
Reconciling User Privacy and Implicit Authentication for Mobile Devices∗

Siamak F. Shahandashti
Newcastle University, UK

siamak.shahandashti@ncl.ac.uk

Reihaneh Safavi-Naini
University of Calgary, Canada

rei@ucalgary.ca

Nashad Ahmed Safa
University of Calgary, Canada

July 15, 2015

Abstract

In an implicit authentication system, a user profile is used
as an additional factor to strengthen the authentication of
mobile users. The profile consists of features that are con-
structed using the history of user actions on her mobile de-
vice over time. The profile is stored on the server and is used
to authenticate an access request originated from the device
at a later time. An access request will include a vector of
recent measurements of the features on the device, that will
be subsequently matched against the features stored at the
server, to accept or reject the request. The features how-
ever include private information such as user location or
web sites that have been visited. We propose a privacy-
preserving implicit authentication system that achieves im-
plicit authentication without revealing information about
the usage profiles of the users to the server. We propose an
architecture, give a formal security model and a construc-
tion with provable security in two settings where: (i) the
device follows the protocol, and (ii) the device is captured
and behaves maliciously.

Keywords: Implicit Authentication, User Privacy, Ho-
momorphic Encryption, Provable Security, Behavioural
Features

∗This manuscript has been accepted for publication in Comput-
ers & Security. The manuscript will undergo copyediting, type-
setting, and review of the resulting proof before it is published in
its final form. Please note that during the production process er-
rors may be discovered which could affect the content, and all dis-
claimers that apply to the journal apply to this manuscript. A defini-
tive version is published in Computers & Security (2015) under DoI:
10.1016/j.cose.2015.05.009 [51].
This is an extended version of a paper that appeared in the proceedings
of the 29th International Information Security and Privacy Conference
IFIP SEC 2014 [49].
cbnd This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.
It can be shared as long as the original work is credited, but cannot
be changed in any way or used commercially. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/4.0

1 Introduction

In applications such as mobile commerce, users often pro-
vide authentication information using Mobile Internet De-
vices (MIDs) such as cell phones, tablets, and notebooks.
In most cases, password is the primary method of authen-
tication. The weaknesses of password-based authentication
systems, including widespread use of weak passwords, have
been widely studied (see e.g. [56] and references within).
In addition to these weaknesses, limitations of user inter-
face on MIDs results in an error-prone process for inputting
passwords, encouraging even poorer choices of password by
users.

Two-factor authentication systems can potentially pro-
vide higher security. Second factors that use special hard-
ware such as RSA SecurID tokens1 or biometrics, incur ad-
ditional cost which limit their wide usage. An attractive
method of strengthening password systems is to use im-
plicit authentication [30] as an additional factor for authen-
tication. The idea is to use the history of a user’s actions
on the device, to construct a profile for the user consisting
of a set of features, and employ it to verify a future authen-
tication request. In the authentication phase, the device
reports recent user behaviour, and authentication succeeds
if the reported recent user behaviour “matches” her stored
profile. Experiments in [30] showed that the features col-
lected from the device history can be effectively used to
distinguish users. Although the approach is general, it is
primarily used to enhance security of mobile users carrying
MIDs because of the richness of sensor and other data that
can be collected on these devices. In such a scenario, a net-
work service provider (the carrier) wishes to authenticate a
user in possession of the MID.

An important distinction one needs to make is that the
goal in implicit authentication is authenticating the user in
possession of the device rather than the device itself. Con-
sequently, the user profile needs to be stored at the carrier
side to ensure that a compromised device cannot be used to
impersonate the legitimate user.

The collected data about the user’s actions can be divided
into the following categories: (i) device data, such as GPS

1www.emc.com/security/rsa-securid.htm

1

http://dx.doi.org/10.1016/j.cose.2015.05.009
http://creativecommons.org/licenses/by-nc-nd/4.0
www.emc.com/security/rsa-securid.htm

location data, WiFi/Bluetooth connections, and other sen-
sor data, (ii) carrier data, such as information on cell towers
seen by the device, or Internet access points, and (iii) third
party data, such as cloud data, app usage data, and calendar
entries. As discussed, the user profile including data from
a mixture of these categories is stored at the carrier side.
This profile however includes private and potentially sensi-
tive user data, including device and third party data, that
must be protected. One might be lead to think that there is
an inherent trade-off between user privacy on one hand and
the effectiveness of implicit authentication on the other. In
this paper we show that this is a false trade-off; i.e., user
privacy and effective implicit authentication can coexist. In
particular, we propose an efficient privacy-preserving im-
plicit authentication systems with verifiable security.

We consider a network-based implicit authentication sys-
tem where user authentication is performed collaboratively
by the device (the MID) and the carrier (network service
provider), and will be used by application servers to au-
thenticate users. The implicit authentication protocol ge-
nerates a score for each feature representing the confidence
level of the authentication based on that individual feature.
Individual scores are subsequently combined based on the
carrier authentication policy to accept or reject the user.
Individual scores are obtained through a secure two party
computation between the device and the carrier. Secure
two party protocols can be constructed using generic con-
structions based on secure circuit evaluation, e.g. [60, 26],
or fully homomorphic encryption [24]. We however opt to
design a special-purpose protocol fit for the type of com-
putations needed in implicit authentication. This allows us
to achieve a level of efficiency which is practical and higher
than those provided by generic constructions.

1.1 Our Contributions

We propose an implicit authentication system in which user
data is encrypted and stored at the carrier, and an inter-
active protocol between the MID and the carrier is used to
compute the authentication score. Data privacy is guaran-
teed since user data is stored in encrypted form. Because no
data is stored on the MID, user data stays protected even
if the device is lost or stolen. The main contributions of
this paper are proposing a profile matching function that
uses the statistics of features to accept or reject a new sam-
ple presented by a user, and designing a privacy-preserving
protocol for computing a score function for newly presented
data.

We assume the user profile is a vector of multiple features
(V1, . . . , Vn), each corresponding to a random variable with
an associated probability distribution. Samples from the
distribution of Vi is stored as the set of values of the vari-
ables in the last `i successful logins. A new login attempt
generates a vector of values, one for each feature. The veri-
fication function must decide if this vector indeed has been

generated by the claimed user. Our proposed verification
algorithm takes considers feature separately and computes
a score for each feature indicating the confidence level in
the presented value being from the claimed user. The final
verdict is reached by combining the scores from all features.

To determine if a new value presented for a feature vi
matches the model (stored distribution of the feature), we
will use a statistical decision making approach that uses the
Average Absolute Deviation (AAD) of the distribution. We
use AAD to define an interval around the reported value
vi given by [vi − AAD(Vi), vi + AAD(Vi)] and then deter-
mine the score representing the concentration of past user
behaviour observations close to the reported value vi by
counting the number of the stored values in the user pro-
file that fall within the interval: the higher the number is
the higher the score for that feature will be. Eventually the
scores from all features are considered and the outcome of
the authentication according to a certain policy is decided.
AAD and standard deviation are commonly used statistical
measures of dispersion, estimating the “spread” of a dis-
tribution. Our verification algorithm effectively measures
similarity of the presented value with the “most common”
readings of the variable. Using AAD allows more efficient
private computation.

Constructing User Profiles: A user profile is a feature
vector (V1, . . . , Vn), where feature Vi is modelled by a vec-
tor of `i past samples. The vector can be seen as a sliding
window that considers the latest `i successful authentica-
tion data. Using different `i is allowed for better estimation
of the feature distribution. Possible features are the fre-
quency of phone calls made or received by the user, user’s
typical locations at a particular time, commonly used WiFi
access-points, websites that the user frequently visits, and
the like. We survey the literature and find several features
that are appropriate for our protocols. These are listed in
Section 3.2. Some features might be dependent on other
ones. For example, given that the user is in his office and
it is lunch time, then there is a higher chance that he re-
ceives a call from home. We do not consider dependence of
features and in selecting them make special care to select
those that appear independent.

Privacy-Preserving Authentication: All user profile
data is stored in encrypted form on the carrier and the de-
cryption keys are only known by the device. To find the
authentication score for each feature, the device and the
carrier have to perform a secure two-party computation pro-
tocol that outputs the authentication score to the carrier,
and nothing to the device. We propose two 3-round pro-
tocols between the device and the carrier that allow the
carrier to “securely” calculate the score. The two protocols
are designed to provide security in two different threat mod-
els where the device is considered either honest-but-curious
or malicious. To provide the required efficiency, we have to

2

sacrifice some privacy in the sense that although the actual
data samples are not leaked, the protocols do expose lim-
ited structural information related to the relative order of
data samples. We give formal definitions of our notions of
privacy which guarantee that no information other than the
relative order of samples is revealed by a secure protocol in
the two threat models. We then prove the security of both
protocols in the corresponding adversarial models.

The paper is organised as follows. We discuss the re-
lated work in the field of behavioural authentication in Sec-
tion 1.2. Section 2 contains the preliminaries needed for our
protocols. System architecture, adversarial models, and the
core implicit authentication protocol not guaranteeing pri-
vacy are presented in Section 3. We give details of our pro-
posed protocols for semi-honest and malicious devices and
provide analyses on their computation and communication
complexity in Section 4. Formal security definitions and
proofs are provided in the appendices.

1.2 Related Work

The privacy problem in implicit authentication was noted
in [30]. The three approaches proposed for enhancing pri-
vacy are: (i) removing unique identifier information; (ii)
using pseudonyms; and (iii) using aggregate data instead
of fine grained data. All these methods however have lim-
ited effectiveness in protecting users’ privacy while main-
taining usefulness of the system. It is well known that
user data with identification information removed can be
combined with other public data to re-identify individu-
als [55], and fixed pseudonyms does not prevent linkability
of records [35]. Finally coarse aggregates result in inaccu-
rate authentication decisions.

User authentication is a widely studied problem with
a wide range of mechanisms, ranging from cryptographic
protocols to biometrics and systems that use special to-
kens [43, 8, 17, 2]. In a user study of authentication on
mobile devices in [22], Furnell et al. showed that users prefer
systems that authenticate the user periodically on a contin-
uous basis throughout the day in order to maintain confi-
dence in the identity of the user.

Implicit authentication systems that authenticate users
continuously without disturbing the user, like the system
considered in this paper, are the best fit for this require-
ment. These schemes have the potential to augment existing
cryptographic and password-based authentication systems.
Implicit authentication systems have been proposed based
on many different features. These include systems that au-
thenticate the user based on biometrics [36, 40, 42, 50], ac-
celerometers [11], gait recognition [33, 23, 20], call and SMS
pattern [52], location pattern [10, 53, 9, 12, 54], keystroke
dynamics [14, 28, 61, 38, 19, 59], proximity to other de-
vices [32, 48], and touchscreen dynamics [58, 16, 21]. In-
dustry products such as Sentry from AdmitOne Security2

2www.admitonesecurity.com

and BehavioMobile from BehavioSec3 implement implicit
authentication. A major weakness of all these systems how-
ever is that the carrier learns the user’s behaviour. Protect-
ing the user’s privacy in such a situation is the motivation
for this paper.

Protecting user privacy in implicit authentication systems
has been the motivating problem to a few works in the liter-
ature. The TrustCube framework proposed in [13] supports
implicit authentication. The implicit authentication system
based on keystroke dynamics in [41] also provides a level of
privacy for the user. However, both of these systems re-
quire trusted remote platforms to carry out part or all of
the computation. A trusted platform is typically imple-
mented as a secure chip able to carry out limited security-
sensitive operations. Examples of such platforms include
the Trusted Platform Module (TPM), or its proposed mo-
bile device equivalent a Mobile Trusted Module (MTM)4.
Such trusted platforms are yet to be deployed extensively
and we view this requirement as a limiting factor of these
works. Finally, authors in [45] propose an implicit authen-
tication system with user privacy that requires remote at-
testation, i.e., the calculations of the device being certified
by a trusted third party. The involvement of such a trusted
third party, we believe, significantly complicates and limits
the usability of such a system. The aim of this paper is to
achieve user privacy without requiring a trusted platform
or involving a trusted third party.

2 Preliminaries

Our constructions use homomorphic encryption and order
preserving (symmetric) encryption. In the following we first
give an overview of these primitives.

Homomorphic Encryption (HE): We use here an ad-
ditive homomorphic public key encryption scheme [44, 15]
which supports addition and scalar multiplication in the ci-
phertext domain. Let EHE

pk (·) denote such an encryption
algorithm. Given encryptions of a and b, an encryption of
a+ b can be computed as EHE

pk (a+ b) = EHE
pk (a)�EHE

pk (b),
where � represents an efficient operation in the ciphertext
space. The existence of the operation � enables scalar mul-
tiplication to be possible in the ciphertext domain as well;
that is, given an encryption of a, an encryption of ca can
be calculated efficiently for a known c. To simplify the no-
tation, we use + for both the operations + and �. As an
instantiation, we use Paillier cryptosystem [44, 15] in which
the operation � can be carried out by multiplication of ci-
phertexts and scalar multiplication by exponentiation. Pail-
lier cryptosystem is semantically secure under the decisional
composite residuosity assumption [44, 15].

3www.behaviosec.com
4Specifications of TPM and MTM are available from the Trusted

Computing Group web page: www.trustedcomputinggroup.org

3

www.admitonesecurity.com
www.behaviosec.com
www.trustedcomputinggroup.org

Order Preserving Encryption (OPE): A function f :
D 7→ R is order preserving if for all i, j ∈ D: f(i) > f(j) if
and only if i > j. An encryption scheme with plaintext and
ciphertext spaces D and R, respectively, is order preserving
if its encryption algorithm is an order preserving function
from D to R for all keys; i.e., an OPE maps plaintext val-
ues to ciphertext space in such a way that the order of the
plaintext values remains intact. Order preserving (symmet-
ric) encryption (OPE) was introduced in [5]. The provided
construction was proven secure in the POPF-CCA (pseudo-
random order preserving function against chosen-ciphertext
attack) model. More details on the security model and en-
cryption system are given in Appendix A.

Secure Two-party Computation: In a secure two-
party computation, two parties A and B with private inputs
x and y, respectively, compute a function f(x, y), ensuring
that correctness and privacy are guaranteed. Correctness
means that the output is indeed f(x, y) and not something
else. Privacy means that neither A nor B learns anything
about the other party’s input, other than what they would
learn from the outputs (if any) that they receive by partici-
pating in the protocol. To formalise security of a two-party
protocol, the execution of the protocol is compared to an
“ideal execution” in which parties send their inputs to a
trusted third party who computes the function using the
inputs that it receives. Informally, a protocol is considered
secure if a real adversary in a real execution can learn “the
same” amount of information as, or can “change the proto-
col output” not more than what an ideal adversary can do
in the ideal model.

Security of two-party protocols is considered against dif-
ferent types of adversaries. In the semi-honest model
(a.k.a. honest-but-curious model), the adversary follows
the protocol specification but tries to learn extra informa-
tion from the protocol communications. A malicious (a.k.a.
dishonest) adversary however follows an arbitrary strategy
(bounded by polynomial time algorithms) and can deviate
from the protocol specification.

There are a number of generic constructions for secure
two party computation, e.g. [60, 26], however they have
proven to be too inefficient in practice, specially in resource-
restricted devices. An alternative approach to realise spe-
cific secure two-party protocols is based on homomorphic
encryption (HE). In this approach, one party sends its en-
crypted inputs to the other party, who then computes the
specific desired function in the encrypted domain using the
homomorphic properties of the encryption system. Pail-
lier’s additively homomorphic cryptosystem [44] and Gen-
try’s fully homomorphic scheme [25] are the commonly used
tools in this approach.

Average Absolute Deviation: In our protocol we use
a model of feature comparison that uses average absolute
deviation. The median of a data set is the numeric value

separating the higher half of distribution from the lower
half. The average absolute deviation (AAD) of a data set is
the average of the absolute deviations and characterises a
summary of statistical dispersion of the data set. For a set
X = {x1, x2, . . . , xN} with a median denoted by Med(X),

AAD is defined as AAD(X) = 1
N

∑N
i=1 |xi − Med(X)|.

Let N be an odd number and T and B denote respec-
tively the set of top half and bottom half indexes, i.e.,
T = {i | xi > Med(X)} and B = {i | xi < Med(X)}.
Note that T and B are both of the same size. The above
equation for calculating AAD can be simplified for an odd
N as follows:

AAD(X) =
1

N

(∑
i∈T

xi −
∑
i∈B

xi

)
. (1)

Notation: Throughout the paper we use EHE
pk and DHE

sk

to denote the encryption and decryption algorithms of a ho-
momorphic encryption scheme such as Paillier cryptosystem
with public and secret key pair (pk, sk). For the OPE al-
gorithm we use EOPE

k and DOPE
k to refer to the encryption

and decryption with key k. Key generation algorithms are
denoted by KeyGenHE and KeyGenOPE , respectively for
HE and OPE schemes.

3 System Model

We consider a system including three players: a device, a
carrier, and an application server. A user who has the device
wishes to obtain some service from the application server.
The application server wishes to ensure that a legitimate
user is in possession of the device, but at the same time
does not want to require user’s frequent active involvement
to authenticate herself. Since the carrier is continuously
providing service to the device, it has sufficient behavioural
information on the user to be able to decide if the user in
possession of the device is the legitimate user or not. Hence
a natural course of action for the application server would
be to consult with the carrier on the legitimacy of the user.

A typical protocol for the above scenario consists of the
following sequence of messages. First the device requests
the service from the application server, which subsequently
sends a request to the carrier to pass its judgement on
whether the user in possession of the device is the legitimate
user or not. The carrier that has been continuously authen-
ticating the user is then able to respond to the application
server’s request and the application server either provides
or refuses service to the device accordingly. Figure 1 shows
this scenario. Our focus in this paper is the continuous im-
plicit authentication protocol between the carrier and the
device. Note that this protocol runs continuously and is
transparent to the user.

Throughout the paper we use “device” to refer to both
the user and the device since the device is carrying out the

4

1 2

4

Imp. Auth.

3

App. Server

Device User Carrier

1. Device requests service
2. AS requests authentication
3. Carrier sends authentication decision
4. AS provides service

Figure 1: The system model and scenario. We propose
a privacy-preserving implicit authentication protocol (de-
noted by Imp. Auth. above.), which is continuously carried
out by the device and the carrier to determine whether the
user in possession of the device is legitimate.

computations involved in the protocol. However note that
the aim of implicit authentication is to authenticate the user
in possession of the device.

Trust Assumptions and the Adversarial Model: We
assume the communication channels in the protocol are
secure and the information is communicated safely across
these channels. User data is stored in encrypted form at
the carrier. The device records user data, encrypts it and
sends it to the carrier. No data used to develop the user pro-
file in implicit authentication is stored on the device. This
ensures that if the device is compromised, the adversary
cannot learn the user profile and simulate her behaviour.

We aim to protect the data collected by the device, and
thus in our protocol we only consider such device data. The
information collected by the carrier is known to the car-
rier and is not included. Selection of an appropriate set of
features that allow sufficient distinguishability of users is
outside the scope of this paper. The goal here is to pro-
vide privacy for user features that are used as part of the
user profile. Nevertheless, we give concrete examples of such
distinguishing features from the literature in Section 3.2.

We assume that the carrier correctly follows the proto-
col but tries to learn user data through the information it
receives by participating in the implicit authentication pro-
tocol. This, we believe, is a reasonable assumption given
the stature and reputation of carriers on one hand, and the
difficulty of tracing the source of data leakage on the other.
We assume the device is used by the legitimate user for a
period of time before being compromised. This is the period
during which the user profile is constructed.

We consider two types of adversaries. Firstly, we consider
a less sophisticated adversary that tries to use a stolen de-
vice without tampering with the hardware or the software
and so the device is assumed to follow the protocol. This
also corresponds to the case that the authentication pro-
gram resides in a tamper proof [27, 39] part of the device
and cannot be modified by the adversary and so a captured
device follows the protocol but takes input data from the
adversary. We assume the program can be read by the de-
vice holder, but cannot be changed. In the second case, the
device behaves in a malicious way and may deviate from the
protocol arbitrarily to succeed in the authentication proto-
col. This corresponds to the case where the device software
or hardware is tampered with by the adversary in possession
of the device.

In both cases the system must guarantee privacy of the
user: that is, neither the carrier nor the adversary in posses-
sion of the compromised device should learn the user profile
data. Naturally, a stolen device used by an illegitimate user
must also fail in authentication.

3.1 Authentication without Privacy

A user profile consists of a record of the distributions of
one or more behavioural features of the user. A feature
is a random variable that can be sampled by the device
and in combination with other features provides a reliable
means of distinguishing users. We denote feature i by the
random variable Vi that is sampled at each authentication
request. If the authentication is successful, the sample is
stored by the carrier and used as part of the distribution
samples for evaluation of future authentication requests.
The variable distribution for the i-th feature is approxi-
mated as Vi = (vi(t1), vi(t2), . . . , vi(t`i)). Here, vi(tj) is the
feature value at time tj and `i is the length of the feature
vector stored in the profile. This feature vector length is a
system parameter which is assumed to be an odd integer to
simplify the calculation of the mean. As discussed before,
we only consider independent features.

Let us denote the user profile by U . The profile consists
of a tuple of n features; that is U = (V1, V2, . . . , Vn).

The implicit authentication protocol is carried out be-
tween a carrier and a device. The protocol is carried out
continuously and periodically. We consider one round of
authentication in the following. At the beginning of each
round, the carrier is in possession of a user profile U that
consists of features Vi. The device wishes to authenticate it-
self to the carrier as a device whose user behaviour matches
the recorded user profile U . The protocol works as fol-
lows. The device samples the current features {vi(t)}ni=1

and reports them to the carrier. The carrier considers each
reported feature sample vi(t) and by comparing it to the
sample distribution Vi = (vi(t1), vi(t2), . . . , vi(t`i)) from the
user profile, decide how likely it is that the reported sam-
ple belongs to this distribution. We call this likelihood the

5

start

finish

Current behaviour

Authentication success
output:

input:

Authentication failure

Scoring algorithm
run

output:

Profile update
run

policy satisfied
is

?

yes

no
Profile

Update

User
profiles

User

Profile

Figure 2: The authentication protocol flow in each round.
Data flow is denoted by dashed arrows.

authentication score for the feature i, and denote it by si.
Having calculated all the individual feature scores {si}ni=1,
the carrier then decides based on a policy if the authen-
tication succeeds or not. At the end of the round, if the
authentication succeeds, the carrier updates the user pro-
file to include the reported sample in the recorded samples.
Figure 2 shows the flow of the authentication protocol in
each round.

The authentication policy may vary between different car-
riers and it is crucial for an implicit authentication protocol
to be able to support various carrier authentication policies.
An example of a policy is one that requires each score to
be above a certain threshold. Another carrier might require
that at least a certain number of feature scores are above
their corresponding threshold values. A simple and popular
authentication policy is to require that a weighted linear
combination of feature scores is above a certain threshold.
In this case, the feature scores are combined linearly to cal-
culate a combined score as S = w1s1(t) + · · · + wnsn(t),
where wi represents the weight assigned to the i-th feature
and S is the combined authentication score.

Each individual feature score is calculated by the car-
rier as the likelihood that a reported feature value belongs
to the corresponding sample distribution recorded as part
of the user profile. In this paper, we propose a simple
and effective method for calculating these scores as follows.
The carrier first calculates a measure of dispersion for the
recorded sample distribution, namely the average absolute
deviation (AAD). Then, the carrier considers an interval
centred around the reported sample, with a length dou-
ble the size of the AAD. The carrier counts the number
of recorded samples from the user profile that fall within
the above interval and considers the proportion of recorded
samples that fall within the interval to be the score for the
feature. Intuitively, the closer the reported sample is to the
centre of concentration for the recorded samples, the more
recorded samples will fall in the above interval, and hence

the higher the feature score will be.
More formally, let AAD(Vi) represent the average abso-

lute deviation of data in the set Vi. Also let the reported
value for the i-th feature at time t be denoted by vi(t). For a
feature Vi we define our scoring function at time t as follows:

si(t) = Pr[bli (t) ≤ Vi ≤ bhi (t)], where (2)

bli (t) = vi(t)−AAD(Vi) and bhi (t) = vi(t) + AAD(Vi) .

The probability Pr[bli (t) ≤ Vi ≤ bhi (t)] is approximated by
counting the number of elements of Vi that fall within the
interval [bli (t), b

h
i (t)] and dividing the count by the number

of all elements, i.e. `i, thus calculating the proportion of
elements that fall within the interval.

The above method can in theory work with any reason-
able measure of dispersion instead of AAD. However, as will
be shown in Section 4, the choice of AAD(Vi) allows the
carrier to perform the required computation on encrypted
data.

3.2 Feature Selection

There are many works in the literature on distinguishing
users through their different usage patterns. Most of these
works use multiple features extracted from different sources
of measurement and then export all the extracted features
to a server in which a machine learning algorithm is first
trained and then employed to tell users apart. Since such
solutions do not address the issue of privacy, they can afford
to use sophisticated algorithms based on arbitrarily chosen
features which might not each be sufficiently discriminating
on their own between different usage patterns. Our authen-
tication protocols, on the other hand, require features that
are reasonably discriminating on their own. A more careful
look at the literature reveals that many such features are
indeed available. In the following we list some candidates
to be used as features in our protocols. Note that all the fol-
lowing candidates can be categorised under “device data”,
as described in Section 1.

Perhaps the most natural choice is the device location as
sensed by GPS sensors. Jakobsson et al. analysed the lo-
cation traces for participants in their study and found that
they tend to be concentrated in three clusters corresponding
to where the user lives, works, and shops [30]. Furthermore,
user’s location is highly correlated with the time of day and
day of week. Hence, device latitude and longitude at spe-
cific times of day and days of week make good choices as
features in our system. Effectively, implicit authentication
using device location will then succeed with a good proba-
bility if the device is being used in a “usual” location, and
fail with a good probability otherwise.

The study by Kang et al. [34] provides a few other feature
candidates. They investigate smartphone usage patterns
and their results show for example that although average
daily device idle time does not vary much amongst differ-
ent users, power consumption while idle as a percentage of

6

total power consumption by the device varies significantly
between different users and hence may be considered a dis-
tinguishing factor. They also find out that WiFi session
durations for different users are concentrated around consid-
erably different average values which span about an order of
magnitude of varying lengths. Perhaps more interestingly,
their results also demonstrate that users exhibit different
and distinct habits in terms of when they start charging
their smartphone. The median battery level at the start of
charging varies from around 20% for some users to around
80% for others. Users with usually lower battery levels at
the start of charging are the ones who are comfortable to
wait until their battery is quite drained before worrying
about recharging, whereas those with usually higher bat-
tery levels at the start of charging actively ensure that they
have a good amount of charge on their battery most of the
time.

Another interesting study is that of Falaki et al. [18].
They show among other results that users spend quite
different and distinctive amounts of time interacting with
their smartphones during the period roughly corresponding
to “normal working hours” of 9-to-5 (i.e., 9:00 to 17:00),
whereas the patterns of their interaction times may not be
as significantly distinguishable during other hours of day
or the weekend. This 9-to-5 interaction time is distributed
around an average which can vary between around 10 min-
utes per hour to around 20 minutes per hour.

As a concrete system example, consider one that has the
following features: device location latitude and longitude,
power consumption while idle (henceforth PCI), WiFi ses-
sion length (henceforth WSL), and battery level at the start
of charging (henceforth BLS). Let all the features be re-
ported on an hourly basis, with latitude and longitude being
the GPS reading at the time, BCI being the power consump-
tion while idle in the past hour as a percentage of the total
power consumption in the past hour, WSL being the total
WiFi session length in minutes in the past hour, and BLS
being reported in percentage and only present if charging
has started in the past hour. A possible implicit authenti-
cation policy may be as follows: scores from latitude and
longitude are first considered; if they are both above certain
thresholds, then at least one of the other scores, i.e., scores
from PCI, WSL, and possibly BLS, needs to be above a cer-
tain threshold for implicit authentication to succeed; other-
wise, all of the other scores need to be above certain thresh-
olds for implicit authentication to succeed. Effectively, in
such a system if the device is located where it is usually
used, implicit authentication succeeds if the usage pattern
(expressed as PCI, WSL, and BLS) loosely follows the pre-
vious usage pattern of the device, and if the device is located
somewhere else, the usage pattern must strictly conform to
the previous usage pattern for implicit authentication to
succeed.

For all of the features mentioned above, the reported us-
age pattern seems to be highly dependent on the time of

day and day of week. Hence, it would make sense to com-
pare a reported feature by the device only to those in the
recorded usage history profile that belong to the same time
of day and day of week. That is, usage pattern reported
on a Wednesday at 17:00 would only be compared to usage
pattern history on previous Wednesdays at around the same
time.

Note that although we have focussed on measurements
of continuous variables (such as latitude and longitude,
amount of power, and duration of time) in our examples
above, we expect that our proposed protocols would work
just as well for any discrete variable or in fact for any or-
dered nominal data type. As an example of a discrete vari-
able, the 9-to-5 interaction time discussed above may be
replaced by the number of sessions of interactions during
9-to-5, which as Falaki et al. show is also distinct between
different users [18]. As an example of an ordered nominal
variable, the activity classes that the Jigsaw sensing en-
gine [37] provides may be considered as a feature in our
system. Using the accelerometer sensor, Jigsaw is able to
robustly classify user’s activity as being stationary, walking,
running, cycling, and in a moving vehicle. Assuming users
have certain distinctive routines of for example cycling to
work around a certain hour of day, the activity output by
Jigsaw in different hours of day can potentially constitute
features that can reasonably distinguish between different
user behaviours. In some cases, other scoring functions such
as those suggested by Jakobsson et al. [30], e.g. estimating
Pr[Vi = vi] or Pr[Vi ≥ vi] instead of what we propose (see
Equation 2), would be more appropriate. Our protocols
are generic in the sense that they can be easily modified to
support such variants.

4 Privacy-Preserving Authentica-
tion

At the heart of the authentication protocol proposed in the
previous section is the score computing algorithm. It ba-
sically takes two inputs: the stored distribution and the
fresh device sample, and it produces a feature score. All
the computation takes place at the carrier side, given the
two inputs above, where the former is stored by the carrier,
and the latter is provided by the device. Both inputs are in
plaintext. In this section, we focus on this algorithm and
provide a two-party score computing protocol that is able
to calculate the feature score from encrypted profiles stored
at the carrier and encrypted fresh samples provided by the
device, where the decryption keys are only known to the
device.

We chose to provide private protocols for score computa-
tion on the feature score level, as opposed to the combined
score level, for two reasons: first, different carriers might
have different authentication policies, and our formulation
leaves the choice of a specific authentication policy open

7

for the carrier; second, we consider it an overkill to require
that the carrier only finds out a potential combined score
and nothing about the individual scores, and indeed solu-
tions satisfying such a requirement are likely to be inefficient
in practice.

In the following we propose a protocol between a device
and a carrier that enables the carrier to calculate a feature
score for the device, while provably guaranteeing that no
information about the stored profile at the carrier is revealed
to the device other than the AAD of the stored feature
values, and no information about the fresh feature value
provided by the device is revealed to the carrier other than
how it is ordered with respect to the stored profile feature
values.

4.1 A Protocol Secure against Semi-
Honest Adversaries

Let HE = (KeyGenHE , EHE , DHE) be a homomorphic
encryption scheme, such as the Paillier cryptosystem,
and OPE = (KeyGenOPE , EOPE , DOPE) be an order-
preserving encryption scheme. The protocol Π we propose
consists of four phases: system setup, (user) profile initial-
isation, authentication, and profile update. System setup
and profile initialisation are carried out once per device, but
afterwards the authentication and profile update phases are
carried out once per authentication round. Authentication
rounds are carried out periodically and continuously. The
protocol works as follows:

Phase 1. System Setup: Performed once for each de-
vice, KeyGenHE and KeyGenOPE are run by the device
to generate the HE key pair (pk, sk) and the OPE key k2.
Public parameters of the two encryption systems HE and
OPE, including pk, are communicated to the carrier.

Phase 2. Profile Initialisation: This phase is per-
formed only once for each device to record the initial `i
feature readings and compute an initial AAD for each fea-
ture. During this phase the device is assumed to be hon-
est. Recall that implicit authentication requires a period
of honest device usage to set up a usage profile based on
which it is subsequently able to authenticate the user. Dur-
ing this phase, the device periodically sends HE and OPE
encrypted feature readings ei(t) = EHE

pk (vi(t)) and e′i(t) =

EOPE
k2

(vi(t)) to the carrier. The communications end after
`i feature readings. At the end of this phase, the carrier
has 2`i ciphertexts for the i-th feature: { ei(tj), e′i(tj) }`ij=1.
Since the OPE ciphertexts e′i(tj) enable the carrier to com-
pare the corresponding plaintexts, the carrier is able to
find the HE encryption of the median of the feature read-
ings EHE

pk (Med(Vi)), where Med(Vi) denotes the median of

{ vi(tj) }`ij=1. The carrier finds the indexes of the top and
bottom half of plaintexts with respect to the median. Let

us denote the set of top half indexes by Ti and the set of
bottom half indexes by Bi. In other words:

Ti = {j|vi(tj) > Med(Vi)}, Bi = {j|vi(tj) < Med(Vi)}.

Now the carrier uses the homomorphic property of HE to
compute the encryption of AAD based on Equation 1 as
follows:

EHE
pk (AAD(Vi)) = `−1

i ·
(∑
j∈Ti

ei(tj)−
∑
j∈Bi

ei(tj)
)
.

The setup and profile initialisation phases are now complete
and from now on, the system will enter the mode in which
the device is not trusted any more. In this mode, a contin-
uous and periodic succession of authentication and profile
update phases will be carried out.

Phase 3. Authentication: The device and the carrier
enter the authentication phase with the carrier holding a
profile of the device user including `i HE ciphertexts for
the i-th feature: { ei(tj) = EHE

pk (vi(tj)) }`ij=1, the `i corre-
sponding OPE ciphertexts for the i-th feature: { e′i(tj) =

EOPE
k2

(vi(tj)) }`ij=1, and the HE encryption of the AAD of

the features EHE
pk (AAD(Vi)). The device reports to the car-

rier the encryptions of a new reading as follows:

ei(t) = EHE
pk (vi(t)) and e′i(t) = EOPE

k2 (vi(t)) .

The HE ciphertext allows the carrier to perform necessary
computations, namely addition and scalar multiplication, in
the encrypted domain, while the OPE ciphertext helps the
carrier find the order information necessary to the compu-
tation. The carrier calculates EHE

pk (bli (t)) and EHE
pk (bhi (t))

as follows:

EHE
pk (bli (t))← EHE

pk (vi(t))− EHE
pk (AAD(Vi)) ,

EHE
pk (bhi (t))← EHE

pk (vi(t)) + EHE
pk (AAD(Vi)) .

The carrier however does not know the order of the newly
generated encrypted values with respect to the stored ci-
phertexts in the user profile. To find the order, the car-
rier interacts with the device as follows: the carrier first
sends EHE

pk (bli (t)) and EHE
pk (bhi (t)) back to the device for all

features. The device decrypts the ciphertexts using the de-
cryption function DHE

sk and obtains bli (t) and bhi (t), and then
encrypts them to compute the following OPE ciphertexts:

cli (t) = EOPE
k2 (bli (t)) and chi (t) = EOPE

k2 (bhi (t)) .

The device sends cli (t) and chi (t) back to the carrier. The
carrier computes the individual score si(t) as the number
of the OPE ciphertexts e′i(tj) in the profile that satisfy
cli (t) ≤ e′i(tj) ≤ chi (t). Note that this condition is equiv-
alent to bli (t) ≤ vi(tj) ≤ bhi (t). Note that the scores are all
calculated in parallel, and in only three rounds of interac-
tion. The final authentication decision is then made by the

8

Device Carrier

ei(t) = EHE
pk (vi(t))

∀i ∈ [1, n] : Calculate

{ei(t), e′i(t)}ni=1

∀i ∈ [1, n] : Calculate
EHE

pk (bLi (t)) = EHE
pk (vi(t))− EHE

pk (AAD(Vi))
EHE

pk (bHi (t)) = EHE
pk (vi(t)) + EHE

pk (AAD(Vi))

{EHE
pk (bLi (t)), EHE

pk (bHi (t))}ni=1

cLi (t) = EOPE
k2

(bLi (t))
∀i ∈ [1, n] : Calculate

cHi (t) = EOPE
k2

(bHi (t))

{cLi (t), cHi (t)}ni=1

∀i ∈ [1, n] : Calculate si(t)

Calculate final authentication score

e′i(t) = EOPE
k2

(vi(t))

Figure 3: The authentication phase of our protocol Π

carrier based on its authentication policy, e.g. the weighted
sum method described earlier in Section 3.1. If implicit au-
thentication is not successful, the device is challenged on
an explicit authentication method, e.g. the user is logged
out of a service and prompted to log in anew by providing
a password. If either implicit or explicit authentication is
successful, the carrier enters the profile update phase. Fig-
ure 3 shows the interaction diagram of the authentication
phase of the protocol.

Phase 4. Profile Update: The carrier enters this phase
after a successful implicit or explicit authentication. The
carrier has the ciphertext for a new feature value ei(t) =
EHE
pk (vi(t)), and from the authentication phase it knows

how vi(t) compares with the previously recorded features
{vi(tj)}`ij=1. The carrier updates the recorded features and
the AAD as follows. Assume ei(t1) is the ciphertext cor-
responding to the oldest feature and it is to be omitted
from the feature list, and instead the new feature cipher-
text ei(t`i+1) = ei(t) added. Let T old

i and Bold
i respectively

denote the set of top and bottom half indexes for the old
features {vi(tj)}`ij=1, and T new

i and Bnew
i denote sets de-

fined similarly for the updated features {vi(tj)}`i+1
j=2 . Also

let AADold(Vi) and AADnew(Vi) denote the old and updated
AADs. We have

EHE
pk (AADold(Vi)) = `−1

i ·
(∑
j∈T old

i

ei(tj)−
∑

j∈Bold
i

ei(tj)
)
,

EHE
pk (AADnew(Vi)) = `−1

i ·
(∑
j∈Tnew

i

ei(tj)−
∑

j∈Bnew
i

ei(tj)
)
.

Let us denote by ∆i the difference between the two AAD
ciphertexts times `i, i.e.

∆i = `i · (EHE
pk (AADnew(Vi))− EHE

pk (AADold(Vi))).

If ∆i is calculated, the updated AAD can be calculated as
follows:

EHE
pk (AADnew(Vi)) = EHE

pk (AADold(Vi)) + `−1
i ·∆i.

Let \ denote the set difference operation. To calculate ∆i

given T old
i , Bold

i , T new
i , and Bnew

i , the carrier computes the
following:

∆i =
∑

j∈Tnew
i \T old

i

ei(tj) −
∑

j∈T old
i \Tnew

i

ei(tj)

−
∑

j∈Bnew
i \T old

i

ei(tj) +
∑

j∈Bold
i \Tnew

i

ei(tj) .

Note that each of the above four set differences includes at
most one element. This means the profile update phase can
be carried out very efficiently. At the end of this phase,
the carrier holds a set of updated feature ciphertexts and
an updated AAD ciphertext. The carrier will enter the au-
thentication phase afterwards and wait for a new feature
reading to be reported from the device.

Complexity: We discuss the computation complexity of
the profile initialisation, authentication, and profile update
phases of our protocol Π in the following. We also imple-
mented Paillier and OPE to confirm computation bench-
marks in the literature, and calculate concrete running
times for our protocol. In the following we analyse the
computation complexity of the protocol for one feature. To
calculate approximate execution times for multiple features,
the figures may be multiplied by the number of features.

In the profile initialisation phase, the device calculates
a total of `i HE encryptions and `i OPE encryptions, and
the carrier calculates `i ciphertext-space homomorphic ad-
ditions and 1 ciphertext-space homomorphic scalar multi-
plication. Recall that this phase is only executed once.

The computation in the authentication phase is domi-
nated by 1 homomorphic encryption, 2 homomorphic de-
cryptions, and 3 order-preserving encryptions on the device
side, and 2 ciphertext-space homomorphic additions (imple-
mented in Paillier scheme by multiplications) on the carrier
side, for each feature.

In the profile update phase, the carrier performs 4
ciphertext-space homomorphic additions and 1 ciphertext-
space homomorphic scalar multiplication.

For typical parameters and on platforms comparable to
today’s smart-phones, HE encryption, decryption, and OPE
encryption and decryption each take at most in the or-
der of a few tens of milliseconds, as reported by previous
works on the implementation of Paillier, and recent works

9

on the implementation of OPE. We confirm these bench-
marks through implementations of our own. Hence, we can
see that the authentication phase for one feature is almost
real-time. For multiple features, this phase can take at the
longest in the order of a second to complete, which is rea-
sonable given that there is no requirement for implicit au-
thentication to be real-time.

To confirm the efficiency of Paillier homomorphic encryp-
tion and OPE implementations, we have benchmarked both
schemes using Java-based implementations for both on an
Intel 2.66 GHz core 2 duo processor (which is comparable to
the processors of today’s smartphones) while running other
processes (including web browser, word processor, terminal,
music player etc.) in the background. Hyper threading was
not activated and only one core was used by the implemen-
tation.

For Paillier with 1024-bit keys (i.e. moduli) we have found
that encryption takes 26 ms (milliseconds), decryption takes
35 ms, and both homomorphic addition and homomor-
phic scalar multiplication take negligible time comparatively
(both are more than 500 times faster). We did not apply any
optimisation techniques. These benchmarks are comparable
to the ones reported in the literature on PCs with compara-
ble specifications. Basu, Kikuchi, and Vaidya report compa-
rable results, namely encryption times of 17 and 125 ms, and
decryption times of 17 and 124 ms, with 1024-bit and 2048-
bit keys, respectively [3]. Jakobsen, Makkes, and Nielsen
report encryption times of 8 and 17 ms for optimised Pail-
lier with 1024-bit and 2048-bit keys, respectively [29]. We
use our own 1024-bit Paillier benchmarks, i.e. HE encryp-
tion: 26 ms, HE decryption: 35 ms, to demonstrate how
efficient a simple implementation of our protocol can be in
practice. Although, from the above examples it can be seen
that optimised versions of the protocol can achieve higher
efficiency even when 2048-bit keys are used. To provide
some insight into how efficiency can be improved using op-
timisation techniques, we also give concrete execution times
for our protocol using the best benchmarks known to us (as
discussed above), i.e. HE encryption: 8 ms, HE decryption:
17 ms.

We have also implemented the OPE scheme proposed
in [5]. Our implementation was independent of the only
two other implementations of such scheme in the literature
known to us, which are parts of the encrypted database sys-
tems CryptDB [46] and Monomi [57]. Using typical features
for implicit authentication, a maximum plaintext length
around 100 bits seems to be sufficient for our protocol Π.
Execution times required for encryption and decryption in
our implementation are at most 56 ms for plaintext lengths
between 100 and 1000 bits5. CryptDB authors report initial
encryption time of 25 ms for 32-bit plaintexts [46], and were

5OPE complexity depends on ciphertext length as well as plaintext
length. In our implementations, we have considered combinations of
plaintext sizes of 100 and 1000 bits and ciphertext sizes of 10, 100,
and 1000 kilobits.

able to optimise the encryption to bring the encryption time
down to 4 ms [47]. We use the 56-ms benchmark to calcu-
late concrete execution times for a simple implementation
of our protocol. However, as the CryptDB implementation
demonstrates, execution times can be as much as around
10 times lower. Hence, we also provide concrete execution
times based on the optimised benchmarks above, i.e. OPE
encryption / decryption: 4 ms. This optimised benchmark
assumes that features may be expressed in 32 bits, which
is a reasonable assumption for the majority of features pro-
posed in the literature for implicit authentication. In fact
all the candidate features listed in Section 3.2 can be ex-
pressed in 32 bits. GPS coordinates are usually expressed
in the NMEA 0183 standard format [1] which for a one me-
ter precision would consist of at most 9 digits: at most 3 for
degrees, 2 for minutes, and at most 4 for decimal minutes.
9 digits may be expressed in 30 bits. An additional bit is
needed to indicate either N/S or E/W. Hence latitude and
longitude can each be expressed in 32 bits. Other discussed
candidates such as power consumption in percentage, WiFi
session duration in minutes, battery level in percentage, and
interaction time in minutes can be immediately seen to be
expressible in less than 32 bits.

Using the above sets of benchmarks in two categories:
simple and optimised benchmarks, we can estimate concrete
times for our protocol on the device side. Table 1 sum-
marises the computational complexity of the profile initiali-
sation, authentication, and profile update phases of protocol
Π for one feature. On the device side, initialisation phase
complexity is reported for each period in which the device
reports a pair of ciphertexts, whereas on the carrier-side, the
computation of the initial AAD is assumed to take place at
once at the end of the phase, hence the reported complexity
is for the whole initialisation phase. On the carrier side, the
computations are limited to ciphertext-space homomorphic
additions and scalar multiplications which are in the order
of hundreds of time faster than HE and OPE encryption.
Besides, the carrier side naturally has much more compu-
tational power than the device side. Hence, despite the
multiplicative factor `i (typically in the order of 100) in the
complexity of the profile initialisation phase on the carrier
side, the concrete execution time for all phases on the car-
rier side ends up being negligible compared to those on the
device side.

Finally, note that the authentication phase for each fea-
ture takes less than 300 ms on the device side and neg-
ligible time on the carrier side, even with a non-optimised
implementation. The concrete system example given in Sec-
tion 3.2 involves at most five features and hence the total
system authentication time will be at most five times the
above figure. Considering the whole process is executed im-
plicitly as a background process, the overhead of introducing
privacy is not significant.

In terms of communication complexity, for each feature
the device needs to send one HE ciphertext and 3 OPE

10

Phase Complexity Concrete Times
(simple) (optimised)

Device-side:
Init. tHE + tOPE 82 ms 12 ms
Auth. tHE + 2tHD + 3tOPE 264 ms 54 ms
Carrier-side:
Init. `itHA + tHM negl. negl.
Auth. 2tHA negl. negl.
Upd. 4tHA + tHM negl. negl.

Table 1: Computation complexity of protocol Π based on
one feature assuming `i = 100. Legend: Init: profile ini-
tialisation phase, Auth: authentication phase, Upd: pro-
file update phase, tHE , tHD : HE encryption and decryp-
tion times, tOPE : OPE encryption time, tHA, tHM : HE
ciphertext-space addition and scalar multiplication times,
negl: negligible.

ciphertexts in each round of authentication, and the carrier
needs to send 2 HE ciphertexts. Each HE ciphertext is 1 kb
(kilobits) and each OPE ciphertext may be implemented as
10 kb for typical plaintext sizes in our scheme. This means
that the device needs to send less than 4 kB (kilo Bytes) and
receive around 0.25 kB in each round of communication.

Security: We discuss the security of our protocol con-
sidering semi-honest devices and carriers in Appendix B.
We provide a formal definition of privacy for our protocol
against honest-but-curious devices and carriers. The def-
inition intuitively guarantees that by participating in the
protocol, the device only learns the AAD of the usage data
stored at the carrier side, and the carrier only learns little
beyond the order information of the current sample with re-
spect to the stored data. We argue that the AAD and order
information learned during the protocol reveal little about
the actual content of the data in question, and hence our
definition guarantees a high level of privacy. Eventually, in
Appendix B.1, we prove the following theorem guaranteeing
the privacy of our protocol:

Theorem 1 Our protocol Π is provably secure against
semi-honest devices and semi-honest carriers.

4.2 Securing the Protocol against Mali-
cious Devices

In the above version of the protocol, secure against hon-
est but curious adversaries, in the authentication phase
the carrier interacts with the device as follows: the carrier
sends homomorphic ciphertexts EHE

pk (bli (t)) and EHE
pk (bhi (t))

to the device and the device is expected to reply back
order-preserving ciphertexts of the same plaintexts, i.e.
EOPE
k2

(bli (t)) and EOPE
k2

(bhi (t)). These order-preserving ci-
phertexts are subsequently used to compare the values of
bli (t) and bhi (t) in the order-preserving ciphertext space with

the feature values and find out how many feature values lie
between bli (t) and bhi (t). However, a malicious device cannot
be trusted to return correctly formatted order-preserving ci-
phertexts.

First, we note that the device cannot be forced to use an
honest feature value vi(t) to start with. In the absence of
a trusted hardware such as tamper-proof hardware, the de-
vice may enter the interaction with the carrier on any arbi-
trary input. Even with the recent advances in smartphone
technology, e.g. ARM’s TrustZone6, the device cannot be
prevented to change the sensor readings unless the whole
algorithm is run in the so called Trusted Execution Environ-
ment (TEE). However, the device can be required to show
that the ciphertext EHE

pk (vi(t)) is well-formed. To enforce
this requirement, we require that the device sends a proof of
knowledge of the corresponding plaintext vi(t) along with
the ciphertext EHE

pk (vi(t)). Efficient proofs of knowledge of
plaintext exist for most public key encryption schemes. For
Paillier encryption, a concrete and efficient interactive proof
protocol can be found in [4]. The protocol can be made
non-interactive using the well-known Fiat-Shamir heuristic,
by replacing the random challenge generated by the verifier
with the hash of the protocol parameters concatenated with
the message sent by the prover in the first round. We de-
note the resulting proof of knowledge of the plaintext vi(t)
by PoK{vi(t)}.

Apart from inclusion of the above proof of knowledge,
further modification is required to make the protocol se-
cure against malicious devices. The main idea here is as
follows: instead of asking the device for order-preserving
ciphertexts, the ability to interact with the device is used
to directly compare bli (t) and bhi (t) with the feature val-
ues, only using the homomorphic ciphertexts. Assume that
the carrier wishes to compare bli (t) with vi(tj). The carrier
has homomorphic encryptions of both, i.e. EHE

pk (bli (t)) with

EHE
pk (vi(tj)), and hence can calculate EHE

pk (bli (t) − vi(tj)).
The carrier is hence interested in knowing whether bli (t) −
vi(tj) is positive, negative, or zero. In the following, we
show how the carrier is able to interact with the device and
determine whether the above value is positive, negative, or
zero, without the device being able to cheat or to have a no-
ticeable chance of finding out some information about the
value in question.

In the following, we propose a modified version of the pro-
tocol secure against malicious devices. We call this modified
version Π?. Let HE = (KeyGenHE , EHE , DHE) be a ho-
momorphic encryption scheme, such as Paillier cryptosys-
tem. The protocol Π? consists of four phases: system setup,
(user) profile initialisation, authentication, and profile up-
date. The profile initialisation phase is exactly the same as
that of the protocol Π described in Section 4.1, and thus
is not repeated here. System setup is carried out once for
each device, but afterwards the authentication and profile

6www.arm.com/products/processors/technologies/trustzone

11

www.arm.com/products/processors/technologies/trustzone

update phases are carried out once per each authentication
round. Authentication rounds are carried out periodically
and continuously. The protocol works as follows:

Phase 1. System Setup: This phase is performed once
for each device. KeyGenHE is run by the device to generate
the HE key pair (pk, sk). The public key pk is communi-
cated to the carrier. The private key sk is kept by the
device.

Phase 2. Profile Initialisation: This phase is per-
formed only once for each device to record the initial `i fea-
ture readings and compute an initial AAD for each feature.
During this phase the device is assumed to be honest. This
phase is similar to the user initialisation phase in protocol
Π, but here there are no OPE ciphertexts involved. During
this phase, the device periodically sends HE encrypted fea-
ture readings ei(t) = EHE

pk (vi(t)) to the carrier. The device
also keeps a record of vi(t) values and along with each HE
ciphertext, it sends the order information of the value with
respect to the previous values to the carrier. The commu-
nications end after `i feature readings. At the end of this
phase, the carrier has `i ciphertexts for the i-th feature:
{ ei(tj) }`ij=1 and the ordering information about the corre-
sponding plaintexts. Since the carrier knows the ordering of
plaintexts, it is able to find the encryption of the median of
the feature readings EHE

pk (Med(Vi)), where Med(Vi) denotes

the median of { vi(tj) }`ij=1. The carrier finds the indexes
of the top and bottom half of plaintexts with respect to the
median. Let us denote the set of top half indexes by Ti and
the set of bottom half indexes by Bi. The carrier uses the
homomorphic property of HE to compute the encryption of
AAD based on Equation 1 as follows:

EHE
pk (AAD(Vi)) = `−1

i ·
(∑
j∈Ti

ei(tj)−
∑
j∈Bi

ei(tj)
)
.

The device deletes the record of vi(t) values it has been
keeping at the end of this phase. The setup and initialisation
of the system are complete and from now on, the system
will enter the mode in which the device is not trusted any
more. In this mode, a continuous and periodic succession
of authentication and profile update phases will be carried
out.

Phase 3. Authentication: The device and the carrier
enter the authentication phase with the carrier holding a
profile of the device user including `i HE ciphertexts for the
i-th feature: { ei(tj) = EHE

pk (vi(tj)) }`ij=1 and the HE en-

cryption of the AAD of the features EHE
pk (AAD(Vi)). The

device reports to the carrier the HE encryption of a new
reading ei(t) = EHE

pk (vi(t)). The device also sends a proof
of knowledge of the plaintext PoK{vi(t)} to show that the
ciphertext is well-formed. The carrier verifies the proof of

knowledge and if the verification fails, it deems authentica-
tion failed. Otherwise, the carrier calculates the following
using the homomorphic property:

EHE
pk (bli (t)) ← EHE

pk (vi(t))− EHE
pk (AAD(Vi))

EHE
pk (bhi (t)) ← EHE

pk (vi(t)) + EHE
pk (AAD(Vi))

Now the carrier needs to find out how bli (t) and bhi (t) com-
pare to { vi(tj) }`ij=1 to be able to count the number of ei(tj)
values that fall between bli (t) and bhi (t) for the purpose of
authentication. The carrier also needs to find out how the
new reported reading vi(t) compares to the previous ones
{ vi(tj) }`ij=1, so that if the authentication succeeds, it has
the ordering information necessary to update the profile ac-
cordingly in the profile update phase. Let us define for all i
and j:

δlij = bli (t)− vi(tj),
δij = vi(t)− vi(tj), and

δhij = bhi (t)− vi(tj) .

To compare any of the above values, i.e., bli (t), v
i(t) and

bhi (t), with vi(tj), the carrier needs to find out if the corre-
sponding differences, i.e., δlij , δij , and δhij , as defined above,
are each negative, zero, or positive. To achieve this, the
carrier first calculates for all j ∈ [1, `i] the ciphertexts
EHE
pk (δlij), EHE

pk (δij), and EHE
pk (δhij) using the homomor-

phic property of the encryption scheme from EHE
pk (vi(tj)),

EHE
pk (vi(t)), E

HE
pk (bli (t)), and EHE

pk (bhi (t)). Then the carrier
chooses `i random bits, and for each j ∈ [1, `i] based on the
j-th bit either leaves the calculated HE ciphertext triplets
as is, or calculates the ciphertext triplets for −δlij , −δij , and
−δhij through ciphertext homomorphic scalar multiplication

by −1. Let us denote these ciphertexts by EHE
pk (±δlij),

EHE
pk (±δij), and EHE

pk (±δhij). This makes sure that the these
differences are distributed independently of the value of the
current reading in terms of being positive or negative. That
is, on any vi(t) a similar number of the differences will be
positive or negative.

Assume the i-th feature values belong to the interval
[mini,maxi] with a range di = maxi−mini. This means
δij ∈ [−di, di]. The carrier chooses σ`i random values

{{δ′ijk}`ij=1}σk=1 from the interval [−di, di], where σ is a secu-
rity parameter. The values {δ′ijk}σk=1 serve as values among
which δij will be hidden. Also note that δlij = δij−AAD(Vi)
and δhij = δij + AAD(Vi). Let us define analogously
δ′lijk = δ′ijk − AAD(Vi) and δ′hijk = δ′ijk + AAD(Vi). The
carrier now calculates the corresponding ciphertexts for the
“fake” difference values as follows: for all j and k it calcu-
lates EHE

pk (δ′ijk), and then EHE
pk (δ′lijk) and EHE

pk (δ′hijk).

The carrier then puts together the following set of values
for all j ∈ [1, `i] and all k ∈ [1, σ]: EHE

pk (δlij), E
HE
pk (δij),

EHE
pk (δhij), E

HE
pk (δ′ijk), EHE

pk (δ′lijk)), and EHE
pk (δ′hijk). The car-

rier shuffles these values and sends them to the device. The

12

device decrypts the ciphertexts and replies to the carrier in-
dicating whether each ciphertext corresponds to a positive,
zero, or negative plaintext. The device is able to compute
AAD(Vi) and also distinguish the three sets of values: the
differences δij and δ′ijk, the differences minus AAD, and the
differences plus AAD. However, among the differences δij
and δ′ijk the device cannot distinguish between “real” and
“fake” values. The carrier on the other hand, knows what
the response should be for all fake differences δ′ijk. Also if
δij is positive, then the carrier knows that δhij should be also
positive, and if δij is negative, then the carrier knows that
δlij should be also negative. Hence upon receiving the re-
sponses the carrier checks if these responses are correct and
if not the authentication is deemed failed. The idea here is
that since all the σ+1 differences (real and fake altogether)
look indistinguishable to the device, a malicious device has
at most 1

σ+1 chance of cheating and not getting caught. σ is
a security parameter of the protocol and controls a trade-off
between complexity and security. The larger σ is, the less
chance there is for a malicious device to cheat, but at the
same time the higher the complexity of the protocol is.

If the responses pass all the checks, from the responses
for the real differences, the carrier is able to find out how
each of bli (t), vi(t), and bhi (t) compare to { vi(tj) }`ij=1. The
carrier computes the individual score si(t) as the number
of vi(tj) that are between bli (t) and bhi (t). The final au-
thentication decision is then made by the carrier based on
its authentication policy, e.g. the weighted sum method de-
scribed earlier in Section 3.1. If implicit authentication is
not successful, the device is challenged on an explicit au-
thentication method, e.g. the user is logged out of a service
and prompted to log in anew by providing a password. If
either implicit or explicit authentication is successful, the
carrier enters the profile update phase. Figure 4 shows the
interaction diagram of the authentication phase of the pro-
tocol.

Phase 4. Profile Update: The carrier enters this phase
after a successful implicit or explicit authentication. The
carrier updates the recorded features and the AAD in this
phase. The calculations in this phase are the same as those
of the profile update phase in protocol Π. At the end of this
phase, the carrier holds a set of updated feature ciphertexts
and an updated AAD ciphertext. The carrier will enter the
authentication phase afterwards and wait for a new feature
reading to be reported from the device.

Complexity: We discuss the computation complexity of
the profile initialisation, authentication, and profile update
phases of our protocol Π? in the following. We also calcu-
late concrete running times for the protocol. Like before, we
analyse the computation complexity of the protocol for one
feature. To calculate approximate execution times for mul-
tiple features, the figures may be multiplied by the number
of features.

Device Carrier

ei(t) = EHEpk (vi(t)),PoK{vi(t)}
∀i ∈ [1, n] : Calculate

{ei(t),PoK{vi(t)}}ni=1

∀i ∈ [1, n] : Calculate
EHEpk (bLi (t)) = EHEpk (vi(t))− EHEpk (AAD(Vi))
EHEpk (bHi (t)) = EHEpk (vi(t)) + EHEpk (AAD(Vi))

Calculate response ∈ {−, 0,+}
for each value received

all responses

∀i ∈ [1, n] : Calculate si(t)

Calculate final authentication score

∀i ∈ [1, n]∀j ∈ [1, `i] : Calculate
EHEpk (±δLij), EHEpk (±δij), EHEpk (±δHij)

∀i ∈ [1, n]∀j ∈ [1, `i]∀k ∈ [1, σ] :
Choose random δ′ijk, Calculate
EHEpk (δ′Lijk), EHEpk (δ′ijk), EHEpk (δ′Hijk)

EHEpk (±δLij), {EHEpk (δ′Lijk)}σk=1

EHEpk (±δij), {EHEpk (δ′ijk)}σk=1

EHEpk (±δHij), {EHEpk (δ′Hijk)}σk=1

∀i ∈ [1, n]∀j ∈ [1, `i] :

Check responses
for known values

Figure 4: The authentication phase of our protocol Π?

The profile initialisation and update phases are similar to
those of protocol Π with the exception that OPE ciphertexts
are no more involved.

The authentication phase on the other hand differs sub-
stantially from that of protocol Π. In the authentication
phase, the protocol requires 1 homomorphic encryption, 1
proof of knowledge generation, and (σ + 1)`i homomor-
phic decryptions on the device side. Given that the proof
of knowledge generation takes only a couple of multiplica-
tions, the computation complexity here is dominated by
(σ + 1)`i homomorphic decryptions. On the carrier side,
the following computations are required: 1 proof of knowl-
edge verification (roughly as complex as 1 multiplication), 2
homomorphic ciphertext additions to calculate EHE

pk (bli (t))

and EHE
pk (bhi (t)) (roughly as expensive as a multiplication

each), then 3`i homomorphic ciphertext additions to calcu-
late EHE

pk (δlij), E
HE
pk (δij), and EHE

pk (δhij), then an expected
1
2`i homomorphic ciphertext scalar multiplications to cal-
culate EHE

pk (±δlij), EHE
pk (±δij), and EHE

pk (±δhij), then σ`i
homomorphic encryptions to calculate EHE

pk (δ′ijk), and fi-
nally 2σ`i homomorphic ciphertext additions to calculate
EHE
pk (δ′lijk)) and EHE

pk (δ′hijk). This means on the carrier side
the total computation cost is dominated by σ`i homomor-

13

phic encryption operations.

Choosing a small σ means that a malicious device is
caught at the time of protocol execution with lower proba-
bility, however, the device does not gain meaningful advan-
tage by cheating and will not have a higher chance of suc-
ceeding in authentication. Hence, even a small σ provides
a reasonable level of protection against malicious devices.
Consequently, we consider σ to be a small multiplicative
factor and will be able to state that the complexity of the
modified protocol is approximately proportional to `i. In
other words, the complexity grows linearly with the size of
the user profile.

Note that finding how each of the ciphertexts EHE
pk (bli (t)),

EHE
pk (vi(t)), and EHE

pk (bhi (t)) compare with the recorded fea-
tures can be carried out in log `i rounds (instead of at once)
through a binary search. That is, since the carrier knows the
ordering of the recorded profile features, in each round the
carrier can ask the device to help with comparing the above
ciphertexts with one recorded feature value, and based on
the answer to each round decide which recorded feature
value to use for comparison in the next round. This is a
trade-off between the round complexity and the communi-
cation complexity. Carrying out the comparison in this way
requires log `i rounds of communication (instead of one),
σ log `i homomorphic encryption operations on the server
side, and σ log `i homomorphic decryption operations on the
client side. Thus this trade-off brings the communication
complexity down to a logarithmic function of the size of the
user profile. We consider this a reasonable price to be paid
for protection against malicious devices.

To give concrete examples, consider σ = 9 (which means
a cheating device is caught immediately with probability 1

10
each time it deviates from the protocol) and a typical profile
size of `i = 100.

Table 2 summarises the computational complexity of
the profile initialisation, authentication, and profile update
phases of protocol Π? for one feature, using the same bench-
marks as in the previous section. Similar to before, on the
device side, initialisation phase complexity is reported for
each period, whereas on the carrier-side, the reported com-
plexity is for the whole initialisation phase. On the carrier
side, the computations in the profile initialisation and up-
date phases are limited to ciphertext-space homomorphic
additions and scalar multiplications which end up being neg-
ligible compared to the other computation times. The au-
thentication phase however requires σ log `i homomorphic
encryptions on the carrier side. To merely calculate a nom-
inal concrete execution time for the carrier-side, we assume
that the carrier has 10 times the processing power of the
device. This assumption gives us the figures for concrete
execution times for the authentication phase on the carrier
side reported in Table 2. Of course, the concrete figures in
this case are to be treated as merely an indication of the
efficiency of the protocol.

Finally, considering the execution times on both sides,

Phase Complexity Concrete Times
(simple) (optimised)

Device-side:
Init. tHE 26 ms 8 ms
Auth. (σ + 1) log `itHD 2326 ms 1130 ms
Carrier-side:
Init. `itHA + tHM negl. negl.
Auth. σ log `itHE 156 ms 48 ms
Upd. 4tHA + tHM negl. negl.

Table 2: Computation complexity of protocol Π? based on
one feature assuming σ = 9, `i = 100, and that the carrier
side has 10 times the computation power of the device side.
Legend: Init: profile initialisation phase, Auth: authen-
tication phase, Upd: profile update phase, tHE , tHD : HE
encryption and decryption times, tHA, tHM : HE ciphertext-
space addition and scalar multiplication times, negl: negli-
gible.

note that an authentication failure for one feature is dis-
covered in around 2.5 seconds after the first feature reading
is reported by the device, even with a non-optimised im-
plementation. The concrete system example given in Sec-
tion 3.2 involves at most five features and hence the total
system authentication time will be at most five times the
above figure. We stress again that implicit authentication
is an ongoing background process and does not need to be
real-time.

In terms of communication complexity, for each feature
the device needs to send one HE ciphertext, one proof of
knowledge, and 3(σ+ 1) log `i bits in each round of authen-
tication, and the carrier needs to send 3(σ + 1) log `i HE
ciphertexts. Each HE ciphertext is 1 kb (kilobits) and each
proof of knowledge is 2 kb for typical parameters in our
scheme. This means that the device needs to send less than
0.5 kB (kilo Bytes) and receive around 25 kB in each round
of communication.

Security: We discuss the security of our protocol consid-
ering malicious devices in Appendix C. We provide a formal
definition of privacy for our protocol against maliciously-
controlled devices. The definition intuitively guarantees
that even if the device is maliciously controlled, it will not be
able to learn any information more than what it would learn
during an honest execution of the protocol. Eventually, in
Appendix C.1, we prove the following theorem guaranteeing
the privacy of our protocol:

Theorem 2 Our protocol Π? is provably secure against
maliciously-controlled devices (with probability at least
σ
σ+1), and is provably secure against honest-but-curious car-
riers.

14

Conclusion

In this paper we proposed a privacy preserving implicit au-
thentication system that can calculate authentication score
using a realistic scoring function. We argued that using
user behaviour as an additional factor in authentication
has attractive applications. We showed that by relaxing
the notion of privacy, one can construct efficient protocols
that ensure user privacy and can be used in practice. The
low computation and communication complexity of our pro-
posed protocol in the case of semi-honest adversary makes it
executable almost in real-time for carrier and modern MIDs.
We also provided a modification to the basic protocol to en-
sure security in the case of a malicious device. Our proposed
protocol in this case, has a complexity that grows logarith-
mically with the size of the user profile. We argued that
this translates into a reasonable time-frame for implicit au-
thentication with protection against malicious devices. Our
benchmark implementations and other optimised implemen-
tations of the primitives used in our protocols give us con-
crete estimations of execution times for our protocols. We
provided such concrete times and argued that our protocols
are sufficiently efficient in practice.

Acknowledgements

The authors would like to thank the anonymous reviewers
of Elsevier’s Computers and Security as well as those of
IFIP SEC 2014 for their constructive comments that im-
proved this article considerably.

References
[1] The NMEA 0183 Standard. The National Marine Electronics

Association. http://www.nmea.org.

[2] F. Aloul, S. Zahidi, and W. El-Hajj. Two Factor Authentica-
tion Using Mobile Phones. In Computer Systems and Applica-
tions (AICCSA 2009), IEEE/ACS Int’l Conf. on, pages 641–644.
IEEE, 2009.

[3] A. Basu, H. Kikuchi, and J. Vaidya. Privacy-Preserving Weighted
Slope One predictor for Item-based Collaborative Filtering. In
Proceedings of the int’l workshop on Trust and Privacy in Dis-
tributed Information Sharing (IFIP TP-DIS 2011), 2011.

[4] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and
G. Poupard. Practical Multi-Candidate Election System. In Proc.
20th ACM symposium on Principles of Distributed Computing,
pages 274–283. ACM, 2001.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
Preserving Symmetric Encryption. In Advances in Cryptology
- EUROCRYPT 2009, pages 224–241. Springer, 2009.

[6] A. Boldyreva, N. Chenette, and A. O’Neill. Order-Preserving En-
cryption Revisited: Improved Security Analysis and Alternative
Solutions. In Advances in Cryptology - CRYPTO 2011, pages
578–595. Springer, 2011.

[7] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman. Semantically Secure Order-Revealing Encryp-
tion: Multi-Input Functional Encryption Without Obfuscation.
In Proceedings of EuroCrypt 2015 (to appear), 2015. Preprint
available at http://eprint.iacr.org/2014/834.

[8] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Secure
Remote Authentication Using Biometric Data. In Advances in
Cryptology - EUROCRYPT 2005, pages 147–163. Springer, 2005.

[9] S. Čapkun, M. Čagalj, and M. Srivastava. Secure Localization
with Hidden and Mobile Base Stations. In Int’l Conf. on Com-
puter Communication (INFOCOM 2006), 2006.

[10] S. Čapkun and J.-P. Hubaux. Secure Positioning of Wireless De-
vices with Application to Sensor Networks. In INFOCOM 2005:
24th Annual Joint Conf. of the IEEE Computer and Communi-
cations Societies, volume 3, pages 1917–1928. IEEE, 2005.

[11] K.-H. Chang, J. Hightower, and B. Kveton. Inferring Identity Us-
ing Accelerometers in Television Remote Controls. In Pervasive
Computing, pages 151–167. Springer, 2009.

[12] J. T. Chiang, J. J. Haas, and Y.-C. Hu. Secure and Precise
Location Verification Using Distance Bounding and Simultaneous
Multilateration. In 2nd ACM conference on Wireless Network
Security, pages 181–192. ACM, 2009.

[13] R. Chow, M. Jakobsson, R. Masuoka, J. Molina, Y. Niu, E. Shi,
and Z. Song. Authentication in the Clouds: A Framework and
Its Application to Mobile Users. In Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop, CCSW ’10,
pages 1–6, New York, NY, USA, 2010. ACM.

[14] N. Clarke and S. Furnell. Authenticating Mobile Phone Users
Using Keystroke Analysis. International Journal of Information
Security, 6(1):1–14, 2007.

[15] I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System.
In Public Key Cryptography, pages 119–136. Springer, 2001.

[16] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann.
Touch Me Once and I Know It’s You!: Implicit Authentication
Based on Touch Screen Patterns. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12,
pages 987–996, New York, NY, USA, 2012. ACM.

[17] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data.
In Advances in cryptology - Eurocrypt 2004, pages 523–540.
Springer, 2004.

[18] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govin-
dan, and D. Estrin. Diversity in Smartphone Usage. In Proceed-
ings of the 8th Int’l Conf. on Mobile Systems, Applications, and
Services, MobiSys ’10, pages 179–194. ACM, 2010.

[19] T. Feng, X. Zhao, B. Carbunar, and W. Shi. Continuous Mo-
bile Authentication Using Virtual Key Typing Biometrics. In
Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International Conference on, pages
1547–1552, July 2013.

[20] J. Frank, S. Mannor, and D. Precup. Activity and Gait Recogni-
tion with Time-Delay Embeddings, 2010.

[21] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song. Toucha-
lytics: On the Applicability of Touchscreen Input as a Behavioral
Biometric for Continuous Authentication. Information Forensics
and Security, IEEE Transactions on, 8(1):136–148, Jan 2013.

[22] S. Furnell, N. Clarke, and S. Karatzouni. Beyond the PIN: En-
hancing User Authentication for Mobile Devices. Computer Fraud
& Security, 2008(8):12–17, 2008.

[23] D. Gafurov, K. Helkala, and T. Søndrol. Biometric Gait Au-
thentication Using Accelerometer Sensor. Journal of Computers,
1(7):51–59, 2006.

[24] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD
thesis, Stanford University, 2009.

[25] C. Gentry and S. Halevi. Implementing Gentrys Fully-
Homomorphic Encryption Scheme. In Advances in Cryptology
- EUROCRYPT 2011, pages 129–148. Springer, 2011.

15

[26] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any
Mental Game - A Completeness Theorem for Protocols with Hon-
est Majority. In Proc. 19th ACM symposium on Theory of Com-
puting, pages 218–229. ACM, 1987.

[27] E. Haubert, J. Tucek, L. Brumbaugh, and W. Yurcik. Tamper-
Resistant Storage Techniques for Multimedia Systems. In Elec-
tronic Imaging 2005, pages 30–40. International Society for Op-
tics and Photonics, 2005.

[28] S.-s. Hwang, S. Cho, and S. Park. Keystroke dynamics-based
authentication for mobile devices. Computers & Security, 28(1–
2):85–93, 2009.

[29] T. Jakobsen, M. Makkes, and J. Nielsen. Efficient Implementa-
tion of the Orlandi Protocol. In J. Zhou and M. Yung, editors,
Applied Cryptography and Network Security, volume 6123 of Lec-
ture Notes in Computer Science, pages 255–272. Springer Berlin
Heidelberg, 2010.

[30] M. Jakobsson, E. Shi, P. Golle, and R. Chow. Implicit Authenti-
cation for Mobile Devices. In Proc. of the 4th USENIX conf. on
Hot Topics in Security. USENIX Association, 2009.

[31] V. Kachitvichyanukul and B. Schmeiser. Computer Generation
of Hypergeometric Random Variates. Journal of Statistical Com-
putation and Simulation, 22(2):127–145, 1985.

[32] A. Kalamandeen, A. Scannell, E. de Lara, A. Sheth, and
A. LaMarca. Ensemble: Cooperative Proximity-based Authen-
tication. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pages
331–344, New York, NY, USA, 2010. ACM.

[33] A. Kale, A. Rajagopalan, N. Cuntoor, and V. Krüger. Gait-
Based Recognition of Humans Using Continuous HMMs. In Proc.
5th IEEE Int’l Conf. on Automatic Face & Gesture Recognition,
pages 336–341. IEEE, 2002.

[34] J.-M. Kang, S.-S. Seo, and J. W.-K. Hong. Usage Pattern Anal-
ysis of Smartphones. In 13th Asia-Pacific Network Operations
and Management Symposium (APNOMS ’11), pages 1–8. IEEE,
2011.

[35] J. Krumm. Inference Attacks on Location Tracks. In Pervasive
Computing, pages 127–143. Springer, 2007.

[36] J. Leggett, G. Williams, M. Usnick, and M. Longnecker. Dynamic
Identity Verification via Keystroke Characteristics. International
Journal of Man-Machine Studies, 35(6):859–870, 1991.

[37] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell. The Jigsaw Continuous Sensing Engine for Mobile
Phone Applications. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’10, pages 71–
84. ACM, 2010.

[38] E. Maiorana, P. Campisi, N. González-Carballo, and A. Neri.
Keystroke Dynamics Authentication for Mobile Phones. In Pro-
ceedings of the 2011 ACM Symposium on Applied Computing,
SAC ’11, pages 21–26, New York, NY, USA, 2011. ACM.

[39] S. Möller, C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest. A
Polymer/Semiconductor Write-Once Read-Many-Times Memory.
Nature, 426(6963):166–169, 2003.

[40] F. Monrose and A. Rubin. Authentication via Keystroke Dynam-
ics. In Proceedings of the 4th ACM conference on Computer and
Communications Security, pages 48–56. ACM, 1997.

[41] M. Nauman, T. Ali, and A. Rauf. Using trusted computing
for privacy preserving keystroke-based authentication in smart-
phones. Telecommunication Systems, 52(4):2149–2161, 2013.

[42] M. Nisenson, I. Yariv, R. El-Yaniv, and R. Meir. Towards Be-
haviometric Security Systems: Learning to Identify a Typist. In
Knowledge Discovery in Databases: PKDD 2003, pages 363–374.
Springer, 2003.

[43] L. O’Gorman. Comparing Passwords, Tokens, and Biometrics for
User Authentication. Proceedings of the IEEE, 91(12):2021–2040,
2003.

[44] P. Paillier. Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes. In Advances in cryptology - EURO-
CRYPT99, pages 223–238. Springer, 1999.

[45] B. Parno, J. McCune, and A. Perrig. Bootstrapping Trust in
Commodity Computers. In Security and Privacy (SP), 2010
IEEE Symposium on, pages 414–429, May 2010.

[46] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan. CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, pages 85–100,
New York, NY, USA, 2011. ACM.

[47] R. A. Popa, N. Zeldovich, and H. Balakrishnan. CryptDB: A
Practical Encrypted Relational DBMS. Technical Report MIT-
CSAIL-TR-2011-005, Computer Science and Artificial Intelli-
gence Lab (CSAIL), Massachusetts Institute of Technology, 2011.
Available at http://hdl.handle.net/1721.1/60876.

[48] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos. Progres-
sive Authentication: Deciding When to Authenticate on Mobile
Phones. In Presented as part of the 21st USENIX Security Sym-
posium (USENIX Security 12), pages 301–316, Bellevue, WA,
2012. USENIX.

[49] N. A. Safa, R. Safavi-Naini, and S. F. Shahandashti. Privacy-
Preserving Implicit Authentication. In N. Cuppens-Boulahia,
F. Cuppens, S. Jajodia, A. Abou El Kalam, and T. Sans, edi-
tors, ICT Systems Security and Privacy Protection, volume 428
of IFIP Advances in Information and Communication Technol-
ogy, pages 471–484. Springer Berlin Heidelberg, 2014.

[50] S. F. Shahandashti, R. Safavi-Naini, and P. Ogunbona. Pri-
vate Fingerprint Matching. In Information Security and Privacy,
pages 426–433. Springer, 2012.

[51] S. F. Shahandashti, R. Safavi-Naini, and N. A. Safa.
Reconciling User Privacy and Implicit Authentication
for Mobile Devices. Computers & Security, 2015.
(DoI: 10.1016/j.cose.2015.05.009).

[52] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit Au-
thentication through Learning User Behavior. In M. Burmester,
G. Tsudik, S. Magliveras, and I. Ilić, editors, Information Secu-
rity, volume 6531 of Lecture Notes in Computer Science, pages
99–113. Springer Berlin Heidelberg, 2011.

[53] D. Singelee and B. Preneel. Location Verification Using Se-
cure Distance Bounding Protocols. In Mobile Adhoc and Sensor
Systems Conference, 2005. IEEE International Conference on,
pages 840–846. IEEE, 2005.

[54] A. Studer and A. Perrig. Mobile User Location-specific Encryp-
tion (MULE): Using Your Office As Your Password. In Proceed-
ings of the Third ACM Conference on Wireless Network Security,
WiSec ’10, pages 151–162, New York, NY, USA, 2010. ACM.

[55] K. Tan, G. Yan, J. Yeo, and D. Kotz. A Correlation Attack
Against User Mobility Privacy in a Large-Scale WLAN Network.
In Proc. of the 2010 ACM workshop on Wireless of the Students,
by the Students, for the Students, pages 33–36. ACM, 2010.

[56] C.-S. Tsai, C.-C. Lee, and M.-S. Hwang. Password Authenti-
cation Schemes: Current Status and Key Issues. IJ Network
Security, 3(2):101–115, 2006.

[57] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing
Analytical Queries over Encrypted Data. Proc. VLDB Endow.,
6(5):289–300, Mar. 2013.

[58] D.-S. Wang and J.-P. Li. A New Fingerprint-Based Remote User
Authentication Scheme Using Mobile Devices. In Int’l Conf.
on Apperceiving Computing and Intelligence Analysis (ICACIA
2009), pages 65–68. IEEE, 2009.

16

[59] H. Xu, Y. Zhou, and M. R. Lyu. Towards Continuous and Passive
Authentication via Touch Biometrics: An Experimental Study
on Smartphones. In Symposium On Usable Privacy and Secu-
rity (SOUPS 2014), pages 187–198, Menlo Park, CA, July 2014.
USENIX Association.

[60] A. C.-C. Yao. How to Generate and Exchange Secrets. In Foun-
dations of Computer Science, 1986., 27th Annual Symposium on,
pages 162–167. IEEE, 1986.

[61] S. Zahid, M. Shahzad, S. A. Khayam, and M. Farooq. Keystroke-
Based User Identification on Smart Phones. In E. Kirda, S. Jha,
and D. Balzarotti, editors, Recent Advances in Intrusion Detec-
tion, volume 5758 of Lecture Notes in Computer Science, pages
224–243. Springer Berlin Heidelberg, 2009.

A Order Preserving Encryption

Consider an order-preserving (symmetric) encryption de-
fined as OPE = (KeyGenOPE , EOPE , DOPE), with key
space K, plaintext space D, and ciphertext space R, in
which we have |D| ≤ |R|. For an adversary A attacking
the scheme, we define its POPF-CCA advantage (pseudo-
random order-preserving function advantage under chosen-
ciphertext attack) against OPE as the difference between

the probability Pr[k ∈R K : AE
OPE
k (·),DOPE

k (·) = 1] and the

probability Pr[f ∈R OPFD 7→R : Af(.),f−1(.) = 1], where
OPFD 7→R represents the set of all order-preserving func-
tions from D to R. We say that OPE is POPF-CCA-secure
if no polynomial-time adversary has a non-negligible advan-
tage against it.

Informally, the definition implies that OPE acts indis-
tinguishably as a random order-preserving function, even if
the adversary is given free access to encrypt and decrypt
arbitrary messages of its choosing. For details of such an
encryption scheme, readers are referred to [5]. The OPE
scheme makes use of the implementation of hypergeometric
distribution (HyG) given in [31].

B Security of Protocol Π

To formulate a private score computing protocol, we first
need to formalise a score computing protocol without pri-
vacy. We define such a protocol as follows:

Definition 1 A score computing protocol for feature Vi
is a protocol between a device with input Zi = (vi(t), t)
and a carrier with input Yi, where t denotes the current
time, vi(t) denotes the current feature sample, and Yi is
a sample distribution of Vi with average absolute deviation
AAD(Vi). The two parties also share an input which in-
cludes agreed protocol setup parameters. The protocol out-
put for the carrier is a score si(t) and null for the device.
The score is defined as si(t) = Pr[bli (t) ≤ Vi ≤ bhi (t)] where
bli (t) = vi(t)−AAD(Vi) and bhi (t) = vi(t) + AAD(Vi).

Let us first consider honest-but-curious (a.k.a. semi-
honest) adversaries. An honest-but-curious party follows

the protocol, but tries to infer extra information from the
protocol execution. To formalise the security of SC proto-
cols, we will use the standard simulation-based approach.
The view of a party in a protocol execution is a tuple con-
sisting the party’s input, random selections and all the mes-
sages it receives during an execution of the protocol. This
tuple is a function of the inputs of the parties and their ran-
domness. Let V iewΠ

D(Zi, Yi) (resp. V iewΠ
S (Zi, Yi)), denote

the random variable representing the view of the device D
(resp. carrier S), with device input Zi and carrier input Yi,

and
c≡ denote computational indistinguishability.

Π is said to be a perfectly private score computing proto-
col, if there exists a probabilistic polynomial time algorithm
SimD (resp. SimS) that can simulate the view of D (resp.
S) in Π, given only the device’s input Zi (resp. carrier’s
input Yi and its output si); that is for all Zi and Yi:

V iewΠ
D(Zi, Yi)

c≡ SimD(Zi)

(resp. V iewΠ
S (Zi, Yi)

c≡ SimS(Yi, si))

To achieve the above security level, one can design a pro-
tocol using a fully homomorphic encryption system [25],
or using a general two party computation protocol. How-
ever the communication and computation cost of these ap-
proaches will be prohibitive. For example, Gentry’s fully
homomorphic encryption scheme takes 32 seconds on a typ-
ical processor to perform a single re-crypt operation when
the modulus is 2048 bits [24, 25].

To improve efficiency, we sacrifice perfect privacy of the
protocol and allow the device and carrier to learn some ag-
gregate and order information about the profile data, re-
spectively. We argue that although this means some leakage
of information, no direct values are revealed and the leaked
information does not affect privacy of the user data in any
significant way. It does not increase the adversary’s success
chance in authentication in a significant way either.

We therefore consider the protocol private if the device
only learns the average absolute deviation (AAD) of Vi
stored in the profile U and the carrier only learns the in-
formation that can be implied from the output of an ideal
random order-preserving function f on input Zi, i.e., only
the information that can be implied from f(Zi). The infor-
mation implied from such a function is shown to be little
other than the order of the device input with respect to the
stored data. In fact, Boldyreva et al. have proven that such
a function leaks neither the precise value of any input nor
the precise distance between any two inputs [6].

Alternatively, one may use an order-revealing encryption
(ORE) instead of an OPE. OREs provide a similar function-
ality and may be employed as a building block in our proto-
cols with little change required. Recently, OREs have been
shown to leak strictly less information than OPEs. Boneh et
al. have shown that their ORE construction, although com-
putationally more expensive, reveals no information other
than the order of plaintexts [7].

17

We note that, although knowing the AAD or the order of
a data set does leak some information, it reveals little about
the actual content. For example, the sets {8, 1, 4, 3, 11} and
{130, 121, 127, 125, 131} have the same order and the same
AAD with completely different elements. Similarly two sets
of GPS coordinates may have the same order and average
absolute deviation but be completely different, and in fact
belong to completely different places.

To formalise our notion of privacy, let us define the
augmented tuple V +

i that besides the elements in Vi in-
cludes vi(t), i.e. for Vi = (vi(t1), vi(t2), . . . , vi(t`i)) we have
V +
i = (vi(t1), vi(t2), . . . , vi(t`i), vi(t)). Also let f be an ideal

random order-preserving function. Let If (V +
i) denote the

information about V +
i that can be implied from f(V +

i).
We emphasise again that it has been proven that If (V +

i)
includes little more than the order information of the ele-
ments of V +

i . Hence practically one can think of If (V +
i)

as the information on how elements of V +
i are ordered. We

define a private score computing protocol as follows:

Definition 2 Let D and S denote the device and carrier
entities in Π, respectively. We say that Π is a private
score computing protocol for honest-but-curious de-
vices (resp. carriers), if there exists a probabilistic poly-
nomial time algorithm SimD (resp. SimS for any random
order-preserving function f) to simulate the view of D (resp.
S) in Π, given the device’s input Zi (resp. carrier’s input
Yi and its output si) and the average absolute deviation of
Vi in U (resp. If (V +

i)); that is for all Zi and Yi:

V iewΠ
D(Zi, Yi)

c≡ SimD(Zi,AAD(Vi))

(resp. V iewΠ
S (Zi, Yi)

c≡ SimS(Yi, si, I
f (V +

i))).

Intuitively, the above definition requires that the informa-
tion revealed to the parties during the protocol execution
is limited merely to the AAD of the stored data, or little
other than the order information of the current sample with
respect to the stored data, respectively.

B.1 Proof of Theorem 1

Proof: (Outline) In Π, the device has the input Zi, and
receives the values Zi − AAD(Vi) and Zi + AAD(Vi) from
the carrier during the protocol execution. Therefore,

V iewΠ
D(Zi, Yi) = (Zi, Zi −AAD(Vi), Zi + AAD(Vi)).

The device has no output at the end of the proto-
col. Now, let us define SimD such that for given in-
puts (Zi,AAD(Vi)) (according to Definition 2), it outputs
(Zi, Zi − AAD(Vi), Zi + AAD(Vi), where Vi ∈ U). So, for
all Zi and Yi, the distribution SimD(Zi,AAD(Vi)) and
V iewΠ

D(Zi, Yi) are indistinguishable. Hence the protocol is
secure against honest-but-curious devices.

The carrier has the input Yi and during the execution
of Π it receives the following values: EHE

pk (Zi), E
OPE
k2

(Zi),

EOPE
k2

(bli (t)) and EOPE
k2

(bhi (t)). Therefore, for its view of
the protocol, we have

V iewΠ
S (Zi, Yi) =

(Yi, E
HE
pk (Zi), E

OPE
k2 (Zi), E

OPE
k2 (bli (t)), E

OPE
k2 (bhi (t))),

where bli (t) = Zi − AAD(Vi) and bhi (t) = Zi + AAD(Vi).
The carrier has the output si(t).

Let SimS(Yi, si, I
f (V +

i)) be defined as follows. On inputs
Yi, si, and If (V +

i), and for a given random order-preserving

function f , it first selects a random Ẑi such that Ẑi satisfies
the information that If (V +

i) includes about Zi and in par-
ticular the order relations between Zi and elements of Vi.
At the same time we require that Ẑi is chosen in a way that
it achieves the score si with respect to Vi, i.e., the num-
ber of elements in Vi that lie within the distance AAD(Vi)
of Ẑi is si. This is possible by shifting Ẑi. Then SimS

computes and outputs the following: Yi, E
HE
pk (Ẑi), f(Ẑi),

f(Ẑi −AAD(Vi)), and f(Ẑi + AAD(Vi)).
We claim that the distribution of this output is indistin-

guishable from the distribution of V iewΠ
S (Zi, Yi) for all Zi

and Yi. If not, a standard hybrid argument implies that at
least one of the following is true:

(A) there exists an algorithm that distinguishes EHE
pk (Ẑi)

and EHE
pk (Zi); or

(B) there exists an algorithm that distinguishes the tuple

(f(Ẑi), f(Ẑi −AAD(Vi)), f(Ẑi + AAD(Vi)))

and the tuple

(EOPE
k2 (Zi), E

OPE
k2 (Zi −AAD(Vi)),

EOPE
k2 (Zi + AAD(Vi))) .

The former, (A), contradicts the semantic security of the
homomorphic encryption scheme HE. We prove in the fol-
lowing that the latter, (B), contradicts the POPF security
of the order preserving encryption OPE.

Assume (B) is true. It follows that there is a distinguisher
for at least one of the following pairs: f(Ẑi) and EOPE

k2
(Zi),

or f(Ẑi − AAD(Vi)) and EOPE
k2

(Zi − AAD(Vi)), or f(Ẑi +

AAD(Vi)) and EOPE
k2

(Zi + AAD(Vi)). We consider these
possibilities next.

Assume there is a distinguisher for f(Ẑi) and EOPE
k2

(Zi).
A hybrid argument implies that there must be a distin-
guisher for at least one of the following pairs: f(Ẑi) and
f(Zi), or f(Zi) and EOPE

k2
(Zi). A distinguisher for the for-

mer pair is impossible because Ẑi is chosen to conform to
If (V +

i), i.e. the information implied from either of f(Ẑi)
or f(Zi) is the same. A distinguisher for the latter pair on
the other hand implies that it is possible to distinguish the
order-preserving encryption OPE from f , which contradicts
the security of the OPE.

18

Now note that since AAD(Vi) is a constant determined
by Yi, the three distributions Zi, Zi − AAD(Vi), and
Zi + AAD(Vi) are merely shifted versions of one another.
The same is true for Ẑi, Ẑi −AAD(Vi), and Ẑi + AAD(Vi).
Hence, similar arguments can be made to show that a distin-
guisher for any of the pairs f(Ẑi−AAD(Vi)) and EOPE

k2
(Zi−

AAD(Vi)), or f(Ẑi + AAD(Vi)) and EOPE
k2

(Zi + AAD(Vi))
would also contradict the POPF security of the OPE. There-
fore, (B) contradicts the security of OPE.

We have shown that both (A) and (B) would contradict
the security of the underlying schemes. Hence, assuming
that the underlying schemes are secure, SimS is able to pro-
duce an output with a distribution indistinguishable from
that of V iewΠ

S (Zi, Yi), and therefore, the protocol is secure
against honest-but-curious carriers. �

C Security of Protocol Π?

In order to formalise security against malicious adversaries,
one usually compares a real execution of the protocol with
an ideal execution. During the ideal execution which takes
place in an ideal world, both device and carrier submit their
inputs to a trusted party TP at the beginning of the pro-
tocol. TP computes the outputs of the parties and sends
the outputs back to the parties. For an ideal device ID and
an ideal carrier IS, let IdealIΠ

?

ID,IS(Zi, Yi) denote the joint
output of the execution of the ideal protocol IΠ? for com-
puting si(t), where Zi is the input of ID and Yi is the input
of IS in the ideal world. Also let RealΠ

?

D,S(Zi, Yi) denote
the joint output of the real device D with input Zi and real
carrier S with input Yi after a real execution of protocol
Π?. We use M as a prefix to denote ‘malicious’ and sim-
ilarly H to denote ‘honest’. Security of Π? is defined as
follows. We say Π? is perfectly secure against malicious de-
vices if for any malicious real-world device algorithm MD,
there exists an ideal world algorithm MID such that for all
Zi and Yi the output in the ideal world IdealIΠ

?

ID,IS(Zi, Yi)
is computationally indistinguishable from the output in the
real world RealΠ

?

D,S(Zi, Yi). Perfect security is defined based
on a perfect ideal-world protocol in which the trusted party
TP is given all the inputs, carries out all the calculations,
and outputs the score only to the carrier. This captures the
ideal security requirement that the device learns nothing by
participating in the protocol and the carrier only learns only
the feature score.

In the case of score computing protocols however, in or-
der to achieve higher efficiency, we do not aim for perfect
security and view some information leakage acceptable. For
each feature, we accept leakage of the AAD of that feature
in the stored user profile to the device. We also allow the
carrier to learn the order of the encrypted profile values with
respect to each other. Hence we relax the above definition
as follows. To incorporate the leakage of the AAD on one
hand and the ordering information on the other, we model

the ideal protocol IΠ? in the following way. After receiving
each entity’s reported input, i.e., the current feature read-
ing from the device and the stored user profile from the
carrier, TP calculates the score along with the AAD of the
profile features and the ordering information of the new fea-
ture with respect to the profile features. Then TP outputs
to the device the AAD of the profile features, and to the
carrier the score and the ordering information. Consider-
ing this ideal protocol, we define security against malicious
devices as follows:

Definition 3 Let (HD,HS) and (HID,HIS) denote the
honest device and carrier programs for protocol Π? in the
real and ideal world respectively. Let IΠ? be the ideal pro-
tocol in which upon receiving each party’s input, the TP
outputs the AAD of the carrier input to the device. We
say that Π? is a private score computing protocol for
malicious devices if for any probabilistic polynomial-time
algorithm MD, there exists a probabilistic polynomial-time
algorithm MID such that for all Zi, Yi:

IdealIΠ
?

MID,HIS(Zi, Yi)
c≡ RealΠ?

MD,HS(Zi, Yi) .

Intuitively, the above definition guarantees that a mali-
cious device following an arbitrary strategy does not find
any information other than the AAD of the stored profile
features. In the following we prove that our protocol Π?

satisfies this definition.

C.1 Proof of Theorem 2

Proof: (Outline) We prove the security of Π? in two
stages. First, we prove that the protocol is secure against
malicious devices and then we prove that the protocol is
secure against honest-but-curious carriers. We provide a
sketch of the first stage of the proof in the following. The
second stage of the proof is similar to that of Theorem 1,
and hence we do not repeat it.

Stage 1. Based on Definition 3, we have to prove that for
every probabilistic polynomial-time algorithm MD, there
exists a probabilistic polynomial-time algorithm MID such
that for all Zi, Yi:

IdealIΠ
?

MID,HIS(Zi, Yi)
c≡ RealΠ?

MD,HS(Zi, Yi) ,

where Zi, Yi are respective inputs of the device and the car-
rier. We note that, as the carrier is honest, in the ideal
world, HIS forwards its input Yi without any change to
TP , and hence IdealIΠ

?

MID,HIS(Zi, Yi) will be the score pro-
duced by TP on receiving the honest input Yi from HIS
and an arbitrary value Ẑi = MID(Zi) from MID. In other
words, to ensure security against a malicious device, we have
to show that for any possible device behaviour in the real
world, there is an input that the device provides to the TP
in the ideal world, such that the score produced in the ideal
world is the same as the score produced in the real world.

19

Given a real-world malicious device MD, the ideal world
device MID is constructed as follows. MID executes MD
to obtain the current encrypted feature value EHE

pk (Ẑi) and
a proof of knowledge of the plaintext. By rewinding the
proof, MID is able to extract Ẑi. MID sends Ẑi to TP
which replies with the AAD of the HIS input: AAD(Vi).
MID then selects `i arbitrary values to construct a mock

user profile such that the AAD of the mock profile features
is equal to AAD(Vi). It then is able to calculate all the
following values according to the protocol for all j and k:
EHE
pk (δlij), E

HE
pk (δij), E

HE
pk (δhij), E

HE
pk (δ′ijk), EHE

pk (δ′lijk)), and

EHE
pk (δ′hijk). MID shuffles these values and sends them to

MD. The latter three sets of values are distributed iden-
tically to the protocol. The former three sets of values are
based on mock profile feature values rather than the real
ones. However, the malicious device MD is assumed to
have no knowledge about the user behaviour, and hence the
device is not able to distinguish them hidden within the lat-
ter three sets of values. MD then replies and indicates for
each one of the received values if they are positive, nega-
tive, or zero. MID checks all the values and makes sure
MD does not cheat. MD does not get any output at the
end of the simulation.

From all the values MD receives 1
σ+1 of them deviate

from a real protocol execution, however these values are
hidden within the values that are calculated following the
protocol. Thus, MD has at most 1

σ+1 chance of being able
to output a value which would be distinguishable from a
real world execution of Π?. This means that the protocol
is secure against malicious devices with probability at least
σ
σ+1 .

Stage 2. With similar arguments presented in the proof of
Theorem 1, we can claim that a honest-but-curious carrier
only learns the order of the feature data. Therefore, we can
similarly show that protocol Π? is secure against an honest-
but-curious carrier. �

20

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	System Model
	Authentication without Privacy
	Feature Selection

	Privacy-Preserving Authentication
	A Protocol Secure against Semi-Honest Adversaries
	Securing the Protocol against Malicious Devices

	Order Preserving Encryption
	Security of Protocol Pi
	Proof of Theorem 1

	Security of Protocol Pi*
	Proof of Theorem 2

