
Linear Overhead Robust MPC with Honest Majority Using Preprocessing

Ashish Choudhury1, Emmanuela Orsini2, Arpita Patra3, and Nigel P. Smart2

1 International Institute of Information Technology, Bangalore, India,
2 Dept. Computer Science, University of Bristol, Bristol, United Kingdom,

3 Dept. of Computer Science and Automation, Indian Institute of Science, Bangalore, India.

Abstract. We present a technique to achieve O(n) communication complexity per multiplication for a wide class
of robust practical MPC protocols. Previously such a communication complexity was only known in the case of
non-robust protocols in the full threshold, dishonest majority setting. In particular our technique applies to robust
threshold computationally secure protocols in the case of t < n/2 in the pre-processing model. Surprisingly our
protocol for robust share reconstruction withO(n) communication applies for both synchronous and asynchronous
communication models. We go on to discuss implications for asynchronous variants of our resulting MPC protocol.

1 Introduction

Determining the communication complexity, in terms of the number of parties, of protocols for Multi-Party Compu-
tation (MPC) is a task which is both interesting from a theoretical and a practical standpoint. It is a folklore belief
that the complexity should be essentially O(n) per multiplication, where n is the number of parties. However, “most”
robust secret-sharing based protocols which are practical has complexity O(n2).

To understand the problem notice that apart from the protocols for entering parties inputs and determining parties
outputs, the main communication task in secret-sharing based MPC protocols is the evaluation of the multiplication
gates (we assume a standard arithmetic circuit representation of the function to be computed for purely expository
reasons, in practice other representations may be better). If we consider the classic information-theoretically secure
semi-honest sub-protocol for multiplication gates when t < n/2 (locally multiply the shares, reshare and then recom-
bine) we require O(n2) messages per multiplication gate [6,19]. This is because each party needs to send the shares
representing their local multiplication to every other party, thus requiring O(n2) messages, and hence O(n2) bits if
we only look at complexity depending on n.

Even if we look at such protocols in the pre-processing model, where so-called “Beaver multiplication triples” are
produced in an offline phase [3], and we are primarily concerned about the communication complexity of the online
phase, a similar situation occurs. In such protocols, see for example [14], the standard multiplication sub-protocol is
for each party to broadcast a masking of their shares of the gate input values to every other party. This again hasO(n2)
communication complexity.

In the SPDZ protocol [16], for the case of non-robust maliciously secure MPC (with abort) in the dishonest ma-
jority setting, an online communication complexity of O(n) was achieved. This is attained by replacing the broadcast
communication of the previous method with the following trick. For each multiplication gate one party is designated
as the “reconstructor”. The broadcast round is then replaced by each party sending their masked values to the recon-
structor, who then reconstructs the value and then sends it to each party. This requires exactly 2 · n messages being
sent, and is hence O(n). However, this protocol is only relevant in the dishonest majority setting as any dishonest
behaviour of any party is subsequently detected via the SPDZ MAC-checking procedure in which case the protocol
aborts. If we require a robust protocol we appear unable to adopt this procedure.

With t < n/3, information-theoretically secure online protocols with O(n) communication per multiplication are
presented in [4,15]. The basic idea there is a new method of reconstructing a batch of Θ(n) secret-shared values with
O(n2) communication complexity, thus providing a linear overhead. However, the method is tailor-made only for
t < n/3 (as it is based on the error-correcting capability of the Reed-Solomon (RS) codes) and will not work with
t < n/2. Hence with t < n/2 in the computational setting, a new technique to obtain O(n) online complexity is
needed. It is to this question that we address in this paper.

Before proceeding we pause to examine the communication complexity of the offline phase of such protocols. It
is obvious that in the case of a computationally secure offline phase one can easily adapt the somewhat homomorphic
encryption (SHE) based offline phase of SPDZ to the case of Shamir secret sharing when t < n/2. In addition one
can adapt it to generate SPDZ style MACs or BDOZ [7] (a.k.a. pairwise MACs). In [16] the offline communication
complexity is given as O(n2/s) in terms of the number of messages sent, where s is the “packing” parameter of
the SHE scheme. As shown in the full version of [17], assuming a cyclotomic polynomial is selected which splits
completely modulo the plaintext modulus p, the packing parameter grows very slowly in terms of the number of
parties (for all practical purposes it does not increase at all). In addition since s is in the many thousands, for all
practical purposes the communication complexity of the offline phase is O(n) in terms of the number of messages.
However, each message is O(s) and so the communication complexity in terms of the number of bits is still O(n2).

In [20], a computationally-secure MPC protocol with communication complexity O(n) per multiplication is pre-
sented. The protocol is not designed in the pre-processing model, but rather in the player-elimination framework,
where the circuit is divided into segments and each segment is evaluated “optimistically”, assuming no fault will oc-
cur. At the end of the segment evaluation, a detection protocol is executed to identify whether the segment is evaluated
correctly and if any inconsistency is detected, then a fault-localization protocol is executed. The fault-localization pro-
cess identifies a pair of parties, with at least one of them being corrupted. The pair is then neglected for the rest of the
protocol execution and the procedure is repeated. There are several drawbacks of this protocol. The protocol cannot
be adapted in the pre-processing model; so the benefits provided by the pre-processing based MPC protocols (namely
efficiently generating circuit-independent raw materials for several instances of the computation in parallel) cannot be

1

obtained by it. The protocol also makes expensive use of zero-knowledge (ZK) machinery throughout the protocol and
it does not seem to be adaptable to the asynchronous setting with O(n) communication complexity. Our techniques
on the other hand are focused on efficient protocols in the pre-processing model, for example we use ZK tools only in
the offline phase, and our methods are easily applicable to the asynchronous setting.

Our Contribution: As remarked earlier we present a method to obtain O(n) communication complexity (measuring in
terms of bits and not just messages sent) for the online phase of robust MPC protocols with t < n/2. We are focused
on protocols which could be practically relevant, so we are interested in suitable modifications of protocols such as
VIFF [14], BDOZ [7] and SPDZ [16]. Our main contribution is a trick to robustly reconstruct a batch of Θ(n(t+ 1))
secret shared values with a communication complexity of O(n3) bits. Thus for t = Θ(n) we obtain an amortized
communication complexity of O(n) bits for reconstructing a value. Assuming our arithmetic circuit is suitably wide,
this implies an O(n) online phase when combined with the standard method for evaluating multiplication gates based
on pre-processed Beaver triples.

To produce this sub-protocol we utilize the error-correcting capability of the underlying secret-sharing scheme
when error positions are already known. The error positions are however identified using the application of the pair-
wise BDOZ MACs from [7]. The overall sub-protocol is highly efficient and can be utilized in practical MPC pro-
tocols. Interestingly our reconstruction protocol also works in the asynchronous setting. Thus we obtain a practical
optimization in both synchronous and asynchronous setting.

Since our optimization also works in the asynchronous setting, we end the paper by discussing how the offline
phase, and the interaction between the offline and online phases can be handled in the asynchronous setting. In the
VIFF framework [14], which implements the offline phase with t < n/3 via the pseudo-random secret sharing, a
single synchronization point is needed between the offline and offline phases. Following the same approach, with some
additional technicalities, we show how the interaction between offline and online phase can be handled asynchronously
with t < n/2.

The SHE based offline phase of SPDZ can easily be adapted to the case of threshold secret sharing (via using
threshold decryption techniques for SHE from [1] or [12]). The adaption to the offline phase to output BDOZ, as
opposed to SPDZ, style MACs is also trivial. However, we know of no work which has examined this offline phase in
the asynchronous setting. We present some partial results in this direction.

2 Preliminaries

We assume a set of n parties P = {P1, . . . , Pn}, connected by pair-wise authentic channels, and a centralized static
and active PPT adversary A who can corrupt any t < n/2 parties at the beginning of the execution of a protocol and
can force them to behave in any arbitrary manner. For simplicity we assume n = 2t+ 1, so that t = Θ(n) holds. The
functionality that the parties wish to compute will be represented by an arithmetic circuit over a finite field F, where
|F| > n, and with log |F| = O(κ), where κ is the security parameter. We assume all computation and communication is
performed over F. A negligible function in κ will be denoted by negl(κ). For two m length vectors A = (a1, . . . , am)
and B = (b1, . . . , bm) over F, we will denote by A⊗B the value

∑m
i=1 ai · bi.

2.1 Communication

We will mainly consider two different communication settings. The first setting is the popular and simple, but less
practical, synchronous channel setting, where the channels are synchronous and there is a strict upper bound on the
message delays. All the parties in this setting are assumed to be synchronized via a global clock. Any protocol in
this setting operates as a sequence of rounds, where in every round, it first performs some computation, then it sends
messages to the parties over the pair-wise channels and broadcasts any message which needs to be broadcast to all the
parties; this stage is followed by receiving the messages sent to the party by the other parties over the pair-wise channels
and the messages broadcast by the parties in the previous round. Since the system is synchronous, any (honest) party
need not have to wait endlessly for any message in any round. Thus the standard behaviour is to assume that if a party
does not receive a value which it is supposed to receive or instead it receives a “syntactically incorrect” value, then the
party simply substitutes a default value (instead of waiting endlessly, since the sender is definitely corrupted in this
case) and proceeds further to the next round.

2

The other communication setting is the more involved, but more practical, asynchronous setting; here the channels
are asynchronous and messages can be arbitrarily (but finitely) delayed. The only guarantee in this model is that
the messages sent by the honest parties will eventually reach their destinations. The order of the message delivery
is decided by a scheduler. To model the worst case scenario, we assume that the scheduler is under the control of
the adversary. The scheduler can only schedule the messages exchanged between the honest parties, without having
access to the “contents” of these messages. As in [5,9], we consider a protocol execution in this setting as a sequence of
atomic steps, where a single party is active in each step. A party is activated when it receives a message. On receiving
a message, it performs an internal computation and then possibly sends messages on its outgoing channels. The order
of the atomic steps are controlled by the scheduler. At the beginning of the computation, each party will be in a special
start state. A party is said to terminate/complete the computation if it reaches a halt state, after which it does not
perform any further computation. A protocol execution is said to be complete if all the honest parties terminate the
computation.

It is easy to see that the asynchronous setting models real-world networks like the Internet (where there can be
arbitrary message delays) more appropriately than the synchronous setting. Unfortunately, designing protocol in the
asynchronous setting is complicated and this stems from the fact that we cannot distinguish between a corrupted sender
(who does not send any messages) and a slow but honest sender (whose messages are arbitrarily delayed). Due to this
the following unavoidable but inherent phenomenon is always present in any asynchronous protocol: at any stage of
the protocol, no (honest) party can afford to receive communication from all the n parties, as this may turn out to
require an endless wait. So as soon as the party listens from n− t parties, it has to proceed to the next stage; but in this
process, communication from t potentially honest parties may get ignored.

2.2 Primitives

Linearly-homomorphic Encryption Scheme (HE). For our efficient public reconstruction protocol, we assume an
IND-CPA secure linearly-homomorphic public-key encryption scheme set-up for every party Pi ∈ P with message
space F; a possible instantiation could be the BGV scheme [8]. Under this set-up, party Pi will own a secret decryption
key dk(i) and the corresponding encryption key pk(i) will be publicly known. Given pk(i), a plaintext x and a

randomness r, anyone can compute a ciphertext HE.c(x)
def
= HE.Encpk(i)(x, r) of x for Pi, using the encryption

algorithm HE.Enc, where the size of HE.c(x) is O(κ) bits. Given a ciphertext HE.c(x) = HE.Encpk(i)(x, ?) and the
decryption key dk(i), party Pi can recover the plaintext x = HE.Decdk(i)(cx) using the decryption algorithm HE.Dec.

The encryption scheme is assumed to be linearly homomorphic: given two ciphertexts HE.c(x) = HE.Encpk(i)(x, ?)
and HE.c(y) = HE.Encpk(i)(y, ?), there exists an operation, say⊕, such that HE.c(x)⊕HE.c(y) = HE.Encpk(i)(x+
y, ?). Moreover, given a ciphertext HE.c(x) = HE.Encpk(i)(x, ?) and a publicly known constant c, there exists some
operation, say �, such that c� HE.c(x) = HE.Encpk(i)(c · x, ?).

Information-theoretic MACs: In our protocols, we will use information-theoretically secure message authentication
codes (MAC), similar to the one used in [7]. The authenticating key is a random line in F and the MAC on a value
a is its corresponding point on the line. Specifically, for such MACs, a random pair K = (α, β) ∈ F2 is selected as

the MAC key and the MAC tag on a value a ∈ F, under the key K is defined as MACK(a)
def
= α · a + β. In our

constructions, the MACs are used as follows: a party Pi will hold some value a and a MAC tag MACK(a), while
another party Pj will hold the MAC key K. Later when Pi wants to disclose a to Pj , it sends a along with MACK(a);
Pj verifies if a is consistent with the MAC tag with respect to its key K. A corrupted party Pi on holding the MAC tag
on a message gets one point on the straight-line y = αx + β and it leaves one degree of freedom on the polynomial.
Therefore Pi, even with unbounded computing power, cannot recover K completely. So a corrupted Pi cannot reveal
an incorrect value a′ 6= a to an honest Pj without getting caught except with probability 1

|F| = 2−κ = negl(κ), which
is the probability of guessing a second point on the straight-line and thus guessing the straight-line.

Definition 1 (Consistent MAC Keys). We call two MAC keys K = (α, β) and K′ = (α′, β′) consistent if α = α′.

We define the following operations on MAC key(s)

– For two consistent MAC keys K = (α, β) and K′ = (α, β′), we have K + K′
def
= (α, β + β′).

3

– Given a value c, then K + c
def
= (α, β + αc) and K− c def= (α, β − αc).

– Given a value c, then c · K def
= (α, c · β).

The MAC tags satisfy the linearity property in the sense that given two consistent MAC keys K,K′ and a value c, then
the following holds (we leave the proof as an easy exercise).

– Addition: MACK(a) + MACK′(b) = MACK+K′(a+ b).
– Addition/Subtraction by a Constant: MACK−c(a+ c) = MACK(a) and MACK+c(a− c) = MACK(a).
– Multiplication by a constant: c ·MACK(a) = MACc·K(c · a).

2.3 The Various Sharings

We define two types of secret sharing, the [·]-sharing and 〈·〉-sharing, where the latter uses MACs.

Definition 2 ([·]-sharing). We say a value s ∈ F is [·]-shared among P if there exists a polynomial p(·) of degree at

most t with p(0) = s and every (honest) party Pi ∈ P holds a share si
def
= p(i) of s. We denote by [s] the vector of

shares of s corresponding to the (honest) parties in P . That is, [s] = {si}ni=1.

Definition 3 (〈·〉-sharing). We say that a value s ∈ F is 〈·〉-shared among P if s is [·]-shared among P and every
(honest) party Pi holds a MAC tag on its share si for a key Kji held by every Pj . That is, the following holds for
every pair of (honest) parties Pi, Pj ∈ P: party Pi holds MAC tag MACKji

(si) for a MAC key Kji held by Pj . We
denote by 〈s〉 the vector of shares, MAC keys and MAC tags of s corresponding to the (honest) parties in P . That is,
〈s〉 =

{
si, {MACKji(si),Kij}nj=1

}n
i=1

.

While most of our computation are done over values that are 〈·〉-shared, our efficient public reconstruction protocol for
〈·〉-shared values will additionally require a tweaked version of 〈·〉-sharing, where there exists some designated party,
say Pj ; and the parties hold the shares and the MAC tags in an encrypted form under the public key pk(j) of Pj of an
HE scheme, with Pj knowing the corresponding secret key dk(j). We stress that the shares and MAC tags will not be
available in clear, but rather in an encrypted form. More formally:

Definition 4 (〈〈·〉〉j-sharing). Let s ∈ F and [s] = {si}ni=1 be the vector of shares corresponding to an [·]-sharing
of s. We say that s is 〈〈·〉〉j-shared among P with respect to a designated party Pj , if every (honest) party Pi holds
an encrypted share HE.c(si) and encrypted MAC tag HE.c(MACKji

(si)) under the public key pk(j), such that Pj
holds the MAC keys Kji and the secret key dk(j). We denote by 〈〈s〉〉j the vector of encrypted shares and encrypted
MAC tags corresponding to the (honest) parties in P , along with the MAC keys and the secret key of Pj . That is,

〈〈s〉〉j =
{
{HE.c(si),HE.c(MACKji

(si))}ni=1, {Kji}ni=1,dk
(j)
}

.

Private Reconstruction of 〈·〉 and 〈〈·〉〉-shared Value Towards a Designated Party. Note that with n = 2t + 1, a
[·]-shared value cannot be robustly reconstructed towards a designated party just by sending the shares, as we cannot
do error-correction. However, we can robustly reconstruct a 〈·〉-sharing towards a designated party, say Pj , by asking
the parties to send their shares, along with MAC tags to Pj , who then identifies the correct shares with high probability
and reconstructs the secret. A similar idea can be used to reconstruct an 〈〈s〉〉j-sharing towards Pj . Now the parties
send encrypted shares and MAC tags to Pj , who decrypts them before doing the verification. We call the resultant
protocols RecPrv(〈s〉, Pj) and RecPrvEnc(〈〈s〉〉j) respectively, which are presented in Fig. 1. We stress that while 〈s〉
can be reconstructed towards any Pj , 〈〈s〉〉j can be reconstructed only towards Pj , as Pj alone holds the secret key
dk(j) that is required to decrypt the shares and the MAC tags.

It is easy to see that if Pj is honest, then Pj correctly reconstructs the shared value in both the protocols, except
with probability at most t

|F| = negl(κ). Both the protocols have communication complexity O(κ · n) bits. Also note
that both the protocols will work in the asynchronous setting. We argue this for RecPrv (the same argument will work
for RecPrvEnc). The party Pj will eventually receive the shares of s from at least n − t = t + 1 honest parties, with
correct MACs. These t+ 1 shares are enough for the robust reconstruction of s. So we state the following lemma for
RecPrv. Similar statements hold for protocol RecPrvEnc.

4

Protocol RecPrv(〈s〉, Pj)

– Every party Pi ∈ P sends its share si and the MAC tag MACKji(si) to the party Pj .
– Party Pj on receiving the share s′i and the MAC tag MAC′Kji

(si) from Pi computes MACKji(s
′
i) and verifies if

MACKji(s
′
i)

?
= MAC′Kji

(si). If the verification passes then Pj considers s′i as a valid share. Once t + 1 valid shares
are obtained, using them Pj interpolates the sharing polynomial and outputs its constant term as s.

Protocol RecPrvEnc(〈〈s〉〉j)

– Every party Pi ∈ P sends HE.c(si) and HE.c(MACKji(si)) to the party Pj .
– Party Pj , on receiving these values, computes s′i = HE.Decdk(j)(HE.c(si)) and MAC′Kji

(si) = HE.Decdk(j)

(HE.c(MACKji(si))). The rest of the steps are the same as for RecPrv(?, Pj).

Fig. 1. Protocols for Reconstructing a 〈·〉-sharing and 〈〈·〉〉-sharing Towards a Designated Party

Lemma 1. Let s be 〈·〉-shared among the partiesP . Let Pj be a specific party. Protocol RecPrv achieves the following
in the synchronous communication setting:

– Correctness: Except with probability negl(κ), an honest Pj reconstructs the value s.
– Communication Complexity: The required communication complexity is O(κ · n) bits.

Lemma 2. Let s be 〈·〉-shared among the partiesP . Let Pj be a specific party. Protocol RecPrv achieves the following
in the asynchronous communication setting:

– Correctness & Communication Complexity: Same as in Lemma 1
– Termination: If every honest party participates in RecPrv, then an honest Pj will eventually terminate.

Linearity of Various Sharings. All of the previously defined secret sharings are linear, which for ease of exposition
we shall now overview. We first define what is meant by key consistent sharings.

Definition 5 (Key-consistent 〈·〉 and 〈〈·〉〉j-sharings). Two 〈·〉-sharings 〈a〉 and 〈b〉 are said to be key-consistent if
every (honest) Pi holds consistent MAC keys for every Pj across both the sharings.
Two 〈〈·〉〉j-sharings 〈〈a〉〉j and 〈〈b〉〉j with respect to a designated party Pj are said to be key-consistent if (honest)
Pj holds consistent MAC keys for every Pi across both the sharings, and the encryptions are under the same public
key of Pj .

Linearity of [·]-sharings: Given sharings [a] = {ai}ni=1 and [b] = {bi}ni=1 and a publicly known constant c, we have:

– Addition: [a] + [b] = [a+ b] = {ai + bi}ni=1. To compute [a+ b], every party Pi needs to locally compute ai+ bi.
– Addition by a Public Constant: c + [a] = [c + a] = {c+ ai}ni=1. To compute [c + a], every party Pi needs to

locally compute c+ ai.
– Multiplication by a Public Constant: c · [a] = [c · a] = {c · ai}ni=1. To compute [c · a], every party Pi needs to

locally compute c · ai.

Linearity of 〈·〉-sharings: Given sharings

〈a〉 =
{
ai, {MACKji(ai),Kij}nj=1

}n
i=1

and 〈b〉 =
{
bi, {MACK′

ji
(bi),K

′
ij}nj=1

}n
i=1

that are key-consistent and a publicly-known constant c, we have:

– Addition: 〈a〉 + 〈b〉 = 〈a + b〉 =
{
ai + bi, {MACKji+K′

ji
(ai + bi),Kij + K′ij}nj=1

}n
i=1

. To compute 〈a + b〉,
every party Pi needs to locally compute ai + bi, {MACKji(ai) + MACK′

ji
(bi)}nj=1 and {Kij + K′ij}nj=1.

– Addition by a Public Constant: c+ 〈a〉 = 〈c+a〉 =
{
c+ ai, {MACKji−c(ai + c),Kij − c}nj=1

}n
i=1

. To compute
〈c+ a〉, every party Pi needs to locally compute c+ ai. We recall that MACKji−c(ai + c) = MACKji

(ai). Hence
we assign MACKji

(ai) to MACKji−c(ai + c) and compute {Kij − c}nj=1.

5

– Multiplication by a Public Constant: c · 〈a〉 = 〈c · a〉 =
{
c · ai, {MACc·Kji(c · ai), c · Kij}nj=1

}n
i=1

. To compute
〈c · a〉, every party Pi needs to locally compute c · ai, {c ·MAC·Kji

(ai)}nj=1 and {c · Kij}nj=1.

Linearity of 〈〈·〉〉j-sharings: Given

〈〈a〉〉j =
{
{HE.c(ai),HE.c(MACKji(ai)), }ni=1, {Kji}ni=1,dk

(j)
}

〈〈b〉〉j =
{
{HE.c(bi),HE.c(MACKji(bi))}ni=1, {K′ji}ni=1,dk

(j)
}

that are key-consistent we can add the ciphertexts via the operation

〈〈a〉〉j + 〈〈b〉〉j = 〈〈a+ b〉〉j =
{
{HE.c(ai + bi),HE.c(MACKji+K′

ji
(ai + bi))}ni=1, {Kji + K′ji}ni=1,dk

(j)
}
.

So to compute 〈〈a + b〉〉j , every party Pi ∈ P needs to locally compute the values HE.c(ai) ⊕ HE.c(bi) and
HE.c(MACKji(ai))⊕HE.c(MACK′

ji
(bi)), while party Pj needs to compute {Kji +K′ji}ni=1. Multiplication by public

constants for key-consistent 〈〈·〉〉j-sharings can also be done. However we skip the details as we need only the above
linearity property from 〈〈·〉〉j-sharings in our efficient public reconstruction protocol.

Generating 〈〈·〉〉j-sharing from 〈·〉-sharing. In our efficient protocol for public reconstruction of 〈·〉-shared values,
we come across the situation where there exists: a value r known only to a designated party Pj , a publicly known
encryption HE.c(r) of r, under the public key pk(j), and a 〈·〉-sharing 〈a〉 =

{
ai, {MACKji

(ai),Kij}nj=1

}n
i=1

. Given
the above, the parties need to compute a 〈〈·〉〉j sharing:

〈〈r · a〉〉j =
{
{HE.c(r · ai),HE.c(MACr·Kji(r · ai))}ni=1, {r · Kji}ni=1,dk

(j)
}

of r · a. Computing above needs only local computation by the parties. Specifically, each party Pi ∈ P locally
computes:

HE.c(r · ai) = ai � HE.c(r) and
HE.c(MACr·Kji

(r · ai)) = HE.c(r ·MACKji
(ai)), since r ·MACKji

(ai) = MACr·Kji
(ai · r)

= MACKji
(ai)� HE.c(r)

Finally party Pj locally computes {r · Kji}ni=1.

3 Efficient Public Reconstruction of 〈·〉-sharings with a Linear Overhead

In this section, we show how to publicly reconstruct n(t + 1) = Θ(n2) 〈·〉-shared values with communication com-
plexity O(κ · n3) bits. This suggests a method for public reconstruction of one 〈·〉-shared value with an amortized
communication overhead that is linear in the number of parties i.e. O(κ · n) bits.

Let {〈a(i,j)〉}n,t+1
i=1,j=1 be the 〈·〉-sharings, which need to be publicly reconstructed. The naive way of achieving

the task is to run Θ(n3) instances of RecPrv, where Θ(n2) instances are run to reconstruct all the values to a single
party. This method has communication complexity O(κ · n4) bits and thus have a quadratic overhead. Our approach
outperforms the naive method. Our protocol, called RecPub works for both synchronous as well as asynchronous
setting; for simplicity we first explain the protocol assuming a synchronous setting.

LetA be an n×(t+1) matrix, with (i, j)th element as a(i,j). LetAi(x) be a polynomial of degree t defined over the

values in the ith row of A; i.e. Ai(x)
def
= a(i,1) + a(i,2)x+ . . .+ a(i,t+1)xt. Let b(i,j)

def
= Ai(j), for i, j ∈ {1, . . . , n}

and letB denote the n×nmatrix with (i, j)th element as b(i,j). ClearlyA can be recovered given any t+1 columns of
B. We explain below how to reconstruct at least t+ 1 columns of B to all the parties with communication complexity
O(κ · n3) bits. In what follows, we denote ith row and column of A as Ai and Ai respectively, with a similar notation
used for the rows and columns of B.

6

Since every Bi is linearly dependent on Ai, given 〈·〉-sharing of the elements in Ai, it requires only local compu-
tation by the parties to generate 〈·〉-sharing of the elements in Bi. Specifically, 〈b(i,j)〉 = 〈a(i,1)〉+ 〈a(i,2)〉 · j + . . .+
〈a(i,t+1)〉 · jt. Then we reconstruct the elements of A to all the parties in two steps. First Bi is reconstructed only
towards party Pi using n instances of RecPrv with an overall cost O(κ · n3) bits. Next each party Pi sends Bi to all
the parties, requiringO(κ ·n3) bits of communication. If every Pi behaves honestly then every party would possess B
at the end of the second step. However a corrupted Pi may not send the correct Bi. So what we need is a mechanism
that allows an honest party to detect if a corrupted party Pi has sent an incorrect Bi. Detecting is enough, since every
(honest) party is guaranteed to receive correctly the Bi columns from t + 1 honest parties. Recall that t + 1 correct
columns of B are enough to reconstruct A.

After Pi reconstructs Bi, and before it sends the same to party Pj , we allow Pj to obtain a random linear combi-
nation of the elements in Bi (via interaction) in a way that the linear combiners are known to no one other than Pj .
Later, when Pi sends Bi to Pj , party Pj can verify if the Bi received from Pi is correct or not by comparing the linear
combination of the elements of the received Bi with the linear combination that it obtained before. It is crucial to
pick the linear combiners randomly and keep them secret, otherwise Pi can cheat with an incorrect Bi without getting
detected by an honest Pj . In our method, the random combiners for an honest Pj are never leaked to anyone and this
allows Pj to reuse them in a latter instance of the public reconstruction protocol. Specifically, we assume the following
one time setup for RecPub (which can be done beforehand in the offline phase once and for all). Every party Pj holds
a secret key dk(j) for the linearly-homomorphic encryption scheme HE and the corresponding public key pk(j) is
publicly available. In addition, Pj holds n random combiners, say R(j) = (r(j,1), . . . , r(j,n)), and the encryptions
HE.c(r(j,1)), . . . ,HE.c(r(j,n)) of these values under Pj’s public key pk(j) are available publicly. The above setup can
be created once and for all, and can be reused across multiple instances of RecPub executed either within one instance
of the function evaluation or spread across many instances of function evaluations.

Given the above random combiners in an encrypted form, party Pj can obtain the linear combination c(i,j)
def
=

r(j,1)b(1,i) + . . . + r(j,n)b(n,i) of the elements of Bi as follows. First note that the parties hold 〈·〉-sharing of the
elements of Bi. If the linear combiners were publicly known, then the parties could compute 〈c(i,j)〉 = r(j,1)〈b(1,i)〉+
. . . + r(j,n)〈b(n,i)〉 and reconstruct c(i,j) to party Pj using RecPrv. However since we do not want to disclose the
combiners, the above task is performed in an encrypted form, which is doable since the combiners are encrypted under
the linearly-homomorphic PKE. Specifically, given encryptions HE.c(r(j,k)) under pk(j) and sharings 〈b(k,i)〉, the
parties first generate 〈〈r(j,k) · b(k,i)〉〉j for every Pj (recall that it requires only local computation). Next the parties
linearly combine the sharings 〈〈r(j,k) · b(k,i)〉〉j for k = 1, . . . , n to get 〈〈c(i,j)〉〉j , which is then reconstructed towards
party Pj using an instance of RecPrvEnc. In total n2 such instances need to be executed and so the communication
cost of the above step is O(κ · n3) bits. Protocol RecPub is now formally presented in Fig. 2.

The correctness and communication complexity of the protocol are stated in Lemma 3, which follows in a straight
forward fashion from the protocol description and the detailed protocol overview. The security of the protocol will be
proven in conjunction with the online phase of our MPC protocol in the next section.

Lemma 3. Let {〈a(i,j)〉}n,t+1
i=1,j=1 be a set of n(t+1) = Θ(n2) shared values which need to be publicly reconstructed by

the parties. Then given a setup (pk(1),dk(1)), . . . , (pk(n),dk(n)) for the linearly-homomorphic encryption scheme
HE for the n parties and encryptions HE.c(r(j,1)), . . . ,HE.c(r(j,n)) of n random values r(j,1), . . . , r(j,n) on the behalf
of each party Pj ∈ P , with only Pj knowing the random values, protocol RecPub achieves the following in the
synchronous communication setting:

– Correctness: Except with probability negl(κ), every honest party reconstructs the values {a(i,j)}n,t+1
i=1,j=1.

– Communication Complexity: The protocol has communication complexity O(κ · n3) bits.

Protocol RecPub in the Asynchronous Setting: A closer look at the protocol RecPub reveals that the protocol works
in an asynchronous setting. More specifically, assume that every honest party participates in the protocol RecPub, then
we can show that every honest party will terminate the protocol. Transforming the sharings of the values in the matrix
A into the sharings of the values in matrix B requires only local computation which will be eventually completed by
the honest parties. Next the instances of RecPrv and RecPrvEnc for each honest Pi will terminate by Lemma 2. So
every honest Pi will eventually reconstruct Bi and c(j,i) (the latter value is reconstructed irrespective of an honest or
corrupted Pj). Note that the steps between the reconstruction of Bi and c(j,i) involves only local computation. Finally,

7

Protocol RecPub({〈a(i,j)〉}n,t+1
i=1,j=1)

Each party Pj ∈ P holds Rj = (r(j,1), . . . , r(j,n)) and the encryptions HE.c(r(j,1)), . . . ,HE.c(r(j,n)), under Pj’s public
key pk(j), are publicly known. LetA be the matrix of size n× (t+ 1), with the (i, j)th entry as a(i,j), for i ∈ {1, . . . , n} and

j ∈ {1, . . . , t+1}. We denote the ith row and column ofA asAi andAi respectively. We defineAi(x)
def
= a(i,1) +a(i,2)x+

. . . + a(i,t+1)xt for i ∈ {1, . . . , n}, and b(i,j)
def
= Ai(j) for i, j ∈ {1, . . . , n}. Let B be the matrix of size n × n, with the

(i, j)th entry as b(i,j). We denote the ith row and column of B as Bi and Bi respectively. The parties do the following to
reconstruct A:

– Computing 〈·〉-sharing of every element of B: For i, j ∈ {1, . . . , n}, the parties compute 〈b(i,j)〉 = 〈a(i,1)〉 + j ·
〈a(i,1)〉+ . . .+ jt · 〈a(i,t+1)〉.

– Reconstructing Bi towards Pi: For i ∈ {1, . . . , n}, the parties execute RecPrv(〈b(1,i)〉, Pi), . . . ,RecPrv(〈b(n,i)〉, Pi)
to enable Pi robustly reconstruct Bi.

– Reconstructing Bi ⊗Rj towards Pj: Corresponding to each Pi ∈ P , the parties execute the following steps, to enable

each Pj ∈ P to obtain the random linear combination c(i,j)
def
= Bi ⊗Rj = r(j,1)b(1,i) + . . .+ r(j,n)b(n,i):

• The parties first compute 〈〈r(j,k) · b(k,i)〉〉j from HE.c(r(j,k)) and 〈b(k,i)〉 for k ∈ {1, . . . , n} and then compute
〈〈c(i,j)〉〉j =

∑n
k=1〈〈r

(j,k) · b(k,i)〉〉j .
• The parties execute RecPrvEnc(〈〈c(i,j)〉〉j) to reconstruct c(i,j) towards Pj .

– Sending Bi to all: Every party Pi ∈ P sends Bi to every party Pj ∈ P . Each party Pj then reconstructs A as follows:
• On receiving B̄i from Pi, compute c′(i,j) = B̄i⊗Rj and check if c(i,j) ?

= c′(i,j). If the test passes then Pj considers
B̄i as the valid ith column of the matrix B.

• Once t+ 1 valid columns of B are obtained by Pj , it then reconstructs A.

Fig. 2. Robustly Reconstructing 〈·〉-shared Values with a Linear Overhead

every honest Pi will receive Bj from every honest Pj . This implies that every honest party will eventually receive at
least t+ 1 columns of B that verifies correctly with c(i,j). So we can conclude that every honest party will reconstruct
A and terminate eventually. We state the following lemma.

Lemma 4. Protocol RecPub achieves the following in the asynchronous communication setting:

– Correctness & Communication Complexity: Same as in Lemma 3
– Termination: If all honest parties participate in RecPub, then every honest party eventually terminates.

4 Linear Overhead Online Phase Protocol

Let f be a publicly known function over F which takes a single input from each party and has a single output4;
specifically f : Fn → F. Let f be represented as an arithmetic circuit C over F, consisting of M multiplication
gates. We show how our efficient reconstruction protocol RecPub, enables one to securely realize the standard ideal
functionality for the MPC evaluation of the circuit C, Ff (see Appendix A for an explicit functionality) in the FPREP-
hybrid model, with communication complexity O(κ · (n ·M + n2)) bits, thus providing a linear overhead per mul-
tiplication gate. More specifically, assume that the parties have access to the pre-processing and input processing
functionality FPREP: This functionality creates the following one-time setup: (i) Every party Pj holds a secret key
dk(j) for the linearly-homomorphic encryption scheme HE and the corresponding public key pk(j) is available pub-
licly. In addition, each (honest) Pj holds n random combiners, say R(j) = (r(j,1), . . . , r(j,n)) and the encryptions
HE.c(r(j,1)), . . . ,HE.c(r(j,n)) of these values under Pj’s public key are available with all the parties. (ii) Each party
Pi holds αij , the α-component of all its keys for party Pj (recall that for key-consistent sharings every Pi has to use
the same α-component for all its keys corresponding to Pj). The above setup can be reused across multiple instances
of ΠONLINE and can be created once and for all. In addition to the one-time setup, the functionality also helps create at
least M random 〈·〉-shared multiplications triples (these are not reusable and have to be created afresh for every exe-
cution of ΠONLINE) and 〈·〉-shared inputs of the parties. We provide the formal details of FPREP in Fig. 5 of Appendix
A.

4 This is just for simplicity; using standard techniques we can deal with functions taking multiple inputs from each party.

8

Using FPREP we can design a protocol ΠONLINE (see Fig. 3) which UC-securely realizes Ff in the synchronous
setting. The protocol is based on the standard idea of doing shared circuit evaluation based on pre-processed multipli-
cation triples. A brief overview of the protocol is given in Appendix B. To achieve the linear overhead in ΠONLINE, we
require that the circuit is “wide” in the sense that at every level there are at least n · (t+ 1) independent multiplication
gates that can be evaluated in parallel. This is to ensure that we can use our linear-overhead reconstruction protocol
RecPub. We note that similar restrictions are used in some of the previous MPC protocols to achieve a linear overhead
in the online phase (see for example [4,11,15]). In practice many functions have such a level of parallel multiplication
gates when expressed in arithmetic circuit format, and practical systems use algorithms to maximise the level of such
parallelism in their execution, see e.g. [24]. Protocol ΠONLINE works for both the synchronous as well as asynchronous
setting, but, for simplicity, we initially give the protocol for the synchronous setting and later argue that it works in the
asynchronous setting.

Protocol ΠONLINE

Every party Pi ∈ P interact with FPREP with input Setup, Triples and (x(i), i, Input) and receives dk(i),
{pk(j)}nj=1, R(i) = (r(i,1), . . . , r(i,n)), {HE.c(r(j,1)), . . . ,HE.c(r(j,n))}nj=1, its information for multiplication triples
{(〈a(l)〉, 〈b(l)〉, 〈c(l)〉)}Ml=1 and its information for inputs {〈x(j)〉}nj=1. The honest parties associate the sharing
(〈a(l)〉, 〈b(l)〉, 〈c(l)〉) with the lth multiplication gate for l ∈ {1, . . . ,M} and evaluate each gate in the circuit as follows:

– Linear Gates: using the linearity property of 〈·〉-sharing, the parties apply the linear function associated with the gate on
the corresponding 〈·〉-shared gate inputs to obtain an 〈·〉-sharing of the gate output.

– Multiplication Gates:M multiplication gates as grouped as a batch of n·(t+1). We explain the evaluation for one batch.
Let the inputs to the ith batch be {(〈p(l)〉, 〈q(l)〉)}n·(t+1)

l=1 and let {(〈a(l)〉, 〈b(l)〉, 〈c(l)〉)}n·(t+1)
l=1 be the corresponding

associated multiplication triples. To compute 〈p(l) · q(l)〉, the parties do the following:
• Locally compute 〈d(l)〉 = 〈p(l)〉 − 〈a(l)〉 = 〈p(l) − a(l)〉 and 〈e(l)〉 = 〈q(l)〉 − 〈b(l)〉t = 〈q(l) − b(l)〉.
• Publicly reconstruct the values {d(l)}n·(t+1)

l=1 and {e(l)}n·(t+1)
l=1 using two instances of RecPub.

• On reconstructing d(l), e(l), the parties set 〈p(l) · ql)〉 = d(l) · e(l) + d(l) · 〈b(l)〉+ e(l) · 〈a(l)〉+ 〈c(l)〉.
– Output Gate: Let 〈y〉 be the sharing of the output gate. The parties execute RecPrv(〈y〉, Pi) for every Pi ∈ P , robustly

reconstruct the function output y and terminate.

Fig. 3. Protocol for Realizing Ff with a Linear Overhead in the FPREP-hybrid Model for the Synchronous Setting

The properties of ΠONLINE are stated in Theorem 1. We prove the security in the UC setting in Appendix B. The
main communication in the protocol is for publicly reconstructing 〈·〉-shared values while evaluating the multiplication
gates; in total 2M such shared values need to be publicly reconstructed. We reconstruct them using RecPub. So
assuming that the M multiplication gates in the circuit C can be divided into blocks of n · (t + 1) independent
multiplication gates, evaluating the same via the Beaver’s trick will cost

O
(
κ · n3 · M

n · (t+ 1)

)
= O(κ · n ·M) bits .

Theorem 1. ProtocolΠONLINE UC-securely realizes the functionalityFf in theFPREP-hybrid model in the synchronous
setting. The protocol has communication complexity O(κ · (n ·M + n2)) bits.

Protocol ΠONLINE in the Asynchronous Setting: It is easy to see that protocol ΠONLINE will work in an asynchronous
setting. That is, if every honest party participates in the protocol, then every honest party will eventually terminate the
protocol. The steps in the protocol that involves interaction among the parties are the public reconstruction of values
in the Beaver’s trick and the public reconstruction of the circuit output. By Lemma 4, if the honest parties participate
in an instance of RecPub, then they will eventually terminate the execution. Furthermore, the instances of RecPrv for
reconstructing the circuit output will be eventually terminated for every honest party (by Lemma 2). The remaining
steps in ΠONLINE involve only local computation which the honest parties will complete eventually. Hence we have the
following theorem:

9

Theorem 2. Protocol ΠONLINE UC-securely realizes the functionality Ff in the FPREP-hybrid model in the asyn-
chronous setting. The protocol has communication complexity O(κ · (n ·M + n2)) bits.

5 The Various Secure Realizations of FPREP

Securely Realizing FPREP in the Synchronous Setting. We present a protocol ΠPREP which UC-securely realizes
FPREP in the synchronous setting. The protocol is a straight forward adaptation of the offline phase protocol of SPDZ
and BDOZ to deal with Shamir sharing, instead of additive sharing. Here we just provide the high level overview
of ΠPREP and refer to Appendix C for the complete formal details. In ΠPREP, we assume an ideal functionality
FONE-TIME-SETUP, which provides the following one-time set-up for the parties: (1). Set-up for a threshold somewhat
homomorphic encryption (SHE) scheme; (2). Set-up for a public-key, secret-key pair of a linearly-homomorphic en-
cryption scheme for each party; (3). Set-up for encrypted random combiners for the parties and (4). Set-up for the
encrypted α-components of MAC keys for the parties (for details, see Figure. 7 in Appendix C). We stress that the
functionality needs to be called only once and the set-up done by it can be re-used across multiple instances of ΠPREP.
For both SHE as well as HE, we assume the availability of standard UC-secure ZK protocols for proof of plain-text
knowledge (PoPK); additionally for SHE, we assume UC-secure ZK protocols for proof of correct decryption (PoCD).

We explain how one random shared multiplication triple (〈a〉, 〈b〉, 〈c〉) is generated. The parties first generate
([a], [b], [c]): to generate [a], we ask t+ 1 parties to define a polynomial of degree at most t in a shared fashion, where
each party contributes one random point on the polynomial. For this, each party Pi ∈ {P1, . . . , Pt+1} selects a random
ai, encrypts it using the SHE scheme and broadcasts the ciphertext with a ZK PoPK. Next, we define the polynomial
A(·) of degree at most t, passing through the points (1, a1), . . . (t + 1, at+1). Since there exists at least one honest
party in the set {P1, . . . , Pt+1} whose corresponding ai value will be random and private, it follows that we will have
one degree of freedom in the A(·) polynomial. So we can define [a] via the polynomial A(·). To complete [a], the
remaining t points on A(·) are computed homomorphically in an encrypted fashion and decrypted (in a distributed
fashion) towards the corresponding parties. Following a similar procedure, the parties generate [b] for a random b.
At this stage, the parties will have an encryption of a and b under the SHE key and so they can homomorphically
compute an encryption of c. To convert the encryption of c into a [·]-sharing of c, we use the following standard idea
used in SPDZ [16]: the parties generate an encryption of a random r, along with [r]. Then an encryption of c + r
is homomorphically computed and then publicly decrypted. Finally from c + r and [r], the parties obtain [c]. The
generation of the MAC values follows in the standard BDOZ manner.

The major communication in the protocol is for broadcasting the encryptions and for distributed decryption. We
assume that each party has to broadcast “sufficiently large” number of encryptions, so that we can use the multi-valued
broadcast protocol of [18] with O(n) overhead. For distributed decryption, we follow a protocol from [12] called
DistDec (see Appendix C) which keeps the overall number of instances of PoCD during distributed decryption to
O(n3). Since the protocol is a straight forward adaptation of the offline phase protocol of [7,16], we avoid giving the
complete proof. Instead we state the following theorem.

Theorem 3. Protocol ΠPREP UC-securely realizes FPREP in the FONE-TIME-SETUP-hybrid model in synchronous setting
with communication complexity O(κ · (n2 ·M + poly(n))) bits.

Securely Realizing FPREP with Abort in the Partial Synchronous Setting. We now discuss how to securely realize
FPREP asynchronously. We first note that in a completely asynchronous setting, it is impossible to securely realizeFPREP

in the point-to-point channel. This is because any secure realization of FPREP has to ensure that all the honest parties
have a “consistent” view of the protocol outcome. For this it is necessary that all the honest parties have an agreement
on the final outcome. Unfortunately it is known that computationally secure asynchronous Byzantine agreement (ABA)
is possible if and only if t < n/3 [21,22]. The second inherent difficulty in securely realizingFPREP in an asynchronous
setting is that it is impossible to ensure input provision from all the n parties, as this may turn out to be endless. In the
worst case, inputs of only n− t parties can be considered for the computation and so for n = 2t+ 1 this implies that
out of the t + 1 input providers, there may be only one honest party. This may not be acceptable for most practical
applications of MPC. To get rid of the latter difficulty, [14] introduced the following practically motivated variant of
the traditional asynchronous communication setting, which we refer as partial asynchronous setting:

10

– The protocols in the partial asynchronous setting have one synchronization point. Specifically, there exists a certain
well defined time-out and the assumption is that all the messages sent by the honest parties before the deadline
will reach to their destinations within this deadline.

– Any protocol executed in the partial asynchronous setting need not always terminate and provide output to all the
honest parties. Thus the adversary may cause the protocol to fail. However it is required that the protocol up to the
synchronization point does not release any new information to the adversary.

In Appendix D we examine how to makeΠPREP work in the partial asynchronous setting. We present two solutions;
the first which allows some synchronous rounds after the synchronization point, and one which uses a method to enable
a non-equivocation mechanism (which can be implemented using a trusted hardware module).

6 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO and EPSRC via
grants EP/I03126X and EP/M016803.

References

1. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty Computation with Low Commu-
nication, Computation and Interaction via Threshold FHE. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume
7237 of Lecture Notes in Computer Science, pages 483–501. Springer, 2012.

2. M. Backes, F. Bendun, A. Choudhury, and A. Kate. Asynchronous MPC with a Strict Honest Majority Using Non-equivocation.
In M. M. Halldórsson and S. Dolev, editors, PODC, pages 10–19. ACM, 2014.

3. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In J. Feigenbaum, editor, CRYPTO, volume 576 of
Lecture Notes in Computer Science, pages 420–432. Springer Verlag, 1991.

4. Z. Beerliová-Trubı́niová and M. Hirt. Perfectly-Secure MPC with Linear Communication Complexity. In R. Canetti, editor,
TCC, volume 4948 of Lecture Notes in Computer Science, pages 213–230. Springer Verlag, 2008.

5. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In S. R. Kosaraju, D. S. Johnson, and A. Ag-
garwal, editors, STOC, pages 52–61. ACM, 1993.

6. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract). In J. Simon, editor, STOC, pages 1–10. ACM, 1988.

7. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic Encryption and Multiparty Computation. In K. G.
Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188. Springer, 2011.

8. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping.
TOCT, 6(3):13:1–13:36, 2014.

9. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel, 1995.
10. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. J. Cryptology, 13(1):143–202, 2000.
11. A. Choudhury, M. Hirt, and A. Patra. Asynchronous Multiparty Computation with Linear Communication Complexity. In

Y. Afek, editor, DISC, volume 8205 of Lecture Notes in Computer Science, pages 388–402. Springer, 2013.
12. A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart. Between a Rock and a Hard Place: Interpolating between MPC

and FHE. In K. Sako and P. Sarkar, editors, ASIACRYPT, volume 8270, pages 221–240. Springer, 2013.
13. A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. On the (Limited) Power of Non-equivocation. In D. Kowalski and

A. Panconesi, editors, PODC, pages 301–308. ACM, 2012.
14. I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous Multiparty Computation: Theory and Implementation.

In S. Jarecki and G. Tsudik, editors, PKC, pages 160–179, 2009.
15. I. Damgård and J. B. Nielsen. Scalable and Unconditionally Secure Multiparty Computation. In A. Menezes, editor, CRYPTO,

volume 4622 of Lecture Notes in Computer Science, pages 572–590. Springer Verlag, 2007.
16. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation from Somewhat Homomorphic Encryption.

In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 643–662.
Springer, 2012.

17. Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical covertly secure MPC
for dishonest majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, Computer
Security - ESORICS 2013, volume 8134 of Lecture Notes in Computer Science, pages 1–18. Springer, 2013.

11

18. M. Fitzi and M. Hirt. Optimally Efficient Multi-valued Byzantine Agreement. In E. Ruppert and D. Malkhi, editors, PODC,
pages 163–168. ACM Press, 2006.

19. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and Fact-Track Multiparty Computations with Applications to
Threshold Cryptography. In B. A. Coan and Y. Afek, editors, podc, pages 101–111. ACM, 1998.

20. M. Hirt and J. B. Nielsen. Robust Multiparty Computation with Linear Communication Complexity. In C. Dwork, editor,
CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 463–482. Springer, 2006.

21. M. Hirt, J. B. Nielsen, and B. Przydatek. Cryptographic Asynchronous Multi-party Computation with Optimal Resilience
(Extended Abstract). In EUROCRYPT, LNCS 3494, pages 322–340. Springer Verlag, 2005.

22. M. Hirt, J. B. Nielsen, and B. Przydatek. Asynchronous Multi-Party Computation with Quadratic Communication. In ICALP,
LNCS 5126, pages 473–485. Springer Verlag, 2008.

23. J. Katz and C. Y. Koo. On Expected Constant-Round Protocols for Byzantine Agreement. In C. Dwork, editor, CRYPTO,
volume 4117 of Lecture Notes in Computer Science, pages 445–462. Springer, 2006.

24. Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively secure MPC with dishonest majority. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS’13, pages 549–560. ACM, 2013.

A The Ff and FPREP Functionalities

Ff is presented in Fig. 4, whilst FPREP is presented in Fig. 5. In FPREP, the ideal adversary specifies all the data that the
corrupted parties would like to hold as part of the various sharings generated by the functionality. Namely it specifies
the shares, MAC keys and MAC tags. The functionality then completes the sharings while keeping them consistent
with the data specified by the adversary.

Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-input function f : Fn → F
represented as an arithmetic circuit C.

– Upon receiving (i, x(i)) from every party Pi ∈ P where x(i) ∈ F, the functionality computes y = C(x(1), . . . , x(n)),
sends y to all the parties and the adversary S and halts. Here C denotes the arithmetic circuit over F representing f .

Fig. 4. The Ideal Functionality for Computing a Given Function

B An Overview of Online Protocol and Proof of Theorem 1

The online protocol ΠONLINE (presented in Fig. 3) is based on the standard Beaver’s idea of securely evaluating the
circuit in a shared fashion using pre-processed shared random multiplication triples [3] and shared inputs. Namely,
the parties evaluate the circuit C in a 〈·〉-shared fashion by maintaining the following invariant for each gate in the
circuit. Given a 〈·〉-sharing of the inputs of the gate, the parties generate an 〈·〉-sharing of the output of the gate.
Maintaining the invariant for linear gates requires only local computation, thanks to the linearity property of the 〈·〉-
sharing. For multiplication gates, the parties deploy a shared multiplication triple received from FPREP and evaluate
the multiplication gate by using Beaver’s trick. Specifically, let 〈p〉, 〈q〉 be the sharing corresponding to the inputs
of a multiplication gate and let (〈a〉, 〈b〉, 〈c〉) be the shared random multiplication triple obtained from FPREP, which
is associated with this multiplication gate. To compute an 〈·〉-sharing of the gate output p · q, we note that p · q =

(p − a + a) · (q − b + b) = d · e + d · b + e · a + c, where d
def
= p − a and e

def
= q − b. So if d and e are publicly

known then 〈p · q〉 = d · e + d · 〈b〉 + e · 〈a〉 + 〈c〉 holds. To make d and e public, the parties first locally compute
〈d〉 = 〈p〉 − 〈a〉 and 〈e〉 = 〈q〉 − 〈b〉 and publicly reconstruct these sharings. Note that even though d and e are made
public, the privacy of the gate inputs p and q is preserved, as a and b are random and private. Finally once the parties
have the sharing 〈y〉 for the circuit output, it is publicly reconstructed to enable every party obtain the function output.

12

Functionality FPREP

The functionality interacts with the parties in P and the adversary S as follows. Let C ⊂ P be the set of corrupted parties.

– Setup Generation: On input Setup from the parties in P , the functionality does the following:
• It creates n public key, secret key pairs {pk(i),dk(i)}ni=1 of the linearly-homomorphic encryption scheme HE,
• For each Pi, it selects n random values (r(i,1), . . . , r(i,n)), computes HE.c(r(i,1)), . . . ,HE.c(r(i,n)) under pk(i),

• It sends
(
dk(i), (r(i,1), . . . , r(i,n)), {pk(j)}nj=1, {HE.c(r(j,1)), . . . ,HE.c(r(j,n))}nj=1

)
to party Pi.

• On the behalf of each honest Pi ∈ P \ C, it selects n random values {αij}nj=1, where the jth value is designated
to be used in the MAC key for party Pj . On the behalf of each corrupted party Pi ∈ C, it receives from S the αij
values that Pi wants to use in the MAC keys corresponding to the honest party Pj . On receiving, the functionality
stores these values.

– Triple Sharings: On input Triples from all the parties in P , the functionality generates 〈·〉-sharing of χ random multipli-
cation triples in parallel. To generate one such sharing (〈a〉, 〈b〉, 〈c〉), it does the following:
• It randomly selects a, b and computes c = ab. It then runs ‘Single 〈·〉-sharing Generation’ (see below) for a, b and c.

– Input Sharings: On input (x(i), i, Input) from party Pi and (i, Input) from the remaining parties, the functionality runs
‘Single 〈·〉-sharing Generation’ (given below) for x(i).

Single 〈·〉-sharing Generation: The functionality does the following to generate 〈s〉-sharing for a given value s:

– On receiving the shares {si}Pi∈C from S on the behalf of the corrupted parties, it selects a polynomial S(·) of degree at
most t, such that S(0) = s and S(i) = si for each Pi ∈ C. For Pi 6∈ P \ C, it computes si = S(i).

– On receiving {βij}Pi∈C, Pj 6∈C from S, the second components of the MAC key that Pi ∈ C will have for an honest
party Pj , it sets Kij = (αij , βij) where αij was specified by S in ‘Setup generation’ stage. It computes the MAC tag
MACKij (sj) of sj for every honest Pj corresponding to the key of every corrupted Pi.

– On receiving MAC tags {MACij}Pi∈C, Pj 6∈C that the corrupted parties would like to have on their shares si corresponding
to the MAC key of honest Pj , it fixes the key of Pj corresponding to Pi as Kji = (αji, βji) where βji = MACij−αji ·si
and αji was selected by the functionality in ‘Setup generation’ stage.

– For every pair of honest parties (Pj , Pk), it chooses the key of Pj as Kjk = (αjk, βjk) where αjk is taken from ‘setup
generation phase’ and βjk is chosen randomly. It then computes the corresponding MAC tag of Pk as MACKjk (sk).

– It sends
{
sj , {MACKkj ,Kjk}

n
k=1

}
to honest party Pj (no need to send anything to corrupted parties as S has the data of

the corrupted parties already).

Fig. 5. Ideal Functionality for Setup Generation, Offline Pre-processing and Input Processing

13

B.1 Proof of Theorem 1

We refer to [10,7,16,12] for the definition of UC-security. Let A be a real-world adversary corrupting t parties during
the execution of ΠONLINE and let C ⊂ P denote the set of corrupted parties. We present a simulator Sf for A, who
interacts with Ff and simulates each received message of A in the protocol ΠONLINE from the honest parties and from
the functionality FPREP, stage by stage. Note that the simulator will also simulate the steps of the subprotocol RecPub
executed inside the protocol ΠONLINE. We present the high level idea of the simulator first. The formal details are given
in Figure 6.

The idea of Sf is straight forward. The simulator plays the role of FPREP and honestly simulates the call to FPREP.
Specifically, on receiving Setup from the corrupted parties, it creates n public key, secret key pairs {pk(i),dk(i)}ni=1

of the linearly-homomorphic encryption scheme HE, selects n random values (r(j,1), . . . , r(j,n)) and computes their
encryptions HE.c(r(j,1)), . . . ,HE.c(r(j,n)) under pk(j) and sends(

dk(i), (r(i,1), . . . , r(i,n)), {pk(j)}nj=1, {HE.c(r(j,1)), . . . ,HE.c(r(j,n))}nj=1

)
to every corrupted party Pi. Next, it creates 〈·〉-sharings of χ random multiplication triples, taking inputs from A the
shares, the MAC keys and the MAC tags of the corrupted parties in each of these sharings just as in FPREP. Next the
simulator learns a corrupted party Pi’s input x(i) from Pi’s input message (x(i), i, Input) that it sends to FPREP. The
simulator sets the input x(i) of each honest Pi as zero. With these inputs, Sf perfectly emulates FPREP. That is, it
creates 〈·〉-sharings of the inputs of each party, where A selects the shares, the MAC keys and the MAC tags of the
corrupted parties in each of these sharings just as in FPREP.

Then, the simulator simulates the shared circuit evaluation using the above inputs of the parties , updating the
sharings after each gate evaluation. The sharings that need to be opened during the evaluation of multiplication gates
are known to the simulator and hence it can easily simulate the messages of the honest parties, corresponding to the
protocol steps of RecPub. On receiving the communication from the corrupted parties (on behalf of the honest parties),
it checks if the corrupted parties have sent incorrect information that pass the MAC test or the random combination
test whichever is applicable according to RecPub protocol steps (for the latter, recall that an honest Pj is supposed

to test if c′(i,j) = B̄i ⊗ Rj ?
= c(i,j) for every Pi). Note that it can do so since it knows all the information that the

corrupted parties hold and latter reveal to the honest parties as a part of the sharings that are opened in RecPub. If it
notes that a corrupted party sent wrong information that passes the above tests, then it halts the simulation and aborts.
Otherwise, it goes on to simulate the opening of the output sharing as follows:

– The simulator first learns the function output y by sending the inputs of the corrupted parties to Ff . Since the
simulator knows the simulated output sharing, say 〈ỹ〉, it can easily create a “fake” output sharing 〈y〉 such that
the shares of the corrupted parties in 〈ỹ〉 and 〈y〉 are the same.

– The simulator ensures that the shares of the honest parties in the sharing 〈y〉 have MAC tags consistent with the
MAC keys of the corrupted parties in the sharing 〈ỹ〉. Again the simulator can do this, as it knows the MAC keys
of the corrupted parties.

– Having done so, the simulator can now easily send the fake shares of y and MAC tags on the behalf of the honest
parties, which will be consistent with respect to the MAC keys of the parties under A corresponding to the honest
parties. Using these shares, A reconstructs y, which is the same as in the real protocol. If the corrupted parties
sends wrong shares that passes the MAC test, the simulator halts the simulation and aborts.

The differences between the simulated and hybrid views are: (i) First, in simulated view the inputs for the honest parties
are not real inputs (0 is used instead) whereas the real inputs of the honest parties are used in the hybrid view. During
the simulation of the output opening, the shares (and the MAC tags) of the honest parties corresponding to the output
sharing are changed to cook up a sharing corresponding to the actual function output y. This enables the simulator to
make sure that the adversary outputs the real y. The adversary/environment cannot make out whether the real inputs
or fake (0) inputs are used for the honest parties since the inputs of the honest parties as well as the intermediate
values of the circuit computation remain 〈·〉-shared. The public openings during the computation are masked values
and therefore they do not leak any information too. So even if the environment has unbounded computing power, it
cannot tell apart the views. (ii) Second, in the simulated view, the adversary/environment cannot cheat the simulator

14

who is acting on the behalf of the honest parties, by guessing the MAC keys or by guessing the random combiners.
corresponding to the honest parties. The reason is that the simulator knows in advance 〈·〉ij for every corrupted Pi ∈ C
and honest Pj 6∈ C for each of the sharing involved in the computation. That is, it knows in advance the information
that corrupted Pi is supposed to send to an honest Pj either for MAC test or for linear combiner test. If the adversary
sends wrong information for the above verifications and still passes the tests, then the simulator halts. Whereas in
the hybrid world, the honest parties will carry on the computation as the tests pass and may end up outputting wrong
output. However the probability with which the simulated world and the hybrid would will differ in this regard is the
same as the probability with which the adversary can pass the MAC test or the random combiner test corresponding
to the MAC keys and the random combiners of the honest parties. For the MAC test, the probability is same as the
probability of forging a MAC tag and is negligible. For the random combiner test, the probability is the same as
the chances of the adversary in guessing the random combiners from their encrypted form. So the security here can
be reduced to the security of the underlying HE scheme. In other words, if the HE is semantically secure, then the
probability of guessing the random linear combiners of an honest party is negligible. This implies that the simulated
and the hybrid views are indistinguishable from the view point of the environment. This completes our proof.

C Realizing FPREP in the Synchronous Setting

Here we present a protocol ΠPREP which UC-securely realizes the functionality FPREP in the synchronous setting. We
first discuss the existing primitives and a setup functionality that we require in protocol ΠPREP.

C.1 Primitives

For ΠPREP we assume the following primitives.

Multi-valued Broadcast Protocol with a Linear Overhead: Given a public-key set-up, [18] presents a multi-valued
broadcast protocol with t < n/2 and communication complexity of O(` · n+ n4 · (n+ κ)) bits to broadcast an `-bit
message. This implies that if ` = Θ(n3 · (n+ κ)) then the protocol has communication complexity O(n · `) bits, thus
achieving a linear overhead.

Threshold Linear Somewhat Homomorphic Encryption (SHE): In a threshold somewhat homomorphic scheme
SHE with threshold t, any party can encrypt a message using the public key of the scheme, while decrypting a ci-
phertext requires the collaboration of at least t+ 1 parties. The scheme supports linearly homomorphic operations on
ciphertexts; we additionally require it to support one homomorphic multiplication. For practical instantiation of SHE
for our case, we can consider the threshold SHE schemes of [16,12]. In what follows, we give a high level discussion
of the key features of the encryption scheme that we use.

The cryptosystem has a public encryption key pk and a secret decryption key dk, Shamir-shared among the parties
with threshold t, with each party Pi holding a decryption-key share dki. Given pk, a plaintext x ∈ F and a randomness
r, anyone can compute a ciphertext SHE.c(x) = SHE.Encpk(x, r), using the encryption algorithm SHE.Enc, where
the size of SHE.c(x) is O(κ) bits. Given a ciphertext SHE.c(x) = SHE.Encpk(x, ?), any party Pi can compute a
decryption share µi = SHE.ShareDeci(dki,SHE.c(x)) of SHE.c(x), consisting ofO(κ) bits, using its decryption-key
share dki; here SHE.ShareDeci is the “partial” decryption function for the partyPi. Finally, given at least t+1 “correct”
decryption shares {µi} corresponding to SHE.c(x), there exists an algorithm which “combines” the decryption shares
and outputs the plaintext x; since the decryption key is Shamir shared, the combine algorithm simply interpolates a
polynomial of degree at most t passing through the given t+ 1 correct decryption shares and outputs the constant term
of the polynomial. The encryption scheme is assumed to be indistinguishable under chosen-plaintext attack (IND-
CPA) against a PPT adversary that may know up to t decryption-key shares dki. Moreover, given a ciphertext and the
corresponding decryption shares of the honest parties, no (additional) information is revealed about the decryption-key
shares of the honest parties.

The encryption scheme is linearly homomorphic: given ciphertexts SHE.c(x) and5 SHE.c(y) under the same
public key, there exists some operation on ciphertexts, say �, such that SHE.c(x) � SHE.c(y) = SHE.Encpk(x+ y).

5 We assume an implicit randomness used in a ciphertext until and unless it is explicitly stated.

15

Simulator Sf

Let HE be a linearly-homomorphic encryption scheme. The simulator plays the role of the honest parties and simulates
each step of the protocol ΠONLINE as follows. The communication of the environment Z with the adversary A is handled
as follows: Every input value received by the simulator from Z is written on A’s input tape. Likewise, every output value
written by A on its output tape is copied to the simulator’s output tape (to be read by the environment Z). The simulator
does the following. In the simulation below, we use the following notation: for a 〈·〉-sharing: (i) the information that corre-
sponds to a party Pi is denoted by 〈·〉i and (ii) the share and (MAC tag, MAC key) of Pi corresponding to Pj is denoted as 〈·〉ij .

Simulating the call to FPREP: Sf honestly emulates FPREP setting the function inputs of the honest parties to be 0. At
the end, it knows the following for the triple sharings {(〈a(l)〉), 〈b(l)〉), 〈c(l)〉)}χl=1, input sharings {〈x(i)〉}Pi∈C of the
corrupted parties and the inputs sharings {〈x̃(i)〉}Pi∈P\C corresponding to honest (we denote the input of an honest party Pi
with x̃(i) since it is not the real input of Pi): (i) 〈·〉j for every honest Pj and (ii) 〈·〉ij for every corrupted Pi ∈ C and honest
party Pj . It also knows the combiners r(i,1), . . . , r(i,n) and the encrypted combiners HE.c(r(i,1)), . . . ,HE.c(r(i,n)) for each
Pi ∈ P , along with the public-key secret-key pairs {(pk(i),dk(i))}ni=1.
Simulating the Circuit Evaluation: Sf simulates the circuit evaluation as follows:

– Linear Gates: Since this step involves local computation, Sf does not have to simulate any messages on the behalf of the
honest parties. Sf locally applies the corresponding linear function on the corresponding gate-input sharings to compute
the corresponding gate-output sharing.

– Multiplication Gates: These are considered in a batch of size n(t + 1). We show the simulation for one batch. Let
{(〈p̃(l)〉, 〈q̃(l)〉)}n·(t+1)

l=1 be the pair of sharings corresponding to the input pairs of the n(t + 1) multiplication gates
which need to be evaluated. Moreover, let {(〈a(l)〉, 〈b(l)〉, 〈c(l)〉)}n·(t+1)

l=1 be the sharing of the corresponding associated

multiplication triples. Corresponding to the sharings 〈d̃(l)〉 = 〈p̃(l)〉−〈a(l)〉 = 〈p̃l)−a(l)〉 and 〈ẽ(l)〉 = 〈q̃(i,j)〉−〈b(l)〉 =

〈q̃(l)−b(l)〉, the simulator computes: (i) 〈·〉j for every honest Pj and (ii) 〈·〉ij for every corrupted Pi ∈ C and honest party
Pj . It then emulates the messages of the honest parties for the protocol steps of RecPub to reconstruct {d̃(l), ẽ(l)}n·(t+1)

l=1

towards the corrupted parties in C. On receiving the messages from the parties in C in RecPub on behalf of the honest
parties, if Sf finds them incorrect but still passing either the MAC test or the linear combiner test, then it halts simulation
and abort. Finally, corresponding to the following sharings, 〈p̃(l) · q̃(l)〉 = d̃(l)ẽ(l) + d̃(l)〈b̃(l)〉 + ẽ(l)〈ã(l)〉 + 〈c̃(l)〉, the
simulator computes: (i) 〈·〉j for every honest Pj and (ii) 〈·〉ij for every corrupted Pi ∈ C and honest party Pj .

– Output Gate: Corresponding to each Pi ∈ C, the simulator calls Ff with (i, x(i)) and obtains the function output y.
Let 〈ỹ〉 be the sharing associated with the output gate. Sf at this stage knows 〈ỹ〉j for each honest Pj and 〈ỹ〉ij of
each corrupted Pi and honest Pj . The simulator then simulates the messages of the honest parties corresponding to the
instances of RecPrv(〈ỹ〉, ?) as follows:
• Let {ỹi}Pi∈C be the shares of the corrupted parties corresponding to [ỹ]. Using these shares and the value y, the

simulator generates the simulated output sharing [y], such that the shares of the corrupted parties Pi ∈ C are same in
[y] and [ỹ].

• For every corrupted Pi ∈ C and every honest Pj ∈ P \ C, Sf does the following. It knows K(ỹ)
ij , the MAC key of

Pi, corresponding to each honest Pj in the sharing 〈ỹ〉. Moreover, let yj be the share of y for Pj in the sharing [y].
It then computes the simulated MAC tag MAC

K
(ỹ
ji)

(yj) for the share yj under the MAC key K
(ỹ)
ij .

• On the behalf of each honest Pj ∈ P \ C, the simulator sends the share yj and the MAC tags MAC
K
(ỹ
ji)

(yj) to A as

part of RecPrv(〈ỹ〉, ?), for each Pi ∈ C.
• It receives the shares and MAC tags from the corrupted parties on the behalf of the honest parties. If it sees that the

corrupted parties sent wrong information that pass the MAC test, then it aborts.

Finally Sf outputs A’s output.

Fig. 6. Simulator for the adversary A corrupting t parties in the set C ⊂ P during the protocol ΠONLINE

16

Moreover, given a ciphertext SHE.c(x) and a publicly known constant c, using the linearly homomorphic property,
one can compute SHE.c(c · x). One can homomorphically compute SHE.c(x− y), given encryptions SHE.c(x) and
SHE.c(y) under the same public key. Finally, the cryptosystem is one-time multiplicatively homomorphic. That is,
given encryptions SHE.c(x) and SHE.c(y) (under the same public key), there exists some operation on ciphertexts,
say �, such that SHE.c(x)�SHE.c(y) = SHE.Encpk(x ·y).The operation � can be applied at most once; a ciphertext
that is obtained after applying � more than once may not guarantee correct decryption.

UC-secure Zero-knowledge (ZK) Proofs: We assume to have efficient UC-secure ZK protocols for the following
properties:

– Proof of Plain-text (PoPK) for SHE: In this protocol, there exists a prover Pi ∈ P , who computes encryptions
of ` values under the public key pk of SHE and sends the encryptions to every party in P; using this protocol, Pi
can prove to everyone the knowledge of underlying plaintexts. We assume that the protocol has communication
complexityO(κ ·n ·`) bits. This is achievable by combining the multi-valued broadcast protocol of [18] (provided
` is sufficiently large) and any 2-party non-interactive ZK (NIZK) protocol for PoPK for SHE (see for example
[16,1,12]). The idea is the following: assume that the communication complexity of the 2-party NIZK protocol
for PoPK is O(κ) bits; then Pi broadcasts the ` ciphertexts, along with the NIZK proof for each ciphertext (so
total O(κ · `) bits) via the multi-valued broadcast protocol of [18]. Assuming ` = Θ(n3 · (n + κ)), the total
communication complexity becomes O(κ · n · `) bits.

– Proof of Correct Decryption (PoCD) for SHE: In this protocol, there exists a designated prover and a verifier,
along with a publicly known ciphertext under the public key pk of SHE. The prover computes a decryption share of
the ciphertext using its decryption-key share and sends the decryption share to the verifier. Using this protocol, the
prover proves that it has correctly computed the decryption share. We assume that the protocol has communication
complexity O(κ) bits (for example, see [16,1,12]).

– Proof of Plain-text (PoPK) for HE: In this protocol, there exists a prover Pi ∈ P with public key pk(i) who
computes encryptions of ` values under pk(i) and sends the encryptions to a verifier Pj ∈ P . Using this protocol,
Pi can prove to Pj the knowledge of underlying plaintexts. We assume that the protocol has communication
complexity O(κ · `) bits.

– Proof of Correct Multiplication (PoCM) for HE: In this protocol, there exists a prover Pj ∈ P and a verifier
Pi ∈ P , with Pj and Pi knowing values α and a respectively. Moreover an encryption HE.c(a) of a under the
public key pk(i) and an encryption HE.c(α) of α under the public key pk(j) of HE are known to Pi and Pj . Prover
Pj selects some β and homomorphically computes an encryption HE.c(γ) = α � HE.c(a) ⊕ HE.Encpk(i)(β, ?)

of γ = α · a + β and sends HE.c(γ) to Pi; note that HE.c(γ) will be under the key pk(i). Using this protocol,
prover Pj can prove to Pi that it has computed HE.c(γ) as above. The protocol has communication complexity
O(κ) bits (see [7] for example).

Efficient Distributed Decryption with a Fewer Number of ZK Proofs: In protocol ΠPREP, we will require to
decrypt several ciphertexts encrypted under SHE. One obvious way of doing the distributed decryption is to ask each
party to compute a decryption share of the ciphertext and send the same to the designated party, along with a proof of
correct decryption; this will unfortunately requireO(n2) instances of PoCD for publicly decrypting a single ciphertext
and hence O(n2 · `) such instances will be required to decrypt ` ciphertexts. Instead we borrow a protocol DistDec
from [12], which overall requires O(n3) instances of PoCD to decrypt ` ciphertexts. The idea is to exchange the
decryption shares without any PoCD and then use the error-detection to detect if the decryption shares are correct.
This is always possible as the decryption key of the SHE is Shamir-shared with threshold t < n/2 and so the error-
detection properties of the Reed-Solomon (RS) codes are applicable. In case any error is detected, then a PoCD
proof is demanded from every party. Obviously the honest decryption-share providers will successfully give the PoCD
proof, while a malicious decryption-share provider will fail to do so. The corresponding decryption shares are then
ignored and using the remaining decryption shares, the ciphertext can be decrypted back correctly. Once a malicious
decryption-share provider is identified, it is ignored in all the future instances of the distributed decryption. As there
exist at least t+1 honest parties whose decryption shares will be correctly identified by every honest party, the process
will always terminate correctly for every honest party.

17

While executing DistDec, a corrupted party may un-necessarily demand a PoCD even if no error is detected at
its end. To prevent him from always doing the same, every party maintains a local counter to count the number of
times a PoCD request is received from a specific receiver; if the counter exceeds the value t then definitely the receiver
is corrupted. This is because for an honest receiver, error will be detected for at most t instances after which it will
know all the t corrupted parties. So if at all a receiver requests PoCD more than t times then definitely the receiver
is corrupted. We note that during the protocol ΠPREP, we will use distributed decryption to decrypt certain ciphertexts
only towards some designated parties, as well as for publicly decrypting certain ciphertexts. However, irrespective of
the case, DistDec ensures that the total number of PoCD is O(n3), which is independent of the circuit size; for details
see [12].

C.2 The Ideal One-time Setup Functionality

For ΠPREP, we assume an ideal set-up functionality FONE-TIME-SETUP, presented in Figure 7. The functionality creates
the following one-time set-up for the n parties:

– A public key, secret key pair for a threshold SHE scheme with threshold t is generated and each party is given the
public key and its decryption-key share.

– A public key, secret key pair for the linearly-homomorphic encryption scheme is generated for every party. The
secret key is give to the corresponding party while the public key is given to all the parties.

– On the behalf of each party, n random values are selected and encrypted under its public key of the HE scheme.
The random values are sent to that party while its encryptions are given to all the parties.

– On the behalf of each honest party, n random α values are selected and given to it. The α values are designated
to be used by that honest party as the α-component of the MAC key for different parties across all sharings to be
used for a computation. The functionality creates encryptions of these α values and each encryption is sent to the
respective parties. In addition, all the encryptions and their corresponding randomness are sent to the honest party.

– From every corrupted party, the functionality receives α values which it wants to use as the α-component of the
MAC keys corresponding to the honest parties. In addition, the functionality also receives the encryptions of these
α values under the public key of the HE scheme of the corrupted party. If the encryptions are valid, then the
functionality stores these α values and sends their encryptions to the respective honest parties.

C.3 ProtocolΠPREP

Protocol ΠPREP is presented in Figure 8. We present a high level overview of the protocol. The parties first call the
functionality FONE-TIME-SETUP and generate the required setup. Next the parties generate 〈·〉-sharing of “large” number
of random and private key-consistent 〈·〉-shared multiplication triples, say χ triples, where χ ≥ M + n. We explain
how one such random sharing (〈a〉, 〈b〉, 〈c〉) is generated; in the protocol the same steps are executed in parallel for χ
batches and the broadcasts required for all the χ batches are done in parallel via the multi-valued broadcast protocol
of [18].

The generation of (〈a〉, 〈b〉, 〈c〉) is done in two stages: in the first stage, the parties first generate ([a], [b], [c])
and in the second stage, the parties generate pair-wise MACs to transform ([a], [b], [c]) to (〈a〉, 〈b〉, 〈c〉). To generate
([a], [b], [c]), we use an idea similar to [16], extended for Shamir sharing. Specifically, to generate [a], we ask t + 1
parties (say the first t + 1 parties) to define a polynomial of degree at most t in a shared fashion, where each party
contributes one random point on the polynomial. For this, each party Pi ∈ {P1, . . . , Pt+1} selects a random ai,
encrypts it using the public key of the SHE scheme and broadcast the ciphertext to every party, with a ZK proof
of the underlying plaintext. Next, we define the polynomial A(·) of degree at most t, passing through the points
(1, a1), . . . (t + 1, at+1). Since there exists at least one honest party in the set {P1, . . . , Pt+1} whose corresponding
ai value will be random and private, it follows that we will have one degree of freedom in the A(·) polynomial. So

if we define ai
def
= A(i) for every Pi ∈ {Pt+2, . . . , Pn}, then clearly the vector (a1, . . . , an) defines a sharing [a] of

the value a
def
= A(0). The t + 1 parties in {P1, . . . , Pt+1} will already have their shares corresponding to [a]. So to

complete [a], all we need to do is to ensure that the remaining parties Pi ∈ {Pt+2, . . . , Pn} also obtain their shares
A(i). For this we use the fact that the values {A(i)}ni=t+2 are publicly known linear combinations of the t+ 1 values

18

Functionality FONE-TIME-SETUP

The functionality interacts with the set of parties P and the adversary S. Let C ⊂ P be the set of corrupted parties, with
|C| ≤ t. Upon receiving (init) from all the parties, the functionality does the following:

– Creating Threshold SHE Setup: the functionality computes a public-key, secret-key pair (pk, dk) of the threshold SHE
scheme SHE with threshold t, along with the secret-key shares dk1, . . . , dkn for the n parties. To every party Pi ∈ P it
then sends (pk, dki).

– Creating Public/Secret keys of HE for Every Party: It creates n public key, secret key pairs {pk(i),dk(i)}ni=1 of the
linearly-homomorphic encryption scheme HE and sends dk(i) to party Pi for i = 1, . . . , n and sends {pk(j)}nj=1 to all
the parties.

– Creating Encrypted Combiners on the Behalf of Each Party: For every Pj ∈ P , it selects n random values R(j) =
(r(j,1), . . . , r(j,n)) and computes the encryptions HE.c(r((j,i)) = HE.Encpk(j)(r(j,i), ?) for i = 1, . . . , n. It then sends
R(j) to the party Pj and the encryptions HE.c(r(j,1)), . . . ,HE.c(r(j,n)) to all the parties.

– Creating Encrypted MAC Keys on the Behalf of Honest Parties: For every honest party Pi ∈ P \ C, the functionality
selects n random valuesαi1, . . . , αin and computes the encryptions HE.c(αij) = HE.Encpk(i)(αij , ?) for j = 1, . . . , n.
The functionality then sends {αij ,HE.c(αij)}nj=1 to Pi, along with the randomness used in the encryptions. To every
party Pj ∈ P , the functionality sends HE.c(αij).

– Sending Encrypted MAC Keys on the Behalf of Corrupted Parties Corresponding to Honest Parties: On the behalf
of every corrupted party Pi ∈ C, the functionality receives from S the αij values that Pi would like to use as the α-
component of the MAC key for each honest Pj ∈ P \ C. For each such αij value, the functionality also receives from S
an encryption HE.c(αij) of αij under the public key pk(i). The functionality verifies if HE.Decdk(i)(HE.c(αij))

?
= αij .

If the verification passes then it stores αij on the behalf of Pi and sends the encryption HE.c(αij) to the party Pj .

Fig. 7. Ideal Functionality for One-time Setup

{ai}t+1
i=1. Since the values {ai}t+1

i=1 are available in an encrypted fashion, the parties can homomorphically compute
encryptions of the A(i) values corresponding to every Pi ∈ {Pt+2, . . . , Pn}. Next these encryptions are decrypted
only towards the party Pt+2, . . . , Pn respectively. The parties also homomorphically compute an encryption of a from
the encryptions of {ai}t+1

i=1.
Now using similar procedure as above, the parties compute [b] and [r], for a random b and r, along with an

encryption of b and r. To compute [c] from [a] and [b], we use the multiplicative homomorphic property of the SHE.
Specifically from encryptions of a, b, the parties homomorphically compute an encryption of c = a · b, followed by
homomorphically computing an encryption of c+ r. The encryption of c+ r is publicly decrypted; since r is random
and [·]-shared, the privacy of c is maintained. Finally the parties set [c] = (c+ r)− [r].

To generate the pair-wise MACs on the shares of a, b and c is straightforward and is done using the same procedure
as BDOZ; we explain how this is done for the shares of a. Consider the pair of parties (Pi, Pj), with party Pi holding
the share ai, on which it wants to compute the MAC tag under the MAC key Kji = (αji, βji), held by party Pj . Note
that if Pi is honest then an encryption HE.c(αji) of αji under pk(j) will be already known to Pi from FONE-TIME-SETUP.
To compute the MAC tag, party Pi encrypts ai under its public key pk(i) and sends the encryption to Pj , along with
a ZK PoPK. Party Pj then homomorphically computes an encryption of MACKji(ai) under pk(i) and sends the same
to Pi, along with a ZK PoCM. Party Pi then obtains the tag after decrypting the encrypted tag.

If Pi is honest, then Pj learns nothing about ai, thanks to the semantic security of the linearly-homomorphic
encryption scheme. By following the above procedure, it is ensured that every pair of honest parties have consistent
MAC tags and keys. To ensure that a corrupted Pj uses consistent MAC keys for an honest Pi across various sharings,
PoCM is used. It is interesting to note that during the pair-wise MAC generation, we do not check whether Pi is
sending encryptions of the correct shares to the parties; if Pi does not do the same, it ends up getting incorrect MAC
tags with respect to the MAC keys of honest Pj and so later its share will be discarded by the honest Pj during the
reconstruction protocol.

We note that the pair-wise MACs could be setup even by using the threshold SHE; however this will make the
overhead of the protocol O(n3) per multiplication gate, instead of O(n2); this is because there will be O(n2) pair-
wise encrypted MAC tags for each sharing and decrypting one ciphertext via distributed decryption involves O(n)
overhead.

19

In the protocol, each party needs to broadcast O(χ) ciphertexts and NIZK proofs. If χ is sufficiently large then
using the broadcast protocol of [18], this will cost in total O(κ · (n2 · χ)) bits. There will be O(χ) ciphertexts which
need to be publicly decrypted, costingO(κ·(n2 ·χ)) bits of communication. In addition,O(n·χ) ciphertexts need to be
decrypted towards designated parties, costingO(κ · (n2 ·χ)) bits of communication. The decryptions (both public and
private) are done via the protocol DistDec and in total O(n3) instances of PoCD may be required, costing O(κ · n3)
bits of communication. Finally setting up the pair-wise MACs will cost O(κ · (n2 · χ)) bits of communication. So the
communication complexity of ΠPREP will be O(κ · (n2 · χ+ n3)) bits.

D Securely Realizing FPREP-ABORT with t < n/2 in the Partial Asynchronous Setting

In [14] it was shown how to securely realize a variant of FPREP, augmented with abort (we call this functionality
FPREP-ABORT), in the partial asynchronous setting with t < n/3. The functionality FPREP-ABORT is similar to FPREP

except that the functionality distributes the generated values to the honest parties depending upon the choice of the
adversary: if adversary sends an OK signal then FPREP-ABORT distributes the information to the honest parties in the
same way as done in FPREP, otherwise it sends ⊥ to the honest parties.

To securely realizeFPREP-ABORT in the partial asynchronous setting with t < n/3, [14] used the following approach:
assume there exists a secure realization of FPREP, say ΠPREP, in a synchronous setting with broadcast (in [14], two
instantiations ofΠPREP are presented). ProtocolΠPREP is then executed in the partial asynchronous setting in a “special”
way to ensure that no additional information is revealed prematurely (more on this in the sequel). Finally the parties run
an ABA protocol to agree on whether the preprocessing succeeded and accordingly they either abort or successfully
terminate the protocol. From the above discussion, it is clear that we can securely realize FPREP-ABORT with t < n/2 in
the partial asynchronous setting following the blueprint of [14], provided that we have the following two components:
(a) A secure realization of FPREP with t < n/2 in the synchronous communication setting with broadcast; (b) An ABA
protocol with t < n/2. The former is presented in the previous section. For the latter, we consider the following two
options (recall that ABA protocol with t < n/2 is impossible to achieve):

– Synchronous Communication Rounds after the Synchronization Point: It is well known that t + 1 synchronous
communication rounds are sufficient to achieve agreement with t < n/2 in the computational setting [18]. So if we
assume t+ 1 synchronous communication rounds after the synchronization point, then we can achieve agreement
among the n parties on whether ΠPREP when executed in the partial asynchronous setting, succeeded or not.
Alternatively, one can assume a constant number of synchronous communication rounds after the synchronization
point and run constant expected round synchronous agreement protocols [23].

– Non-equivocation Mechanism: In [13,2] it is shown how to design agreement protocols with t < n/2 in an
asynchronous setting, provided there is a mechanism to enforce “non-equivocation”. On a very high level, such
a mechanism prevents a corrupted party to transmit conflicting messages to honest parties; however a corrupted
party may send messages to certain number of parties and decide not to communicate to the rest of the parties.
So such a mechanism is strictly weaker than the broadcast primitive. In [13,2] it is also discussed how such a
non-equivocation mechanism can be securely realized assuming a trusted hardware module with each party. One
can use such a non-equivocation mechanism to agree about the status of ΠPREP.

Now we discuss how to run the protocol ΠPREP in the partial asynchronous setting following the method of [14]. The
basic idea is to execute ΠPREP over an asynchronous network where a (honest) party Pi starts computation for round
i + 1 only when it receives all the communication that it is supposed to receive in the ith round (for instance, if the
ith step specifies that it should receive some information from all the parties, then it waits to receive some information
from all the parties and not just from n − t parties). The messages which are supposed to be communicated over the
point-to-point channels are sent to the designated receivers. Any message which are supposed to be broadcast (such
a message is denoted as broadcast message) by Pi, is sent by Pi to all the n parties via point-to-point channels. Thus
each instance of broadcast is replaced (simulated) by n communication over point-to-point channels. A corrupted
sender may not simulate the broadcast properly. So once all the communication rounds of ΠPREP are executed, the
parties exchange among themselves all the broadcast messages they received from different parties in different rounds.
Finally every party Pi sets its status bit qi for ΠPREP to 1 if all the following conditions hold. Otherwise it sets qi = 0:

20

Protocol ΠPREP

One-time Setup Generation: Each Pi ∈ P calls FONE-TIME-SETUP with (init) and obtains pk, dki, {pk(j)}nj=1,dk
(i), R(i) =

(r(i,1), . . . , r(i,1)) and {(HE.c(r(j,1)), . . . ,HE.c(r(j,n)))}nj=1. In addition, the parties also receive following information:

– If Pi is honest then it receives {αij}nj=1, encryptions {HE.c(αij)}nj=1 under pk(i) and the randomness used in these
encryptions; moreover, for every Pj ∈ P , party Pi also receives the encryptions HE.c(αji) under pk(j).

– If Pi is corrupted, then corresponding to every honest Pi, it receives the encryption HE.c(αji) under pk(j).

Generating Shared Multiplication Triples: The parties generate in parallel 〈·〉-sharing of χ random multiplication triples,
where χ ≥M + n. The following steps are executed to generate one such shared multiplication triple (〈a〉, 〈b〉, 〈c〉):

– Generating the Sharings ([a], [b], [c], [r]) — the parties do the following:
• Every party Pi ∈ {P1, . . . , Pt+1} selects three random values (ai, bi, ri), computes the encryptions SHE.c(ai) =

SHE.Encpk(ai, ?), SHE.c(bi) = SHE.Encpk(bi, ?) and SHE.c(ri) = SHE.Encpk(ri, ?). It then broadcasts these
encryptions, along with a ZK PoPK; the encryptions and the corresponding proofs for all the χ batches are broadcast
together.

• Let the set of t + 1 values {(i, ai)}t+1
i=1, {(i, bi)}

t+1
i=1 and {(i, ri)}t+1

i=1 define polynomials A(·), B(·) and R(·) re-

spectively. Define a
def
= A(0), b

def
= B(0) and r

def
= R(0).

• From the t + 1 encryptions {SHE.c(ai)}t+1
i=1 , the parties homomorphically compute the encryptions SHE.c(a)

and encryptions SHE.c(A(t+ 2)), . . . , SHE.c(A(n)). Similarly, the parties homomorphically compute the
encryptions SHE.c(b) and encryptions SHE.c(B(t+ 2)), . . . , SHE.c(B(n)) from the t + 1 encryptions
{SHE.c(bi)}t+1

i=1 . In the same way, the parties homomorphically compute the encryptions SHE.c(r) and encryp-
tions SHE.c(R(t+ 2)), . . . , SHE.c(R(n)) from the t+ 1 encryptions {SHE.c(ri)}t+1

i=1 .
• The parties homomorphically compute SHE.c(c) = SHE.c(a)�SHE.c(b), followed by homomorphically comput-

ing SHE.c(c+ r) = SHE.c(c) � SHE.c(r).
• The encryptions SHE.c((A(t+ 2)), SHE.c(B(t+ 2)),SHE.c(R(t+ 2))), . . . , (SHE.c(A(n)), SHE.c(B(n)),

SHE.c(R(n))) are decrypted (in a distributed fashion) towards party Pt+2, . . . , Pn respectively. In addition, the
encryption SHE.c(c+ r) is distributed decrypted publicly. For doing these distributed decryptions, the parties exe-
cute the protocol DistDec.

• Parties Pt+2, . . . , Pn sets (at+2 = A(t + 2), bt+2 = B(t + 2), rt+2 = R(t + 2)), . . . , (an = A(n), bn =
B(n), rn = R(n)) respectively. This completes the generation of [a], [b], [c].

• The parties compute [c] = c+ r − [r].
– Generating Pair-wise MACs — the parties generate in parallel pair-wise MACs on the [·]-shared multiplication triples.

The following steps are executed for getting the MACs on one such sharing [a]:
• Every party Pi computes an encryption HE.c(ai) = HE.Encpk(i)(ai, ?) of its shares ai and broadcasts the same,

along with a ZK PoPK.
• Every pair of parties (Pi, Pj) execute the following steps:

∗ Party Pj selects a random βji to form the MAC keya Kji
def
= (αji, βji).

∗ Party Pj homomorphically computes HE.c(MACKji(ai))
def
= αji � HE.c(ai) ⊕ HE.Encpk(i)(βji, ?) and

sends HE.c(MACKji(ai)) to Pi. Party Pi and Pj then executes an instance of PoCM, with Pj and Pi play-
ing the role of the prover and verifier respectively. If PoCM is successful, then Pi computes MACKji(ai) =
HE.Decdk(i)(HE.c(MACKji(ai))).

Input Stage: Let party Pi ∈ P has the input x(i) for the computation. The parties associate a sharing from the shared triples,
say 〈a(i)〉, as the shared mask for Pi and do the following to generate 〈x(i)〉:

– Execute RecPrv(Pi, 〈a(i)〉) to enable Pi robustly reconstruct a(i).
– Party Pi then broadcasts the masked input m(i) = a(i) + x(i).
– The parties set 〈x(i)〉 = m(i) − 〈a(i)〉.

a If Pj is honest, then αji will be available to Pj fromFONE-TIME-SETUP and encryption HE.c(αji) under pk(j) will be available
to Pi and Pj from FONE-TIME-SETUP, with Pj also knowing the randomness for the encryption. If Pj is corrupted and Pi is
honest, then an encryption HE.c(αji) under pk(j) will be available to Pi from FONE-TIME-SETUP.

Fig. 8. Protocol for Realizing FPREP in the FONE-TIME-SETUP-hybrid Model in the Synchronous Setting

21

– Pi received all the messages it is supposed to receive in ΠPREP before the timeout. In addition, Pi sent all the
message that it is supposed to send in ΠPREP before timeout.

– Pi’s received broadcast messages in ΠPREP are the same as those received by all other parties.
– No instance of distributed decryption during the instances of DistDec in ΠPREP fails for the party Pi. Recall that

in DistDec if Pi detects any error in the distributed decryption, then it demands for a PoCD. We no longer need to
execute the PoCD step in the instances of DistDec in the partial asynchronous setting. Because if Pi detects any
error then it stops participating in further rounds of ΠPREP. This ensures that every other honest party will stop
participating in ΠPREP from the next round onwards.

After the timeout, the parties execute an instance of BA with input qi. If the output of the BA protocol is 1, then the
execution of ΠPREP is successful and the parties proceed to execute the protocol ΠONLINE with the values generated at
the end of ΠPREP; otherwise the parties abort the protocol. The BA protocol ensures that if qi = 1 for all the honest
parties, then ΠPREP is successful and if qi = 0 for all the honest parties then parties will abort ΠPREP. If the output of
the BA protocol is 1 then it implies that at least one honest party Pi has input qi = 1 for the BA protocol and so ΠPREP

was terminated successfully for Pi before the timeout. This further implies that the local view of each honest party
contributed by the set of honest parties are consistent with each other till the timeout.

It is easy to see that ΠPREP when executed in the partial asynchronous setting will have communication complexity
O(κ · (n2 · χ+ poly(n))) bits. Moreover the protocol securely realizes FPREP-ABORT.

22

	Linear Overhead Robust MPC with Honest Majority Using Preprocessing

