
Novel algorithms and hardware architectures for

Montgomery Multiplication over GF(p)

M. Morales-Sandovala, A. Diaz Pereza

aLaboratorio de Tecnologias de la Informacion. CINVESTAV-Tamaulipas. Parque
Tecnotam, Victoria, Tamps, 87130, Mexico

Abstract

This report describes the design and implementation results in FPGAs of

a scalable hardware architecture for computing modular multiplication in

prime fields GF(p), based on the Montgomery multiplication (MM) algo-

rithm. Starting from an existing digit-serial version of the MM algorithm, a

novel digit-digit based MM algorithm is derived and two hardware architec-

tures that compute that algorithm are described. In the proposed approach,

the input operands (multiplicand, multiplier and modulus) are represented

using as radix β = 2k. Operands of arbitrary size can be multiplied with

modular reduction using almost the same hardware since the multiplier’s

kernel module that performs the modular multiplication depends only on k.

The novel hardware architectures proposed in this paper were verified by

modeling them using VHDL and implementing them in the Xilinx FPGAs

Spartan and Virtex5. Design trade-offs are analyzed considering different

Email addresses: mmorales@tamps.cinvestav.mx (M. Morales-Sandoval),
adiaz@tamps.cinvestav.mx (A. Diaz Perez)

This is a technical report. Part of the information presented here is appearing in the
journal article “Scalable GF(p) Montgomery Multiplier based on a digit-digit computation
approach”, to be published in the journal IET Computers and Digital Techniques. in 2015

Technical report 2015

operand sizes commonly used in cryptography and different values for k.

The proposed designs for MM are well suited to be implemented in modern

FPGAs, making use of available dedicated multiplier and memory blocks re-

ducing drastically the FPGA’s standard logic while keeping an acceptable

performance compared with other implementation approaches. From the

Virtex5 implementation, the proposed MM multiplier reaches a throughput

of 242Mbps using only 219 FPGA slices and achieving a 1024-bit modular

multiplication in 4.21µsecs.

Keywords: Montgomery algorithm, Digit-based Multiplier, FPGA, Finite

Field

1. Introduction

Arithmetic in the finite field GF(p) is crucial in modern cryptography

for real-life applications such as security protocols in computer networks or

software applications for secure data storage. These high level applications

for data security rely on cryptographic algorithms such as RSA [1], a public

key cryptosystem that performs encryption and digital signature processes

based on exponentiation on GF(p). Another example is Elliptic Curve Cryp-

tography for elliptic curves defined over GF(p) [2, 3]. Several GF(p) multi-

plications are required to achieve a single GF(p) exponentiation, being this

operation the most time consuming and the RSA’s bottleneck. This fact has

motivated the creation of algorithms and custom hardware architectures to

compute these arithmetic operations faster in order to improve the overall

performance of high level data security mechanisms. One of the most efficient

GF(p) multiplication algorithms is the Montgomery one.

2

The Montgomery multiplication algorithm [4] takes as input two integers

X, Y of size n-bits and the modulus p such that 2n−1 < p < 2n. The result

is Z = X × Y × 2−n mod p with gcd(2n, p = 1). This last condition is easily

satisfied since p is actually a prime number. The p-residue of a number A

is defined as A′ = A × 2n mod p. The Montgomery multiplication of two p-

residue numbers A′ and B′ is another p-residue number C ′ that corresponds

to the integer C = A×B mod p. Thus, it is necessary to convert the numbers

from the ordinary domain (with ordinary multiplication) to the Montgomery

domain and backwards. Given the number A in the ordinary domain, its

corresponding number A′ in the Montgomery domain is computed as the

Montgomery multiplication A′ = A × 22n mod p. On the other hand, given

C ′ in the Montgomery domain, its corresponding number in the ordinary

domain is also computed as the Montgomery multiplication C = C ′× 1 mod

p. Despite the conversion cost, a notorious advantage is achieved if many

Montgomery multiplications are required, as it is the case of encryption in

RSA.

The Montgomery multiplier has the advantage of being able to perform

modular multiplications where the modulus is of a general form and also

at very low area [5]. In the literature there are several versions of the

Montgomery algorithm and hence different hardware proposals for computing

a Montgomery multiplication. Three approaches can be distinguished from

the reported works: full parallel, bit-serial, and digit-based multipliers.

Full parallel multipliers. Having the n-bit operands X, Y , and p, Z

is computed in a single clock cycle. This way the resulting multiplier would

exhibit a very high throughput but also a long critical path and high area

3

resources. A representative work implementing this kind of multiplier is

[6]. Recent works as [7] use the Karatsuba approach to decompose the

multiplication recursively until the size of the partial product multiplications

can be computed by the embedded multiplier blocks in modern FPGAs.

Bit-serial multipliers. The algorithm corresponding to this kind of

multiplier is known as the Radix-2 Montgomery Multiplication algorithm,

requiring n iterations to compute Z. The operand X is parsed iteratively bit

per bit while Y and p are accessed in parallel (all their bits are accessed at a

time). This kind of multiplier is the simplest for hardware implementation.

However, the involved operations in the MM algorithm are performed with

full precision of Y and p having an intrinsic limitation: once a hardware

design based on that algorithm is defined for n bits, it cannot work with other

precision [8]. Moreover, being Y and p large numbers (i.e. greater than 1024

bits) the hardware multipliers results with large wire delays and complex

routing, which also affects the maximum delay and thus the multiplier’s

performance. Recent works have provided implementation results of this

kind of multiplier, for example [5].

Digit-based multipliers. The digit-based approach has been better

preferred and studied since it allows to compromise area/performance ac-

cording to specific implementation requirements. Further, a digit-oriented

algorithm allows to develop scalable hardware units for the Montgomery

multiplication algorithm, that is, hardware architectures able to work for

any operands precision. In the literature, three types of digit-based Mont-

gomery multiplier are distinguished. The first one, named in this paper as

the High-Radix (2k) Montgomery algorithm (R2kMM) parses the operand X

4

considering w-bits at a time while all bits of operands Y and p are accessed

at a time. A representative work implementing this algorithm is [9]. Com-

pared to a bit-serial multiplier, performance is gained since the number or

iterations in the algorithm is reduced from n to ⌈n/w⌉. However, considering

more than one bit at a time from X implies more area resources in the de-

sign. The second digit-based approach for Montgomery multiplication is to

decompose the operands Y and p in several digits of size w and parse them

iteratively while X is parsed bit-by-bit. The corresponding algorithm for

this approach was named in [8] as the Multiple-word Radix-2 Montgomery

Algorithm (MWR2MM). Of course, this second approach will lead to a de-

sign that sacrifices performance since more iterations are required to parse

each digit from Y and p but it provides more regular hardware architectures

that lead to multipliers with higher clock frequencies. The most studied

hardware architectures for the MWR2MM algorithm have been the systolic

ones [10, 11, 12, 13]. The third approach is the Multiple-word High-Radix

(2k) Montgomery Multiplication algorithm (MWR2kMM) presented in [14].

Under this algorithm, k determines the number of bits from X processed at

a time while the operands Y and p are parsed in words of size w. For this

kind of multiplier, designs only for k = 2 [13] and k = 3 [14] have been

proposed due to the enormous cost in area.

This work presents a novel digit-based Montgomery multiplier. Different

to the previous approaches, this contribution presents as main distinctive

characteristic a digit-digit approach for constructing novel Montgomery mul-

tipliers, splitting the three operands X, Y and p in digits of size k and

computing a Montgomery multiplication like in software but exploiting the

5

parallelism in instructions. Although the digit-digit Montgomery algorithm

proposed in this work uses the same principle than theMWR2kMM algorithm

reported in [14, 10], it differs in the following: i) the digit-digit algorithm

is derived from the Walter’s digit-serial algorithm [15] that does not require

final subtraction, it is not derived from the Radix-2 Montgomery multipli-

cation algorithm . ii) the Booth encoding is not used for each digit from

X as it is done in [14] neither a shift register is used for storing X as it

occurs in [10]. iii) While in the MWR2kMM algorithm X is split in digits

of size k and Y, p are split in digits of size w, in our proposed algorithm the

three operands are split in digits of size k. iv) The corresponding hardware

architecture for the proposed digit-digit algorithm is not a systolic array of

processing elements as it is the case of [14, 10] or other similar works as

[11, 12, 13].

This report is an extension of the previous work published in [16]. Com-

pared to that earlier work, this paper provides an extended explanation of the

novel digit-digit algorithm for Montgomery multiplication called IDDMM,

providing comparisons with other Montgomery algorithms in the literature.

Also, this extended version presents two hardware architectures for comput-

ing the IDDMM algorithm, discussing implementation results on FPGAs. A

parametric design for the multipliers described in VHDL allowed to deter-

mine the best configuration for the digit size k and obtain the best performed

architectures that compromise area and performance (efficiency). FPGAs are

the ideal choice as computing platform to carry out this study. Under the

proposed digit-digit approach it is posible to have from very compact designs

(sacrificing performance) to better performer multipliers (at expenses of more

6

area resources).

The next section introduces the Montgomery algorithm and a review of

different versions of it in the literature. Section 3 describes the novel digit-

digit Montgomery multiplication algorithm proposed in this work, comparing

it against existing algorithms. Section 4 describes in detail two hardware ar-

chitectures implementing the digit-digit Montgomery multiplier, whose com-

plexity depends only on k, not on the operands size. Section 5 presents,

discusses and compares the achieved results against related works. Finally,

Section 6 concludes this work and points out future work.

2. Montgomery multiplication algorithm

The Montgomery algorithm originally reported in [4] performs the op-

eration X × Y × R−1 mod p, given X, Y < p and R such that the greatest

common denominator (p,R) = 1. The integer R usually is a power of 2 so

the requirement gcd(p,R) = 1 is satisfied if p is odd. Let modulus p be an

n-bit number with 2n−1 ≤ p < 2n and R = 2n. The Radix-2 Montgomery

multiplication algorithm (R2MM) depicted in figure 1 is the simplest method

for computing Z = X × Y × 2−n mod p. X = (xn−1, · · · , x1, x0) is parsed

from the least to the most significant bit. At each iteration, the partial re-

sult stored in S is updated according to the parity of S + xiY . If S + xiY

is even, the division at line 5 in algorithm 1 is easily computed as a logical

right shift operation. Contrary, if that value is odd, the addition of p to

S + xiY does not affect the sum (which is reduced modulo p) but makes the

result S + xiY + p be an even number that can be again easily divided by 2.

Clearly, the latency of algorithm R2MM is n. At line 10, a subtraction could

7

1: procedure R2MM(X, Y, p)
2: S ← 0
3: for i← 0 to n− 1 do
4: if (S + xiY) is even then
5: S ← (S + xiY)/2
6: else
7: S ← (S + xiY + p)/2
8: end if
9: end for

10: if S ≥ p then
11: S ← S − p
12: end if
13: end procedure

Figure 1: Radix-2 Montgomery multiplication algorithm (R2MM).

be required if the final result S is greater or equal to p.

In 1999, Tenca and Koc [8] presented the word-based Radix-2 algorithm

for Montgomery multiplication named MWR2MM and listed in figure 2.

For this version, X is parsed bit-per-bit as in the R2MM algorithm but the

operands Y, p are split in e = ⌈n/w⌉ words each of size w and parsed itera-

tively. Words from Y and p are denoted as Y = [0, Y (e−1), · · · , Y (1), Y (0)], and

p = [0, p(e−1), · · · , p(1), p(0)] respectively. Observe that Y, p are extended by

one most significant word equal to zero. As a convention with other related

works, words from operands are denoted by superscripts while individual bits

are denoted by subscripts.

In the R2MM algorithm, the parity of S+xiY is tested using only the first

bit of Y and S. However, in the MWR2MM algorithm at line 4, the parity of

S + xiY is tested considering only the first word of Y and S. xiY
(0) +S(0) is

stored in S(0) and the resulting carry is stored in Ca. The parity of S+xiY will

be given by testing the bit S
(0)
0 . In the MWR2MM algorithm the operation

8

1: procedure MWR2MM(X, Y, p)
2: S ← 0
3: for i← 0 to n− 1 do
4: (Ca, S

(0))← xiY
(0) + S(0)

5: if S
(0)
0 = 1 then

6: (Cb, S
0)← S(0) + p(0)

7: for j ← 1 to e do
8: (Ca, S

(j))← Ca + xiY
(j) + S(j)

9: (Cb, S
(j))← Cb + p(j) + S(j)

10: (S(j−1))← (S
(j)
0 , S

(j−1)
w−1···1

11: end for
12: else
13: for j ← 1 to e do
14: (Ca, S

(j))← Ca + xiY
(j) + S(j)

15: (S(j−1) ← (S
(j)
0 , S

(j−1)
w−1···1)

16: end for
17: end if
18: S(e) ← 0
19: end for
20: end procedure

Figure 2: Multiple Word Radix-2 Montgomery multiplication algorithm (MWR2MM).

9

(

S + xiY + S
(0)
0 p
)

/2 is computed iteratively parsing the digits form S, Y

and p. The total amount of iterations is e+ 1.

For the case when S
(0)
0 = 1 one digit of the result is computed at each

iteration j in two steps. First, the operation Ca + xiY
(j) +S(j) is performed,

where Ca is the carry of the same operation in the previous iteration j−1. In

the second step, the operation Cb + p(j) + S(j) is performed, also considering

the carry Cb obtained from the same operation in the previous iteration

j − 1. At this point, a new digit S(j) of size w of the result S is ready.

The division by 2 is accomplished by a shift to the right operation on the

previous computed digit S(j−1) using as fill value the least significant bit from

the current digit S(j). In case S
(0)
0 = 0 the operation (S+xiY)/2 is computed

iteratively considering only the digits from S and Y , computing a new digit

of the result S. This is shown in line 14 of algorithm MWR2MM, where Ca

stores the carry obtained from the sum Ca + xiY
(j) + S(j) and used in the

computation of S(j+1) in the next iteration. The latency of the MWR2MM

is n× (⌈n/w⌉+ 1).

In 2001, the Multiple-Word High-Radix (Radix-2k) Montgomery Multipli-

cation MWR2kMM algorithm was proposed [14]. In this new version shown

in figure 3, not only the operands Y and p are split in several digits of size

w but also the operand X. Since Radix-2k is used, X is parsed in groups

of k bits at a time. To author’s knowledge, only hardware architectures for

this algorithm using k = 2 (Radix-4) [17, 13] and k = 3 (Radix-8) [14] have

been reported in the literature. The MWR2kMM algorithm is a variant of

the word-based FIOS algorithm for Montgomery multiplication for software

implementation [18]. The idea in the MWR2MM algorithm was to compute

10

S at each iteration i having as a result S
(0)
0 = 0 in order to perform the divi-

sion by 2 as a shift to the right operation. In the MWR2kMM algorithm the

requirement is to have at each iteration i the k least significant bits of S equal

to zero, that is, S
(0)
k−1,...,0 = 0 in order to perform a division of S by 2k as a

right shift operation of k-bits. Under this approach the number of iterations

i is reduced to ⌈n/k⌉ and it is necessary to compute qi at each iteration i such

that S+X(i)×Y +qip is divisible by 2k. Authors in [13] only considered k = 2

(Radix-4) in their reported hardware systolic implementation and remarked

that the case k > 2 is impractical. For that reason, a customized function

implemented in a look-up-table is designed. However, theoretically any k

value can be used having as only requirement that S(0)+X(i)Y (0)+qip(0) = 0

(mod 2k). In [14], qi is computed as [[S(0) +X(0)Y (0)]× (−p
(0)−1

k−1,...0)] mod 2k.

The Montgomery algorithm based on a digit-digit computation proposed

and implemented in this work is described in the next section. Although it

follows the same principle of the MWR2kMM algorithm its derivation and

implementation is different.

3. Novel digit-digit Montgomery multiplier

In 1999, C. Walter proposed an improved iterative algorithm (IMM) listed

in figure 4 for computing a Montgomery multiplication [15, 19]. Compared

with the original Montgomery algorithm, algorithm in figure 4 performs one

extra iteration, making the conditional final subtraction unnecessary. The

improved algorithm is therefore time-constant and avoids the implementation

of a subtracter [20]. The notation used from here on in the computation of

X × Y ×R−1 mod p, with R = βn+1, is shown in table 1.

11

1: procedure MWR2kMM(X, Y, p)
2: S ← 0
3: x−1 ← 0
4: for j ← 0 to n− 1 step k do
5: qY ← Booth(xj+k···j−1)
6: (Ca, S

(0))← S(0) + (qY ∗ Y)(0)

7: qp ← S
(0)
k−1···0 ∗ (2

k − p
(0)−1

k−1···0) mod 2k

8: (Cb, S
(0))← S(0) + (qMM)(0)

9: for i← 1 to ⌈n/w⌉-1 do
10: (Ca, S

(i))← Ca + S(j) + (qY ∗ Y)(i)

11: (Cb, S
(i))← Cb + S(j) + (qp ∗ p)

(i)

12: (S(i−1))← (S
(i)
k−1···0, S

(i−1)
w−1···k

13: end for
14: Ca ← Ca or Cb

15: S(⌈n/w⌉) ← signExt
(

Ca, S
(⌈n/w⌉−1)
w−1···k

)

16: end for
17: if S ≥ p then
18: S ← S − p
19: end if
20: end procedure

Figure 3: Multiple Word Radix-2k Montgomery multiplication algorithm (MWR2kMM).

Require: integers X =
∑n

i=0 Xiβ
i, Y =

∑n
i=0 Yiβ

i and p =
∑n−1

i=0 piβ
i, with

0 < X, Y < 2p, R = βn with gcd(p, β) = 1, and p′ = −p−1 mod β
Ensure: A =

∑n−1
i=0 aiβ

i = X × Y ×R−1 mod p
1: procedure IMM(X, Y, p)
2: A<0> ← 0
3: for i← 0 to n do
4: q<i> ← (A<i> +X0 × Yi)× p′ mod β
5: A<i+1> ← ([A<i> +X × Yi] + q<i> × p)/β
6: end for

return A<i+1>

7: end procedure

Figure 4: Iterative Montgomery multiplication algorithm (IMM) without final sub-
traction.

12

N Operands size (bits)
n Number of k-bit digits of modulus and operands
p The modulus defining the prime field GF(p)
X Multiplier operand in the modular multiplication
Y Multiplicand operand in the modular multiplication

A<i> Result of X × Y ×R−1 mod p at the end of iteration i
pj k-bit digit from p during the iteration j
Xj k-bit digit from X during the iteration j
Yi k-bit digit from Y during the iteration i

A<i>
j k-bit digit from A<i> during the iteration j
β Radix (β = 2k)

q<i> Constant during iteration i for computing
A<i+1> = A<i> +X × Yi + q<i> × p

p′ Precomputed value, being p′ = −p−1 mod β
C<j> k-bit carry at iteration j

Table 1: Notation

In algorithm IMM it is assumed that the numbers X, Y, p with the re-

striction 0 ≤ X, Y < 2p are expressed as n symbols using β = 2k as

radix, and represented as in equations (1-3). In algorithm IMM, the most

significant digit Yn = 0. After (n + 1) iterations, algorithm IMM com-

putes A = X × Y × R−1 mod p =
∑n−1

j=0 Ajβ
j. The number p′ satisfies

pp′ + RR−1 = 1 mod p [4]. Actually, p′ is a k-bit constant value during all

the multiplication algorithm so it that can be computed in advance and fixed

for a given value k and finite field GF(p).

13

p = (pn−1 · · · p0)β =
n−1
∑

i=0

βipi (1)

X = (Xn−1 · · ·X0)β =
n−1
∑

i=0

βiXi (2)

Y = (Yn−1 · · ·Y0)β =
n−1
∑

i=0

βiYi (3)

At step 5 of algorithm IMM, division by β is implemented as a right shift

operation since the k-least significant bits of A<i> + X × Yi + q<i> × p are

equal to zero. At each iteration i, both q<i> and A<i+1> are computed. From

a sequential approach, these two operations could be performed by the set

of operations described in equations 4 - 10.

M = X × Yi (4)

T = A0 +X0 × Yi (5)

q<i> = T0 × p′ mod β (6)

R = p× q<i> = (RnRn−1 · · ·R1R0) (7)

S = A<i> +M = (SnSn−1 · · ·S1S0) (8)

U = R + S = (UnUn−1 · · ·U1U0) (9)

A<i+1> = U/β = (Un · · ·U1) (10)

Since q<i> is the result of a modulo β reduction, just the k least signif-

icant bits (LSB) from T (T0) are considered for the computation of q<i>.

14

The multiplications leading to the (n+ 1)-digit numbers M , q<i> and R are

implemented for example, using the schoolbook method (shift and add), pro-

cessing k-bits at a time from X (when computing M) and p (when comput-

ing R). Using the polynomial representation of X in radix β, the operation

M = X×Yi can be expressed as in equation 11. Each term (Xj×Yi) is of size

2k-bits. The accumulative sum of terms in equation 11 is shown graphically

in figure 5.

X × Yi =

(

n−1
∑

j=0

βjXj

)

× Yi

=
n−1
∑

j=0

βj(Xj × Yi)

= βn(Xn−1 × Yi) + · · ·+ β(X1 × Yi) + (X0 × Yi)

(11)

X0Yi

X1Yi

X2Yi

n-1
Xn-1Yi

K-bit K-bit

K-bit K-bit

K-bit K-bit

K-bit K-bit

(a)

K-bit K-bit K-bit K-bit K-bit
Mn Mn-1 … M2 M1 Mo

MUL

K x k

k

2k

2k-bit

ADDER

2k

k

k

Yi

Xj

C
<j>

k(MSB) k(LSB)
Mj

+

+

+

j
XjYi

(b)

000 000
n

0Yi

Figure 5: Iterative computation of X×Yi parsing each digit Xj from X. (a) Partial prod-
ucts and final sum for computing X × Yi. (b) Block diagram of the circuit for computing
X × Yi using the schoolbook method.

Thus, a new digitMj of the result is obtained as each digitXj is processed.

A 2k-bit adder is required to perform the accumulative sum of every partial

15

product. Also, a k-bit register C<j> is required to store the k-bit carry for the

sum in the next iteration. At the beginning, this register is set to zero. It can

be demonstrated that the result from the adder in figure 5 b) fits in 2k-bits

since the maximum value form the adder is (2k−1)∗(2k−1)+2k−1 = 22k−2k

which is less than 22k−1. At each iteration j, the 2k-bit result from the adder

is divided in two parts. The least significant k bits Mj are taken as a digit of

the result M and the k most significant bits are used as the carry value C<j>

for the next iteration. Observe in figure 5 a) that the last k-bit digit being

part of the multiplication is stored in the C<j> register after processing the

n-th digit from X. By inserting an additional most significant digit to X

(Xn = 0) the last digit Mn of the multiplication M is correctly obtained. An

alternative solution is to use a multiplexer that selects either Mj or C
<j> as

the resulting digit of the multiplication. So, during the first n iterations the

selected value from the multiplexer would be Mj and only during the last

iteration (n + 1) (with Xn = 0) the selected value by the multiplexer would

be C<j>. Independently of the solution selected, the latency of the multiplier

in figure 5 b) is (n+ 1) for computing X × Yi. Under the same analysis, the

hardware module in figure 5 b) can be used to compute R = q<i>× p also in

(n+ 1) iterations, processing a digit pj from p at a time.

Despite the fact that in a multiplication the smaller operand is considered

as the multiplier for reducing the number of terms in the sum, in this work

it is considered the contrary; X and p are considered as the multiplier to

compute M and R iteratively. This allows to use a smaller multiplier, that

in this case is a (k × k)-multiplier. This comes with a penalization in the

latency.

16

Consider now the computation of variable S in equation 8. Instead of

waiting that all the terms of M be computed to calculate S, both compu-

tations can be performed in parallel. According to equations 12-14, since

S = A<i> + X × Yi, each digit of A and X can be processed at the same

time, replacing the 2-input adder in figure 5 b) by a 3-input adder and adding

each digit A<i>
j to Xj × Yi + C<j>. The result of the 3-input adder again is

at most a 2k-bit value, since the maximum result from the 3-input adder is

22k − 2k + 2k − 1 = 22k − 1.

S = A<i> +X × Yi =
n
∑

j=0

βjA<i>
j +

(

n
∑

j=0

βjXj

)

× Yi (12)

=
n
∑

j=0

βjA<i>
j +

n
∑

j=0

βj(Xj × Yi) (13)

=
n
∑

j=0

βj(A<i>
j + (Xj × Yi)) (14)

Again, S will be computed one digit at a time resulting in the sequence

of digits (SnSn−1 · · ·S1S0). According to this, the first digit S0 is actually

T0 in equation 6. Thus, q<i> = S0 × p′ mod β. Being p′ a fixed number, the

circuit for this multiplication could be simplified.

During the same clock cycle for computing S0, q
<i> can be also computed

since the involved logic is combinational. After that clock cycle, the compu-

tation of variable R in equation 7 can be launched using a multiplier as the

one shown in figure 5 b), parsing the digits pj from p one at a time. This

multiplier would produce the sequence (RnRn−1 · · ·R1R0) requiring (n + 1)

clock cycles for computing q<i> × p. Of curse, this multiplier will have its

17

own carry register, say C<j>
R .

Having the digits Sj and Rj at each clock cycle, the computation of

U in equation 9 can be also performed one digit at a time. In this case,

the operation (Sj + Rj) is a (k + 1)-bit number. The k least significant

bits conform one digit Uj of U while the remaining most significant bit of

(Sj + Rj) is stored in a register C<j>
U and used as 1-bit carry for the sum

(Sj+1 +Rj+1) in the next iteration. Since U = A<i> +X × Yi + q<i>× p will

result in a number having the k least significant bits equal to zero, the first

digit U0 could be simply discarded in order to have equation 10 computed as

A<i+1> = U/β = (Un, · · · , U1).

The digits Uj obtained as described previously will be the digits A<i+1>
j

of A<i+1> used in the next iteration (i+1) (see algorithm 2 and equation 10).

At the beginning of each cycle j the digit A<i>
j is read and used to compute

Sj. At the end of iteration j the value A<i>
j is no longer used and it must be

overwritten by Uj+1. This overwriting is denoted as A<i+1>
j = Uj+1. In the

iteration j = n− 1, the last digit A<i>
n−1 of A<i> is read and used to compute

Un−1 using the digit Xn−1. In the next and final iteration j = n, A<i>
n = 0

and Xn = 0. So in this last iteration Sn = 0 + 0 × Yi + C<n−1>
S = C<n−1>

S

without generating a new carry (C<n>
S = 0). Also during this last iteration

pn = 0 and Rn = qi × 0 + C<n−1>
R = C<n−1>

R , with C<n>
R = 0. Hence,

Un = C<n−1>
S + C<n−1>

R + C<n−1>
U without producing a carry (C<n>

U = 0).

Thus, the last digit Un of A<i+1> comprises the addition of all the final

carries.

Based on the previous explanation, a novel iterative digit-digit Mont-

gomery algorithm is proposed, named IDDMM and listed in algorithm 1.

18

The same assumptions for the IMM algorithm are kept.

Algorithm 1 Novel iterative digit-digit Montgomery algorithm (IDDMM)

Require: integers X = (0, Xn−1, ..., X0), Y = (Yn−1, ..., Y0) and p =
(0, pn−1, ..., p0), with 0 < X, Y < 2p, R = βn+1 with gcd(p, β) = 1,
and p′ = −p−1 mod β

Ensure: A =
∑n−1

i=0 Aiβ
i = X × Y ×R−1 mod p

1: procedure IDDMM(X, Y, p)
2: A<0> ← 0
3: for i← 0 to n− 1 do
4: C<0>

S ← 0
5: C<0>

R ← 0
6: C<0>

U ← 0
7: for j ← 0 to n do
8: {C<j+1>

S , Sj} ← A<i>
j +Xj × Yi + C<j>

S

9: if j = 0 then
10: q<i> ← (Sj × p′) mod β
11: end if
12: {C<j+1>

R , Rj} ← qi × pj + C<j>
R

13: {C<j+1>
U , Uj} ← Sj +Rj + C<j>

U

14: if j > 0 then
15: A<i+1>

j−1 ← Uj

16: end if
17: end for
18: end forreturn A<n+1>

19: end procedure

Table 2 shows a comparative of the proposed IDDMM algorithm against

the well-known Montgomery multiplication algorithms reviewed in previous

section. In that comparison, 2k is the radix used and N is the number of bits

of operands. Our proposed IDDMM could be directly compared against the

MWR2kMM since both of them parse the operands X, Y, p in several digits.

At first sight, it could be perceived that our proposal is the special case of

MWR2kMM using w = k, however this is not true. The IDDMM algorithm

19

Algorithm #Iterations Is scalar HW Notes
impl. possible?

R2MM N No Greater area consumption since
all bits of Y , p are
accessed in parallel.

MWR2MM N × (⌈N/w⌉+ 1) Yes Y and p are split in
e = ⌈N/w⌉words.
X is parsed bit per bit.

MWR2kMM ⌈N/k⌉ × (⌈N/w⌉+ 1) Yes for each k-bits processed from
X, all the words from Y , p are
accessed. Practical implementations
have only considered k = 2 and k = 3.

IDDMM ⌈N/k⌉ × (⌈N/k⌉+ 1) Yes p, X, Y are split in digits of size k.
(proposed) No recoding technique is used

as it is done in MWR2kMM.
Practical implementations with
k > 3 are possible.

Table 2: A comparison of Montgomery multiplication algorithms for hardware implemen-
tation.

proposed in this work is derived from the digit-serial Montgomery algorithm

proposed by C. Walter in [15, 19], where no final subtraction is required.

As a result, several differences against the MWR2kMM algorithm can be

listed. For example, the MWR2kMM algorithm still requires to test if the

final result is greater than p and performs the final subtraction if required.

Additionally, the MWR2kMM algorithm uses Booth encoding for each digit

parsed from X. In the IDDMM algorithm not any encoding technique is

required. Another difference is that the division by β = 2k in algorithm

MWR2kMM is performed over each partial product of size (k + w) whereas

in algorithm IDDMM that division is performed by simply discarding U0.

In the next section two hardware architectures are described for executing

algorithm IDDMM.

20

p’xS0

Storage for

p, X, Y

Optional

storage for

A

CR
<j>

MUL

K x k

k

2k

2k-bit

ADDER

2k

k

k Yi

Xj

CS
<j>

k(MSB)
K(LSB)

Sj

aj
MUL

K x k

k

2k

2k-bit

ADDER

2k

k

k

pj
k(MSB) K(LSB)

Rj

k-bit

ADDER

k+1

CU
<j>

1(MSB)
k(LSB)

1

Uj

k

An An-1 ... A2 A1 A0

Shift register for

storing A
i
and A

i+1

Uj Aj

q
<i> k

q
<i>

Figure 6: Architecture 1 for the IDDMM Montgomery algorithm.

4. Hardware architectures for the proposed IDDMM algorithm

Algorithm 1 described in previous section is directly mapped to hardware

using as basic block the multiplier shown in figure 5 b). Since A, C<j>
R , C<j>

U

and C<j>
S are registers, the instructions 2, 4, 5 and 6 in algorithm 1 can be

executed by asserting a reset signal. The instructions 8, 10, 12 and 13 involve

combinatorial logic for computing the partial products and the accumulative

additions. The first iteration j = 0 lasts two clock cycles. In the first one,

the value S0×p′ is loaded into the k-bit register q<i>. In the second one, the

correct values are taken for instructions 12 and 13, computing the first digit

U0. From there on, at every clock cycle a digit Uj is obtained. A hardware

implementation of algorithm 1 is depicted in figure 6, which can be divided

in a memory module for storing the operands p,X, Y and a datapath for

performing all the required computations in algorithm 1.

The datapath in figure 6 has as basic blocks two (k×k)-bit integer multi-

pliers, two 2k-bit adders, one k-bit adder, three k-bit registers and one 1-bit

21

register. Being p′ a constant value, the operation p′ × S0 can be computed

by a custom combinatorial circuit or another (k × k)-bit integer multipli-

ers could be used. There are two options to store and update variable A

in algorithm 1. If A is stored in memory, it is required that at the begin-

ning all the memory words be set to zero. The number of words to store A

should be n+ 1 with the (n+ 1)-th word set to zero always. The first word

U0 = 0 is discarded (see explanation on this in previous section) and it is

not stored in memory. Every next word U1, U2, ..., Un is stored in the words

A0, A1, ..., An−1. This can be achieved by using a memory with synchronous

writing and asynchronous reading. Another way to achieve the desired func-

tionality for storing, accessing and updating the digits of A is to use a shift

to the right register. Such a register will store n digits of size k-bits, shifting

to the right k bits at each clock cycle and using the value Uj as the filling

digit. Each digit Aj should be accessed through the k-least significant bits

of A, that is, from A0. However, even using the shift register to store A,

at the end of the last iteration i = n, all the words in the shift register A

representing the result of the Montgomery multiplication should be written

back to memory. Independently of the way A is accessed and updated, the

circuit in figure 6 has a latency of n × (n + 2). An additional clock cycle is

required by architecture 1 when executing the inner loop of algorithm 1 in

order to compute q<i> and store it in a register. After this, all the n + 1

digits form A,X and p will be parsed as it has been previously described.

An alternative hardware architecture for computing algorithm 1 is shown

in figure 7. In this new architecture the 2k-bit results from the (k × k)

multipliers are used for computing Uj by means of a 3-input 2k-bit adder

22

p’xS0

Storage for

p, X, Y

Optional

storage for

A

MUL

K x k

k

2k

2k-bit

ADDER
k Yi

Xj

2k

Sj

aj
MUL

K x k

k

k

pj

2k Rj

2k-bit

ADDER

2k+1

C
<j>

k+1(MSB) k(LSB)

k+1

k

Uj

k

An An-1 ... A2 A1 A0

Shift register for

storing A
i
and A

i+1

Uj Aj

q
<i> k S0

Figure 7: Architecture 2 for Algorithm 2, a variant of the IDDMM Montgomery algorithm.

instead of a k-bit adder. This way the carry values C<j>
S , C<j>

R and C<j>
U

are no longer required. Now, only one register is needed to store a single

(k + 1)-bit carry from the sum (Sj + Rj + C<j>), being Sj and Rj of size

2k bits and C<j> of size (k + 1). The operation (Sj + Rj + C<j>) fits in

(2k+1)-bits. From this result, the k least significant bits conforms the result

Uj and the remaining (k + 1) most significant bits are used as the carry

C<j> for the next iteration. Again, during the last iteration j = n, the

3-input adder computes 0 + 0 + C<n−1> = C<n−1> = Un which is a k-bit

number. These changes are reflected in algorithm 2. In this new version of

algorithm 1 the variables S and R store a 2k-bit value, Uj is a k-bit number

and the sum S + R + C<j> is written as C<j+1>β + Uj . The latency of this

second architecture is the same than the one for architecture 1.

The area complexity of the two previous hardware architectures for com-

puting algorithms 1 and 2 is mainly determined by k in the radix β = 2k

23

Algorithm 2 A variant of the proposed IDDMM Montgomery algorithm
computed by architecture 2.

Require: integers X = (0, Xn−1, ..., X0), Y = (Yn−1, ..., Y0) and p =
(0, pn−1, ..., p0), with 0 < X, Y < 2p, R = βn with gcd(p, β) = 1, and
p′ = −p−1 mod β

Ensure: A =
∑n

i=0 Aiβ
i = X × Y ×R−1 mod p

1: procedure IDDMM(X, Y, p)
2: A<0> ← 0
3: for i← 0 to n do
4: C<j> ← 0
5: for j ← 0 to n do
6: S ← A<i>

j +Xj × Yi

7: if j = 0 then
8: qi ← (S0 × p′) mod β
9: end if

10: R← qi × pj
11: {C<j+1>, Uj} ← S +R + C<j>

12: if j > 0 then
13: A<i+1>

j−1 ← Uj

14: end if
15: end for
16: end for

return A<n+1>

17: end procedure

24

being used, not by the size of the operands. In the next section the hardware

implementation of the main building blocks in figures 6 and 7 is described.

4.1. Adder and parallel multiplier blocks

The main computing blocks in architectures 1 and 2 are the 2k-bit adder

and the (k × k)-bit multipliers. This section describes the hardware design

of these blocks.

4.1.1. Parallel (k × k)-bit multiplier

Consider the multiplication of two k-bit integer numbers u, v. A parallel

multiplier should compute u× v in a single clock cycle multiplying each bit

of u with w and adding the partial product of each multiplication to obtain

the final result [21]. Representing the k-bit numbers u, v in radix-2 and

supposing that k is a power of 2, u and v can be divided in two (k/2)-bit

numbers u1, u2 and v1, v2 respectively such that equations 15–17 hold.

u = u22
k/2 + u1 (15)

v = v22
k/2 + v1 (16)

u× v = (u2 × v2)2
k + (u1 × v2 + u2 × v1)2

k/2 + u1 × v1 (17)

Figure 8 shows graphically the parallel computation of u × v and the

corresponding block diagram for computing equations 15–17. The divide

and conquer strategy for multiplication was originally proposed by Karatsuba

and not only GF(p) Mongomery multipliers have been proposed using these

approach [22] but also multipliers for GF(2m) [7, 23]. Each multiplier in

25

...bk-1 bk-2 ... b1 b0 u

v

k/2-bits k/2-bits

k/2-bits k/2-bits

u2 u1

v2 v1

...bk-1 bk-2 ... b1 b0

u1*v1

u1*v2*2
k/2

u2*v1*2
k/2

u2*v2*2
k

k-bits

k-bits

k-bits

k-bits

2k-bits

X k

X

X

X

u1

u2

v1

v2

k/2

k
k/2

k
k/2

k
k/2

k/2

2k/2

k/2 k/2

2

k/2

k/2

k/2

2k

u*v

u*v

k

k

u

v

a) b)

s1

s2

s3

Figure 8: Parallel multiplier based on a divide and conquer approach.

u1

u2

v1

v2

1

1

1

HA

1

1

HA

1

1

1

4

u*v

2

2

u

v

1

1
1i1

i2

s

cout
1

HA

Figure 9: Basic parallel multiplier. a) Half adder. b) Parallel multiplier for k = 2 with
simplified logic compared with figure 8 b).

figure 8 b) is defined in the same way. The recursively definition ends when

the inputs to the parallel multiplier are of length 1 bit. The basic parallel

multiplier that allows constructing bigger precision ones is designed for k = 2

and shown in figure figure 9. When k = 2 the multiplier blocks in figure 8

involve a the multiplication of 1-bit numbers. These multiplications produce

a result of 1-bit, so the adders in figure 8 are simplified to half adders as it

is shown in figure 9 b).

4.1.2. Adders

The parallel multiplier shown in figure 8 b) requires the three additions

s1, s2, s3. Instead of performing the addition of three numbers of 2k bits as

it would be done according to figure 8 a), the addition is performed only

26

with the needed bits using three adders of at most (k/2)-bits which can be

implemented using a combination of full and half adders. The first addition

s1 involves three (k/2)-bit numbers resulting in a k/2-bit number and a 2-bit

carry. The second addition s2 involves three (k/2)-bit numbers plus the 2-bit

carry from the computation of s1 resulting again in a k/2-bit number and

a 2-bit carry (the maximum resulting value from this addition is less than

2k/2+2−1). The third addition s3 involves the sum of one k/2-bit number and

the 2-bit carry from the computation of s2 resulting in a (k/2)-bit number.

The corresponding hardware architectures that compute these three sums

are shown in figure 10.

The computation of s2 requires more hardware resources whereas com-

puting s3 requires fewer. The circuit shown in figures 10c) and 10d) can be

generalized to compute the additions of hardware architectures 1 and 2 in

figures 6 and 7 respectively. For example, for computing the addition of a

2k-bit number with a k-bit number, the circuit in figure 10 d) would require

k − 1 full adders instead of only one.

4.1.3. Computation of p′ × S0

In figures 6 and 7 it is necessary to compute p′ × S0, which is the mul-

tiplication of a k-bit variable number S0 and a k-bit constant number p′.

Since one of the operands is known in advance, some low level modules in

the multiplier architecture shown in figure 8 can be removed or simplified

using well known facts in boolean algebra (eg. q = 1 AND q = 0 OR q).

27

FA
1

1

1

1

b)a)

1

1
i1

i2

s

cout

HA

HA

1

1

1

1

1ci

FA

1

HAFAFA

111 111

1

...
1

r2 x2 r1 x1 r0 x0

HAFA

111

...

11
z2 z1 z0

11

1

1
HAFAHA

11

1
1

...
1

1

1

FA

11

11

rm-1 xm-1

FA
1

HA

1
1

1

1

HA

HA

1

zm-1

1

1

1

c1 c0

c’1 c’0 sm-1 s2 s1 s0

FA

1 1

11

HAFAFA

111 111

1

...
1

r2 x2 r1 x1 r0 x0

HAFA

111

...

11
z2 z1 z0

1
1 11

FA

11

11

rm-1 xm-1

FA

1
1

HA

zm-1

1

1

c’1 c’0 sm-1 s2 s1 s0

111

1

z2 z1 z0

1
1

HAFAHA

11

11

...
1

1

1

HA

11
1

zm-1

1

c1 c0

c’0 sm-1 s2 s1 s0

1

d)c)

11

1

HA

1

1

Figure 10: Hardware implementation of adders required in figure 8 b) where k/2 = m. a)
Basic full adder using the half adder (HA) in figure 9a). b), c) and d) are the circuits for
computing s1, s2 and s3 respectively in figure 8 b).

28

Combinatorial 1-bit Critical path Clock cycles
resources registers

Architecture 1 3MULk + 2k + 1 DMUL + 2DADD3
n(n+ 2)

(4k-1)FA +
(3k+5)HA.

Architecture 2 3MULk + k + 1 DMUL + DADD3
+DADD2

n(n+ 2)
4kFA +
(2k+4)HA.

Architecture 1 3MULk + 7k + 1 max{DMUL,2DADD3
} n(n+ 3)

1 pipeline level (4k-1)FA+
(3k+5)HA.

Architecture 2 3MULk + 6k + 1 max{DMUL, DADD3
+DADD2

} n(n+ 3)
1 pipeline level 4kFA +

(2k+4)HA.
Architecture 1 3MULk + 11k + 1 max{DMUL,DADD3

} n(n+ 4)
2 pipeline levels (4k-1)FA+

(3k+5)HA.
Architecture 2 3MULk + 10k + 1 max{DMUL, DADD3

} n(n+ 4)
2 pipeline levels 4kFA +

(2k+4)HA.

Table 3: Area and time complexity of proposed hardware architectures for the IDDMM
algorithm.

4.2. Area and time complexity of IDDMM architectures

The hardware architectures 1 and 2 require a control unit to orchestrate

the dataflow in algorithms 2 and 1. This control unit is implemented by a

finite state machine (FSM) than resets, enables and disables the registers in

the datapath as well as generates the addresses to memory blocks and their

control signals (read, write, etc.). For simplicity, the logic associated to this

FSM is not considered in the area complexity of the proposed Montgomery

multipliers. This is usually done in related works for example [9]. In the

same way, the memory resources to allocate the operands and the result is

not considered.

Table 3 summarizes the complexity of architectures 1 and 2 in terms of

area resources as well as the critical path. The area complexity is mainly

determined by the (k× k)-bit multipliers, each with area cost (MULk) given

by:

29

MULk = 4*MULk/2 + S1k/2 + S2k/2 + S3k/2

where

MUL2 = 4AND + 2HA

HA = 1AND + 1XOR

FA = 2HA + 1XOR

S1m = 2*(m-1)FA + 3HA

S2m = (2*m-1)FA + (m+ 3)HA

S3m = FA + (m− 1)HA

The adders required in architecture 1 (figure 6) have the cost of (4k-1)FA

+ (3k+5)HA. On the other hand, the adders in figure 7 have the cost of 4kFA

+ (2k+4)HA. While architecture 1 uses one FA less than architecture 2, the

number of HA increases (k+1). Note that the latency in both architectures 1

and 2 depends on the maximum delay of the multiplier (DMUL), the delay of

a 2-input adder (DADD2
) and the delay of a 3-input adder (DADD3

), all them

involving combinatorial logic. The performance of both architectures can be

improved by inserting pipeline stages at different levels. The first pipeline

level in both architectures involves inserting a register at the output of the

two (k × k) multipliers and also another register for the digit Aj delaying it

one clock cycle in order to perform the correct operation Xj×Yi+Aj. In this

case the number of cycles to compute A<i+1> will increase one clock cycle,

leading to a latency for a Montgomery multiplication of n × (n + 3). For

architecture 1, the pipeline level 2 comprises the insertion of another register

at the output of the 2k-bit adders. In case of architecture 2, the pipeline level

30

Arch. 1 (no pipeline) Arch. 2 (no pipeline) Clock cycles
k AND XOR FF AND XOR FF n (1024-bit modulus)

4 182 167 9 139 109 5 256 66048
8 754 707 17 667 589 9 128 16640
16 3074 2915 33 2899 2677 17 64 4224
32 12418 11843 65 12067 11365 33 32 1088
64 49922 47747 129 49219 46789 65 16 288

Table 4: Area and clock cycles for the digit-digit Montgomery multiplier for common digit
sizes for k. While area complexity only depends on k, timing depends only on the modulus
size and k.

2 comprises the insertion of one register at the output of the 2k-bit adder and

additionally one 2k-bit register and one (k+1)-bit register for delaying Rj and

C<j> respectively. Using a second level of pipeline causes the Montgomery

multiplier to have a latency of n× (n+ 4) in both architectures 1 and 2.

Table 4 shows the area resources (flip-flops, AND, XOR,) and clock cy-

cles for common operand sizes y radices in practical implementations. As

it is theoretically expected, architecture 2 is slightly more compact than ar-

chitecture 1, both in combinatorial resources and memory. Note than for

both architectures, area and timing are inversely proportional, the greater

the area resources the lesser the clock cycles. Next section discusses the

implementation results of the proposed Montgomery multipliers in FPGA

technology.

5. Hardware implementation and Comparisons

Architectures 1 and 2 were described in VHDL and their codes have been

verified using a software reference implementation. Test vectors were used

considering four common operand sizes s ∈ {128,256,512,1024,2048} as well

as different values for the radix β = 2k with k ∈ {2,4,8,16,32,64}. A VHDL

31

code generator was written to produce all the posible configurations of the

cartesian product s×k. We selected two Xilinx FPGA devices for implemen-

tation, the Spartan xc3s500e and the Virtex5 xc5vlx50. The synthesis and

place and route tool was ISE 14.2. Each architecture indicated in table 3 was

implemented considering two criteria: the fist one is to implement all the ar-

chitectures using the standard logic of the FPGA while the second one makes

use of the in-built FPGA multiplier blocks. For all the implemented versions

the memory resources for storing X, Y, p and A were mapped to the available

Block Rams (BRAM) in the FPGAs, as it is usually done when scalar hard-

ware architectures of the Montgomery algorithm are implemented. From the

implementation results, an improved clock frequency is obtained for architec-

tures with 1-level of pipeline compared with the no pipelined versions. How-

ever, for all the implementation cases the maximum path delay is in the logic

for multiplication. That is, max{DMUL, 2DADD3
, (DADD3

+DADD2
), DADD3

}

= DMUL, which depends on k. Due to this, implementation results shown in

this section are only for the first four architectures listed in table 3.

Virtex5 FPGAs allow to achieve designs with higher frequencies compared

to the Spartan3 device. Also, since a Virtex5 slice contains more logic (four

6-in LUTs and four flip-flops in Virtex5 and 4-in LUTs and two flip-flops in

Spartan3), designs implemented in Virtex5 devices seem to be more compact.

Because of this, the implementation results shown in this section consider

basic building blocks such as number of LUTs and Flipflops, not in terms of

slices.

Architecture 1 and Architecture 2 were implemented in four different ver-

sions. In Version 1, architectures 1 and 2 were implemented without pipeline

32

stages and the multiplier blocks were implemented using the FPGA’s stan-

dard logic. In Version 2, architectures 1 and 2 were implemented using the

embedded multipliers in the FPGA. Version 3 and Version 4 are Version 1

and Version 2 respectively but implementing the pipelined version of archi-

tectures 1 and 2 (see table 3).

Figure 11 shows the implementation results of architecture 1 on the Spar-

tan FPGA. The theoretical hardware resources shown in table 4 are confirmed

in Figure 11, observing a considerably number of LUTs used for designs Ver-

sion 1 and Version 3 when K ≥ 16. The number of LUTs decreased con-

siderably when the embedded multipliers are used in the designs Version 2

and Version 4, being more evident for K ≥ 16. The increasing in memory

resources for the pipelined versions of architecture 1 is observed in figure 11

b). As it was stated in section 4.1.4, the greater the value of k the lesser the

timing for a Montgomery multiplication. The timing shown in figure 11 c) is

reduced drastically for k ≥ 16. The pipelined versions achieve better timing,

being the reduction more evident for small values of k (2,4,8,16). Figure 11

d) shows the compromise between area and performance of the implemented

designs measured by the efficiency expressed as Mbps/Slice. It is concluded

from figure 11 d) that the worst implementation option of architecture 1 is

Version 1 and Version 3 which exhibit the lowest efficiency due to their high

number of area resources. The better efficiency for all values of k is Version 4,

which is the pipelined version of architecture 1 mapping the three (k×k)-bit

multipliers to the embedded multiplier in the Spartan3 FPGA. For all the k

values considered, k = 16 allows to obtain the best efficiency of architecture

1 for a 1024-bit modulus. Figure 12 shows the implementation results of

33

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

2 4 8 16 32

4
in
LU

T
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 64

F
li
p

F
lo
p
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

20

40

60

80

100

120

140

160

180

200

220

240

260

8 16 32 64

T
im

e
(
se
c)

k, =2k

Version 1

Version 2

Version 3

Version 4

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 8 16 32 64

E
ff
ic
ie
n
cy
(M

b
p
s/
S
li
ce
)

k, = 2k

Version 1

Version 2

Version 3

Version 4

(a) (b)

(c) (d)

Figure 11: Implementation results for architecture 1 in the Spartan3 FPGA device. a)
Number of 4-in LUTs (combinatorial logic). b) FlipFlops used. c) Computation time of a
single Montgomery multiplication for a 1024-bit modulus. d) Efficiency of the implemen-
tations expressed as Mbps/Slices (the greater the better).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

2 4 8 16 32

4
in
LU

T
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

50

100

150

200

250

300

350

400

450

2 4 8 16 32 64

F
li
p

F
lo
p
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

20

40

60

80

100

120

140

160

180

200

220

240

260

8 16 32 64

T
im

e
(
se
c)

k, =2k

Version 1

Version 2

Version 3

Version 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 8 16 32 64

E
ff
ic
ie
n
cy
(M

b
p
s/
S
li
ce
)

k, = 2k

Version 1

Version 2

Version 3

Version 4

(a) (b)

(c) (d)

Figure 12: Implementation results for architecture 2 in the Spartan3 FPGA device. a)
Number of 4-in LUTs (combinatorial logic). b) FlipFlops used. c) Computation time of a
single Montgomery multiplication for a 1024-bit modulus. d) Efficiency of the implemen-
tations expressed as Mbps/Slices (the greater the better).

34

architecture 2 on the Spartan FPGA using the same implementation options

than architecture 1. Theoretically, architecture 2 is slightly more compact

than architecture 1 (see section 4.2). This is corroborated from the results

in figures 12 a) and b). In practical terms, the timing obtained by both

architectures is the same but a better efficiency is achieved by architecture 2

due to its minor area consumption.

Figures 13 and 14 show the implementation results of architectures 1 and

2 in the Virtex5 FPGA. It can be observed that for Version 1 and Version 3,

the amount of LUTs required is practically the same than the one required

in the Spartan3 implementation. However, this is not true when the in-built

multiplier are used since the number of LUTs is reduced by half. By the side

of memory requirements, the number of 1-bit registers needed is the same

than in the Spartan3 implementations. The Virtex5 implementations lead to

a better timing for computing a Montgomery multiplication.

The timing is reduced by about half but a different behavior in the results

is observed respect the Spartan3 implementation. For architecture 1, Version

2 and Version 4 achieve almost the same time in all cases regardless Version

4 is pipelined. This fact confirms that the maximum delay in the multiplier

designs is given by the parallel (k× k)-bit multiplier, being the delay by the

adders in figure 6 not significant. In both architectures 1 and 2, the best

timing is achieved by Version 3, which is a pipelined version that does not

use the embedded multipliers in the FPGA. For k ≥ 16, the timing achieved

by architectures 1 and 2 is very similar. The efficiency of the hardware

architectures implemented in Virtex5 is better than the one achieved in the

Spartan3 implementation. The best efficiency is achieved by Montgomery

35

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

2 4 8 16 32

6
in
LU

T
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32 64

F
li
p

F
lo
p
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

20

40

60

80

100

120

140

8 16 32 64

T
im

e
(
se
c)

k, =2k

Version 1

Version 2

Version 3

Version 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16 32 64

E
ff
ic
ie
n
cy
(M

b
p
s/
S
li
ce
)

k, = 2k

Version 1

Version 2

Version 3

Version 4

(a) (b)

(c) (d)

Figure 13: Implementation results for architecture 1 in the Virtex5 FPGA device. a)
Number of 6-in LUTs (combinatorial logic). b) FlipFlops used. c) Computation time of a
single Montgomery multiplication for a 1024-bit modulus. d) Efficiency of the implemen-
tations expressed as Mbps/Slices (the greater the better).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

2 4 8 16 32

6
in
LU

T
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

50

100

150

200

250

300

350

400

450

2 4 8 16 32 64

F
li
p

F
lo
p
s

k, =2k

Version 1

Version 2

Version 3

Version 4

0

20

40

60

80

100

120

140

160

180

8 16 32 64

T
im

e
(
se
c)

k, =2k

Version 1

Version 2

Version 3

Version 4

0

0.5

1

1.5

2

2.5

3

2 4 8 16 32 64

E
ff
ic
ie
n
cy
(M

b
p
s/
S
li
ce
)

k, = 2k

Version 1

Version 2

Version 3

Version 4

(a) (b)

(c) (d)

Figure 14: Implementation results for architecture 2 in the Virtex5 FPGA device. a)
Number of 6-in LUTs (combinatorial logic). b) FlipFlops used. c) Computation time of a
single Montgomery multiplication for a 1024-bit modulus. d) Efficiency of the implemen-
tations expressed as Mbps/Slices (the greater the better).

36

Table 5: Comparison of proposed digit-digit Montgomery multiplier in this work against
related works under similar implementation conditions.
Work Scalable? p FPGA Mults. BRams Slices Time Mbps Mbps/

(bits) µs Slices
[24] Yes 1020 xc3s500e 10 4 1553 7.62 133.8 0.086
This(k = 32) Yes 1020 xc3s500e 11 4 221 18.9 60.11 0.27
Arch2-Ver4

[9] No 1024 Virtex5 0 - 5702 1.18 868 0.15
D-Serial(D = 4)
This(k = 64) Yes 1024 Virtex5 0 8 2636 3.33 306.8 0.16
Arch2-Ver3

This(k = 64) Yes 1024 Virtex5 33 8 219 4.21 242.66 1.10
Arch2-Ver4

[5] Yes 512 Virtex5 0 - 957 9.64 53.11 0.05
Bit-serial
This(k = 16) Yes 512 Virtex5 0 4 208 8.29 61.70 0.29
Arch2-Ver3

This(k = 16) Yes 512 Virtex5 4 4 10 8.67 59.02 5.90
Arch2-Ver4

multipliers implemented in Virtex5 using β = 216. Particularly, Version 4 of

architecture 2 is the most efficient design achieving around 2.5Mbps/Slice.

5.1. Comparisons

Comparing FPGA implementations is difficult and unfair since different

FPGA technologies are considered in related works as well as different ver-

sions of synthesis tools, operand sizes, etc. The better performer GF(p)

multipliers described in previous section are compared against three related

works that use similar conditions to the ones considered in this paper. Ta-

ble 5 show this comparison, using the same implementation devices and equal

or very similar operand sizes.

From the results shown in table 5, an important fact is the significant re-

duced amount of area by the hardware architectures proposed in this paper

compared against the results achieved in [24] and [9], where the hardware

architectures follow a systolic approach. The work in [24] reports a scal-

able Montgomery multiplier implementing the Coarsely Integrated Operand

37

Scanning (CIOS) [18] Montgomery method. The work in [9] is a non scal-

able digit-serial Montgomery multiplier since that design is customized for

full precision of operands Y and p.

For a 1024-bit modulus, our implementation of architecture 2 Version

4 uses around 7 times less area resources than the implementation of [24]

at the cost of an increasing timing around 2.5 times greater. However, our

design makes better use of area resources expressed by the efficiency, which

is three times better than the one achieved in [24]. Sutter et. al presented

in [9] the FPGA implementation of a digit-based algorithm for Montgomery

multiplication. In that design the embedded multipliers in the FPGA are

not used so in table 5 we compare the results achieved in [9] with the ones

obtained by architecture 2–Version 3, which does not make use of FPGA’s

multiplier embedded blocks. Again, it is observed that our design has an area

reduction by half with a penalization in the timing and hence in the through-

put. However, the efficiency by our multiplier is practically the same than

[9], implying that both architectures process the same amount of data per

area unit. The results presented in [5] are from the FPGA implementation

of the bit-serial version of Montgomery algorithm. Since no multiplier blocks

are used in [5], we compare those results against architecture 2–Version 3

for k = 16, which achieves the best efficiency. We observe a reduction around

four times in area for our design with a better computation time as well as

for the efficiency. Comparing the results in [5] against the ones achieved

by architecture 2–Version 4 for k = 16, we observe that efficiency is im-

proved considerably, reducing the area resources drastically but with a slight

penalization in the timing.

38

Table 6: Performance comparison between the scalable Montgomery multiplier proposed
in this work and software implementations (scalable systems).

Work Descrip. Platform Freq. 256-bit 512-bit 1024-bit
size (MHz) time µs time µs time µs

[10] Software ARM 80 - - 570

[10] Software ARM 80 42.30 - -

[25] Software PentiumII 400 1.57 - -

[26] Software DSP 200 2.68 - -

[27] Software 2 MicroBlaze 100 - 139.53 539.05

[27] Multi- 2 MicroBlaze 100 - 88.04 293.82
core cores

[28] Multi- 4 cores 93 2.30 - 44.00
core 4 32x32Mults

This Arch2-Ver4 xc3S500e 94.3 3.06 11.53 44.70
work k = 16

This Arch2-Ver4 xc3S500e 63.8 1.25 4.50 17.03
work k = 32

This Arch2-Ver4 xc3S500e 43.6 0.55 1.83 6.60
work k = 64

This Arch2-Ver4 xc5vlx50 131.12 2.19 8.29 32.21
work k = 16

This Arch2-Ver4 xc5vlx50 107.94 0.74 2.66 10.07
work k = 32

This Arch2-Ver4 xc5vlx50 68.24 0.35 1.17 4.21
work k = 64

Our Montgomery multipliers shown in table 5 can take advantage of the

embedded multipliers available un modern FPGAs. This implementation

option allows to reduce drastically the area resources while keeping acceptable

running times that can be tolerated in applications where area consumption

is a major concern, as in applications of lightweight cryptography. The use

of embedded multiplier allows to save standard logic in the FPGA that can

be used to implement other modules needed by the addressed application.

39

Table 7: Comparison of our proposed Montgomery multiplier against other hardware
implementations in the literature. N represents the operands size.

Work Montgomery Scalable N Platform Area Time
algorithm design? (bits) resources µsec Mbps

[9] R2kMM No 1024 Virtex5 8227LUTs 1.93 530
5142FFs

[13] MWR2MM Yes 1024 Virtex2 9319LUTs 9.34 109.63
(w = 16) 64DSP

[11] MWR2MM Yes 1024 Virtex2 4178slices 10.88 94.11
(w = 16) 65PEs

[10] MWR2MM Yes 1024 0.5µm 28KGates 43 23.81
(w = 16) CMOS

This Proposed Yes 1024 Spartan3 425LUTs 17.03 60.23
Arch2-Ver4 IDDMM 177FFs
(k = 32) 11 18x18Mults.
This Proposed Yes 1024 Virtex5 704LUTs 4.21 242.66

Arch2-Ver4 IDDMM 337FFs
(k = 64) 33DSP48E

[6] Original No 256 xchvhx250T 2106 Slices 0.014 18285.71
Fully-parallel 16DSP48E

[29] Original No 256 Cyclone3 23405 LEs 0.1 2560
Fully-parallel 81Mults

This Proposed Yes 256 Spartan3 419LUTs 1.25 204.37
Arch2-Ver4 IDDMM 177FFs
(k = 32) 11 18x18Mults.
This Proposed Yes 256 Virtex5 699LUTs 0.35 727.90

Arch2-Ver4 IDDMM 333FFs
(k = 64) 33DSP48E.

Table 6 shows a comparison of the proposed scalable Montgomery multi-

plier against other scalable system (software based) that use general purpose

microprocessors [10, 25, 26] with similar clock frequencies. That compari-

son allows to justify the motivation to perform Montgomery multipliers as

dedicated hardware modules. In most of the cases, the results achieved by

our proposed Montgomery multiplier outperform related works, inclusive for

parallel implementation as the multi-core implementations in [28] and [27].

Finally, in order to compare our Montgomery multiplier against other

hardware implementation approaches, we provide a comparison in table 7

only as a reference. Some works mentioned in section 1 as related works

were not included in this table since they do not provide implementation

40

results (slices, LUTs, timing), for example [12] and [14]. Table 7 reveals

the big amount of area resources required in related words regardless the

technology used. In most of the cases, our proposed multiplier uses the

least amount of area resources with a penalization in the computation time

that could be tolerated in practical applications where area consumption is

a major concern.

6. Conclusions

Modular multiplication in GF(p) is one of the most time consuming oper-

ations in practical implementations of public key cryptosystems, such as RSA

and Elliptic Curve Cryptography. Although several work has been done in

the literature proposing hardware architectures that speed up modular mul-

tiplication using the Montgomery method, most of those works have focused

in achieving high performer solutions. That design goal in previous works

has lead to hardware architectures requiring great amount of area resources,

that in case of FPGA implementations that means great amount of slices

(LUTs and flip-flops) used and thus, the occupation of most of the device’s

area resources. However, practical implementations of public cryptographic

schemes involve more operations not only modular multiplication. Saving

area resources in the FPGA is very attractive because more standard logic is

available for implementing other parts of the cryptographic application. For

example, more logic would be available for implementing the exponentiation

module needed for encryption/decryption in RSA.

The novel IDDMM algorithm for Montgomery multiplication based on

the digit-digit computation presented in this paper and its corresponding

41

hardware implementation performs better than software counterparts and at

the same time, that implementation requires fewer area resources than other

related works, making use of available multipliers embedded in modern FP-

GAs. Although the performance is reduced compared to other hardware

implementation approaches, that penalization is tolerable since the timing is

still competitive and it could be tolerated in practical cryptographic appli-

cations.

Area and time complexity of the proposed hardware architectures for the

IDDMM algorithm depends mainly on the radix β = 2k used. That allows to

count with a scalable multiplier that use the same hardware for computing

modular multiplications independently of operands size. The different imple-

mentation options studied in this paper allows to establish area-performance

trade-offs. From the experimental results, the most efficient multiplier re-

sults using β = 216 as radix. Although the use of in-built multipliers reduces

considerably the area resources, the performance is slightly decreased. For all

cases studied, the maximum critical path delay in the designs is determined

by the (k×k) multipliers. The Montgomery multiplier described in this work

is well suited to serve a the main core of an exponentiation circuitry for RSA

encryption.

References

[1] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital

signatures and public-key cryptosystems, Commun. ACM 21 (2) (1978)

120–126.

42

[2] N. Koblitz, Elliptic Curve Cryptosystems, Mathematics of Computation

48 (177) (1987) 203–209.

[3] V. Miller, Use of Elliptic Curves in Cryptography, in: Proc. of Advances

in Cryptology, CRYPTO’85, Santa Barbara, CA, August 1985, pp. 417–

426.

[4] P. L. Montgomery, Modular multiplication without trial division, Math.

Computation 44 (1985) 519–521.

[5] M. Hamilton, W. Marnane, A. Tisserand, A comparison on FPGA

of modular multipliers suitable for elliptic curve cryptography over

GF(p) for specific p values, in: 2011 International Conference on Field

Programmable Logic and Applications (FPL), 2011, pp. 273 –276.

doi:10.1109/FPL.2011.55.

[6] A. Mondal, S. Ghosh, A. Das, D. R. Chowdhury, Efficient FPGA imple-

mentation of Montgomery multiplier using DSP blocks, in: Proceedings

of the 16th international conference on Progress in VLSI Design and

Test, VDAT’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 370–372.

doi:10.1007/978-3-642-31494-0 47.

[7] G. C. T. Chow, K. Eguro, W. Luk, P. Leong, A Karatsuba-based

Montgomery multiplier, in: Proceedings of the 2010 International

Conference on Field Programmable Logic and Applications, FPL ’10,

IEEE Computer Society, Washington, DC, USA, 2010, pp. 434–437.

doi:10.1109/FPL.2010.89.

URL http://dx.doi.org/10.1109/FPL.2010.89

43

[8] A. F. Tenca, Çetin Kaya Koç, A scalable architecture for Montgomery

multiplication, in: Workshop on Cryptographic Hardware and Embed-

ded Systems, 1999, pp. 94–108.

[9] G. Sutter, J.-P. Deschamps, J. L. Imaña, Modular multiplication and

exponentiation architectures for fast RSA cryptosystem based on digit

serial computation, IEEE Transactions on Industrial Electronics 58 (7)

(2011) 3101–3109.

[10] A. F. Tenca, Çetin Kaya Koç, A scalable architecture for modular mul-

tiplication based on Montgomery’s algorithm, IEEE Trans. Computers

52 (9) (2003) 1215–1221.

[11] M. Huang, K. Gaj, S. Kwon, T. El-Ghazawi, An optimized hardware

architecture for the Montgomery multiplication algorithm, in: Proceed-

ings of the Practice and Theory in Public Key Cryptography, 11th In-

ternational Conference on Public Key Cryptography, PKC’08, Springer-

Verlag, Berlin, Heidelberg, 2008, pp. 214–228.

[12] Y. Kong, High radix Montgomery multipliers for residue arithmetic

channels on FPGAs, in: D. Zeng (Ed.), Future Intelligent Information

Systems, Vol. 86 of Lecture Notes in Electrical Engineering, Springer

Berlin Heidelberg, 2011, pp. 23–30. doi:10.1007/978-3-642-19706-2 4.

[13] M. Huang, K. Gaj, T. A. El-Ghazawi, New hardware architectures for

Montgomery modular multiplication algorithm, IEEE Trans. Computers

60 (7) (2011) 923–936.

44

[14] A. F. Tenca, G. Todorov, Çetin Kaya Koç, High-radix design of a scal-

able modular multiplier, in: Workshop on Cryptographic Hardware and

Embedded Systems, 2001, pp. 185–201.

[15] C. D. Walter, Montgomery’s multiplication technique: How to make

it smaller and faster, in: Workshop on Cryptographic Hardware and

Embedded Systems, 1999, pp. 80–93.

[16] M. Morales-Sandoval, A. Diaz-Perez, A compact FPGA-based Mont-

gomery multiplier over prime fields, in: Proceedings of the 23rd

ACM International Conference on Great Lakes Symposium on VLSI,

GLSVLSI ’13, ACM, New York, NY, USA, 2013, pp. 245–250.

doi:10.1145/2483028.2483102.

[17] A. A. Ibrahim, H. A. Elsimary, A. M. Nassar, FPGA design, implemen-

tation and analysis of scalable low power radix 4 Montgomery multipli-

cation algorithm, WSEAS Trans. Cir. and Sys. 6 (12) (2007) 601–607.

URL http://dl.acm.org/citation.cfm?id=1486868.1486869

[18] C. K. Koç, T. Acar, B. S. Kaliski, Jr., Analyzing and comparing Mont-

gomery multiplication algorithms, IEEE Micro 16 (3) (1996) 26–33.

doi:10.1109/40.502403.

URL http://dx.doi.org/10.1109/40.502403

[19] C. Walter, Montgomery exponentiation needs no final subtractions,

Electronics Letters 35 (21) (1999) 1831–1832. doi:10.1049/el:19991230.

[20] N. Mentens, K. Sakiyama, B. Preneel, I. Verbauwhede, Efficient

pipelining for modular multiplication architectures in prime fields,

45

in: Proceedings of the 17th ACM Great Lakes symposium on VLSI,

GLSVLSI ’07, ACM, New York, NY, USA, 2007, pp. 534–539.

doi:10.1145/1228784.1228911.

URL http://doi.acm.org/10.1145/1228784.1228911

[21] Altera Corporation, Implementing multipliers in FPGA devices. Appli-

cation note 306 ver. 3.0, 2004, pp. 1–48.

URL http://www.altera.com/literature/an/an306.pdf

[22] Y. Zhanga, G. Shoub, Y. Huc, Z. Guo, Low complexity GF(2m) multi-

plier based on iterative Karatsuba algorithm, Advanced Materials Re-

search (2012) 1409–1414.

[23] E. Cuevas-Farfan, M. Morales-Sandoval, A. Morales-Reyes,

C. Feregrino-Uribe, I. Algredo-Badillo, P. Kitsos, R. Cumplido,

Karatsuba-Ofman Multiplier with Integrated Modular Reduction for

GF(2m), Advances in Electrical and Computer Engineering 13 (2)

(2013) 3–10. doi:10.4316/aece.2013.02001.

URL http://dx.doi.org/10.4316/aece.2013.02001

[24] E. Oksuzoglu, E. Savas, Parametric, secure and compact implementation

of RSA on FPGA, in: International Conference on Reconfigurable Com-

puting and FPGAs, 2008, pp. 391 –396. doi:10.1109/ReConFig.2008.13.

[25] M. Brown, D. Hankerson, J. López, A. Menezes, Software implementa-

tion of the NIST elliptic curves over prime fields, in: Proceedings of the

2001 Conference on Topics in Cryptology: The Cryptographer’s Track

at RSA, CT-RSA 2001, Springer-Verlag, London, UK, UK, 2001, pp.

46

250–265.

URL http://dl.acm.org/citation.cfm?id=646139.680803

[26] K. Itoh, M. Takenaka, N. Torii, S. Temma, Y. Kurihara, Fast implemen-

tation of public-key cryptography on a DSP TMS320C6201, in: Proceed-

ings of the First International Workshop on Cryptographic Hardware

and Embedded Systems, CHES ’99, Springer-Verlag, London, UK, UK,

1999, pp. 61–72.

URL http://dl.acm.org/citation.cfm?id=648252.752380

[27] Z. Chen, P. Schaumont, A parallel implementation of Montgomery

multiplication on multicore systems: Algorithm, analysis, and pro-

totype, IEEE Transactions on Computers 60 (12) (2011) 1692–1703.

doi:10.1109/TC.2010.256.

[28] J. Fan, K. Sakiyama, I. Verbauwhede, Montgomery modular multiplica-

tion algorithm on multi-core systems, in: 2007 IEEEWorkshop on Signal

Processing Systems, 2007, pp. 261–266. doi:10.1109/SIPS.2007.4387555.

[29] Y. Gong, S. Li, High-throughput FPGA implementation of 256-bit

Montgomery modular multiplier, in: IEEE Second International Work-

shop on Education Technology and Computer Science, 2010, pp. 173

–177.

Appendix A. Test Vectors

All the test vectors presented in this section were generated and validated

from a software implementation.

1024-bit operands (RSA modulus, radix-16 notation)

47

p = e603bcf9fa9b405cd851ac0a3d33f9120c8957e79825c2a5bdae35000c5e6b1d

302162200dd35659c2ae138eff1e6bb394a745f0f871b8af861371106fa0db08

7c74ac64df7c8b41f3363f7a791d833d680290523fc74d0b99260744681bfe8c

c70b677d15d1546a34f2f4d361a43fed28555239471420e41a82e74d576982cf

Y = 7481eb9b0d819f15632afd73befe15ece799cf7cd1893cc89c606226c4d1d42d

26db5a67ddd5ec1966e0f835c3bfc091b94ddcbbe85d53e2e7fe81e94f7e0c31

addb904c7af1630904bbb71b80f62e45977cacbf9e8c868e04f3471ec1733a2a

d99dfbe5d6d4ad8573d09a79e76b7779234bfce84ff12324488e39d285345bed

X = 22ff5b47eb95c38b0a888e57377998711376cda83d693af54f7944012c282577

4530af1b597b9b905653095ebc3ca3ef2e451934cebd839662a2e58d41d8c446

2966e56d5af09f615530eab1fa857d09f9b80e649d0c0c94559884f2d76fdae7

0dcea6640f39912aacf016ea938c68b005372d1b3477dbeef0ae4530081b8724

p′ k

1 2

1 4

d1 8

bbd1 16

7a81bbd1 32

f95fe1807a81bbd1 64

MM(X, Y, p) = e79f12a5abfe489e6f272db5620ecd084d0f85cde73b3588b4271e21908cfd66

c5df8a669f73cfc09955edba71dc9b7da72ab9bf84f13426a3d65a36b8b5722e

62b850032384fc87e555df0d9449f16333560ae8bc54dc7cc56934c2a45e8c16

918bff26bb3af459ebcc01dca17bdb620896b391e7d3ec5519f276cb7e8f7faf

48

512-bit operands (RSA modulus, radix-16 notation)

p = eaa0f7b011d858bc1fe7d9eae62be36848397a0c165de35895dbb7cbe8f024b4

65625aeb2808790a305318c53635dc5cf6667744f2b4ba46cf300adf05ae4023

Y = 7c9cc98a468c3be0469dabefd0a32bfb3ccb9cfe9d43a8ac05f482b9a1464b18

2a26b9ebdf722ed50a701659fe1b870527875307d67691c0edb251376b907570

X = 487e997d6e9e5d2b19c4ffe6302defcaa0cbfe8a0b465f113baf7a0ebb29ed46

e64f2cb1550880b825e913e8386623a6a9a6c3a1e7e4fb9c81307616399ea35

p′ k

1 2

5 4

75 8

9075 16

8fa39075 32

cbc9bf1e8fa39075 64

MM(X, Y, p) = a817b263c6ac8ecb920efa19d6a724faea93d513369087503c7683b880aee172

1100757f0ddc441d5e6b5b491c8227e8e8e360867752924c9f50e4ecc0fcd5d

256-bit operands (ECC modulus secp256k1, radix-16 notation)

p = fffefffffc2f

Y = de6501bd55b07ce9c83bbcbba280e5700e53c152304f6a1ab183a7b2e16e308

X = 6113b410fe0d6b547a64ce68e9b7430214e56ec57e37d50dc22be4fe5e5f8d2f

p′ k

49

1 2

1 4

31 8

3531 16

d2253531 32

d838091dd2253531 64

MM(X, Y, p) = 80b139fdb1400ce5fbf1ddcfde81e294dfdb046b0e306ac7d65c6a707344c744

50

