,N .

4 Key Recovery Attack via Order Statistics: A Critique

It is desirable to obtain an estimate of N , the number of plaintext-ciphertext pairs, that will be required for the
attack to be successful. Selçuk [33] proposed a technique for doing this. The technique is generic and simple.
The top level idea is the following.

Note that the test statistic Tκ is indexed by the m-bit string κ. For simplicity of notation, Selçuk considers
these test statistics to be T0, . . . , T2m−1 and assumes T0 to be the test statistics corresponding to the correct
choice of κ. Let T(1), . . . , T(M) be the order statistics of T1, . . . , TM . Recall M = 2m − 1.

Advantage of an attack: Selçuk defines an attack to have an a-bit advantage if T0 > T(2m(1−2−a)), i.e., T0

is ranked within the top 2m−a values. In other words, an attack with a-bit advantage is said to be successful if
T0 > T(2mq) where q = 1− 2−a.

Selçuk’s key idea was to use Theorem 2 to approximate the distribution of T(2mq). For this, the value of λ in
Theorem 2 is set to M and the sequence r(λ) is defined to be r(λ) = bqλc+ 1 and so the convergence condition
on r(λ) holds. Also, r(λ) = r(M) = bq(M)c+ 1 = bq2m − qc+ 1 = q2m − 1 + 1 = q2m and so T(r(λ)) = T(q2m).

For “sufficiently large” M , the upper bound given by Theorem 2 is assumed to be negligible and also
the expression for Φ is approximated by Φ(zf(ξq)/(q(1 − q))1/2). This shows that the random variable Tλ =
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√
λ(T(q2m) − ξq) approximately follows N (0, q(1− q)/f2(ξq)). From this, it is argued that T(2mq) approximately

follows N (ξq, q(1− q)/(λf2(ξq))). Using λ = M − 1 = 2m − 1, the random variable T(2mq) approximately follows
N (ξq, q(1− q)/((2m − 1)f2(ξq))).

We now consider several criticisms of this approach.

4.1 Normality Requirement

In the order statistics based approach, the event success is defined to be T0 > T(2mq). So, the probability of success
is the probability that T0 − T(2mq) > 0. To compute this probability, the distribution of T0 − T(2mq) is required.
The result on order statistics shows that T(2mq) approximately follows a normal distribution. If it also turns out
that T0 follows a normal distribution, then T0 − T(2mq) follows a normal distribution and it becomes possible to
get an expression for the success probability. On the other hand, if T0 does not follow normal, then in general it
is not clear how to obtain the distribution for T0 − T(2mq). To tackle this situation, a normal approximation of
the distribution of T0 is assumed and then the methodology is applied. Requiring both the distributions of the
test statistics for correct and incorrect choices of the target sub-key to be normal is a restriction.

4.2 Convergence and Tightness Issues

Consideration of convergence and tightness issues give rise to two constraints.

Constraint 1. m must be large: In the proof of Theorem 2, for the convergence in distribution to N (0, q(1−
q)/f2(ξq)) it is required that qλ → q as λ → ∞. This raises the question of how large should λ be for the
convergence to be meaningful and further whether and what condition does this give rise to.

Note that qλ = F
(
ξq + z√

λf(ξq)

)
= q + 1√

λ
(z + ζλ) from which we get the condition that qλ → q as λ→∞.

The rate of convergence of qλ to q is determined by λ−1/2. So, for a fixed z, if we wish |qλ − q| to be less than
2−ε, then λ has to be proportional to 22ε. Recalling that λ = M = 2m − 1, this shows that m ≈ 2ε for the error
in approximation to be about 2−ε.

Suppose ε = 10 and 2−ε = 2−10 ≈ 10−3, then m should be about 20 bits. So, if the size m of the target
sub-key is small, then the approximation qλ ≈ q may not be good. This puts into doubt the quality of normal
approximation and hence of the applicability of the order statistics based method when m is small.

Constraint 2. m− a must be large: Suppose that m is large enough so that λ = M = 2m− 1 ≈ 2m is large
enough for the approximation qλ = q to be reasonable. We next consider the tightness of the upper bound given
by Theorem 2. Under the approximation qλ ≈ q, denote the quantity Λqλ given by (6) as Λq where

Λq = C × q2 + (1− q)2

(q(1− q))1/2
.

Using q = 1− 2−a, the error bound Λq/λ
1/2 of Theorem 2 becomes

Λq

λ1/2
= C × 2−2a + (1− 2−a)2

(2−a(1− 2−a)(2m − 1))1/2
≈ C × 2−2a + (1− 2−a)2

(2m−a(1− 2−a))1/2

For the last quantity to be less than 2−ε we must have

2m−a ≥ 22ε × C2 × (2−2a + (1− 2−a)2)2

1− 2−a
. (28)

The maximum value of a is m and we may take the minimum value of a to be one, since attacks with advantage
less than one are not really meaningful. For a in the range [1,m], the value of (2−2a + (1− 2a)2)2/(1− 2−a) is a
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small constant which gets close to 1 as a gets close to m. So, from (28) it follows that for the error in Theorem 2
to be less than 2−ε, it is required for m− a to be around 2ε.

The value of a determines the advantage of the attack and a ranges from 1 to m. A 1-bit attack only eliminates
half of the possible sub-key values, while an m-bit attack determines the correct key uniquely. So, the attack is
more effective if the value of a is higher. However, from the above we see that for the normal approximation of
the order statistics to be good, the value of a has to be relatively small compared to m. So, for attacks with
high advantage, the analysis performed using this method is not applicable.

4.3 Selçuk’s Method of Linear Cryptanalysis: A Critique

Let us briefly consider Selçuk’s method of linear cryptanalysis. Only one linear approximation was considered
by Selçuk, i.e., ` = 1. For simplicity, in this section, we will write L instead of L1 and Lκ,j instead of Lκ,j,1.
Since there is a single linear approximation, the joint distribution p̃ reduces to simply a probability value p =
Pr[Lκ,j = 0] 6= 1/2 when κ is the correct choice. Selçuk assumes p > 1/2, the other case being similar. For an
incorrect choice of κ, it is conventional to assume that Pr[Lκ,j = 0] = 1/2.

Let Wκ = (Lκ,1 + · · · + Lκ,N )/N − 1/2. The test statistic corresponding to the choice κ of the sub-key is
taken to be Tκ = |Wκ|. As mentioned earlier, for notational convenience, Selçuk considers T0 to be the statistic
corresponding to the correct key. So, the event corresponding to a successful attack with a-bit advantage is
T0 > T(2mq) where q = 1− 2−a. The distribution of T(2mq) is approximated to a normal distribution using order
statistics as mentioned above.

Hidden assumption: Consider the distribution of T0. The random variable L0,j follows Bernoulli(1−p). Using
Corollary 1, the distribution of W0 can be approximated by the normal distribution N (p − 1/2, p(1 − p)/N).
Since T0 = |W0|, it follows that T0 approximately follows a folded normal distribution.

This, however, causes a problem in analysing the probability of the event T0 > T(2mq). With T0 following
a folded normal distribution and T(2mq) approximately following a normal distribution, it becomes difficult to
obtain the distribution of T0 − T(2mq).

Selçuk instead considers the event success to be W0 > T(2mq). No justification for this is provided. A careful
consideration of this change of the success condition shows that there is a hidden assumption that the probability
of W0 < 0 is negligible. Indeed, if we do assume that Pr[W0 < 0] ≈ 0, then we can compute as follows.

Pr[T0 > T(2mq)] = Pr[|W0| > T(2mq)]

= Pr[W0 > T(2mq)|W0 > 0]× Pr[W0 ≥ 0] + Pr[−W0 > T(2mq)|W0 < 0]× Pr[W0 < 0]

≈ Pr[W0 > T(2mq)|W0 > 0]× Pr[W0 ≥ 0]

= Pr[W0 > T(2mq)]. (29)

Without the assumption Pr[W0 < 0] ≈ 0, we see no justification for considering success to be the event W0 >
T(2mq). Having established that the condition Pr[W0 < 0] ≈ 0 is required, we investigate the condition under
which this approximation holds. Consider the event W0 < 0. Recall that c = 2(p − 1/2) and since we are
assuming p > 1/2, it follows that c > 0. Then,

Pr[W0 < 0] = Φ(−(p− 1/2)/(p(1− p)/N)1/2) = Φ(−c
√
N/
√

1− c2).

So, N has to be sufficiently large to ensure that the probability of W0 < 0 is negligible. For example, Φ (−5) ≈
2.86651571879 × 10−7. Considering the last value to be small enough it is required to choose N such that
c
√
N/
√

1− c2 > 5 which translates to the condition N > 25(1− c2)/c2.
Note that in the context of linear cryptanalysis, c is likely to be a small value. So, the requirement that

N > 25(1− c2)/c2 puts a non-trivial requirement on the data complexity N . In other words, the condition that
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T0 is almost surely non-negative puts a lower bound on the required number of plaintext-ciphertext pairs. It may
turn out that this lower bound on N is higher than the lower bound on N obtained from analysing the condition
for success.

Implicit reference to the goodness of approximation: Selçuk mentions an assumption. The random
variable T(2mq) is non-negative by definition. Using the order statistics result, its distribution is approximated
by a normal N (µq, σ

2
q ) distribution, where the mean µq and variance σ2

q depend on q. The normal distribution,
however, can take negative values. Selçuk puts the condition that Pr[T(2mq) < 0] = Φ(−µq/σq) ≈ 0. The value
Φ(−5) is considered to be negligible giving rise to the condition µq/σq > 5. It is mentioned in [33], that this
holds if a and m are both greater than 8. This puts a lower bound on the size of the key that can be attacked.

The above condition of requiring Pr[T(2mq) < 0] ≈ 0 is somewhat artificial. It is certainly not required for
analysing the success probability of the attack. The appropriate issue is that the approximation of the distribution
of T(2mq) by a normal distribution should be a good one. By definition, T(2mq) is non-negative and so if the
approximation is good, then Pr[T(2mq) < 0] will be negligible. On the other hand, it is possible for Pr[T(2mq) < 0]
to be negligible and yet the approximation of the distribution of T(2mq) by the normal approximation may not
be good. This point is missed in [33].

5 Key Recovery Attack via Hypothesis Testing

For each choice κ of the target sub-key the test statistic Tκ is defined. The distribution of Tκ depends on
whether κ is the correct key choice or whether it is an incorrect key choice. This leads to two distributions: D0

corresponding to the correct key choice and D1 corresponding to an incorrect key choice.
The attack can be formulated as a hypothesis testing framework. Given a choice of κ, the statistic Tκ is used

to determine whether κ is a possible candidate key or not. The null hypothesis H0 is tested against the alternate
hypothesis H1. The structure of the test and the decision rule are as follows:

H0 : κ is correct; versus H1 : κ is incorrect.
Decision rule: Reject H0 if Tκ ≤ t.

}
(30)

Here t is a threshold parameter to be determined later. The hypothesis testing examples that we consider later
will primarily be of the above form. (In some cases, the test can also take the form Tκ ≥ t and the analysis in
this case is similar.)

As usual, a successful attack corresponds to the event that κ is accepted when H0 holds. We denote this
event by succ. We define three quantities α, β and PS based on Type-I and Type-II errors as follows.

Pr[Type-I error] = Pr[κ is rejected |H0 holds ] = Pr[T ≤ t|H0 holds ] ≤ α;
Pr[Type-II error] = Pr[κ is accepted |H1 holds ] = Pr[T > t|H1 holds ] ≤ β;

Pr[succ] = 1− Pr[Type-I error] ≥ 1− α = PS .

 (31)

In some cases, we will have α and β to be respectively equal to the probabilities of Type-I and Type-II errors.
In certain other cases, though, it is more convenient to have α and β to be appropriate upper bounds on the
probabilities of Type-I and Type-II errors. If α is a upper bound on the probability of Type-I error, then PS is
a lower bound on the actual probability of success.

The analysis then proceeds in the following manner. From the distributions D0 and D1 it is required to
compute expressions for α (and hence of PS = 1− α) and β. These expressions involve the threshold parameter
t and N . Eliminating N between these two expressions provide the expression for the threshold parameter t in
terms of PS and β. On the other hand, eliminating t between these two expressions provide an expression for
the data complexity N in terms of PS and β.
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Relating Type-II error probability to advantage: It is possible to relate the data complexity N to the
expected advantage of the attack. Whenever a Type-II error occurs, an incorrect key gets listed as a possible
candidate key. This event occurs with probability β. The total number of choices for κ is 2m out of which one is
correct and the others are incorrect. So, the expected number of incorrect keys which gets listed as candidate keys
is β(2m − 1) ≈ β2m. For an a-bit advantage attack, the size of the false alarm set is 2m−a. Setting β2m = 2m−a

we obtain

β = 2−a. (32)

Substituting β = 2−a in the expression for N provides the data complexity in terms of the success probability
PS and the (expected) advantage a.

In the following sections we illustrate this methodology by applying it on a number of cases of known linear
and differential attacks.

6 Linear Cryptanalysis

As mentioned earlier, the order statistics based approach has been used to analyse data complexity of key recovery
attacks. The case of single linear cryptanalysis was considered in [33] and that of multiple linear cryptanalysis
was considered in [20]. The analysis of Section 4 puts a question mark on the framework of order statistics based
approach. In this section, we show that the data complexity results can be derived using the hypothesis testing
framework and thus avoid the several difficulties with the order statistics based framework.

6.1 Single Linear Cryptanalysis

In this section, we consider the case where a single linear approximation is available. The data complexity of a key
recovery attack using such an approximation was derived in [33] using the order statistics based approach. Here,
we derive the same data complexity using the hypothesis testing framework and so avoid the various pitfalls that
are inherent in the approximations required for the order statistics based approach. The setting and notation
for this section are as described in Section 4.3.

For each j ∈ {1, . . . , N}, under the null hypothesis H0 (i.e., for the correct choice of κ), Lκ,j follows
Bernoulli(1− p) for each j and under the alternate hypothesis H1 (i.e., for an incorrect choice of κ), Lκ,j follows
Bernoulli(1/2).

Let µ0 = p, σ2
0 = p(1− p) and µ1 = 1/2, σ2

1 = 1/4 denote the means and the variances of Lκ,j under H0 and
H1 respectively. Let c = 2(p− 1/2) so that |µ0 − µ1| = c and σ2

0 = 1− c2.
Define the test statistic Tκ in the following manner:

Tκ = |Zκ| where Zκ =
(Lκ,1 + · · ·+ Lκ,N )/N − µ1

σ1/
√
N

. (33)

The hypothesis testing framework and the decision rule mentioned in (30) is applied to Tκ.
From Corollary 1, under H1, the distribution for Zκ is approximated by the standard normal distribution.

Since µ1 = 1/2, the error bound is C/N1/2. If we require the error in approximation to be at most 2−ε, then it
is sufficient to have N > 22εC2.

We write

Zκ =
σ0

σ1
Wκ +

√
N

(
µ0 − µ1

σ1

)
where Wκ =

(Lκ,1 + · · ·+ Lκ,N )/N − µ0

σ0/
√
N

.

Again from Corollary 1, under H0, the distribution of Wκ is approximated by the standard normal distribution.
In this case, since µ0 = p 6= 1/2, the error bound is C(1 + c2)/((1− c2)N)1/2. For

N ≥ 22εC2(1 + c2)2/(1− c2) (34)
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the error in approximation will be at most 2−ε. If p is close to 1/2 (which is often the case) and so c is close
to 0, then N ≈ 22ε ensures that the approximation error is around 2−ε. More generally, one has to consider the
bound given by (34).

The Type-I and Type-II error probabilities can be computed as follows.

Type-I error = Pr [Tκ ≤ t |H0 holds ]

= Pr

[
−
(
σ1t

σ0
+
√
N

(
µ0 − µ1

σ0

))
≤ Zκ ≤

σ1t

σ0
−
√
N

(
µ0 − µ1

σ0

)
|H0 holds

]
.

Suppose that µ0 > µ1. In this case

Pr[Type-I error] = Pr

[
−

(
σ1t

σ0
+
|µ0 − µ1|

√
N

σ0

)
≤ Zκ ≤

σ1t

σ0
− |µ0 − µ1|

√
N

σ0
|H0 holds

]

≤ Pr

[
−∞ ≤ Zκ ≤

σ1t

σ0
− |µ0 − µ1|

√
N

σ0
|H0 holds

]
= Φ−1

(
σ1t

σ0
− |µ0 − µ1|

√
N

σ0

)
.

On the other hand, if µ0 < µ1, then

Pr[Type-I error] = Pr

[
−

(
σ1t

σ0
− |µ0 − µ1|

√
N

σ0

)
≤ Zκ ≤

σ1t

σ0
+
|µ0 − µ1|

√
N

σ0
|H0 holds

]

≤ Pr

[
−

(
σ1t

σ0
− |µ0 − µ1|

√
N

σ0

)
≤ Zκ ≤ ∞|H0 holds

]

= 1− Φ

(
−

(
σ1t

σ0
− |µ0 − µ1|

√
N

σ0

))
= Φ

(
σ1t

σ0
− |µ0 − µ1|

√
N

σ0

)
.

We set

α = Φ

(
σ1t

σ0
− |µ0 − µ1|

√
N

σ0

)
and PS = 1− α. (35)

So, for any µ0 6= µ1, Pr[Type-I error] ≤ α the probability of success is at least PS . Using (35)

σ1t = σ0Φ−1 (1− PS) + |µ0 − µ1|
√
N = −σ0Φ−1(PS) + |µ0 − µ1|

√
N. (36)

This allows the threshold parameter t to be expressed in terms of PS . Further, we set

β = Pr[Type-II error] = Pr [|Tκ| > t |H1 holds ] = Pr [Tκ < −t |H1 holds ] + Pr [Tκ > t |H1 holds ]

= Φ (−t) + 1− Φ (t) = 2 (1− Φ (t)) . (37)

Eliminating t using (36) and (37); substituting the values of σ0, σ1 and (µ0 − µ1)2 in terms of c; and using (32)
we obtain

N =

{
σ1Φ−1 (1− β/2) + σ0Φ−1 (PS)

}2

(µ0 − µ1)2 =

{
Φ−1

(
1− 2−a−1

)
+
√

1− c2Φ−1 (PS)
}2

c2
. (38)

In [33], Selçuk makes the assumption 1 − c2 ≈ 1. Using this assumption, the expression for N given by (38)
becomes exactly the same as that obtained in [33].

It will usually be the case that for a reasonable value of ε, the expression for N given by (38) is larger than
the bound given by (34). This will ensure that the approximation is good enough for the analysis to go through.
For a concrete situation, one has to plug in the values of ε, p, a and PS and then compare the expressions for N
given by (38) and (34).
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6.2 Multiple Linear Cryptanalysis

In this section, ` ≥ 1 and we assume the setting and the notation explained in Section 3.1. Recall that for
a choice κ of the target sub-key and η ∈ {0, 1}`, the random variable Qκ,η has been defined in (27) to be
Qκ,η = #{j ∈ {1, . . . , N} : Xκ,j = η}, i.e., Qκ,η is the number of times η appears among the random variables
Xκ,1, . . . , Xκ,N .

6.2.1 Data Complexity for the χ2 Test Statistics

The test statistics used by Hermelin et al [20] was

Tκ = 2`N

2`−1∑
η=0

(
Qκ,η/N − 2−`

)2
. (39)

We use Tκ in the hypothesis testing framework given in (30). The distribution of Tκ is approximated in [20] as
follows. This is justified by a reference to [16]. Later we consider this issue in more details.

Tκ ∼ χ2
2`−1

(NC(p̃)) under H0;

Tκ ∼ χ2
2`−1

under H1.

}
(40)

It is difficult to work with a non-central chi-squared distribution. So, [20] approximates χ2
2`−1

(NC (p̃)) for large

values of 2` − 1 + NC (p̃) by normal N
(
2` − 1 +NC (p̃) , 2

(
2` − 1 + 2NC (p̃)

))
distribution. We will also take

a close look at this approximation later.
Let Ψ2`−1(x) be the distribution function of the central χ2

2`−1
distribution. Then

α = Pr[Type-I error] = Pr [Tκ ≤ t |H0 holds ] = Pr [Tκ ≤ t] = Φ

(
t−(2`−1+NC(p̃))√

2(2`−1+2NC(p̃))

)
= 1− PS .

β = Pr[Type-II error] = Pr [Tκ > t |H1 holds ] = 1−Ψ2`−1 (t) .

 (41)

So, t = 2` − 1 +NC (p̃) +
√

2 (2` − 1 + 2NC (p̃))Φ−1 (1− PS) = Ψ−1
2`−1

(1− β). Simplifying leads to the following
relation which is a quadratic equation in (NC(p̃)).

(NC (p̃))2 − 2(NC (p̃))
{
γ − 2` − 1 + 2δ2

}
+
{
γ − 2` − 1

}2
− 2(2` − 1)δ2 = 0, (42)

where γ = Ψ−1
2`−1

(1 − β) and δ = Φ−1(1 − PS) = −Φ−1(PS). A routine calculation shows that the discriminant
of this quadratic is positive and so there are real solutions for NC(p̃). Taking the positive square root of the
discriminant and using (32) to substitute 2−a for β we obtain:

N =
1

C(p̃)

[
2
{

Φ−1(PS)
}2

+ Ψ−1
2`−1

(
1− 2−a

)
− (2` − 1) +

∣∣Φ−1(PS)
∣∣√2Ψ−1

2`−1
(1− 2−a)− 4 {Φ−1(PS)}2

]
. (43)

Approximating χ2
2`−1

by N (2` − 1, 2(2` − 1))): The expression for N given by (43) involves both Φ and
Ψ. This is not a problem, since both these distribution functions can be simulated. On the other hand, let us
consider the effect of approximating χ2

2`−1
by N (2` − 1, 2(2` − 1))) as has been done in [20]. The expression for

β now becomes β = Pr[Type-II error] = 1− Φ
(

(t− (2` − 1))/
√

2(2` − 1)
)

. Combining this with the expression

for PS given by (41) we obtain the following quadratic in (NC(p̃)).

(NC(p̃))2 − 2N(C(p̃)

(√
2(2` − 1)γ + 2δ2

)
+ 2(2` − 1)

(
γ2 − δ2

)
= 0. (44)



6 LINEAR CRYPTANALYSIS 17

where now γ = Φ−1(1 − β) and δ is equal to Φ−1(1 − PS) = −Φ−1(PS) as before. Again, a routine calculation
shows that the discriminant of the quadratic is positive showing that there are real solutions for NC(p̃). Taking
the positive root of the discriminant and using (32) to substitute 2−a for β we obtain:

N =
1

C(p̃)

[√
2(2` − 1)Φ−1

(
1− 2−a

)
+ 2

(
Φ−1 (PS)

)2
+

Φ−1 (PS)

√
4 (Φ−1 (PS))2 + 4

√
2(2` − 1)Φ−1 (1− 2−a) + 2(2` − 1)

]
. (45)

It was mentioned in [20] that this approximation is valid only for ` > 5. Later we provide a much more detailed
analysis of the approximation.

Comparison to the data complexity obtained in [20]: Equation (9) of [20], gives the success probability of
Selçuk’s method to be PS = Φ

(
(µR − µq)/

(
(σ2
R + σ2

q )
1/2
))
. From Section 5.1 of [20], µR = (2`−1)+NC (p̃) , σ2

R =

2
(
(2` − 1) + 2NC(p̃)

)
, µq =

√
2(2` − 1)Φ−1 (1− 2−a) + (2` − 1) and σ2

q = 2−(l+a)σ2
w/φ

2
(
Φ−1 (1− 2−a)

)
� σ2

R.
Using these values in the expression for PS and simplifying leads to a quadratic in NC(p̃) which turns out to
be exactly the same as the one in (44). Consequently, the expression for the data complexity N in this case is
also given by (45). In [20], the authors applied some further approximations to (45) to arrive at a simplified
expression for the data complexity. It was noted in [20] that such approximations are valid for large PS and large
advantage a. We did not investigate these approximations any further.

6.2.2 Data Complexity for the LLR Test Statistics

Recall that the joint distribution of the Li’s is parameterised by z which is the tuple representing the inner key
bits. So, for every η ∈ {0, 1}`, p̃z(η) is the probability that (L1 ⊕ z1, . . . , L` ⊕ z`) = η. For a choice κ of the last
round key bits and z of the inner key bits we make the following definitions:

Xκ,z,j = (Lκ,j,1 ⊕ z1, . . . , Lκ,j,` ⊕ z`);
Qκ,z,η = #{j : Xκ,z,j = η}, for η = 0, . . . , 2` − 1.

In this case, the test statistics is determined by both the choice of the last round key bits κ and the choice of
the inner key bits z.

The hypothesis testing framework for this case varies a little from what has been described in Section 5. The
null and the alternate hypothesis H0 and H1 respectively remain unchanged. The test statistic and the decision
rule change. We denote the test statistics by Tκ,z which is defined as follows.

Tκ,z =
∑

η∈{0,1}`
Qκ,z,η log

p̃z(η)

2−`
. (46)

This is exactly the LLR test statistics considered in [20]. It was shown in [2] that Tκ,z approximately follows
N
(
Nµ,Nσ2

)
, where

µ =

{
µ0 ≈ 1

2C(p̃) if H0 holds;
µ1 ≈ −1

2C(p̃) if H1 holds,
and σ2 ≈ C(p̃).

Later, we consider the error in the approximation.
Note that µ0 is positive whereas µ1 is negative. For a threshold parameter t which is to be determined, we

formulate the following decision rule:

Reject H0 if Tκ,z ≤ t for all z ∈ {0, 1}`.
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Suppose z∗ is the correct choice of the inner key bits. The probability of Type-I error is

Pr[Tκ,z ≤ t for all z ∈ {0, 1}`|H0 holds] ≤ Pr[Tκ,z∗ ≤ t|H0 holds].

We define α = Pr[Tκ,z∗ ≤ t|H0 holds] and so α is an upper bound on the probability of Type-I error. Also, we
define PS = 1− α so that PS is a lower bound on the success probability.

Since z∗ is the correct choice of the inner key bits, the distribution pz∗ is the correct distribution and so under
H0, Tκ,z∗ follows N (Nµ0, Nσ

2
0). From this we obtain

1− PS = α = Pr[Tκ,z∗ ≤ t|H0 holds] = Φ

(
t−Nµ0√
Nσ0

)
,

⇒ t = Nµ0 +
√
Nσ0Φ−1 (1− PS) . (47)

Under H1, Tκ,z follows N (Nµ1, Nσ
2
1) irrespective of the choice of z. The probability of Type-II error is

Pr[Tκ,z > t for some z|H1 holds] ≤
∑

z∈{0,1}`
Pr[Tκ,z > t|H1 holds]

= 2` (1− Pr[Tκ,z ≤ t|H1 holds])

= 2`
(

1− Φ

(
t−Nµ1√
Nσ1

))
.

We set β = 2`
(

1− Φ
(
t−Nµ1√
Nσ1

))
so that β is an upper bound on the probability of Type-II error. Eliminating t

from the expression for β and (47); substituting the values of µ0, µ1, σ0 and σ1; and then using (32) to substitute
2−a for β provides the following expression for the data complexity N .

N =

{
Φ−1

(
1− 2−`−a

)
+ Φ−1 (PS)

}2

C(p̃)
. (48)

Comparison to the data complexity obtained in [20]: By Equation (38) of [20] the data complexity of
the LLR method is given by {

Φ−1 (P12) + Φ−1
(

2
√̀

1− 2−a
)}2

C(p̃)
. (49)

Here P12 is a lower bound on the success probability and can be taken to be PS . In [20], the authors had used

the approximation 2
√̀

1− 2−a ≈ 1 − 2−a−`. Using this approximation in (49) gives the expression for N to be
exactly the same as that given in (48).

7 Differential Cryptanalysis

Expressions for the data complexities of differential cryptanalysis were derived in [33] and [11] using the order
statistics based approach. In this section, we show that these expressions can be derived using the hypothesis
testing based framework.
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7.1 Single Differential Cryptanalysis

We present a brief description of the setting of differential cryptanalysis and follow it up by the analysis of the
data complexity of single differential cryptanalysis.

Let δ0, δ1, . . . , δr be n-bit strings where δ0 is not the all-zero string. For a uniform random P , set P ′ = P ⊕δ0.

Let B(0) = P,B(1), . . . , B(r) be the inputs to round numbers 0, . . . , r respectively, i.e., B(i+1) = R
(i)

k(i)
(B(i)) and

suppose that B(0)′ = P ′, B(1)′, . . . , B(r)′ be the inputs to round numbers 0, . . . , r respectively corresponding to the
plaintext P ′. Consider the event A = ∧ri=0(B(i) ⊕B(i)′ = δi) and suppose that for the correct key K, Pr[A] = p.
Here the randomness and the probability is over the uniform random choice of P .

As in Section 3, we assume that guessing m bits of the key allows the partial decryption of C to obtain B(r).
These m bits will constitute the target sub-key and the goal will be to obtain the correct value of the sub-key.
We will denote a choice of the target sub-key by κ.

The initial study of the block cipher uncovers the masks δ0, δ1, . . . , δr; the probability p and the target sub-key
bits. As in the case of linear cryptanalysis, this is a non-trivial task and forms the foundation for a statistical
analysis of the attack.

Suppose that we have obtained the ciphertext C and C ′ corresponding to the plaintexts P and P ′ respectively.
Guessing a target sub-key allows computing B(r) and B(r)′ respectively from C and C ′. The earlier B(i)’s and
B(i)′’s cannot be obtained. Define the event D to be B(r) ⊕ B(r)′ = δr. The event A implies the event D. The
event D may also occur even when A occurs. In other words, A defines one possible path for the event D to
occur while there may be other paths which also lead to D. Let Pr[D|A] = p′ and let p0 = p+ (1− p)p′. Then
for the correct choice κ of the target sub-key

Pr[D] = Pr[D ∧ (A ∨A)]

= Pr[D|A] Pr[A] + Pr[D|A] Pr[A]

= p+ p′(1− p) = p0.

Since δ0 is not the zero string, P 6= P ′ and since each round function is a bijection B(i) 6= B(i)′ for i = 1, . . . , r.
If the choice κ of the target sub-key is incorrect, then it is reasonable to assume that B(r) and B(r)′ correspond
to uniform sampling without replacement of two n-bit strings from {0, 1}n. So, if κ is an incorrect choice of the
target sub-key Pr[D] = 1/(2m − 1). Let pw = 1/(2m − 1). In general p0 > pw.

For the actual attack, there will be N matched pairs of plaintexts (P1, P
′
1), . . . , (PN , P

′
N ) with Pj ⊕ P ′j = δ0

and their corresponding ciphertexts (C1, C
′
1), . . . , (CN , C

′
N ). For a choice κ of the target sub-key, we obtain

(B
(r)
κ,1, B

(r)′
κ,1 ), . . . , (B

(r)
κ,N , B

(r)′
κ,N ) by inverting (C1, C

′
1), . . . , (CN , C

′
N ) respectively. So, it is possible to determine

whether the condition B
(r)
κ,j ⊕B

(r)′
κ,j = δr holds for each j = 1, . . . , N .

For a choice κ of the target sub-key, and j = 1, . . . , N , define random variables Wκ,j = 1 if B
(r)
κ,j ⊕B

(r)
κ,j = δr;

and Wκ,j = 0 otherwise. If κ is the correct choice, the Pr[Wκ,j = 1] = p0 and if κ is an incorrect choice, then
Pr[Wκ,j = 1] = pw for all j.

The hypothesis testing framework in (30) is to be applied. Define the test statistics

Tκ =
(Wκ,1 + · · ·+Wκ,N )−Npw√

Npw(1− pw)
. (50)

From Corollary 1, under H1, Tκ is approximated by the standard normal distribution for sufficiently large N .
From the error bound, we have that if

N ≥ 22εC2 (p2
w + (1− pw)2)2

pw(1− pw)
(51)
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then the error in approximation is at most 2−ε. Write

Tκ =
(Wκ,1 + · · ·+Wκ,N )−Npw√

Npw(1− pw)
= Yκ ×

√
Np0(1− p0)√
Npw(1− pw)

+
Np0 −Npw√
Npw(1− pw)

.

where

Yκ =
(Wκ,1 + · · ·+Wκ,N )−Np0√

Np0(1− p0)

Again from Corollary 1, under H0, the distribution of Yκ is approximated by the standard normal distribution.
Further, if

N ≥ 22εC2 (p2
0 + (1− p0)2)2

p0(1− p0)
(52)

then the error in approximation is at most 2−ε. Using this approximation, we have

α = Pr[Type-I Error] = Pr [Tκ ≤ t |H0 holds ]

= Pr

[
Yκ ≤

(√
Npw (1− pw)√
Np0 (1− p0)

)(
t− Np0 −Npw√

Npw (1− pw)

)]

= Pr

[
Yκ ≤

t
√
Npw (1− pw)√
Np0 (1− p0)

− Np0 −Npw√
Np0 (1− p0)

]

= Φ

(
t
√
Npw (1− pw)√
Np0 (1− p0)

− Np0 −Npw√
Np0 (1− p0)

)
= 1− PS . (53)

Type-II error is given by,

β = Pr[Type-II Error] = Pr [Tκ > t |H1 holds ] = 1− Φ (t) . (54)

which implies t = Φ−1 (1− β) . Using this value of t in (53) and using (32) to substitute 2−a for β we obtain:

N =

{√
pw (1− pw)Φ−1 (1− 2−a) +

√
p0 (1− p0)Φ−1 (PS)

p0 − pw

}2

.

Selçuk [33] used the assumptions that pw = pr, 1− p ≈ 1, 1− p0 ≈ 1 and 1− pw ≈ 1. Using these relations we
get

N =

{√
pwΦ−1 (1− 2−a) +

√
p0Φ−1 (PS)

p0 − pw

}2

. (55)

This is identical to the expression for data complexity obtained by Selçuk in [33].
The expression for N given by (55) has to be compared with the lower bounds for N given by (51) and (52).

Usually, it will be the case that p0 > pw and so it is sufficient to only consider the lower bound given by (51).
The right hand side of (55) is inversely proportional to (p0− pw)2 whereas the right hand side of (51) is inversely
proportional to pw. Since in practice it will usually be the case that |p0−pw| is less than pw, one would expect the
expression given by (55) to be greater than the one given by (51). The actual comparison of the two expressions
can be obtained only by plugging in the relevant values of ε, pw, p0, a and PS .

Selçuk [33] had remarked that the standard normal approximations required in this context need not be good.
The concrete error analysis given here was not done. In fact, from our analysis, it appears that in many usual
cases the expression for the final data complexity given by (55) will be large enough for the normal approximations
to be proper.
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7.2 Multiple Differential Cryptanalysis

In the case of multiple differential attacks, it is assumed that the prior analysis of the block cipher results in

ν sequences of n-bit strings δ
(1)
j , . . . , δ

(ν)
j for j = 1, . . . , r. Assume as before that there is an m-bit target sub-

key and the goal of the attack is to obtain the correct value for this sub-key. Further, the quantities (Pj , P
′
j),

(Cj , C
′
j), j = 1, . . . , N are defined as in the case of a single differential attack, i.e., Pj ⊕ P ′j = δ0 and Cj and C ′j

are the ciphertexts corresponding to Pj and P ′j respectively. Also, as before, for a choice κ of the target sub-key,

j = 1, . . . , N , define B
(r)
κ,j to be the input to the last round obtained by inverting the last round on Cj .

For the correct choice of κ, define pi, i = 1, . . . , ν, to be the probability that B
(r)
κ,j ⊕ B

(r)′
κ,j equals δ

(i)
r . This

probability is independent of both j and κ. For an incorrect choice κ, the probability that B
(r)
κ,j ⊕ B

(r)′
κ,j equals

δ
(i)
r is 1/(2m− 1). Define p0 = 1−

∑ν
i=1 pi and θ0 = 1− ν/(2m− 1). For the correct choice of κ, p0 represents the

probability that none of the events B
(r)
κ,j⊕B

(r)′
κ,j = δ

(i)
r occur; similarly, for an incorrect choice of κ, θ0 represents the

probability that none of the events B
(r)
κ,j⊕B

(r)′
κ,j = δ

(i)
r occur. So, (p0, p1, . . . , pν) and (θ0, 1/(2

m−1), . . . , 1/(2m−1)
are both probability distributions corresponding respectively to the correct and the incorrect choices of the target
sub-key. For convenience of notation we assume θi = 1/(2m − 1) for i = 1, . . . , ν and p̃ = (p0, p1, . . . , pν).

7.3 The LLR Test Statistic

For a choice κ of the target sub-key, define

Xκ,i = #
{
j : B

(r)
κ,j ⊕B

(r)
κ,j = δ(i)

r

}
;

Tκ =
ν∑
i=0

Xκ,i log

(
pi
θi

)
.

This Tκ is the LLR test statistic that was considered in [11]. Further, using the approximation in [2], (Tκ −
Nµ)/(σ

√
N) follows the standard normal distribution, where

µ =

{
µ0 ≈

∑ν
i=0 pi log(pi/θi) if H0 holds;

µ1 ≈
∑ν

i=0 θi log(θi/pi) if H1 holds,
and σ2 =

{
σ2

0 ≈
∑ν

i=0 pi (log(pi/θi))
2 − µ2

0 if H0 holds;

σ2
1 ≈

∑ν
i=0 θi (log(θi/pi))

2 − µ2
1 if H1 holds.

The error analysis of the approximation is considered later. Assume that µ0 > µ1 the other case being handled
in a similar manner. The hypothesis testing framework of (30) is applied with Tκ as the test statistic. Then

α = Pr[Type-I error] = Pr [Tκ ≤ t |H0 holds ] = Φ

(
t−Nµ0

σ0

√
N

)
= 1− PS ;

β = Pr [Tκ > t |H1 holds ] = 1− Φ

(
t−Nµ1

σ1

√
N

)
.

Eliminating t between these two expressions and using (32) to substitute 2−a for β gives the following expression
for N .

N =

{
σ1Φ−1 (1− 2−a) + σ0Φ−1 (PS)

}2

(µ0 − µ1)2 . (56)

This expression is identical to the expression found by Blondeau et al in [11].
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7.4 The χ2 Test Statistic

As in [11], the test statistic is defined to be

Tκ = N

ν∑
i=0

(Xκ,i/N − θi)2

θi
.

The hypothesis testing framework of (30) is applied.
From Section 6.2.1, we get that, under H0, Tκ ∼ χ2

ν (NC (p̃)) and under H1, Tκ ∼ χ2
ν for “sufficiently large” N

and the error in approximation is considered later. Further, for large values of N , χ2
ν (NC (p̃)) has been approx-

imated by N (ν +NC (p̃) , 2 (ν + 2NC (p̃))). Hence, under H0, we have Tκ ∼ N (ν +NC (p̃) , 2 (ν + 2NC (p̃))).
Given these distributions, the rest of the analysis is similar to that done in Section 6.2.1 and provides the

following expression for the data complexity.

N =
1

C (p̃)

[
2
(
Φ−1 (PS)

)2
+ Ψ−1

(
1− 2−a

)
− ν + Φ−1 (PS)

√
4 (Φ−1 (PS))2 + 2Ψ−1 (1− 2−a)

]
; (57)

where, Ψ is the cumulative distribution function of the χ2 distribution. This expression is identical to the
expression found by Blondeau et al in [11].

8 On Normal Approximation of the χ2 Test Statistics

In deriving data complexity expressions using the hypothesis testing framework, we have made use of the earlier
proposed χ2 test statistics from [20, 11] and the corresponding normal approximations. In [20], the use was
justified by a reference to the work by Drost et al [16]. On checking [16] we found that the treatment is in
terms of multinomial distribution and the error analysis is asymptotic. This did not appear to be amenable for
interpreting the error analysis to the cryptanalytic context. Hence, keeping in tune with the main theme of this
work, we performed a detailed analysis of the various approximations that are required. Our approach avoids
the multinomial distribution. Later, we comment on how one may proceed using the multinomial distribution
and argue that this would not provide better error bounds that those we obtain.

8.1 From Bernoulli to Normal to χ2 to Normal

Let X be a set of size k and p̃ = (p1, p2, . . . , pk) be a probability distribution on X . Define

pmin = min
η
pη. (58)

Note that pmin ≤ 1/k and if p̃ is not the uniform distribution over X , then pmin < 1/k.
Let X1, X2, . . . , Xλ be independent random variables each following p̃. We next describe a sequence of

transformations on the Xj ’s giving rise to different random variables following different distributions.

Bernoulli distributed random variables: For 1 ≤ η ≤ k and 1 ≤ j ≤ λ define

Qη,j =

{
1 if Xj = η;
0 otherwise.

(59)

Then for a fixed η, the random variables Qη,1, . . . , Qη,λ are independently and identically distributed according
to Bernoulli (pη).
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From Bernoulli to Normal: For 1 ≤ η ≤ k, define

Qη =

λ∑
j=1

Qη,j . (60)

Note that Qη = #{j : Xj = η} and
∑k

η=1Qη = N . The distribution of Qη is to be approximated using a normal
distribution. Corollary 1 provides the condition on λ for which such approximation can be considered to be good.
Denote the bound on the right side of Corollary 1 by Λη. This depends on η and it is necessary to consider the
maximum of all the Λη’s. Define

Λ (p̃)
∆
= max

η
Λη, where Λη =

C
(
p2
η + (1− pη)2

)
(pη (1− pη))1/2

. (61)

The requirement is that the distibutions of all the Qη’s should be approximated by appropriate normal distribu-
tions. The condition Λ(p̃)/λ1/2 ≤ 2−ε ensures that the errors of all the approximations are at most 2−ε. So, the
condition required for the errors of approximations of all the Qη’s by their respective normal distributions is the
following:

Condition for Ber-to-Nor: λ ≥ 22εΛ (p̃) .

From Normal to χ2: Suppose that the Condition Ber-to-Nor is satisfied. Then for each η, Qη can be assumed
to follow N (λpη, λpη (1− pη)). Note that we have (k − 1) independently distributed random variables Qη,

η = 1, 2, . . . , k − 1 and one dependent random variable Qk given by Qη = λ−
∑k−1

η=1 Qη. Let,

Y =

k∑
η=1

(Qη − λπη)2

λπη(1− πη)
= λ×

k∑
η=1

(Qη/λ− πη)2

πη(1− πη)
. (62)

where π̃ = (π1, π2, . . . , πk) is another distribution over X . Two cases may arise giving rise to central or non-central
χ2 distributions.

Central χ2: Suppose p̃ = π̃. In this case, it is well known (see Chapter 18 of [21]) that Y follows the central
χ2 distribution with k − 1 degrees of freedom.

Non-central χ2: Suppose p̃ 6= π̃. In this case, we would like to say that Y follows a non-central χ2 distribution,
but, this requires an approximation. Write,

Y =
k∑
η=1

(Qη − λπη)2

λπη(1− πη)
=

k∑
η=1

(Qη − λπη)2

λpη(1− pη)
×
{

1− pη(1− pη)− πη(1− πη)
pη(1− pη)

}−1

=

k∑
η=1

(Qη − λπη)2

λpη(1− pη)
×

{
1 +

pη(1− pη)− πη(1− πη)
pη(1− pη)

+

(
pη(1− pη)− πη(1− πη)

pη(1− pη)

)2

+ · · ·

}

≈
k∑
η=1

(Qη − λπη)2

λpη(1− pη)
. (63)

The above computation and approximation require two conditions. The Taylor series expansion requires the
condition |pη(1− pη)−πη(1−πη)| < pη(1− pη) and the approximation requires (pη(1− pη)−πη(1−πη))/(pη(1−
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pη)) ≈ 0. The second condition implies the first but, not the other way around. Assuming that the approximations
are appropriate, the distribution of Y is given by a non-central χ2 distribution (see Chapter 29.1 of [22]).

Y ∼ χ2
k−1 (λDp̃,π̃) where Dp̃,π̃ =

k∑
η=1

(pη − πη)2

pη(1− pη)
. (64)

The denominator in the non-centrality parameter is pη(1− pη). Using a Taylor series expansion as in the above
computation it is possible to show that

Dp̃,π̃ ≈ Cp̃,π̃ (65)

where

Cp̃,π̃ =
k∑
η=1

(pη − πη)2

πη(1− πη)
. (66)

The conditions required for the Taylor series expansion and the approximation (65) to hold are |pη(1 − pη) −
πη(1− πη)| < πη(1− πη) and (pη(1− pη)− πη(1− πη))/(πη(1− πη)) ≈ 0.

All the required conditions for the approximations (63) and (65) hold if πη(1− πη) ≈ pη(1− pη). We record
this condition.

Condition for non-central χ2: πη(1− πη) ≈ pη(1− pη).

From (non-central) χ2 to Normal: Consider the random variable Y following the χ2 distribution in (64)
under the approximation given by (65). Define k − 1 independent and identically distributed random variables

Yi such that Yi ∼ N
(√

λCp̃,π̃
k−1 , 1

)
and Y 2

i ∼ χ2
1

(
λCp̃,π̃
k−1

)
, i = 1, 2, . . . , k − 1 (see “Characterization” under

Chapter 29.5 of [22]). It is known (see “Reproductivity” under Chapter 29.5 of [22]) that
∑k−1

i=1 Y
2
i follows

χ2
k−1(λCp̃,π̃) which is also the distribution of Y . So, to approximate the distribution of Y by a normal it is

sufficient to approximate the distribution of
∑k−1

i=1 Y
2
i by normal. We show that the Berry-Esséen theorem

applies and provides the error in approximation.

Each Y 2
i ∼ χ2

1

(
λCp̃,π̃
k−1

)
and so E[Y 2

i ] = 1 + (λCp̃,π̃)/(k − 1). Let, Zi = Y 2
i −

(
1 +

λCp̃,π̃
k−1

)
. Then, E [Zi] = 0;

σ2 = E
[
Z2
i

]
= 2

(
1 + 2

λCp̃,π̃
k − 1

)
=

2

k − 1
(k − 1 + 2λCp̃,π̃) ;

ρ = E
[
|Zi|3

]
≤ E

[(
Z2
i

)3]
+

(
1 +

λCp̃,π̃
k − 1

)3

; [Since, Y 2
i > 0,

(
1 +

λCp̃,π̃
k−1

)
> 0]

= 2

(
1 +

λCp̃,π̃
k − 1

)3

+ 6

(
1 +

λCp̃,π̃
k − 1

)(
1 + 2

λCp̃,π̃
k − 1

)
+ 8

(
1 + 3

λCp̃,π̃
k − 1

)
=

1

(k − 1)3

{
2 (k − 1 + λCp̃,π̃)3 + 6 (k − 1) (k − 1 + λCp̃,π̃) (k − 1 + 2λCp̃,π̃) + 8 (k − 1)2 (k − 1 + 3λCp̃,π̃)

}
= ρ′ (say).
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Note that for Cp̃,π̃ = 0, σ2 = 2 and ρ′ = 16. More generally, ρ ≤ ρ′ <∞. So, Theorem 1 applies and we have∣∣∣∣∣Pr

[∑k−1
i=1 Zi√
k − 1σ

< x

]
− Φ (x)

∣∣∣∣∣ =

∣∣∣∣∣Pr

[∑k−1
i=1 Y

2
i − (k − 1 + λCp̃,π̃)√

k − 1σ
< x

]
− Φ (x)

∣∣∣∣∣
=

∣∣∣∣Pr

[
Y − (k − 1 + λCp̃,π̃)√

k − 1σ
< x

]
− Φ (x)

∣∣∣∣
≤ Cρ

σ3
√
k − 1

≤ Cρ′

σ3
√
k − 1

. (67)

If the bound on the right side of (67) is at most 2−ε, then the distribution of Y can be approximated by
N (k − 1 + λCp̃,π̃, 2(k − 1 + 2λCp̃,π̃)) and the error in approximation will be at most 2−ε.

If Cp̃,π̃ = 0, then Y follows χ2
k−1 which is approximated by N (k − 1, 2(k − 1)) with error in approximation

at most 2−ε if k − 1 ≥ C222ε+5. In the more general situation, the bound in (67) is difficult to simplify. If,
however, Cp̃,π̃ is “small”, then the condition k − 1 ≥ C222ε+5 again ensures that the error in approximating the
distribution of Y by normal is at most 2−ε.

Condition for central χ2 to normal: k − 1 ≥ C2 × 22ε+5 (under the condition Cp̃,π̃ is “small”).

8.2 Application to Linear Cryptanalysis

We interpret the above result in the context of the χ2 statistics as used in linear cryptanalysis [20] (see also
Section 6.2.1). In this context, the set X is {0, 1}` and so k = 2`; λ = N ; p̃ is the distribution under the correct
key; π̃ is the uniform distribution over {0, 1}`. Under these conditions, the random variable Y given by (62) is
not the same as the test statistic Tκ given in (39). On the other hand, if we make the additional assumption that
1− πη ≈ 1, then Y given by (62) becomes identical to Tκ given in (39). Since πη = 2−`, the condition 1− πη ≈ 1
amounts to 1 − 2−` ≈ 1 which says that the number of linear approximations ` must be large enough for this
approach to be valid. We record this condition.

Condition for Tκ given in (39) to be equal to Y given by (62): 1− 2−` ≈ 1.
Assuming this approximation, we have Cp̃,π̃ = C(p̃). The distributions of Tκ both for the correct choice of κ

and an incorrect choice of κ are given by (40). This requires certain conditions as derived in Section 8.1. The
conditions required for the approximation to normal via the non-central χ2 distributions are a superset of those
required for the path via the central χ2 distribution. Below we interpret these conditions in the context of linear
cryptanalysis.

1. Condition Ber-to-Nor: For 1 ≤ η ≤ 2` − 1,

N ≥ 22ε × Λp̃ = max
η

22εC2 ×
(p2
η + (1− pη)2)2

pη(1− pη)
.

Since the condition is to be true for all pη, it must hold for pmin. Noting that pmin ≤ 2−`, we have the
condition

N ≥ 22εC2 × (p2
min + (1− pmin)2)2

pmin(1− pmin)
≈ 22εC2

pmin
≥ 22εC2

2−`
= C2 × 22ε+`.

This shows a surprising fact. For the conversion of the sum of the Bernoulli variables
∑N

j=1Qη,j to be well
approximated by the normal, it is required for the number of plaintext-ciphertext pairs to be more than
2`. So, as the number of linear approximations grows, one needs to obtain more plaintext-ciphertext pairs
just for the approximation to be valid. This is counter-intuitive, since one would expect that as ` increases,
the data complexity N should go down.
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2. Condition for non-central: In this case π̃ is the uniform distribution over {0, 1}` and so this condition
becomes pη(1 − pη) ≈ 2−` for all η. This puts a condition on the distribution p̃ that for all η, pη(1 − pη)
should be close to 2−`. If a real life distribution does not satisfy this condition, then the approximation does
not hold. So, if a cryptanalyst is attacking a not so well-designed block cipher and is able to uncover linear
approximations where for some η, pη(1− pη) is significantly away from 2−`, then (s)he cannot apply the χ2

test statistics to assess the data complexity. This is again counter-intuitive since, having a pη ≈ pη(1− pη)
to be significantly away from 2−` should help rather than hinder the analysis.

3. Condition for χ2 to normal: The condition is 2` − 1 ≥ C2 × 22ε+5. This means that the χ2 statistics
based analysis cannot be applied if ` is low. If ε = 10 then ` should be at least about 25. So, for a smaller
`, the applicability of the method is in question.

Avoiding the approximation of χ2 by normal: The last approximations consist of approximating the χ2

distributions (both central and non-central) by appropriate normal distributions. As explained in Section 4.1,
for the order statistics based approach this is necessary. For the hypothesis testing based approach, these
approximations can be avoided and one can work directly with the distribution functions of the central χ2

(corresponding to an incorrect key) and the non-central χ2 (corresponding to the correct key) distributions. This
allows the expression of the data complexity in terms of these distribution functions.

8.3 Application to Differential Cryptanalysis

In this case, the k of Section 8.1 is ` + 1. The observation made for the non-central χ2 approximation in the
context of linear cryptanalysis remains unchanged. The other two observations are to be modified with the new
value of k. This somewhat mitigates the criticisms though the general spirit still remains valid.

8.4 The Multinomial Approach

The tuple (Q1, . . . , Qk) defined using (60) follows the multinomial distribution with parameters λ and p̃. It is
possible to approximate this distribution using a multivariate normal distribution. The error bound of such an
approximation is known and given by Theorem 3 of [32]. Similar to that of the Berry-Esséen theorem, this bound
involves a constant C ′(k) which depends only on k and has been shown to be O(k1/2) [4]. We have worked out
the error bound following this approach and have found that the lower bound on λ that is obtained from this
approach is more than what is given by the condition “Ber-to-Nor”. In view of this, we do not provide the details
of this approach.

9 On Normal Approximation of the LLR Test Statistics

There are two issues to the approximation. The first approximation is to show that the distribution of the LLR
test statistics can be approximated by a normal distribution. The parameters of the normal distribution are
in terms of the Kullback-Leibler divergence of two distributions. The second approximation is to show that
the Kullback-Leibler divergence can be approximated by functions of the capacity. The outline of how the two
approximations can be carried out was already described in [2, 20]. Here we apply the Berry-Esséen theorem to
work out the error bound for the first approximation. Obtaining a closed form expression for this error seems
to be difficult which makes it difficult to deduce the conditions under which the approximation is good. The
second approximation uses the Taylor series expansion of the logarithmic function. The condition for such an
approximation to hold throws up a surprising consequence.
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Recall from (46) the LLR test statistics Tκ,z =
∑

η∈{0,1}` Qκ,z,η log
(
p̃z(η)/2−`

)
. This can be written in terms

of Xκ,z,j , j = 1, . . . , N as follows:

Tκ,z =
∑

η∈{0,1}`
Qκ,z,η × log

(
p̃z(η)

2−`

)
(68)

=
N∑
j=1

log

(
p̃z (Xκ,z,j)

2−`

)
. (69)

Recall that for a fixed κ and z, the Xκ,z,j ’s are independent and identically distributed random variables. For

j = 1, . . . , N , let Yj = log
(
p̃z (Xκ,z,j) /2

−`). Then Tκ,z =
∑N

j=1 Yj where the Yj ’s are independent and identically
distributed random variables.

Let µ = E[Yj ], σ
2 = E[(Yj − µ)2] and ρ = E[|Yj − µ|3]. Since the Yj ’s take values from a finite set, clearly

ρ <∞ and so Theorem 1 applies and Tκ,z =
∑N

j=1 Yj approximately follows a normal distribution. The error in

the approximation is upper bounded by Cρ/(σ3N)1/2. For this upper bound to be at most 2−ε, N has to satisfy

N ≥ C2ρ222ε

σ3
. (70)

This gives a lower bound on N which needs to be contrasted with the expression for N given by (48). Approximate
expressions for µ and σ2 are derived next, but, deriving an approximation for ρ seems to be difficult. This makes
it difficult to compare the expression given by (70) to that given by (48).

Using results on the Taylor series expansion of the Kullback-Liebler divergence from [14] (see also [2]), it was
mentioned in [20] that if all the εη’s are small, then Tκ,z asymptotically follows N

(
Nµ,Nσ2

)
, where

µ =

{
µ0 = D(p̃z||p̃$) ≈ 1

2C(p) if H0 holds;
µ1 = −D(p̃$||p̃z) ≈ −1

2C(p) if H1 holds,
and σ2 ≈ C(p̃).

Here D(p̃z||p̃$) is the Kullback-Leibler divergence. The approximation is done as follows.

D(p̃z||p̃$) =
∑

η∈{0,1}m
p̃z(η) ln

p̃z(η)

p̃$(η)
=

∑
η∈{0,1}m

p̃z(η) ln

(
2−` + εη⊕z

2`

)
=

∑
η∈{0,1}m

p̃z(η) ln
(

1 +
εη⊕z
2`

)
.

For each η, the Taylor series expansion of the logarithmic term is done to obtain the approximations of µ0, µ1, σ
2
0

and σ2
1 in terms of the capacity. These expansions are valid only if for each εη⊕z the following holds.∣∣∣εη⊕z

2`

∣∣∣ < 1.

This in particular means that |εη| < 2−` for all η. The range of εη is −2−` ≤ εη ≤ 1− 2−`. So, even if for one η it
happens that 2−` ≤ εη ≤ 1− 2−` the Taylor series expansion cannot be performed for this εη and so the overall
approximations of the means and the variances in terms of the capacity do not hold. For such a situation, the
LLR based approach is inapplicable and cannot be used to justify the expression for the data complexity.

Consider for example that for some η, εη = 2−`. Then the corresponding probability is 2−`+1 which is twice
the probability that would be expected if the distribution were uniform. Such a situation can indeed occur in
practice. In the context of stream ciphers, Mantin-Shamir [28] has shown that the probability that the second
output byte of the RC4 stream cipher is 0 is twice of what would be expected from a uniform distribution.
Although this is an example from the domain of stream ciphers, this does point to the possibility that even in
the context of block ciphers such a situation may arise. The LLR based approach will not be applicable to such
a situation.
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10 Conclusion

Normal approximations of the distribution of test statistics are often used in the statistical analysis of attacks on
symmetric key ciphers. Such approximations are mostly justified in an asymptotic sense. In this work, we study
the issue of normal approximations in greater depth. In concrete terms, the error in such an approximation can
be bounded by the Berry-Esséen theorem. Using this as a basic tool, we carefully consider some of the important
normal approximation results used earlier. These include the normal approximation of the distribution of order
statistics, the χ2 test statistics and the LLR test statistics.

The results that we obtained are surprising. For one thing, the framework of order statistics based approach to
key recovery attacks turns out to have limited applicability. We showed that previous results on data complexities
obtained using the order statistics based approach can be obtained using the simpler hypothesis testing based
framework. The later approach avoids the difficulties that arise in the former approach.

We also carefully considered the issues related to the approximations involved in using the χ2 and the LLR
test statistics. It turns out that these have some counter-intuitive consequences which limit their applicability.
All the issues that our work uncovered could not be satisfactorily resolved and resolving these can form the
motivation for future works. Normal approximations are used in more cryptanalytic contexts than what could
be considered in this work. It would be of interest to work out the concrete error bounds and their consequences.
This is true not only of normal approximations but, for any other approximations used in cryptanalysis.
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[9] Céline Blondeau, Andrey Bogdanov, and Gregor Leander. Bounds in Shallows and in Miseries. In Advances
in Cryptology–CRYPTO 2013, pages 204–221. Springer, 2013.
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