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Abstract. We explicitly present a homomorphic encryption scheme with a flexible encoding of plain-
texts. We prove its security under the LWE assumption, and innovatively show how the scheme can be
used to handle computations over both binary strings and real numbers. In addition, using the scheme
and its features, we build fast and secure systems of

• linear regression using gradient descent, namely finding a reasonable linear relation between data
items which remain encrypted. Compared to the best previous work over a simulated dataset of
108 records each with 20 features, our system dramatically reduces the server running time from
about 8.75 hours (of the previous work) to only about 10 minutes.

• biometric authentication, in which we show how to reduce ciphertext sizes by half and to do the
computation at the server very fast, compared with the state-of-the-art.

Moreover, as key rotation is a vital task in practice and is recommended by many authorized organi-
zations for key management,

• we show how to do key rotation over encrypted data, without any decryption involved, and yet
homomorphic properties of ciphertexts remain unchanged. In addition, our method of doing key
rotation handles keys of different security levels (e.g., 80- and 128-bit securities), so that the security
of ciphertexts and keys in our scheme can be “updated”, namely can be changed into a higher
security level.

Keywords: Homomorphic encryption, LWE assumption, privacy preservation, linear regression, bio-
metric authentication.

1 Introduction

1.1 Background

Imaginatively, the storage and computation on the cloud can be seen as storing data and performing
computations on a huge and globally available “machine”. Formally, a definition of cloud computing
is given by NIST in [23] saying that it is a “model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources that can be rapidly provisioned
and released with minimal management effort or service provider interaction.”

The benefits of cloud computing come with threats, typically one of which is that plain data
stored in the cloud may be accessed unwillingly. Promisingly, homomorphic encryption can balance
the situation, as it enables the computations over the data even in encrypted form, on which the
discussion can go back far to Rivest et al. [29] in 1978. Specifically, a client can store encrypted
data on the cloud to enjoy the service, but at the same time can ensure that no useful information
is leaked to the storage.
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1.2 Our contributions

We explicitly explore features of an LWE-based homomorphic encryption scheme, and exploit those
features in designing extremely efficient and secure systems in cloud computing. Details are given
below.

1. A homomorphic encryption scheme: we make explicit and analyze a homomorphic public
key encryption scheme secure under the LWE assumption. By making the scheme explicit, we
newly discover that it has a very flexible encoding of plaintexts. By “flexible”, we mean two things:
(a) the scheme natively handles binary strings, real numbers, and the computations (additions,
multiplication) over them; and (b) in the scheme, the message length can properly vary with
applications.

See Section 3 for the scheme and Section 4 for the encoding. The novel encoding of plaintexts
is exploited in depth in following secure systems.

2. Fast and secure linear regression: we show in Section 5 that secure linear regression using
gradient descent can be accomplished extremely fast in time and modest in communication. In
particular, in the scenario of outsourced computation with an honest-but-curious server and a
client, our system processes a simulated dataset of 108 records each with 20 features in 10 minutes
at the server (Xeon E5-2660 v3, 2.60GHz, 20 threads) and 0.38 second (1 thread) at the client,
with only 279 kilobytes of communication from the server to the client. These are extremely fast
compared with the best previous work using Paillier encryption equipped with garbled circuits
(8.75 hours at the server, [26]). Moreover, on real UCI datasets [1], our system is dramatically
faster than [26] with significant improvements on the communication costs as shown in Table 5.

As a warm-up for Section 5, we show how to handle real numbers with fixed precision (usually
set to 64-bit) in Section 4, and demonstrate the secure computation of standard statistics including
the mean, variance, and weighted sum (which is used in secure prediction in Section 5).

3. Fast and secure biometric system: we show that binary strings are processed extremely
efficiently by our scheme in biometric authentication, in which two binary templates are compared
by XORing. The computation can be done in a secure way where the templates are encrypted,
so that it can be performed by an honest-but-curious server. Our ciphertext size is at least a half
smaller than previous results by [31, 32], and the computation at the server is dramatically (more
than 1000x) improved. See Section 6.

4. Key rotation and security update: this is very unique to our homomorphic encryption
scheme, where we show that encrypted data (stored in the server in above systems) can be key-
rotated, and generally security-updated in a non-naive way. The task of key rotation, recalled at
length in Section 3.3, is recommended by NIST [25], PCI DSS [2], and OWASP [3]. We design
algorithms allowing key rotation and security update over encrypted data without any plain data
recovery, and hence help to prevent any data breach (on the cloud servers) specifically in above
systems. See Section 3.3.

Discussion: LWE vs. Ring-LWE. There are trade-offs between LWE and its variant ring-
LWE [22]. As an assumption, the strength of LWE is more understood than ring-LWE. First,
all attacks to LWE apply to ring-LWE. Second, LWE problem with dimension n is classically re-
duced to lattice problems with dimension

√
n [9], and we partially use this fact in claiming the

security update in our scheme. Indeed, our security update algorithm can be succinctly described
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as transforming ciphertexts from current to higher dimensions, together with a re-randomization
in the high dimension.

However, the ring-LWE assumption generally helps saving the public key size, and improving the
speed of the scheme basing on it thanks to careful manipulations over polynomial rings. Therefore,
many works choose ring-LWE-based schemes in implementations [16, 19, 24, 31, 32], to list just a
few.

When building secure systems, we will highlight that the usage of primitives, either LWE-
based or ring-LWE-based, plays a key role for overall efficiency. Perhaps surprisingly, via above
applications, we demonstrate that proper usages of an LWE-based scheme can still yield sufficient
efficiency. Having said that, we discuss how to use ring-LWE in Appendix B, pointing out that the
ciphertext size increases (compared to the use of LWE) when using in our systems.

1.3 More related works

Graepel et al. [16] mention using homomorphic encryption for regression, using schemes supporting
additions and r multiplications where r is the number of steps in gradient descent. On a small
dataset of 100 records each with 2 features, the system in [16] needs about 1 minute even when
r = 1 (at which the result may be not tuned sufficiently). We are different from that work by
showing in Section 5 that secure linear regression can be done with only additive homomorphism
(and multiplicative one is not needed at all), regardless of the number r.

Regarding secure linear regression, the work [26] (compared with ours above) itself improves [17],
whose running time is 2 days over a dataset of 51K records each with 22 features.

Differential privacy [13] aims to show that the change in any single data item will not much affect
the output. Our system for secure linear regression can be combined with the functional mechanism
of [33] so that the output can be publicly released with the same assurance from differential privacy.
We will discuss details later.

Ignoring the key rotation and security update properties, the pairing-based BGN encryption
scheme [7, 14] can also be used in our systems. In Appendix C we will show how it can be used in
our systems, and approximately compare the efficiencies with the LWE-based ones.

2 Preliminaries

Let Zs be the discrete Gaussian distribution over the integers Z, with mean 0 and deviation s > 0.
The mark

g← is for “sampling from a discrete Gaussian” set, so that x
g← Zs means x appears

with probability proportional to exp(−πx2/s2). Below,
$← means “sampling randomly”; and

c
≈

stands for “computationally indistinguishable”. Abusing notation a little, Zq ⊂ (−q/2, q/2] is the
set of integers centered modulus q. (In this manuscript, q is always for modulus, and s is always
for Gaussian deviation.)

2.1 Learning with Errors

Related to the decision LWE assumption LWE(n, s, q), where n, s, q depends on security param-

eter, consider matrix A
$← Zm×nq , vectors r

$← Zm×1q , x
g← Zn×1s , e

g← Zm×1s . Then vector Ax + e is
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computed over Zq. Define the following advantage of a poly-time probabilistic algorithm D:

Adv
LWE(n,s,q)
D (λ)

=
∣∣∣Pr[D(A,Ax+ e)→ 1]− Pr[D(A, r)→ 1]

∣∣∣.
The LWE assumption asserts that Adv

LWE(n,s,q)
D (λ) is negligible as a functions of λ.

2.2 Homomorphic encryption, key rotation, and security update

Definition 1. Public key homomorphic encryption (PHE) schemes consist of the following (possi-
bly probabilistic) poly-time algorithms.

• ParamGen(1λ, h)→ pp: λ is the security parameter, while h is the maximum number of security
updates of one ciphertext.
The public parameter pp is implicitly fed in following algorithms.
• KeyGen(1λ)→ (pk, sk): pk is the public key, while sk is the secret key.
• Enc(pk,m)→ c: probabilistic encryption algorithm produces c, the ciphertext of message m.
• Dec(sk, c)→ m: decryption algorithm returns message m encrypted in c.
• Add(c, c′), AddM(c, c′): In Add, for ciphertexts c and c′, the output is the encryption of plaintext

addition cadd. Similarly, AddM adds two ciphertexts each was obtained by one multiplication
(using Mul below).
• Mul(pp, c, c′): for ciphertexts c and c′, the output is the encryption of plaintext multiplication
cmul.
• DecA(sk, cadd): decrypting cadd to obtain an addition of plaintexts.
• DecM(sk, cmul): decrypting cmul to obtain a multiplication of plaintexts.

Definition 2. With respect to a PHE scheme as in Definition 1, consider the following game
between an adversary A and a challenger:

• Setup. The challenger creates pp and key pairs (pk, sk). Then pp and pk are given to A.
• Challenge. A chooses two plaintexts m0,m1 of the same length, then submits them to the chal-

lenger, who in turn takes b ∈ {0, 1} randomly and computes C∗ = Enc(pk,mb). The challenge
ciphertext C∗ is returned to A, who then produces a bit b′.

A PHE scheme is CPA-secure if the advantage Advcpa
A (λ) =

∣∣Pr[b′ = b]− 1
2

∣∣ is negligible in λ.

Definition 3. A PHE scheme as in Definition 1 has the property of key rotation and security
update if there are algorithms:

• UKGen(pp, pk1, sk1, pk2, sk2): generating an update key uk1→2 from the public/secret key pairs
(pk1, sk1) (old) and (pk2, sk2) (new).
• Update(pp, c, uk1→2, pk2): outputting a new ciphertext cnew from an old c.

with the following four requirements:

a) Pseudorandom update key: the update key uk1→2 is pseudorandom, even given public pk1,
pk2 and any poly-number of ciphertexts under these keys.
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b) Pseudorandom updated ciphertexts: the ciphertext cnew is secure as those encrypted directly
under pk2, even given uk1→2, pk1, pk2 and any poly-number of ciphertexts under these keys.

c) Correctness of updated ciphertexts: Succinctly,

Dec(sk2, cnew) = Dec(sk1, c)

with overwhelming probability, namely the correctness is not affected by key rotation and security
update.

d) Homomorphisms: are preserved as long as the ciphertexts in operations are under the same
public key (either pk1 or pk2), regardless of whether they are (1) directly formed by Enc, or (2)
indirectly formed by Update.

2.3 Our vision: secure cloud computing with key rotation and security update

Using a PHE scheme with properties as in Definition 3, a client can store encrypted data on cloud
server for computations using homomorphic properties. Moreover, the client can do key rotation
for all ciphertexts, namely replacing an old key pair (pk1, sk1) by a new one (pk2, sk2) by:

1. The client holding (pk1, sk1) generates the new key pair (pk2, sk2), and then creates uk1→2 via
executing UKGen(pp, pk1, sk1, pk2, sk2). The client sends uk1→2 to the cloud server. Note uk1→2

is pseudorandom, and hence reveals no information to the cloud server.
2. The cloud server receives uk1→2 and runs the algorithm Update(pp, c, uk1→2, pk2) to rotate the

key pk1 encrypting c to pk2. The output is cnew. The cloud server is trusted in deleting c and
storing cnew properly. This step is repeated for all old ciphertexts c under pk1 in the storage.

Plain data is never recovered in the above steps, which helps preventing any data breach. The
discussion of why key rotation is important appears in [2, 3, 25] and Section 3.3.

3 Proposed scheme

Our proposed homomorphic encryption scheme is depicted in Figure 1. It naturally supports mul-
tiple additions and one multiplication. While relying on the idea of [20] for reducing the public key
size, its full description is not explicitly appeared in the literature to the best of our knowledge,
not to mention its power in application. In particular,

• there are rooms for choosing parameters l and p in the message space Zlp to fit each specific
application, as they are not tightly related to parameters deciding security (q, n, s).
For example, as l (message length) and n (security level) can be different, we can set (l, n) =
(64, 3530) for the secure computation of mean in Section 4.2, or (l, n) = (16128, 3530) for linear
regression as in Section 5.
When p = 2 and l is arbitrary (e.g., l = 2048), the scheme can handle bit vectors in Z1×l

2 as
shown in Section 6 on biometrics. (When p = 2 and l = 1, we essentially obtain a variant of the
Regev encryption scheme [28].)
• the addition and outer product of plaintexts in Z1×l

p gives rise to the addition and multiplication
of real numbers, via a new encoding developed in Section 4.1.
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PKE part

ParamGen(1λ): KeyGen(1λ, pp): Enc(pk,m ∈ Z1×l
p ): Dec(S, c = (c1, c2)):

Fix q = q(λ) ∈ Z+ Take s = s(λ, pp) ∈ R+ e1, e2
g← Z1×n

s , e3
g← Z1×l

s m = c1S + c2 ∈ Z1×l
q

Fix l ∈ Z+ Take n = n(λ, pp) ∈ Z+ c1 = e1A+ pe2 ∈ Z1×n
q m = m mod p

Fix p ∈ Z+, gcd(p, q) = 1 R,S
g← Zn×ls , A

$← Zn×nq c2 = e1P + pe3 +m ∈ Z1×l
q Return m

Return pp = (q, l, p) P = pR−AS ∈ Zn×lq Return c = (c1, c2)
Return pk = (A,P, n, s), sk = S

Homomorphic part

Add(c, c′): AddM(cmul, c
′
mul) DecM(sk, cmul):

Return c+ c′ mod q Return cmul + c′mul

mod q
Let sk = S ∈ Zn×lq

Mul(pp, pk, c, c′): DecA(sk, cadd): m =

[
S
Il

]T
(cmul)

[
S
Il

]
∈ Zl×lq (Il: the identity matrix)

Return cmul = cTc′ ∈ Z(n+l)×(n+l)
q identical to Dec Return m ∈ Zl×lp

Fig. 1. Our PHE scheme. Above, Z+ and R+ are correspondingly the sets of positive integers and real numbers,
$←

means “sampling randomly” while
g← is for “sampling from the discrete Gaussian” set.

3.1 Correctness and homomorphic property

Correctness. We check that directly-formed ciphertexts can be decrypted correctly. Indeed, in the
decryption Dec algorithm,

c1S + c2 = (e1A+ pe2)S + e1P + pe3 +m

= e1(AS + P ) + pe2S + pe3 +m

= p(e1R+ e2S + e3) +m ∈ Z1×l
q (1)

will yield correct m in decryption if the noise p(e1R+ e2S+ e3) is small enough. The decryption of
added ciphertexts via algorithm DecA can be checked similarly.

For ciphertexts c ∈ Z1×(n+l)
q and c′ ∈ Z1×(n+l)

q , consider cmul = cTc′ ∈ Z(n+l)×(n+l)
q , where the T

stands for matrix transpose. The decryption of this product works as follows. First, over Zq, and
Il is the identity matrix of size l,[

S
Il

]T
(cTc′)

[
S
Il

]
=

(
c

[
S
Il

])T(
c′
[
S
Il

])
(2)

=(m+ pu)T(m′ + pu′) ∈ Zl×lq (3)

so that the result becomes (m+pu)T(m′+pu′) over the integers Z if q is sufficiently larger than the
incurred noise, which grows quadratically in each component. Then taking component-wise modulo
p will yield mTm′ ∈ Zl×lp , which is the outer product of two message vectors.

Quadratically homomorphic property. Succinctly, the scheme in Figure 1 can evaluate the
following formulas on ciphertexts

CT1 + · · ·+ CTNadd
∈ Z1×(n+l)

q (4)

CTT
1 · CT ′1 + · · ·+ CTT

Nadd
· CT ′Nadd

∈ Z(n+l)×(n+l)
q (5)
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in which (4) is a special case of (5) and yet the noise added is smaller. The decryption of (4) and
(5) uses the algorithms DecA and DecM respectively, yielding

m1 + · · ·+mNadd
∈ Z1×l

p

mT
1 ·m′1 + · · ·+mT

Nadd
·m′Nadd

∈ Zl×lp

where mi and m′i are the plaintext vectors in CTi and CT ′i .

3.2 Security analysis

We prove security of the proposed scheme according to Definition 2.

Theorem 1. The scheme in Figure 1 is CPA-secure under the LWE assumption. Specifically, for
any poly-time adversary A, there is an algorithm D of essentially the same running time such that

Advcpa
A (λ) ≤ (l + 1) ·Adv

LWE(n,s,q)
D (λ).

Proof. The proof is standard and follows [20] closely. First, we modify the original game in Definition

2 by providing A with a random P
$← Zn×lq . Namely P = pR − AS ∈ Zn×lq is turned to random.

This is indistinguishable to A thanks to the LWE assumption with secret vectors as l columns of
S. More precisely, we need the condition gcd(p, q) = 1 to reduce P = pR−AS ∈ Zn×lq to the LWE

form. Indeed, p−1P = R+(−p−1A)S ∈ Zn×lq . As A is random, A′ = −p−1A ∈ Zn×nq is also random.

Therefore, P ′ = p−1P ∈ Zn×lq is random under the LWE assumption which in turn means P is
random as claimed.

Second, the challenge ciphertext c∗ = e1[A|P ]+p[e2|e3]+[0|mb] is turned to random. This relies
on the LWE assumption with secret vector e1. Here, the condition gcd(p, q) = 1 is also necessary
as above. Thus b is perfectly hidden after this change. The factor l + 1 is due to l uses of LWE in
changing P and 1 use in changing c∗. ut

3.3 Key rotation and security update

Suppose encryption under (pk1, sk1) has security of level n1, while that under (pk2, sk2) has level
n2

1. The question is how to turn old ciphertexts of security level n1 into new ones having level n2
while keeping the underlying plaintext the same. Moreover, homomorphic operations can be still
performed after the transformation.

Two possibly interesting cases are as follows:

• (Key rotation) When n1 = n2, the above is the well-known key rotation problem (applied to
public-key homomorphic encryption), which is often raised in practice as the process of re-keying
encrypted data from an old key to a new one.

• (Security update) When n1 < n2, the problem can be described succinctly as turning security-
weakened ciphertexts and the related secret key into ones with higher security assurance.

1 Concretely, in our scheme, n1 and n2 correspond to LWE dimensions, which are related to dimensions in lattice
problems.
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Indeed, on the federal side, it is recommended by NIST [25] via the concept of cryptoperiods of
keys, namely the time spans during which they are used. As suggested in [25, Table 1], cryptoperiods
are in the order of 1-2 years depending on the considered primitives. On the industrial side, it is
required by the Payment Card Industry Data Security Standard [2, Requirement 3.6.4], and is
recommended by the Open Web Application Security Project [3], specifying that “key rotation is
a must as all good keys do come to an end either through expiration or revocation. So a developer
will have to deal with rotating keys at some point – better to have a system in place now rather than
scrambling later.” The same arguments apply to the case n1 < n2 as attacks advance.

How to do key rotation and security update. For these purposes, we define two additional
algorithms UKGen (generating the update key) and Update (doing the key rotation, or security
update over ciphertexts). The algorithm UKGen takes two pairs (pk1, sk1) and (pk2, sk2) and returns
a key ukn1→n2 . The algorithm Update uses that ukn1→n2 to turn a ciphertext c under pk1 to a
ciphertext c′ decryptable under sk2. The details are depicted in Figure 2 in which we need the
functions Power2(·) and Bits(·) explained as follows. Let v ∈ Znq and κ = dlog2 qe, then there are

bit vectors vi ∈ {0, 1}n such that v =
∑κ−1

i=0 2ivi. Define

Bits(v) = [v0| · · · |vκ−1] ∈ {0, 1}1×nκ.

Let X = [X1| · · · |Xl] ∈ Zn×lq where Xi are columns. Then

Power2(X) =


X1 · · · Xl

2X1 · · · 2Xl
...

...
2κ−1X1 · · · 2κ−1Xl

 ∈ Znκ×lq .

It is easy to check that
Bits(v)Power2(X) = vX ∈ Z1×l

q .

Intuitively, Bits(·) is used in Update to limit the noise increase, while Power2(·) is put in UKGen
to ensure correctness of updated ciphertexts using above equation.

New use of an old technique. The functions Bits(·) and Power2(·) are originated in [8, 10] as
part of the dimension switching technique. Historically, the paper [10] only considered dimension-
reduction, namely n2 < n1 in our notation, for efficiency issues in FHE. Then subsequent paper [8],
while notified that the technique works for arbitrary dimensions n1 and n2, only made use of the case
n2 < n1 as in [10]. In this paper, we use n1 = n2 for key rotation and n1 < n2 for security update
in homomorphic encryption. Therefore, the specific usages of the dimension switching technique for
key rotation and security update are new to this work, as summarized in Table 1.

Table 1. Usages of the dimension switching technique.

Dimension switching Exploited in Main purpose

(high → low) n2 < n1 [8, 10] efficiency improvement in FHE

(equal) n2 = n1 [4, 12] PRE, obfuscation

(equal, or low → high) n1 ≤ n2 this manuscript key rotation and security update
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Key rotation and security update

UKGen(pp, pk1, sk1, pk2, sk2):
Let pki = (Ai, Pi, ni, si). Let ski = Si (i = 1, 2)

Let κ = dlog2 qe. Take X
$← Zn1κ×n2

q , E
g← Zn1κ×l

s2

Y = −XS2 + pE + Power2(S1) ∈ Zn1κ×l
q

Return ukn1→n2 = (X,Y )
Update(pp, c, ukn1→n2 , pk2):

Let c = (c1, c2) ∈ Z1×n1
q × Z1×l

q

Let pk2 = (A2, P2, n2, s2)
Let ukn1→n2 = (X,Y ), and f1, f2

g← Z1×n2
s2 , f3

g← Z1×l
s2

E0 = f1[A2|P2] + p[f2|f3] ∈ Z1×(n2+l)
q

F = [Bits(c1)X|Bits(c1)Y + c2] ∈ Z1×(n2+l)
q

Return c′ = E0 + F ∈ Z1×(n2+l)
q

(In E0 and F , [· · · | · · · ] is for matrix concatenation.)

Fig. 2. Algorithms for key rotation and security update.

Theorem 2 (Pseudorandom update key). Given pp, pk1, pk2, and even secret sk1, the up-
date key ukn1→n2 generated as in Figure 2 is computationally random under the LWE(n2, s2, q)
assumption.

Proof. Since ukn1→n2 = (X,Y ) where X is truly random, it suffices to show that Y is computa-
tionally random, which is straightforward since −XS2 + pE ∈ Zn1κ×l

q is computationally random
under the LWE(n2, s2, q) assumption.

The argument extends even given pk1, sk1, pk2 and any poly-number of ciphertexts under pk2.
First, the matrix −XS2 + pE ∈ Zn1κ×l

q is independent of pk1. Second, the related part in pk2 is

P2 = pR2 −A2S2 ∈ Zn2×l
q

so that both P2 and Y are computationally random under the LWE(n2, s2, q) assumption. Third,
conditioned random P2, any ciphertext under pk2 contains the part e1[A2|P2] + p · [e2|e3] which is
also pseudorandom under LWE(n2, s2, q) since the secret e1 ∈ Z1×n2

q of Gaussian deviation s2. ut

Theorem 3 (Pseudorandom updated ciphertext). The updated ciphertext c′ generated as in
Figure 2 is computationally random under the LWE(n2, s2, q) assumption.

Proof. We have c′ = E0 +F ∈ Z1×(n2+l)
q . Note that E0 is an encryption under pk2 of length l vector

(0, . . . , 0), and hence is computationally random under the LWE(n2, s2, q) assumption by Theorem
1. Therefore c′ is computationally random under the LWE(n2, s2, q) assumption.

The argument extends even given ukn1→n2 , pk1, pk2 and any poly-number of ciphertexts under
these keys. More precisely, pk2 and ukn1→n2 are first changed to random using the LWE(n2, s2, q) as-
sumption. Conditioned on that, E0 = Enc(pk2, 01×l) is turned to random also under the LWE(n2, s2, q)
assumption as in the proof of Theorem 1. Other ciphertexts and pk1 are unrelated to E0, ending
the proof. ut

Theorem 4 (Correctness of updated ciphertext). The ciphertext c′ generated as in Figure 2
is correctly decrypted using Dec(sk2, ·) of Figure 1.
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Proof. We have c′ = E0 + F ∈ Z1×(n2+l)
q . As E0 is an encryption under pk2 of length l vector

(0, . . . , 0), its decryption under sk2 gives the zero vector. The decryption of F under sk2 = S2 is

m = Bits(c1)XS2 + Bits(c1)Y + c2

= Bits(c1)(pE + Power2(S1)) + c2

= pBits(c1)E + c1S1 + c2 ∈ Z1×l
q (6)

which is equal to the decryption of c = (c1, c2) under sk1 = S1 as long as the added noise Bits(c1)E
is small, which holds with high probability as matrix E containing small, Gaussian-distributed
elements. ut

Homomorphisms held even after key rotation or security update. Succinctly, formulas (4)
and (5) holds even if CTi, CT

′
i (1 ≤ i ≤ Nadd) are altogether encrypted under the same public key,

regardless of whether they are directly formed by the Enc algorithm (Figure 1) or are indirectly
transformed by Update (Figure 2) from old ciphertexts. Intuitively, this is because (a) the zero
encryption E0 part in updated ciphertexts does not interfere with homomorphisms, and (b) the F
part can be correctly decrypted as in (6).

More precisely, consider following cases, where “old” stands for a ciphertext under pk1 and
“new” for a ciphertext under pk2, and Update(old) for an updated ciphertext from pk1 to pk2:

• (old + old) or (new + new): this should be easily seen, as vector addition of two ciphertexts in
the same form e1[A|P ] + p[e2|e3] + [0n|m] and e′1[A|P ] + p[e′2|e′3] + [0n|m′] under identical public
key [A|P ] (either old or new) gives us a ciphertext whose decryption will yield (m+m′) mod p.

• Update(old) + new: let cud and cnw be the updated-from-old and under-new public-key ciphertexts
correspondingly. The decryption under the new secret key S2 is

Dec(S2, cud + cnw) = Dec(S2, cud) + Dec(S2, cnw) (mod p)

as the noise increases linearly when doing cud + cnw. The decryption Dec(S2, cud) works as in (6)
and Dec(S2, cnw) as in (1), yielding corresponding messages mud and mnw as expected.

Like the above, one can do the multiplication of (old × old), (new × new), and (Update(old) ×
new) where × is the outer product of vectors, justifying that formulas (4) and (5) hold even after
key rotation or security update.

3.4 Parameters for homomorphisms

In this subsection we establish the relation between the modulus q and the number of additions
(after multiplication or key rotation or update) Nadd. Results in this subsection are in Theorem 5
(theoretical) and Figure 3 (experimental).

Theorem 5. Let parameters p, q, s be as in the scheme in Figure 1, and n1, . . . , nh (h ≥ 1) are the
dimensions in key rotation or security updates, and Nadd the number of additions over multiplied
ciphertexts as in (5) where all ciphertexts are with the same ni, then the correctness of (5) holds

with overwhelming probability if q = Nadd · O
(
p2s4

∑h
i=1 ni + p2s2(log2 q)

∑h
i=2 ni

)
in which the

hidden constant in the O(·) is small.
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Proof. Given in Appendix A. ut

Figure 3 complements Theorem 5 by showing the experimental Nadd that one can actually
obtain. The straight line is the theoretical values of q and Nadd in Theorem 5, while the dots are
experimental results. As seen in the figure, given a fixed q, the experimental Nadd is always bigger
than the theoretical one, which is as expected since the proof of Theorem 5 makes loose bounds for
some worst cases. Setting h = 1, 2, 3 in Theorem 5 corresponds to 80-, 128-, 256-bit securities in
Figure 3, and one can see that Nadd is reduced after each “jump” from one security level to another
as expected. Certainly, one can also do key rotation between keys of the same security levels (e.g.,
128-bit), in which case Nadd will decrease less.

Fig. 3. Number of additions and modulus q. (In the figure, p = 230 +1 so that gcd(p, q) = 1 and (n, s) is set to obtain
80-, 128-, 256-bit securities with a given modulus q.)

3.5 Basic timings

Parameter selection. We rely on recent attacks on LWE in [4, 20, 21]. Specifically, we use the
following formula to decide the bit security of LWE(n, s, q)

bit security =
4.22n− 96.8

ln q − 1.26 ln s
− 65.7 (7)

which is extrapolated from the recent cryptanalysis on LWE in [4] employing the RC5-72 testing
benchmark2 published in distributed.net. Concretely for q = 2114, p = 230 + 1, s = 8.0, l = 64,
using (7) we need n = 2661, 3530, 5847 respectively for 80-, 128-, 256-bit securities. The message
length l = 64 is sufficient to handle real numbers of 64-bit precision in computing basic statistics
in Section 4.

Gaussian sampling. To generate discrete Gaussian noises, we employ the Knuth-Yao algorithm
[18]. For reference, when s = 10, our standard desktop computer (having Intel Core i7-950 @

2 As stated in [4], the relation with time/advantage 2k of attacking LWE is bit security = log2(2k · 9 · 106).
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3.07GHz) can generate more than 4.1 · 104 Gaussian samples in one millisecond in one thread with
256-bit precision, using only 1.65 megabytes to store a binary tree.

Timings of algorithms in Figure 1. The running times are reported in Table 2. One can see
that additive homomorphism Add is extremely fast when compared with the others. This fact is
innovatively exploited in applications in Sections 5 and 6.

Table 2. Timings of algorithms in Figure 1.

bit-sec KeyGen Enc Dec Add Mul AddM DecM

80 1428 63.2 0.92 0.003 35.1 29.3 1313
128 2513 94.7 1.22 0.004 60.8 50.1 2296
256 7249 313 2.05 0.010 164 136 6643

(All times, averaged over 1000 executions, are in milliseconds using 1 thread of a Xeon E5-2660 v3, 2.60GHz machine.
Parameters q = 2114, p = 230 + 1, s = 8.0, l = 64, and n = 2661, 3530, 5847 respectively for 80-, 128-, 256-bit securities
using (7).)

Timings of algorithms in Figure 2. The running times are reported in Table 3. As seen in the
table, generating an update key requires a few minutes, while updating a ciphertext needs a few
seconds. Expectedly, these tasks are done rarely (say, once per year), and the process of ciphertext
update can be fully parallelized on the cloud server.

Table 3. Timings of algorithms in Figure 2.

bit-sec → bit-sec UKGen Update

Key 80→ 80 165.6 1.1
rotation 128→ 128 291.4 1.9

256→ 256 846.6 5.3

Security 80→ 128 238.2 1.5
update 128→ 256 519.8 3.3

(All times are in seconds using the same machine and parameters as in Table 2.)

4 Warming up: encoding real numbers and secure mean and variance

In this section, we show basic techniques to handle real numbers in our proposed scheme in Figure
1, and demonstrate the secure computation of mean, variance, as well as weighted sum.

Previously, many works including [16, 24, 26] encode a real number by two steps: (a) encoding
an integer and then (b) using the integer to approximate the real number with a fixed precision.
Succinctly, a real number a ∈ R is represented via an integer ba · 2ηc ∈ Z where η is the precision.

Below we deviate from the above encoding by showing how to work directly with real numbers.
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4.1 Encode, add, multiply, and encrypt real numbers

Encoding. Real numbers of prec = (L + ` + 1) bits are encoded via signed bit vectors, namely
a, b ∈ R are expressed as

a =
∑̀
k=−L

ak2
k, and b =

∑̀
k=−L

bk2
k

in which all ak ∈ {0, 1} if a ≥ 0 and ak ∈ {0,−1} if a < 0, and likewise for bk.
Define vector Pow(2, L, `) = [2−L · · · 20 · · · 2`] ∈ Zprec and Bits(a) = [a−L · · · a0 · · · a`] ∈

{−1, 0, 1}prec the signed bit vector in the above representation of a ∈ R.

Addition of real numbers. We have

a+ b =
∑̀
k=−L

(ak + bk)2
k = Pow(2, L, `)

(
Bits(a) + Bits(b)

)T
and generally for many a(i) ∈ R,

N∑
i=1

a(i) = Pow(2, L, `)

(
N∑
i=1

Bits(a(i))

)T

(8)

Multiplication of real numbers. Real number multiplication can be expressed by outer product
of bit vectors as follows

ab =

[2−L · · · 2`]

a−L...
a`



[b−L · · · b`]

2−L

...
2`




= [2−L · · · 2`]


a−L...
a`

 [b−L · · · b`]


2−L

...
2`


or succinctly

ab = Pow(2, L, `)Bits(a)TBits(b)︸ ︷︷ ︸
outer product

Pow(2, L, `)T (9)

where Pow(2, L, `) = [2−L · · · 2`] and Bits(a) is the bit vector in binary representation of a ∈ R.
More generally, for many real numbers a(i) ∈ R and b(i) ∈ R,

N∑
i=1

a(i)b(i)

=Pow
N∑
i=1

Bits(a(i))TBits(b(i))︸ ︷︷ ︸
sum of outer product

PowT (10)
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holds over R, where Pow = Pow(2, L, `).

Encryption of real numbers. For two real number a and b of precision prec, naturally define
their encryptions as

Ea = Enc
(
Bits(a)

)
, Eb = Enc

(
Bits(b)

)
∈ Z1×(n+prec)

q (11)

where Enc is the encryption algorithm in Figure 1. These give rise to vector operations

Ea + Eb ∈ Z1×(n+prec)
q and ET

aEb ∈ Z(n+prec)×(n+prec)
q

whose decryption using the DecA and DecM algorithms yields

Bits(a) + Bits(b) ∈ Z1×prec
p and Bits(a)TBits(b) ∈ Zprec×prec

p

and then the modulo p is canceled

Bits(a) + Bits(b) ∈ Z1×prec and Bits(a)TBits(b) ∈ Zprec×prec

if p ≥ 3. These integer vectors, equipped with (9) and (10), give us the results a+b ∈ R and ab ∈ R.
In general, to handle (8) and (10) when all N real numbers a(i) and b(i) are encrypted as in

(11), the condition on p becomes

N <
p

2
(12)

to remove the plaintext-related modulo p.

4.2 Secure computation of mean, variance, and weighted sum

Mean. To securely compute the mean of a(1), . . . , a(N) ∈ R using their encryptions Ea(1) , . . . , Ea(N)

as in (11), just do
Ea(1) + · · ·+ Ea(N) ∈ Z1×(n+prec)

q

and then use (8) to obtain the sum P1 =
∑N

i=1 a
(i) over R. The mean is obtained by dividing the

sum by N .
When setting the precision prec = 64 and N = 1001, in 128-bit security, one can see that the

secure mean computation requires (N − 1)×TAdd = 1000× 0.004 = 4 (ms) where TAdd is the time
for one addition given in Table 2.

Variance. Compute

ET
a(1)

Ea(1) + · · ·+ ET
a(N)Ea(N) ∈ Z(n+prec)×(n+prec)

q

whose decryption, equipped with (10), yields the sum of squares P2 =
∑N

i=1(a
(i))2 ∈ R. The variance

is computed as P2/N − (P1/N)2 where P1 is computed as above.

Mean and variance in one shot. We need to change the encryption format from (11) a little,

namely for a(i) ∈ R, let Ea(i) = (Enc(Bits(a(i))),Enc(Bits((a(i))2))) ∈ Z1×2(n+prec)
q , and compute∑N

i=1Ea(i) ∈ Z1×2(n+prec)
q whose decryption, equipped with (8), yields the sum P1 and P2 as above.
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Again, when setting the precision prec = 64 and N = 1001, in 128-bit security, one can see that
the secure computation of the mean and variance requires at most 2(N−1)×TAdd = 2000×0.004 = 8
(ms) where TAdd is the time for one addition given in Table 2.

Weighted sum. For real numbers θ(i) ∈ R, compute Eθ(i) using (11), and

ET
θ(1)

Ea(1) + · · ·+ ET
θ(N)Ea(N) ∈ Z(n+prec)×(n+prec)

q

whose decryption, equipped with (10), yields the weighted sum
∑N

i=1 θ
(i)a(i) ∈ R. This is later used

for secure prediction in linear regression in Section 5.5.

5 Application 1: secure linear regression

5.1 The model of secure outsourced computation

We work in the scenario of outsourced computation using homomorphic encryption: a client out-
sources its data to a cloud server for computation and storage, but does not want to leak any
information to the cloud server. This model is standard to show applications of homomorphic
encryption, as in [15,29]. In the following we recap the details.

Model outline. The general picture of the protocol is in Figure 4. We use Epk(data
(i)) to repre-

sent the encryption of the data under a public key pk from the client, and possibly Epk(data
(j)),

Epk(data
(k)) from various geographically-distributed data contributors. After receiving the en-

crypted data, using homomorphic property of Epk, the computing server does necessary computa-
tions and sends the output Epk(Θ) to the data analyst, from which Θ is recovered by decryption,
and the final result θ∗ is obtained (from Θ).

Outsourced
Server

Client(sk)
(Data Analyst)

output θ∗

Epk(data(i))

Epk(Θ)

Epk(data(j))

Epk(data(k))

...

Fig. 4. Basic model of secure outsourced computation.

In medical research, the client can be some research institute, while data contributors can be
many geographically distributed hospitals, e.g., as in the iDash system (https://idash.ucsd.
edu/).

Key generation. The client generates the public and secret key pair (pk, sk) and publicly dis-
tributes pk.

Data encryption. Data from the client or many contributors is encrypted and sent to the out-
sourced server. We assume that these encryption and uploading processes are always correctly
executed.

Threat and protection goal. The outsourced server is assumed honest-but-curious: it is curious
on any information from the data, and yet is honest in instructed computations. This curious nature
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of the server is considered a threat. The protection goal of our protocol in Figure 4 is to hide any
information of the data from the server.

This honest-but-curious assumption is reasonable to model an economically motivated cloud
service provider: it wants to provide excellent service for a successful business, but would be in-
terested in any extra available information. On the order hand, a malicious cloud service provider
can mishandle calculations, delete data, refuse to return results, collude with other parties etc.
Nevertheless, it is likely to be caught in most of these malicious behaviors, and hence harms its
reputation in business. Therefore, we will stick to the assumption of honest-but-curious server.

Non-threat. The client with the secret key can see all data in the plain, and this is not considered
a threat in our context of outsourced computation.

5.2 Supporting multiple clients via key rotation

In previous Sections 2.3 and 3.3, we show how to use the key rotation property regarding security.
In this section, again making use of that property, we show the model in Figure 4 can be extended
to support many clients. The extension is in Figure 5, illustrating the case of two clients utilizing
encrypted data in a cloud server.

Outsourced
server having
rotation key

rk1→2

Client1(sk1) output θ∗1

Epk1(data(i))

Epk1(Θ1)

Client2(sk2)
Epk2(Θ2)

output θ∗2

Epk1(data(j))

Epk1(data(k))

...

Fig. 5. Extended model with multiple clients.

In Figure 5, all data items from geographically-distributed contributors are encrypted un-
der pk1 and sent to the cloud server. The cloud server has a rotation key rk1→2 generated via
UKGen(pp, pk1, sk1, pk2, sk2) as in Figure 2. While the UKGen algorithm uses both the secret keys,
it is unnecessary that Client1 and Client2 do the generation off-line. Instead, by examining the
UKGen algorithm, it suffices to have Client2 generate and send matrices (X,−XS2 +pE) to Client1
via a secure channel. Then Client1 can generate rk1→2 = (X,Y ) as in UKGen and sends it to the
cloud server.

Client1 can use the encrypted data and the cloud server as in the basic model in Figure 4.
Client2, with the help of rk1→2, can do the same. Namely, it can have the cloud server to transform
all or parts of the encrypted data under pk1 into pk2 and stores them on the cloud; it can outsource
the computation over the ciphertexts under its key pk2 just like Client1 does.

5.3 Linear regression and some tweaks

Background. Let us start by recalling the standard (batch) gradient descent, succinctly described
in Table 4. Data dimension, namely the number of features, is denoted by d. The number of data
items, namely the training set size, is denoted by Ndata. Each training data item is denoted as
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Table 4. Gradient descent for linear regression.

Initialize θ = (θ0, . . . , θd) = (0, . . . , 0) ∈ Rd+1.

Set x
(i)
0 = 1 and fix a proper learning rate α ∈ R.

Repeat{

θ0 ← θ0 −
α

Ndata

Ndata∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
0

...

θd ← θd −
α

Ndata

Ndata∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
d

} until Jcost(θ) at (13) is minimized

Return θ∗ = θ as the output.

(x(i), y(i)) for 1 ≤ i ≤ Ndata in which x(i) ∈ Rd and y(i) ∈ R. As x(i) ∈ Rd, we can explicitly write it

as x(i) = (x
(i)
1 , . . . , x

(i)
d ). The following concepts are vital to the gradient descent algorithm.

• Linear hypothesis is a linear function hθ : Rd → R. Namely for variable X = (X1, . . . , Xd) ∈ Rd,

hθ(X) =
d∑
j=1

θjXj + θ0.

• The cost function over training data

Jcost(θ) =
1

2Ndata

Ndata∑
i=1

(
hθ(x

(i))− y(i)
)2
. (13)

The goal of the gradient descent algorithm in the left of Table 4 is to find θ = (θ0, . . . , θd) which
minimizes Jcost(θ) in (13). In practice, one may be content when Jcost(θ) is sufficiently close to the
exact minimum, and hence stops the algorithm when Jcost(θ) is not much smaller compared to the
previous step.

Tweaks in computation. Referring to Table 4, for all j = 0, . . . , d, the sum in updating each θj
can be expressed as follows

Ndata∑
i=1

(
hθ

(
x(i)
)
− y(i)

)
x
(i)
j

=

Ndata∑
i=1

(
d∑

k=0

θkx
(i)
k − y

(i)

)
x
(i)
j

=

Ndata∑
i=1

d∑
k=0

θkx
(i)
k x

(i)
j −

Ndata∑
i=1

y(i)x
(i)
j

=

d∑
k=0

θk

Ndata∑
i=1

x
(i)
k x

(i)
j︸ ︷︷ ︸

Ak,j∈R

−
Ndata∑
i=1

y(i)x
(i)
j︸ ︷︷ ︸

Bj∈R

(14)
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Similarly, the cost function in (13) can be expanded as

Jcost(θ) =
1

2Ndata

 d∑
k,k′=0

(θkθk′)Ak,k′ − 2
d∑

k=0

θkBk + C

 (15)

where Ak,k′ and Bk are as in (14), and

C =

Ndata∑
i=1

(
y(i)
)2
. (16)

Observation: heavy works to cloud, light works to client. To proceed linear regression using
gradient descent, the client just needs to know the values Ak,j , Bj , C for all 0 ≤ k, j ≤ d in which
presumably d� Ndata. Therefore, the work of the client is O(d2). In contrast, the work of the cloud
server is O(Ndata). This observation is vital to the following sections handling encrypted data.

Extension to ridge regression. The above backgrounds and tweaks can be straightforwardly
applied to ridge regression, where the cost function is defined as Jcost(θ) + µ||θ||22 for a parameter
µ ∈ R. When µ = 0, ridge regression is exactly linear regression. When µ > 0, a solution θ with small
norm is preferable. As the added term µ||θ||22 does not vary with data items, the following subsections
remain almost unchanged even with ridge regression. (The only change for ridge regression is in
the client side, and we will note that in place later.)

5.4 Secure linear regression

Below we give details on securely outsourced linear regression under the model outlined in Figure
4.

Data format. Each data item i (1 ≤ i ≤ Ndata) is represented as

data(i) = (x
(i)
1 , . . . , x

(i)
d , y

(i)) ∈ Rd+1.

Via normalization, without loss of generality, we assume that −1 ≤ x
(i)
1 , . . . , x

(i)
d , y

(i) ≤ 1 which is
standard to improve the convergence speed of the gradient descent.

Encryption at client (and data sources). The encryption Epk(data
(i)) from each data source

is done as follows

1. Compute u
(i)
k,j = x

(i)
k x

(i)
j , v

(i)
j = y(i)x

(i)
j , w

(i) = (y(i))2 ∈ R for all 1 ≤ k, j ≤ d, which is of
ld = d(d+ 1)/2 + d+ 1 real numbers.

2. Consider prec bit representations of real numbers in data(i), and all u
(i)
k,j and v

(i)
j , concatenate

them as one vector in {−1, 0, 1}(d+1+ld)·prec, and do the encryption

E(i) = Enc

(
Bits(x

(i)
1 ), . . . ,Bits(x

(i)
d ),Bits(y(i)), . . . ,

Bits(u
(i)
k,j), . . . ,Bits(v

(i)
j ), . . . ,Bits(w(i))

)

where Enc is the encryption algorithm in Figure 1. The ciphertext result is a vector in Z1×(n+(d+1+ld)·prec)
q ,

and is sent to the server.
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Outsourced server. Having all ciphertexts E(i), the cloud server computes the sum

E =

Ndata∑
i=1

E(i) ∈ Z1×(n+(d+1+ld)·prec)
q (17)

and sends the result to the client.

Client (data analyst). The client decrypts E using algorithm DecA in Figure 1 to obtains the
following sums

Ndata∑
i=1

Bits(x
(i)
1 ), . . . ,

Ndata∑
i=1

Bits(x
(i)
d ),

Ndata∑
i=1

Bits(y(i)) ∈ Z1×prec
p

and

Ndata∑
i=1

Bits(u
(i)
k,j),

Ndata∑
i=1

Bits(v
(i)
j ),

Ndata∑
i=1

Bits(w(i)) ∈ Z1×prec
p

from which the client obtains the following real numbers

Ndata∑
i=1

x
(i)
1 , . . . ,

Ndata∑
i=1

y(i) ∈ R

Ndata∑
i=1

u
(i)
k,j ,

Ndata∑
i=1

v
(i)
j ∈ R,

Ndata∑
i=1

w(i) ∈ R

for all 1 ≤ k, j ≤ d via (8) if Ndata < p/2. These are exactly Ak,j , Bj , C for all 0 ≤ k, j ≤ d in (15)
and (16). Having these coefficients is equivalent to having Jcost(θ) and its gradients at (13) and (14),
the client then finds θ∗ = argminθJcost(θ). (One concrete and simple way is to proceed as in Table
4 and outputs the result of that algorithm. For ridge regression, θ∗ = argminθ(Jcost(θ) + µ||θ||22) at
the client side.)

Communication cost between server and client. The cost of sending the computed result is
only the size of E at (17), which is in bits(

n+ (d+ 1 + ld)prec
)

log2 q =
(
n+O(d2)prec

)
log2 q. (18)

Moreover, in the store phase, as E(i) has the same size of E at (17), the cost of each store is also
(18).

5.5 Secure prediction

Section 5.4 showed how to compute θ∗ = argminθJcost(θ) using encrypted data. Here we show how
to use those coefficients for secure prediction in the sense that

– θ∗ = (θ∗0, . . . , θ
∗
d) can be made public, and

– data used in prediction (x1, . . . , xd) is encrypted,

and yet the output hθ∗(x) =
∑d

i=1 θ
∗
i xi+θ

∗
0 can be computed. This is exactly the secure computation

of the weighted sum described in Section 4.2 with the “weights” (θ∗0, . . . , θ
∗
d).
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5.6 Outputs with differential privacy

Outputs with differential privacy intuitively ensure that the change in any single data item will not
much affect the output.

First, it is worth noting that directly adding Laplace noise to the output θ∗, namely directly
using the Laplace mechanism [13], may work heuristically. Nevertheless, it seems hard to determine
parameters for the noise due to complexity of the gradient descent algorithm.

Instead, we prefer to make use of the functional mechanism [33]. Namely, it suffices to add
noises with Laplace distribution into the coefficients Ak,k′ , Bk, and C of the cost function at (15).
In that way, differential privacy of the output can be obtained, as shown in [33].

Below gives the details. Recall that, a noise x ∈ R has Lap(σ) distribution if its probability den-
sity function is 1

2σ exp(−|x|/σ). To obtain ε-differential privacy, the only change we need is the com-
putation of the server given at (17). Namely, the server generates Laplace noises e1, . . . , ed+1+ld ∈ R
from the Lap(nd/ε) distribution, where nd = O(d2), and does the following computation in the re-
placement of (17)

Eε=Enc
(
Bits(e1), . . . ,Bits(ed+1+ld)

)
∈ Z1×(n+(d+1+ld)·prec)

q

E = Eε +

Ndata∑
i=1

E(i) ∈ Z1×(n+(d+1+ld)·prec)
q .

The effect of the change is that the client obtains real values

Ak,j = Ak,j + Lap(nd/ε) ∈ R
Bj = Bj + Lap(nd/ε) ∈ R
C = C + Lap(nd/ε) ∈ R

for all 0 ≤ k, j ≤ d in (15) and (16). Having them, the client again proceeds as in Section 5.4.

5.7 Experiments and comparisons

To compare with the best previous work regarding speed and size [26], we use the same UCI
datasets [1]. The concrete figures on server-client communication costs and server timings are given
in Table 5.

Regarding the communication costs, megabytes in [26] are reduced to kilobytes by our system.
For example, in the flare2 dataset, 200 megabytes in [26] become 44 kilobytes (0.044 megabytes)
in our system.

Regarding the computational costs, seconds in [26] are reduced to milliseconds by our system.
For example, with the same flare2 dataset, 115 seconds become 22.3 milliseconds (0.0223 seconds)
in our system.

The above differences are due to many reasons including: the model of computation, the choice
of primitives, and the design gluing those together. Specifically, we use the standard model of secure
outsourced computation using homomorphic encryption, while [26] combines homomorphic encryp-
tion with Yao garbled circuits [30]. The use of garbled circuits causes megabytes of communication
in [26]. In turn, the server in [26] needs to solve a garbled linear equation system with d equations
and variables. In contrast, in our system, the server only does the additions over ciphertexts; the
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Table 5. Comparisons using the UCI [1] datasets.

Name n d Comm. (MB) Time (s)
[26] Ours [26] Ours

automobile 205 14 189 0.032 100 0.0227
autompg 398 9 39 0.016 21 0.0086
challenger 23 2 2 0.005 2 0.0014
communities 2215 20 234 0.050 130 0.0276
computerhardware 209 7 21 0.012 15 0.0035
concreteslumptest 103 7 15 0.009 10 0.0027
concreteStrength 1030 8 27 0.017 17 0.0074
forestFires 517 12 83 0.025 46 0.0111
insurance 9822 14 102 0.036 55 0.0617
flare1 323 20 170 0.035 92 0.0201
flare2 1066 20 200 0.044 115 0.0223

(Server: Xeon E5-2660 v3, 2.60GHz x 2 CPU, 20 threads. Client: same machine with 1 thread. The number of bits
for fractional part of real numbers is set identically in each comparison. Our reported time already counts both of
the server and the client.)

client decrypts to obtain the coefficients of the cost function at (15) and proceeds with gradient
descent, so that our approach scales very well even when the number d of features in the data gets
large (e.g., d = 20 and beyond).

6 Application 2: secure biometric authentication

For binary vectors R,A,A′ ∈ Z1×l
2 (= {0, 1}l), consider the encryption using the Enc algorithm in

Figure 1 with p = 2 and gcd(2, q) = 1,

c(1) = Enc(R+A) ∈ Zn+lq , c(2) = Enc(A′) ∈ Zn+lq

and define

cadd = c(1) + c(2) ∈ Zn+lq (19)

so that by the additive homomorphism

Decsk

(
cadd

)
= R+A+A′ ∈ Zl2 (20)

which gives us binary vector R ∈ Zl2 if A = A′.

The computations at (19) and (20) can be readily applied to biometric authentication, as follows.
The following passively secure protocol has been known in [11].

Biometric authentication protocol [11]. There are three parties in the protocol: users, a server,
and a key manager.

• Key generation: The key manager runs algorithms ParamGen(1λ) and KeyGen(1λ, pp) in Fig-
ure 1 to obtain pp and (pk, sk) respectively. The key manager keeps sk secret and makes
pp = (q, l, p = 2), and pk = (A,P, n, s) public. As p = 2 we have Zp = Z2 = {0, 1}.
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• Enrollment phase: a user with identity id and biometric representation A ∈ Zl2 takes a random
binary linear code R ∈ Zl2 (with error correcting functionality), computes and sends the tuple

id,H(R),Enc(R+A)

to the server, in which H is a hash function, and Enc(·) is the encryption algorithm Enc(pk, ·)
in Figure 1, and the addition R+A is done over Zlp = Zl2. The server stores the above tuple.
• Verification phase: this consists of following two steps.

Computation at server: A user sends id,Enc(A′) to the server. The server, using the identity
id, restores H(R) and Enc(R+A) and then computes as in (19)

CT = Enc(R+A) + Enc(A′) ∈ Zn+lq

which is Enc(R+A+A′) by additive homomorphism. The server then sends id, H(R), and the
added ciphertext CT to the key manager.
Checking at key manager: The key manager, owning secret key sk, computes the decryption
Decsk(CT ) as in (20) to obtain

R′ = R+A+A′ ∈ Zlp (= Zl2)

and it checks H(R) = H(EC(R′)), in which EC is the error correcting algorithm of the binary
code. The key manager outputs OK only if the check passes.

Correctness. As seen above, if A = A′, then the verification will pass as A+A′ becomes the zero
vector in Zl2. Moreover, even if a few bits in A′ are flipped, the verification will still pass due to the
error correcting code, which captures the situation that some errors may occur in the representation
of biometric information.

Passive security. On the security side, an honest-but-curious server will not obtain any infor-
mation on the biometric representation, as all are stored encryptedly and the hash value H(R) is
random computationally. The information recovered at the key manager R′ (and hence R = EC(R′))
is independent of any biometric templates and is deleted after the check. (We assume that the key
manager is honest.)

An interesting feature of the protocol is as follows. Assuming the key manager is honest, yet sk
is unfortunately leaked to an adversary who controls the database. Even in that case, no biometric
template can be recovered. The reason is that the adversary can only see H(R) and R+A ∈ Zl2. As
both H(R) and R are independently random if the hash function H is “ideal”, A is still perfectly
hidden.

Comparisons. In Table 6, (q, n, s) decides the bit security of LWE, while l is the message length in
bits. Since these values can be independent, and in particular n is smaller than l, the modulus q is
also smaller compared to [31,32] (in which q ≈ 261). Therefore, our size of ciphertexts, while relying
on the LWE assumption, is half smaller than [31,32] (31 Kbytes, under the ring-LWE assumption).
It is also worth noting that if Paillier encryption [27] is used to encrypt 2048 bits in a bit-by-bit
manner, then the ciphertext size can be even worse as shown in [31].

The computation at the server, in our case is 4.56 (µs). In contrast, it is 5.31 (ms) in [31]
so that we are more than 1000x faster. The reason is the protocol we use above do not require
ciphertext multiplication at the server. The difference in speed shows that the usage of a primitive
is as important as the primitive itself.
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Table 6. Timing of computations and sizes in biometric authentication (128-bit security).

q = 232 − 1, n = 921, s = 8, p = 2, l = 2048
Computation of (19) Computation of (20)

(Addition) (Decryption)

4.56 (µs) 2.15 (ms)

Enc. Ciphertext pk sk

3.05 (msec) 12 Kbytes 11 Mbytes 1.18 Mbytes

Timings are averaged over 1000 executions using 1 thread on a Xeon E5-2660 v3, 2.60GHz machine. The sizes of
ciphertexts and pk and sk are computed as (n+ l) log2 q and n(n+ l) log2 q and nl log2(4s) in bits.
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A Proof of Theorem 5

We will use following lemmas, whose proofs can be derived from [5,6]. Below 〈·, ·〉 stands for inner
product. Writing ||Zns || is a short hand for taking a vector from the discrete Gaussian distribution
of deviation s and computing its Euclidean norm.
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Lemma 1. Let c ≥ 1 and C = c · exp(1−c
2

2 ). Then for any real s > 0 and any integer n ≥ 1, we
have

Pr

[
||Zns || ≥

c · s
√
n√

2π

]
≤ Cn.

Lemma 2. For any real s > 0 and T > 0, and any x ∈ Rn, we have

Pr [||〈x,Zns 〉|| ≥ Ts||x||] < 2 exp(−πT 2).

Proof (of Theorem 5). For now suppose h = 2, we check the decryption by secret key S2 in dimension
n2 of updated ciphertexts. Using the notations as in Figure 2, let E0 = [E1|E2] and F = [F1|F2]
for E1, F1 ∈ Z1×n2

q , and E2, F2 ∈ Z1×l
q , so c′ = E0 + F = [E1 + F1|E2 + F2], and the decryption of

c′ by S2 becomes

(E1 + F1)S2 + E2 + F2

=
(
f1A2 + pf2 + Bits(c1)X

)
S2 + f1P2 + pf3

+ Bits(c1)Y + c2

= f1A2S2 + pf2S2 + Bits(c1)XS2 + f1(pR2 −A2S2)

+ pf3 + Bits(c1)Y + c2

= pf2S2 + Bits(c1)XS2 + pf1R2 + pf3

+ Bits(c1)
(
−XS2 + pE + Power2(S1)

)
+ c2

= pf2S2 + pf1R2 + pf3

+ pBits(c1)E + Bits(c1)Power2(S1) + c2

= p(f2S2 + f1R2 + f3 + Bits(c1)E)︸ ︷︷ ︸
noise incurred after one Update

+c1S1 + c2 ∈ Z1×l
q .

In the worst case, Bits(c1) contains all 1’s, so that the noise added after one update is

p(f1R2 + f2S2 + f3 + 11×n1κ · E).

Generally, the noise added after h updates corresponding to key dimension ni (2 ≤ i ≤ h) is a
sum of form

p
h∑
i=2

(
f
(i)
1 R

(i)
2 + f

(i)
2 S

(i)
2 + f

(i)
3 + 11×niκ · E(i)

)
.

Each component in Zq of the total noise in Z1×l
q , namely including the noise in the original cipher-

text, can be written as the inner product of two vectors of form

e = (f
(2)
1 , f

(2)
2 , f

(2)
3 , . . . , f

(h)
1 , f

(h)
2 , f

(h)
3 ,

e(2), . . . , e(h), e1, e2, e3)

x = (r
(2)
2 , s

(2)
2 ,0101×l, . . . , r

(h)
2 , s

(h)
2 ,0101×l,

11×niκ︸ ︷︷ ︸
2≤i≤h

, r, r′,0101×l)

where, for all 2 ≤ i ≤ h,
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– Vectors f
(i)
1 , f

(i)
2

g← Z1×ni
s , and f

(i)
3

g← Z1×l
s . Vectors e(i)

g← Z1×niκ
s represents one column in ma-

trix E(i). Vectors e1
g← Z1×n1

s , e2
g← Z1×n1

s , and e3
g← Z1×l

s are the noises in the original cipher-
text.

– Vectors r
(i)
2 , s

(i)
2

g← Z1×ni
s , and 0101×l stands for a vector of length l with all 0’s except one 1;

11×niκ for a vector of length niκ with all 1’s. Vectors r, r′
g← Z1×n1

s represent corresponding
columns in matrices R,S.

Here we use the same deviation s for all dimensions to ease the computation. We have

e ∈Z1×(
∑h
i=1(2ni+l)+

∑h
i=2 niκ)

s

||x|| ≤||(r(2)2 , s
(2)
2 , . . . , r

(h)
2 , s

(h)
2 , r, r′)||+

√√√√κ
h∑
i=2

ni + h

where (r
(2)
2 , s

(2)
2 , . . . , r

(h)
2 , s

(h)
2 , r, r′) ∈ Z1×(2

∑h
i=1 ni)

s . Applying Lemma 1 for vector of length 2
∑h

i=1 ni,
with high probability of

1− C2
∑h
i=1 ni(≥ 1− 2−40 for all choices of parameters)

we have

||x|| ≤
c · s

√
2
∑h

i=1 ni√
2π

+

√√√√κ

h∑
i=2

ni + h.

We now use Lemma 2 with vectors x and e. Let ρ be the error per message symbol in decryption,
we set 2 exp(−πT 2) = ρ, so T =

√
ln(2/ρ)/

√
π. The bound on the noise becomes pTs||x||, which is

not greater than

ps
√

ln(2/ρ)√
π

c · s
√

2
∑h

i=1 ni√
2π

+

√√√√κ
h∑
i=2

ni + h


def
= B(ρ, h, s, n1, . . . , nh, p, q). (21)

No update (h = 1): (21) becomes

ps
√

ln(2/ρ)√
π

(
c · s
√

2n1√
2π

)
=
pcs2

√
ln(2/ρ) · n1
π

.

which is the upper-bound of noise in each original ciphertext. If original ciphertexts are multiplied
as in (3) and then the results are added Nadd times, the corresponding noise bound is set below
q/2 for correctness

Naddn1p
2c2s4 ln(2/ρ)

π2
≤ q

2
. (22)

With update (h ≥ 2): Now we consider (21) with h ≥ 2. As in (22) we set

Nadd ·B(ρ, h, s, n1, . . . , nh, p, q)
2 ≤ q

2
(23)

becomes the condition for correctness stated in the statement of the theorem, ending the proof. ut
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B Use of a ring-LWE-based scheme and some comparisons

We recall the known ring-LWE-based homomorphic encryption scheme (described in [16]) in Figure
6. The addition of ciphertexts can be done naturally as c+c′ ∈ R2

q . The multiplication is the tensor

(aka, outer) product c⊗ c′ ∈ Zn
2
rlwe
q in which c and c′ are seen as vectors in Znrlwe

q .

ParamGen(1λ): KeyGen(1λ, pp):

Take: Take s = s(λ, pp) ∈ R+

q = q(λ) ∈ Z+ r, s
g←Rs, a

$←Rq
nrlwe = nrlwe(λ) ∈ Z+ p = r− as ∈ Rq
p ∈ Z+ Return pk = (a,p, s)

Return pp = (q, nrlwe, p) sk = s

Enc(pk,m ∈ Rp): Dec(s, c = (c1, c2)):

e1, e2
g←Rs, e3

g←Rs m = c1s + c2 ∈ Rq
c1 = e1a + e2 ∈ Rq m = b(p/q) ·me mod p
c2 = e1p+e3 + bq/pcm ∈ Rq Return m ∈ Rp
Return c = (c1, c2) ∈ R2

q

Fig. 6. The ring-LWE-based PKE in [16]. Ring R = Z[x]/f(x), f(x) = xnrlwe + 1, and Rq = R/q, Rp = R/p. The
notion Rs stands for polynomials in R with small Gaussian coefficients.

Differing from our scheme in Figure 1, the plaintext space is Rp = Zp[x]/(xnrlwe + 1) so that
plaintexts are vectors of length nrlwe. In other words, the parameter nrlwe decides both the security
and the plaintext size in the ring-LWE-based scheme. Therefore,

• (Secure linear regression) If using the above ring-LWE-based scheme in secure linear regression
in Section 5.4, it is necessary to set the dimension nrlwe to handle plaintexts in {−1, 0, 1}(d+1+ld)·prec

where ld = d(d + 1)/2 + d + 1 and prec = 64. If the data dimension d = 20, the plaintext space
becomes {−1, 0, 1}16128. Naively setting nrlwe ≈ 16128 will yield big modulus q to ensure correctness,
and hence long ciphertexts of 2nrlwe log2 q bits.

A way to reduce the modulus q is to split the message length 16128 to k (e.g., = 4) pieces
of size ≈ 16128/k bits. In this way, nrlwe ≈ 16128/k which helps reducing q. However, as each
piece of message is encrypted independently, we have k ciphertexts, each of which is of length
2(16128/k) log2 q, so that the total length is 2k(16128/k) log2 q = 2 · 16128 log2 q. In contrast, in
Section 5, the ciphertext size is (n+ l) log2 q where l = 16128 and n� l so our LWE-based scheme
gets a gain in size here.

Table 7. Our parameters vs. [31]’s.

Message Dimension log2 q
length (bits) nrlwe nlwe

[31] 2048 2048 ≈ 61

Sect.6 2048 950 ≈ 32

• (Secure biometric authentication) If using the ring-LWE-based scheme in the protocol of
biometric authentication in Section 6 with biometric templates of size 2048 bits, nrlwe must be set
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to 2048 as in [31]. In turn, [31] took log2 q ≈ 61 to ensure about 128-bit security. Each ciphertext
is of 2nrlwe log2 q bits, which is about 31 Kbytes as computed in [31]. In contrast, as in Table 7, we
can take smaller dimension nlwe = 950 thanks to the independence between the LWE’s dimension
and the message length in our scheme. These yield shorter ciphertexts as claimed in Section 6.

C Use of the Boneh-Goh-Nissim scheme and some comparisons

The BGN scheme originates in [7] using composite-order pairing groups. Its conversion to prime-
order pairing group is in [14]. BGN has shorter public key than our scheme. Nonetheless, when using
in our systems, it decreases the speeds of the server and the client and increases the ciphertext sizes,
argued below. The discussions apply to both versions of BGN.

The message space in BGN encryption can be expressed as Zp for some small p (to ensure that
the discrete logarithm problem is easy). To encrypt m = (m1, . . . ,ml) ∈ Zlp using BGN, we need
to encrypt element-wise, so that the ciphertext is

CT = (BGN.Enc(m1), . . . ,BGN.Enc(ml)) ∈ Gl

where G is an elliptic curve over finite field Fq. Therefore, ciphertext addition is done by l point
additions over the elliptic curve, which is usually more than 10 multiplications in Fq (see e.g.
https://hyperelliptic.org/EFD/). Assume that each multiplication is as fast as 3 additions
over Fq, we estimate that each ciphertext addition takes more than 3 · 10 · l = 30l additions over
Fq.

In contrast, in our scheme, as each ciphertext is a vector in Zn+lq , each ciphertext addition needs
n + l additions over Zq. At 128-bit security level, n = 3530 in our scheme, and as n + l � 30l if
l = 2048 (biometric authentication) or 16128 (linear regression over high-dimensional data), we will
not vote for the use of BGN in our systems for speed.

Let us consider ciphertext sizes. At 128-bit security level, encrypting one message in Zp pro-
ducing 3072 bits in the original BGN [7] and 1536 bits in the prime-order version [14]. As a result,
CT above is of at least 1536l bits, which is 1536l/213 kilobytes. When l = 2048 and 16128, the size
of CT becomes 384 kilobytes and 3024 kilobytes respectively, which are much longer than ours (of
12 and 279 kilobytes respectively). Therefore, we will not vote for the use of BGN in the systems
regarding ciphertext sizes.
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