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ABSTRACT
Mobile application spoofing is an attack where a malicious
mobile application mimics the visual appearance of another
one. If such an attack is successful, the integrity of what
the user sees as well as the confidentiality of what she in-
puts into the system can be violated by the adversary. A
common example of mobile application spoofing is a phish-
ing attack where the adversary tricks the user into revealing
her password to a malicious application that resembles the
legitimate one.

In this work, we propose a novel approach for addressing
mobile application spoofing attacks by leveraging the visual
similarity of application screens. We use deception rate as
a novel metric for measuring how many users would confuse
a spoofing application for the genuine one. We conducted a
large-scale online study where participants evaluated spoof-
ing samples of popular mobile applications. We used the
study results to design and implement a prototype spoof-
ing detection system, tailored to the estimation of deception
rate for mobile application login screens.

1. INTRODUCTION
Mobile application spoofing is an attack where a malicious

mobile application mimics the visual appearance of another
one. The goal of the adversary is to trick the user into
believing that she is interacting with a genuine application
while she interacts with one controlled by the adversary. If
such an attack is successful, the integrity of what the user
sees as well as the confidentiality of what she inputs into the
system can be violated by the adversary. This includes login
credentials, personal details that users typically provide to
applications, as well as the decisions that they make based
on information provided by the applications.

A common example of mobile application spoofing is a
phishing attack where the adversary tricks the user into re-
vealing her password, or similar login credentials, to a mali-
cious application that resembles the legitimate app. Several
mobile application phishing attacks have been seen in the

wild [18, 30, 34]. For example, a recent mobile banking
spoofing application infected 350,000 Android devices and
caused significant financial losses [12]. More sophisticated
attack vectors are described in recent research [6, 11, 33].

The problem of spoofing has been studied extensively in
the context of phishing websites. However, despite numer-
ous countermeasures proposed and deployed [1, 2, 15], web
phishing remains a problem [9, 14]. Mobile application spoof-
ing attacks are even harder to detect than web phishing
attacks. Web applications run in browsers that provide vi-
sual cues, such as URL bars, SSL lock icons and security
skins [8], that help the user to authenticate the currently
displayed website. Similar application identification cues are
not available on modern mobile platforms, where a running
application commonly controls the whole visible screen. The
user can see a familiar user interface, but the interface could
be drawn by a malicious phishing application — the user is
therefore unable to authenticate the contents of the screen.
Security indicators for smartphone platforms have been pro-
posed [10, 28], but their effectiveness relies on user alertness
and they typically require either hardware modifications to
the phone, or a part of the screen to be made unavailable
to the applications. Application-specific personalized indi-
cators [33] require no platform changes, but increase the
application setup effort.

An intuitive approach to address the problem of mobile
application spoofing is to compare the similarity of mobile
applications, for example, upon their deployment on the
market or during their use. To detect web phishing attacks,
various schemes and metrics have been proposed that com-
pare website DOM trees and their elements [3, 16, 24, 35, 36]
as well as the final visual appearance of websites [13, 20].
While these schemes can be effective in determining the
amount of structural or visual similarity, the proposed met-
rics do not measure how likely the attack is to succeed.

In this paper, we propose a novel approach for address-
ing mobile application spoofing attacks by leveraging visual
similarity, as perceived by the users. We design and build
a prototype system, tailored for mobile login screen spoof-
ing, that first trains on user perception data and then uses
the obtained knowledge to measure the similarity of appli-
cation visual appearances. Our system uses deception rate,
a novel metric that measures how many users would confuse
a spoofing application for a legitimate one. We consider
a strong adversary that is capable of constructing phishing
screens in arbitrary ways. For example, the adversary can
create the spoofed user interface pixel by pixel to complicate
structural similarity analysis and visual feature extraction.



Our system extracts visual features from the screenshot that
is presented to the user and is therefore agnostic to the way
the phishing screen is constructed. This is in contrast to
approaches based on application code analysis.

Our system requires a good understanding of how users
remember mobile application user interfaces and how they
react to perceived changes within them. Perceived change
has been studied extensively in general [22, 23, 29], but not
in the context of mobile applications. We therefore con-
ducted a large-scale online study on mobile app similarity
perception. We used a crowd sourcing platform to carry out
a series of online surveys where approximately 5,400 study
participants evaluated more than 34,000 phishing screenshot
samples. These samples included modified versions of Face-
book, Skype and Twitter login screens where we changed
visual features such as the color or the logo.

We found that while some users were alarmed by the login
screen modifications others attributed the changes to either
a program bug or a new application feature. We notice that
users are habituated to faulty mobile applications and that
users are surprisingly tolerant to login screen distortions.
For most of the visual modifications we experimented with,
we noticed a systematic user behavior: the more a visual
property is changed, the less likely the users are to consider
the application genuine.

We used the results of our study as input into our spoofing
detection system that estimates the deception rate for mo-
bile applications. Our prototype system uses common super-
vised learning techniques and shows good accuracy: it is able
to estimate the deception rate with 6% error margin on the
applications we tested it with. The runtime detection over-
head of our prototype is not excessive. These results show
that detection of spoofing attacks based on user perception
is a viable approach for mobile applications, where user in-
terfaces are typically simple and their designs clean. Our
results are also useful to other spoofing detection schemes,
as they give insight into how users perceive visual change.

Contributions. To summarize, we make the following
contributions:

• We propose a novel approach for the detection of mo-
bile application spoofing attacks under a strong adver-
sarial model by leveraging knowledge of users’ simi-
larity perception and using deception rate as a novel
similarity metric.

• We conducted a large-scale user study on the percep-
tion of visual modifications in mobile application login
screens.

• We designed and implemented a prototype of a run-
time spoofing detection system for Android using com-
mon supervised learning techniques and leveraging our
user study results.

• We developed novel visual feature extraction techniques
that are agnostic to the way the spoofing screen is con-
structed.

The rest of this paper is organized as follows. In Section 2
we explain the problem of mobile application spoofing. Sec-
tion 3 introduces our approach, login screen spoofing case
study, and attacker model. In Section 4 we describe our
user study and discuss its results. Section 5 explains the

spoofing detection system design, implementation, evalua-
tion, and directions for further research. Section 6 reviews
related work, and we conclude in Section 7.

2. PROBLEM STATEMENT
In mobile application spoofing, the goal of the adversary

is to either violate the integrity of the information displayed
to the user or the confidentiality of user input. Application
phishing is an example of a spoofing attack where the goal
of the adversary is to steal confidential user data. The ad-
versary tricks the user into disclosing her login credentials
to a malicious application with a login screen resembling the
legitimate one. A malicious stock market application that
is similar to the legitimate one, but shows fake stock mar-
ket values, is an example of an attack where the adversary
violates the integrity of the visual information displayed to
the user. In doing so, the adversary affects the user’s future
stock market decisions. In what follows, we review different
ways of implementing application spoofing attacks.

The simplest way to implement a spoofing attack is a re-
packaged or cloned application. To the user, the application
appears identical to the target application, except for subtle
visual cues such as a different developer name. Such mali-
cious applications are typically distributed via side-loading
to avoid detection on the marketplace.

In a more sophisticated variant of mobile application spoof-
ing, the malicious app masquerades as a legitimate applica-
tion, such as a game. The user starts the game and the
malicious application continues running in the background
from where it monitors the system state, such as the list
of currently running applications. When the user starts the
target application, the malicious application activates itself
on the foreground and shows a spoofing screen that is sim-
ilar, or exactly the same, to the one of the target app. On
Android, background activation is possible with commonly
used permissions and system APIs [4, 11]. Background at-
tacks are difficult to notice for the user. Static code analysis
on the marketplace can be used to detect API calls that
enable background attacks [4], but automated detection is
complicated by the fact that the same APIs are frequently
used by benign apps.

A malicious application can present a button to share in-
formation via another app. Instead of forwarding the user
to the suggested target application, the button triggers a
spoofing screen within the same, malicious application [11].
Fake forwarding requires no specific permissions or specific
API calls which makes such attack vectors difficult to dis-
cover using code analysis. Further spoofing attack vectors
are discussed in [4].

While spoofing attacks have not yet become as pervasive
as other types of mobile malware, serious attacks have al-
ready taken place. Svpeng malware infected 350,000 An-
droid devices and caused financial loss worth of nearly one
million USD [12]. In addition to ransomware functionality,
Svpeng presents a spoofed credit card entry dialog when the
user starts the Google Play application. The malware also
monitors startup of targeted mobile banking applications
and performs background spoofing attacks for their login
screens in order to steal mobile banking credentials.

Because of such serious attacks and challenges in market-
place code analysis, we believe it is useful to seek alternative
ways to address the problem of mobile application spoofing.



3. OUR APPROACH
In this section we first describe the rationale behind our

visual similarity approach and we introduce deception rate
as a similarity metric. We then describe how this approach
is instantiated into a case study on login screen spoofing
detection. Finally, we conclude this section by describing
our attacker model.

3.1 Visual Similarity and Deception Rate
The problem of application spoofing can be approached

in multiple ways. One approach is to perform static code
analysis in order to detect API calls that enable spoofing
attacks [4]. However, such approaches are limited to known
attack vectors and do not address spoofing attacks that re-
quire no specific API calls (e.g., fake forwarding). A second
approach is to analyze the application code or website DOM
trees and identify applications with structural user interface
similarity [3, 16, 24, 35, 36]. A limitation of this approach
is that the adversary can complicate code analysis by, for
example, constructing the user interface pixel by pixel. A
third approach is to enhance the mobile platform with se-
curity indicators [10, 28]. However, indicator verification
imposes a cognitive load on the user and their deployment
typically requires either part of the screen to be made un-
available to the applications or hardware modifications to
the device. Application-specific personalized indicators [33]
can be deployed without platform changes, but their config-
uration increases user effort during application setup.

In this paper, we focus on a different approach and study
the detection of spoofing attacks based on their visual sim-
ilarity. Previously, visual similarity analysis has been pro-
posed for detection of phishing websites [13, 32, 35].

Designing an effective spoofing detection system based on
visual similarity analysis is not an easy task, and we illus-
trate the challenges by providing two straw-man solutions.
The first straw-man solution is to look for mobile apps that
have exactly the same visual appearance. To avoid such de-
tection, the adversary can create a slightly modified version
of the spoofing screen. For example, small changes in login
screen element positions are hard to notice and are unlikely
to retain the user from entering her login credentials. Con-
sequently, this approach would fail to catch many spoofing
attacks and would result in many false negatives.

The second straw-man solution is to flag all applications
that have some visual similarity to the reference application,
with regards to a well-known similarity metric (e.g., pixel
difference). However, the chosen metric may not capture
the visual properties that users consider relevant and find-
ing a similarity threshold that does not produce excessive
false positives or negatives can be challenging. For accurate
and efficient mobile application spoofing detection, more so-
phisticated techniques are needed.

In this paper, we design a spoofing detection system that
estimates how many users would fall for a spoofing attack.
We use deception rate as a novel similarity metric that rep-
resents the estimated attack success rate. Given two screen-
shots, one of the examined app and one of the reference app,
our system (Figure 1) estimates the percentage of users that
would mistakenly identify the examined app as the reference
app (deception rate). This estimation is done by leveraging
results from a study on how users perceive visual similarity
on mobile application user interfaces.

Figure 1: Overview of our approach. The spoofing detection
system takes as inputs screenshots of a reference app and an
examined app. Based on these screenshots and knowledge
on mobile application user perception, the system estimates
deception rate for the examined app.

The deception rate can therefore be seen as a risk mea-
sure that allows our system to determine if the examined
application should be flagged as a potential spoofing appli-
cation. An example policy would be to flag any application
where the deception rate exceeds a threshold. By control-
ling the threshold, the system administrator can adjust the
ratio between false positives and negatives.

Deception rate is a conceptually different similarity met-
ric from the ones previously proposed for similarity analysis
of phishing websites. These works extract structural [3, 16,
24, 35, 36] as well as visual [7, 13, 20] similarity features
and combine them into a similarity score that alone is not
expressive, but enables comparison to known attack samples
[16, 21]. The extracted features can also be fed into a system
that is trained using known malicious sites [13, 32, 35]. Such
similarity metrics are interpreted with respect to known at-
tacks, and may not be effective in detecting spoofing attacks
with an appearance different from the one previously seen.

Deception rate has different semantics, as it captures the
users’ perceived similarity of spoofing screens. For exam-
ple, a mobile application login screen where elements have
been reordered may have different visual features but, as our
user study shows, is perceived similarly by many users. De-
ception rate estimates how many people would mistakenly
identify the spoofing app as the genuine one (risk measure),
and contrary to the previous similarity metrics, this metric
is applicable also in scenarios where known spoofing attack
samples are not available.

Realization of such a system requires a good understand-
ing of what type of mobile application interfaces users per-
ceive as similar and what type of visual modifications users
are likely to notice. This motivates our user study, the re-
sults of which we describe in Section 4.

3.2 Case Study: Login Screen Spoofing
In this work, we focus on spoofing attacks against mo-

bile application login screens, as they are the most security-
sensitive ones in many applications. We manually examined
20 popular Android social network apps and found that their
login screens all follow a similar structure. The login screen
is a composition of three main elements: (1) the logo, (2)
the username and password input fields, and (3) the login



Figure 2: Model for mobile application login screens. The
login screen has three main elements: logo, username and
password input fields, and login button. The login function-
ality is either (a) standalone or (b) distributed.

button. Furthermore, the login screen can have additional,
visually less salient elements, such as a link to request a for-
gotten password or register a new account. In some mobile
applications, the login screen is also the first screen the user
sees, i.e., the initial screen. Other applications distribute
these elements across two screens. The initial screen con-
tains the logo, or a similar visual identifier, as well as a
button or a link that leads to the login screen, where the
rest of the main elements reside.

Their common structure enables us to model mobile ap-
plication login screens, and their simple and clean designs
provide a good opportunity to experiment on user percep-
tion. Such simple login screens have fewer modification di-
mensions to explore, as compared to more complex user in-
terfaces, such as websites. Throughout this work we use
the login screen model illustrated in Figure 2 that captures
both standalone and distributed logins screens. Five of the
20 apps we examined had a standalone login screen, while
15 had a distributed one. All apps conformed to our model.

Our focus is to experiment on user perception with re-
spect to this model, as the adversary has an incentive to
create spoofing screens that resemble the legitimate login
screen. For example, the adversary could create a spoofed
login screen where the background color or the application
logo has been modified. While such a login screen would
be visually different from the legitimate one, it would still
conform to the model. We do not experiment on changes
that fall outside the model.

3.3 Attacker Model
We assume a strong attacker capable of creating arbitrary

spoofed login screens. This also includes login screens that
deviate from our model which we discuss in Section 5.6.

We distinguish between two spoofing attack scenarios re-
garding user expectations and goals. In all the spoofing
attacks listed in Section 2, the user’s intent is to access the
targeted application. This implies that the user expects to
see a familiar user interface and has an incentive to log in.

Alternatively, the adversary could present a spoofing screen
unexpectedly, when the user is not accessing the target ap-
plication. In such cases, the user has no intent, nor similar
incentive to log in. We focus on the first category, as we
consider such attacks more severe.

We assume an attacker that controls a malicious spoofing
application running on the user smartphone. The attacker
can construct a mobile application spoofing screen statically
(e.g., through use of Android XML manifest files) or dynam-
ically (e.g., by creating widgets at runtime). In both cases,
the operating system is aware of the created element tree;
a structure similar to DOM trees in websites. The attacker
has also the choice of drawing the screen in a pixel-by-pixel
manner, in which case the operating system sees only one
element, a displayed picture. Furthermore, mobile applica-
tions can collude and create collaborative screens where, e.g.,
each malicious app creates a portion of the spoofed screen.

The attacker can also exploit the properties of human im-
age perception. For example, the attacker can display half
of the spoofed screen in one frame, and the other half in the
subsequent frame. The human eye would average the input
signal and still perceive the complete spoofing screen.

4. CHANGE PERCEPTION USER STUDY
Visual perception has been studied extensively in general,

and prior studies have demonstrated that users are surpris-
ingly poor at noticing changes in images that are shown in
a consecutive order (change blindness) [23, 29]. While such
studies give us an intuition on how users might notice, or fail
to notice, different login screen modifications, the results are
too generic to be applied to the spoofing detection system
outlined above. To the best of our knowledge, no previous
studies on the user perception of visual changes in mobile
application user interfaces exist.

We conducted a large-scale online study on the similarity
perception of mobile app login screens, and the purpose of
this study was two-fold. First, we wanted to understand how
users perceive changes in login screens. We were especially
interested in any insights that could be used to guide the
design of our spoofing detection system. Second, we wanted
to gather training data for the spoofing detection system.

The study was performed as a set of online surveys on the
crowd sourcing platform CrowdFlower. The platform allows
creation of online jobs that human participants perform in
return of a small payment. In each survey, the participants
evaluated a single screenshot of a mobile app login screen.

We first performed an initial study, where we experimented
with visual modifications on the Android Facebook applica-
tion. We chose Facebook, as it is a widely used and well rec-
ognized application. This study had no a priori hypothesis,
i.e., the study was exploratory. After that we carried out
follow-up studies where we tested similar visual modifica-
tions on Skype and Twitter apps and combinations of visual
changes. Below, we describe the initial Facebook study in
detail and summarize the results of the follow-up studies.

We did not collect any private information about our study
participants. The ethical board of our institution reviewed
our study and informed us that it does not need approval.

4.1 Sample Generation
A sample is a screenshot image presented to a study par-

ticipant for evaluation. We created eight datasets of Face-
book login screens samples, and in each dataset we modi-



Figure 3: Examples from Facebook login screen samples. The original login screen is shown on the left. We show an example
of each type of visual modification we performed: color, general modifications, and logo modifications.

fied a single visual property. The purpose of these datasets
was to evaluate how users perceive different types of visual
changes as well as to provide training data for the spoof-
ing detection system (Section 5), and in what follows, we
describe each performed modification.

• Color modification. We modified the hue of the appli-
cation login screen. The hue change affects the color
of all elements on the login screen and the dataset con-
tained samples representing uniform hue changes over
the entire hue range.

• General modifications. We performed three general
modifications on the login screen elements. (1) We re-
ordered the elements, and Figure 3 (Element Reorder)
shows an example where the logo and the login button
exchanged places. (2) We scaled down the size of the
elements. We did not increase the size of the elements,
as the username and the password fields are typically
full width of the login screen. (3) We removed any ex-
tra elements from the login screen. Figure 3 (Element
Removal) depicts a sample where the links to request
a forgotten password and register a new account have
been removed.

• Logo modifications. We performed four modifications
on the logo. (1) We cropped the logo to different
sizes, taking the rightmost part of the logo out. (2)
We added noise of different intensity, (3) rotated the
logo both clockwise and counterclockwise, and (4) per-
formed projective transformations on the logo.

We created synthetic spoofing samples because no exten-
sive mobile phishing application dataset is available. More-
over, the goal of our approach is not only to detect spoofing
attacks similar to existing samples, but also previously un-
seen attacks. We therefore want to understand how users
perceive as many different visual changes as possible.

4.2 Participant Recruitment
We recruited test participants by publishing survey jobs

on the crowd sourcing platform. An example survey had a
title “Android Application Familiarity” and the description
of the survey was “How familiar are you with the Facebook
Android application?”. We specified in the survey descrip-
tion that the participant should be an active user of the
tested application and defined a reward of 10 cents (USD)
for each completed survey.

We recruited 100 study participants for each sample. We
accepted participants globally through the crowd sourcing

Unique study participants 2,910
Participants that completed multiple surveys 1,691
Screenshot samples 59
Total evaluations 5,900
Accepted evaluations after filtering 5,376
Average number of accepted evaluations per sample 91

Table 1: Statistics on our Facebook user study.

platform and all participants were at least 18 years old.
Study participants were allowed to evaluate multiple sam-
ples from different datasets, but only one sample from each
dataset. For example, a study participant could complete
two surveys: one where we evaluated color modification sam-
ples and another regarding logo crop. The same participant
was not allowed to complete multiple surveys on color mod-
ification. In total 2,910 unique participants evaluated 5,900
Facebook samples, and Table 1 provides study statistics.

4.3 Study Tasks
Each survey included 12 to 16 questions. We asked prelim-

inary questions on participant demographics, tested appli-
cation usage frequency, and a control question with a known
correct answer. After that, we showed the study participant
a sample login screen screenshot and asked the participant
to evaluate it using the following questions:

• “Is this screen (smart phone screenshot) the Facebook
login screen as you remember it?” with Yes and No
reply alternatives.

• “If you would see this screen, would you login with your
real Facebook password?” with Yes and No reply alter-
natives.

Using the percentage of “yes” answers, we compute as-
remembered rate and login rate for each evaluated sample.
We also asked the participants to comment on their reason
to log in or retain from logging in. A listing of all survey
questions is available online: http://goo.gl/1ZR6Ka

4.4 Results
We discarded survey responses where the study partici-

pants did not indicate active usage of the Facebook applica-
tion or gave an incorrect reply to the control question. After
filtering, we had 5,376 completed surveys and, on the aver-
age, 91 user evaluations per screenshot sample (see Table 1).
Table 2 shows demographics of our study participants.

Color modification. The color dataset results are illus-
trated in Figure 4. We plot the observed login rate in green
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Figure 4: Percentages of users that perceived a Facebook login screen sample with modified color as genuine (as-remembered
rate) and would login to the application if such a screen is shown (login rate). Color has a significant effect on both rates.

Age
18-29 55.12%
30-39 29%
40-49 11.82%
50-59 3.33%
60 or above 0.72%

Gender
Male 72.54%
Female 27.45%
Education
Primary school 2.06%
High school 34.57%
Bachelor 63.36%

Table 2: Demographics on Facebook user study.

and the as-remembered rate in blue for each evaluated sam-
ple. The red bars indicate bootstrapped 95% confidence
intervals. We performed a chi-square test of independence
with significance level p=.05 to examine the relation be-
tween login responses and the sample color. The relation
between these variables was significant (χ2(16, N = 1551) =
194.44), p < .001) and the study participants were less likely
to log in to screens with high hue change. When the hue
change is maximal, approximately 40% of the participants
indicated that they would still log in.

For several samples we noticed slightly higher login rate
compared to as-remembered rate. This may imply that some
users were willing to log in to an application, although it
looked different from their recollection. We investigated rea-
sons for this behavior from the survey questions and several
participants replied that they noticed the color change, but
considered the application genuine nonetheless. One par-
ticipant commented: “Probably Facebook decided to change
their color.” However, our study was not designed to prove
or reject such hypothesis.

General modifications. The general element modifica-
tion results are shown in Figure 5. Both element reorder-
ing (χ2(5, N = 546) = 15.84, p = .007) as well as scaling
(χ2(9, N = 916) = 245.56, p < .001) had an effect on login
rates. Samples with scaling 50% or less showed login rates
close to the original, but participants were less likely to lo-
gin to screens with high scaling. This could be due to users’
habituation of seeing scaled user interfaces across different
mobile device form factors (e.g., smartphone user interfaces
scaled for tablets). One participant commented his reason
to login: “looks the same, just a little small.” When the el-

ements were scaled smaller than half of their original size,
the login rates decreased fast. At this point the elements
became unreadably small. Removal of extra elements (for-
gotten password or new account link) had no effect on the
login rate (χ2(1, N = 180) = 0.0, p = 1.0).

Logo modifications. The logo modification results are
shown in Figure 6. The relation between the login behavior
and the amount of crop was significant (χ2(5, N = 540) =
83.75, p < .001). As an interesting observation we noticed
that the lowest login rate was observed for the 40% crop
sample. This implies that the users may find the login screen
more trustworthy when the logo is fully missing compared
to seeing only a partial logo. However, our study was not
designed to prove or reject such hypothesis.

Amount of noise in the logo had an effect on login rates
(χ2(4, N = 460) = 75.30, p < .001), and users were less
likely to log in to screens with noise. Approximately half
of the study participants answered that they would login
even if the logo was unreadable due to noise. This result
may imply habituation to software errors and one of the
participants commented the noisy logo: “I would think it is
a problem from my phone resolution, not Facebook.”

Participants were less likely to log in to screens with a
rotated logo (χ2(4, N = 462) = 57.25, p < .001), and even
a modest rotation of five degrees caused the login rate to
drop noticeably. Similarly, study participants were less likely
to login to screens with projected logo (χ2(5, N = 542) =
102.45, p < .001).

Conclusions. The experimented eight visual modifica-
tions were perceived differently. While some modifications
caused a predominantly systematic pattern (e.g., color), in
others we did not notice a clear relation between the amount
of the modification and the observed login rate (e.g., crop).
One modification (extra element removal) caused no effect.
We conclude that the spoofing detection system should be
trained with samples that capture various types of visual
modifications; approaches where all visual features are treated
the same, are unlikely to be effective.

4.5 Follow-up Studies
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Figure 6: Percentages of users that perceived a Facebook login screen sample with logo modifications as genuine and would
login to the application if such a screen is shown. All logo modifications caused a significant effect.

We performed similar follow-up studies for Skype and
Twitter applications and, due to space limitations, we do
not report the details. Skype has a standalone login screen
and, as a general observation, we note that Skype results
were comparable to those of Facebook. Twitter app has
a distributed login screen and we noticed different patterns
than in the previous two studies. Additionally, we evaluated
combinations of two and three visual modifications on these
apps. In total we collected 34,240 user evaluations from
5,438 unique study participants, and we use the collected
data for training of our detection system.

4.6 Study Method
In our study, we measured login rates by asking study par-

ticipants questions. We chose this approach to allow large-
scale data collection for thousands of login screen samples,
for globally-distributed participants. A common approach
in phishing studies is to observe participants during a lo-
gin operation to a phishing screen. Scaling this method for
the number of samples we wanted to evaluate is challenging,
as it requires either installation of malware-like apps on a
large number of phones (ethical considerations) or a large
app provider changing the user interface of their application
for the study (possible negative user experience).

Participants in our study were allowed to evaluate mul-
tiple samples from different datasets which may have also
influenced the results of our study.

5. SPOOFING DETECTION SYSTEM
Through our user study, we gained insight into what kind

of visual modifications users notice, and fail to notice. In

this section we design and implement a prototype spoofing
detection system to leverage this knowledge. The proposed
system is applicable to different platforms and deployment
models, and in what follows, we instantiate the system for
Android devices.

Our system extracts screenshots on a mobile device and
uses the results of the user-study to estimate their decep-
tion rate, with respect to a set of reference applications
(e.g., all apps installed on the phone). Figure 7 shows a
high-level system design. The system consist of four main
components: (1) reference application analysis, (2) screen-
shot analysis, (3) estimator training and (4) deception rate
estimation. The reference application analysis and estima-
tor training can be performed offline (e.g., at the application
marketplace). We have implemented those components as
a modified Android emulator environment and as Python
tools using the OpenCV [5] library for image processing and
scikit-learn for estimator training. The deception rate esti-
mation and screenshot analysis are performed on the mobile
device at runtime. We have implemented those components
on Android in Java using OpenCV, and we proceed by de-
scribing each part of the system in detail.

5.1 Reference Application Analysis
To analyze a screenshot with respect to a reference app,

we first obtain the reference application login screen and
identify its main elements (reference elements) according to
our login screen model (Figure 2). We assume reference
application developers that have no incentive to obfuscate
their login screen implementations. This analysis is a one-
time operation that can be done offline, e.g., on every app
update, and its results distributed to the mobile devices.



Figure 7: Overview of our spoofing detection system that leverages knowledge of user mobile application similarity perception.
The system consist of four parts: (1) reference application analysis, (2) screenshot analysis, (3) estimator training and (4)
deception rate estimation.

Login screen extraction and element detection are plat-
form specific operations. On Android applications, windows
and their contained elements are represented as activities.
To find which activity represents the login screen, we de-
veloped a tool in the form of a modified Android runtime
environment that is executed inside an emulator and that
hooks activity and user interface element creation events.
Similar analysis can be implemented by instrumenting the
reference application, but we chose to modify the runtime
environment in order to make the analysis more robust.

When the reference application is started, the tool hooks
the creation of the first activity and then searches the el-
ement tree list of the activity for a password input field.
We identify the first encountered text box element with the
TYPE_TEXT_VARIATION_PASSWORD flag set as the password
field. If the tool finds a password input field on the first
screen, it considers it a standalone login screen with respect
to our model. The tool extracts the rest of the login screen
elements by further examining the element tree. If the name
of the element object class contains the word “button”, or if
the element inherits from the Button Android base class, the
tool considers it as the login button. We identify the user-
name field as the element with TextView type and consider
the largest image (ImageView, ImageButton) as the logo.

If the first screen does not contain a password field, the
tool considers it the initial screen in our model, extracts
the logo as above, and examines all activities that can be
created from the first screen by, e.g., pressing a button. The
tool identifies buttons, triggers each of them, and hooks any
new created activity. For each of the new activities, the tool
searches for a password field and, if one is not found, it moves
on to the next activity. Once a password field is found, the
tool considers the examined activity as the login screen and
identifies the username and login button elements as above.
The tool gathers the identified elements into a tree data
structure and, for each element, stores its type, location,
size, and content as a screen capture over the element area.

Our automatic tool was designed to analyze benign refer-
ence apps. We performed a preliminary test, and in all 10

tested apps the tool correctly identified the activity hold-
ing the login screen as well as its type (standalone or dis-
tributed). Benign developers have an incentive to make their
login screens easy to detect, and can specify the activity that
is the login screen (e.g., in the Android manifest file).

5.2 Screenshot Analysis
The goal of the screenshot analysis is to, given the screen-

shot of the examined application as well as the reference
elements, produce suitable features for deception rate esti-
mation and estimator training. The screenshot analysis in-
cludes three operations: decomposition, element matching,
and feature extraction (see Figure 7).

Decomposition. Screenshot decomposition is illustrated
in Figure 8. First, we perform common edge detection and
then dilate all detected edges to fill small areas such as text.
We then perform a closure operation on the dilated elements
to merge closely situated elements, such as individual letters
in a block of text, and use a morphological gradient to de-
termine the borders of salient elements as well as to ensure
that elements which share a border get detected as two sep-
arate elements. We run a connected components algorithm
to identify the regions. Finally, we filter regions smaller than
a threshold value, and we place a bounding box around each
detected area. We convert the elements into an element hi-
erarchy tree. An element is considered a child of a parent
when its bounding box is fully contained within the bound-
ing box of another element. For each element, we store its
location, size, and screenshot of its area.

Element matching. The next step is to match the de-
tected elements to the reference elements, as illustrated in
Figure 9. To identify which element is the closest match to
the reference logo, we use a known image feature extractor.
While SIFT extractors [17] have been successfully applied for
detection of logos in natural images [26], we found SIFT to
be ill-suited for mobile application logos, especially in cases
where only partial (e.g., cropped) logos were present. The
shapes of mobile app logos are typically smooth, compared
to the ones seen in natural images, and have small dimen-



Figure 8: Decomposition example on the Skype login screen. The processing steps in the middle includes common image
analysis techniques. The final step is a connected components algorithm as well as filtering out smaller regions. For visual
clarity, we inverted the colors in the processing steps.

sions, and SIFT was unable to identify enough keypoints for
accurate detection. We found that the ORB feature extrac-
tor [25] performed better in our context.

Matching the reference application logo to an element in
the examined application works as follows. We compute
ORB keypoints over the reference logo as well as the whole
examined screenshot and we match the two sets. The ele-
ment that matches with the most keypoints is declared as
the logo. We observe that ORB matching gives good re-
sults on all of our spoofing samples, except the ones with
significant noise. Finding an image feature extractor that is
resistant to noise in this setting is part of our future work.

For the remaining elements, keypoint extraction is gener-
ally not effective, as the login screen elements typically have
few keypoints due to their simplicity. For every element of
the examined screenshot, we perform template matching to
every reference element (username field, password field, lo-
gin button), on different scaling levels. The closest match
determines the type of the element. After these steps, we
have a mapping between the examined application elements
and the reference elements (Figure 9).

Feature extraction. Once the elements are matched, we
extract visual features from them. In addition to common
features (color and element scaling) we extract more detailed
logo features as users showed sensitivity to logo changes.
The extracted features are relative, rather than absolute,
values computed with respect to the reference elements or
entire reference screen. We extract the following features:

1. Hue. The difference between the average hue value of
the examined screenshot and the reference screen.

2. Element Scaling. The ratio of minimum-area bounding
boxes between all reference and examined elements,
except the logo.

3. Logo Rotation. The difference between the angles of
minimum-area bounding boxes of the examined and
reference logo.

4. Logo Scaling. We perform template matching between
the examined and reference logos at different scales
and express the feature as the scale that produces the
best match. We undo possible logo rotation before
template matching.

5. Logo Crop. We calculate the amount of logo crop as
the ratio of logo bounding box areas. We compensate
for the possible area reduction of scaling by reversing
the resize operation.

6. Logo Degradation. As precise extraction of logo noise
and projection is difficult, we approximate similar vi-
sual changes with a more generic feature that we call
logo degradation. Template matching algorithms re-
turn the position and the minimum value of the em-
ployed similarity metric and we use the minimum value
as the logo degradation feature. We undo possible scal-
ing and rotation before template matching.

Our analysis is designed to extract features from screen-
shots that follow the login screen model.

5.3 Estimator Training
As deception rate, or the percentage of users that would

confuse the examined screenshot with the reference appli-
cation, is a continuous variable, we estimate it using a re-
gression model. Training can be performed offline for each
reference application separately.

Our total training data consists of 316 user-evaluated sam-
ples of visual modifications and each sample was evaluated
either by 100 (single modification) or 50 (two and three mod-
ifications) participants. We omitted study samples from the
training data that express visual modifications that our cur-
rent system implementation is not able to extract (noise).

We experimented with regression models of different com-
plexities and trained two linear models (Lasso and linear re-
gression), a decision tree, as well as two ensemble learning
methods (gradient boosting and random forests). We define
four baseline models out of which the latter two utilize prior
knowledge obtained from our user study.

• B1 Linear. The deception rate drops linearly with the
amount of visual modification from 1 to 0.

• B2 Constant. The deception rate is always 0.75.

• B3 Linear. The deception rate drops linearly with the
amount of visual modification from 1 to 0.2. Login
rates stayed predominantly above 20% in our study.

• B4 Random. The deception rate is a random number
in the range 0.3–0.5. This was the most observed range
in our study.



Figure 9: Summary of screenshot analysis. (a) The starting point is a mobile application login screenshot. (b) We decompose
the screenshot to a tree hierarchy. (c) We match the detected elements to reference elements. (d) Finally we extract features
from the detected elements with respect to the reference elements.

B
1
Li
ne
ar

B
2
C
on
st
an
t

B
3
Li
ne
ar

B
4
R
an
do
m

La
ss
o

Li
ne
ar

R
eg
re
ss
io
n

D
ec
isi
on

Tr
ee

G
ra
di
en
t
B
oo
st
in
g

R
an
do
m

Fo
re
st

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
o
o
t
M

e
a
n

S
q
u
a
re

E
rr
o
r

10-fold CV

Leave-one-out CV

Figure 10: Evaluation of five regression and four baseline
models (B1–B4) on combined datasets of Facebook and
Skype. The random forest regressor performs the best.

5.4 Deception Rate Estimation
The goal of the final part of the system is to extract (and

pre-process) screenshots on the mobile device and then es-
timate how many users would confuse the examined screen-
shot with the reference application.

Screenshot extraction. Obtaining the current contents
of the screen is a platform specific operation. On Android,
we grab the contents directly from the frame-buffer device.

Deception rate estimation. To estimate the deception
rate, we extract features from the obtained screenshot with
respect to a reference app and we feed the feature vector
to the trained regressor. The estimator outputs a deception
rate that can be straightforwardly converted into a spoof-
ing detection decision. For example, if the deception rate
is higher than a chosen threshold, the system can flag the
examined application as fraudulent.

To evaluate how well our trained models generalize, we
performed two types of model validation: leave-one-out and
10-fold cross-validation. We report the results in Figure 10
and we observe that the more complex models perform sig-
nificantly better than our baseline models. The best model
was random forest, with a root mean square (RMS) error

Galaxy S2 Nexus 5
Screenshot extraction 10 ± 3 ms NA
Decomposition 99 ± 19 ms 41 ± 10 ms
Element (logo) matching 147 ± 35 ms 54 ± 16 ms
Feature extraction 150 ± 34 ms 67 ± 12 ms
Estimator 0.5 ± 0.9 ms 0.1 ± 0.3 ms
Total 407 ± 69 ms 162 ± 28 ms

Table 3: On-device Android implementation performance.
At submission time, our Nexus 5 device was not rooted and
we were not able to directly access the frame-buffer device.
We expect the screenshot extraction time on a Nexus 5 to
be less than on Galaxy S2 (e.g., less than 5ms).

of 6% and 9% for the leave-one-out and 10-fold cross vali-
dations respectively. 95% of the estimated deception rates
are expected to be within two RMS errors from their true
values. The low RMS values show that a system trained
on user perception data can accurately estimate deception
rates for mobile application spoofing attacks.

5.5 Performance Evaluation
In this section we provide the performance evaluation for

the on-device Android implementation or our system. We
do not evaluate the performance of the offline components
as they are not executed on the phone, and are not time-
critical operations. We performed our measurements on a
mid-range (Samsung Galaxy S2) as well as a high-end smart-
phone device (Nexus 5), and Table 3 shows execution times
averaged over 100 runs. In total, a single deception rate
estimation takes 407 ms (Galaxy S2) and 162 ms (Nexus 5).

A simplistic example deployment model for on-device spoof-
ing detection is to extract and analyze screenshots period-
ically when the phone is in-use, as analysis of every frame
is too expensive. A recent study showed that mobile bank-
ing application login operations were measured to last from
4 to 28 seconds [19]. Therefore, extracting screenshots ev-
ery 4 seconds would allow analysis of most spoofed login
screens and the performance overhead would be in the order
of 10% and 4% for the Galaxy S2 and Nexus 5 phones re-



spectively. This simple deployment model incurs significant
performance overhead, but can be made more efficient in the
following ways.

Pre-filtering. One approach is to first perform a less
expensive pre-filtering operation to determine if the exam-
ined screenshot resembles a login screen and, if so, perform
further examination. Decomposition of a lower resolution
screenshot could be such a pre-filtering operation. The de-
tection system could continue with full screenshot analysis
only if decomposition provides a number of elements (or sim-
ilar heuristic) that is close to the login screen model. This
approach would avoid the expensive analysis for all screen-
shots, as most of them are, after all, benign.

Reduced resolution. Performance speed primarily de-
pends on the size of the analyzed screenshot. Modern smart-
phones have high screen resolutions (e.g., 1080 × 1920) and
analyzing such large images is expensive and does not in-
crease system accuracy. It is important to note that screen-
shot extraction time depends only on the output screenshot
resolution and not on the physical screen resolution itself.
For all our measurements we extracted screenshots of size
320 × 455 pixels as the resolution provides a good ratio of
element detection accuracy and runtime performance. Our
initial experiments show that the image resolution (and with
it, execution time) can be decreased even further, and de-
termining the optimal resolution we leave as future work.

Application whitelisting. A user can select a set of
trusted applications (e.g., Facebook, Twitter, Skype). The
system would perform screenshot analysis only during times
when a non-trusted app is running (e.g., there is possibility
of a spoofing attack taking place).

Collaborative detection. To further reduce the detec-
tion system performance penalty, the phone can utilize the
many-eyes principle and toggle down the screenshot acquisi-
tion frequency based on application marketplace popularity.
For example, if the app currently drawing on the screen has
high popularity, our system can acquire screenshots less of-
ten, as the same screenshot analysis would be performed by
a larger number of different phones. If any one of those
phones detects a potential spoofed screen, it informs the
marketplace and the information is then subsequently dis-
tributed to the remaining app users.

The goal of our implementation was to demonstrate the
feasibility of our new approach, rather than to provide a
thorough performance evaluation of a fully integrated sys-
tem. Our initial tests and evaluation show that user per-
ception based spoofing detection can be both accurate and
practical to deploy, and the exact deployment model and
scheduling of screenshots we leave as future work.

5.6 Avoiding Detection
In this section we discuss possible strategies an attacker

can use to evade detection.
Fixed screenshot times. In case the screenshots are

taken at fixed time intervals, an attacker can avoid detection
by displaying the spoofed screen at all times, other than
the ones when screenshots are acquired. To prevent such
an attack, the screenshot acquisition can be performed in a
randomized manner, e.g., every t ± r seconds, where r is a
random time offset.

Averaging attacks. The adversary can try to avoid run-
time detection by leveraging the human perception property
of averaging images that change frequently. For example,

the adversary could quickly and repeatedly alternate be-
tween showing the first and second halves of the phishing
screen. The user would perceive the complete login screen,
but any acquired screenshot would cover only half of the
spoofing screen. Such attacks can be addressed by extract-
ing screenshots frequently (screenshot extraction is fast) and
averaging them out, prior to analysis. Such an acquisition
method would mimic the human perception.

Different types of spoofing screens. While the ad-
versary has an incentive to create phishing screens that re-
semble the original login screen, the adversary is not lim-
ited to these modifications. To test how well our system is
able to estimate deception rate for previously unseen visual
modifications and spoofing samples that differ from the lo-
gin screen model, further tests are needed. This limitation
is analogous to the previously proposed similarity detection
schemes that compare website similarity to known phishing
samples — the training data cannot cover all phishing sites.

6. RELATED WORK
Spoofing detection systems. In a recent work, Bianchi

et al. [4] have developed a static analysis tool for mobile de-
vice application spoofing detection that identifies API calls
that enable background spoofing attacks, and their work is
complementary to ours. The tool detects apps that query
device state (e.g., running tasks) and after that perform UI
related operations (e.g., create a new activity). A notewor-
thy difference is that while this tool is tailored to efficient
detection of known attack vectors, our system takes as an
input the end product of any spoofing attack—a screenshot
presented to the user—and thus our approach applies also
to the detection of previously unseen attack types.

Many web phishing detection systems analyze a website
DOM tree and compare its elements and structure to the
reference site [3, 16, 24, 35, 36]. While similar code anal-
ysis is possible for mobile applications, we assume an ad-
versary that constructs spoofing applications in arbitrary
ways (e.g., per pixel), and thus complicates structural code
analysis. Our screenshot analysis techniques can help such
approaches to infer user interface structure under strong ad-
versarial models.

Another approach is to consider the visual presentation
of a spoofing application (or a website), and compare its
similarity to a reference value [7, 13, 20]. The main difference
between these schemes and our work is that they derive a
similarity score for a website and compare it to the ones of
known malicious sites. Our similarity metric determines how
many users would confuse the application for another one.
Unlike these previous works, we also extract visual features
for the similarity analysis by decomposing the user interface
from its visual presentation.

Spoofing detection by users. Two types of techniques
have been proposed to help the user to detect spoofing at-
tacks. First, similar to web browsers, the mobile OS can
be enhanced with security indicators. For example, the OS
can show the name, or comparable identifier, of the running
application in a dedicated part of the screen, such as on the
status bar [4, 11, 28]. Such schemes require that parts of the
mobile device screen are made unavailable to applications or
need hardware changes to the mobile device. Second, a mo-
bile application can allow the user to configure a personal-
ized security indicator (e.g., a personal image) that is shown
by the application during each login [19]. Such application-



specific security indicators require no platform changes, but
increase application setup user effort.

User perception of spoofing attacks has been studied ex-
tensively in the context of web phishing. Several studies
show that many users ignore the absence of security indica-
tors, such as SSL locks or personalized images [9, 27, 31].
Recent studies show that personalized security indicators
can be more effective on mobile applications [19]. We are
the first to study how likely the users are to notice spoof-
ing attacks, where the malicious application resembles the
legitimate application.

7. CONCLUSION
In this work we addressed the problem of mobile appli-

cation spoofing detection. We proposed a novel application
spoofing detection system that analyses the visual appear-
ance of application login screens and measures their similar-
ity to reference login screens. We express this similarity in
terms of a new metric — deception rate, which represents
the fraction of users that would confuse the candidate for
the reference login screen. To form a basis for an accurate
estimation of the deception rate we leveraged an extensive
on-line user study. Our results show that deception rate es-
timation is a viable approach for mobile application spoofing
detection, and that our system is able to estimate the decep-
tion rate with 6% error margins on our dataset. In addition
to supporting a spoofing detection system, the results of our
user study, on their own, provide an insight into perception
and attentiveness of users to login screen features during the
login process.
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