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Abstract—Side-channel attacks have been a real threat against
many critical embedded systems that rely on cryptographic
algorithms as their security engine. A commonly used algorithmic
countermeasure, random masking, incurs large execution delay
and resource overhead. The other countermeasure, operation
shuffling or permutation, can mitigate side-channel leakage ef-
fectively with minimal overhead. In this paper, we target utilizing
the independence among operations in cryptographic algorithms
and randomizing their execution order. We design a tool to
automatically detect such independence between statements at the
source code level and devise an algorithm for automatic operation
shuffling. We test our algorithm on the new SHA3 standard,
Keccak. Results show that the tool has effectively implemented
operation-shuffling to reduce the side-channel leakage signifi-
cantly, and therefore can guide automatic secure cryptographic
software implementations against differential power analysis
attacks.
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I. INTRODUCTION

Side-channel analysis (SCA) has been an effective and prac-
tical attack on many critical embedded systems that employ
cryptographic algorithms for security [1]. SCA exploits the
correlation between physical leakages of a crypto system and
its secret key-dependent intermediate variables to retrieve the
key. The most commonly used side-channel leakage is power
consumption [1], in addition to other types like electromag-
netic (EM) emanations [2] and timing information [3]. Various
countermeasures have been presented to protect embedded
systems from power analysis attacks. Secret sharing (random
masking) [4] introduces random numbers into the system to
mask the secret key. It requires algorithm-specific modifica-
tions which are hard to automate, and normally incurs large
implementation overhead as each share needs one copy of the
original algorithm.

Other countermeasures against power analysis attacks, such
as random delay [5] and shuffling [6], have also been studied.
These methods spread the side-channel leakage (correlated
to an intermediate variable) from a single time point onto
multiple points so as to decrease the leakage. In [6], [7],
random permutation is applied on AES operations to resist
first-order differential power analysis (DPA), based on the fact
that AES is a block cipher where the 16 operations on different
key bytes and state bytes in each round are independent. In [8],
a simplified version of shuffling, Random Start Index (RSI), is

presented which is easier to implement but can be significantly
weaker than the random permutation.

Compared to masking, shuffling does not require modifica-
tions of the algorithm. It is an algorithm-agnostic implemen-
tation and can possibly be automated for any cryptographic
algorithms. What’s more, it can be easily implemented after
other countermeasures as an add-on protection for cryptogra-
phyic systems. However, manual implementation of shuffling
still requires knowledge of the specific algorithm and may
not fully exploit the independence between operations in
complex algorithms. Recent works [9], [10], [11], [12], [13]
indicate a nascent trend towards automating the application of
countermeasures to increase the security of the systems against
power analysis attacks. They have focused on masking AES,
including automatic instruction sensitivity quantification and
local random precharging [9], a general code morphing engine
design with alternative code segments that mitigate power
leakage [10], compiler assisted masking implementation [11],
and automatic security evaluation and verification [12], [13].
However, to the best of our knowledge, there is no automation
work for operation shuffling/permutation yet.

In this paper, we propose a methodology to analyze the
source code of crypto algorithms to automatically detect the
dependence of statements. We then devise an algorithm to
implement shuffling automatically at the source code level. We
start from the high level, source code, as shuffling statements
at this level is both algorithm and platform independent, and
therefore can effectively reduce the power leakage and yet
efficient to implement. We test our algorithm on Keccak,
the new SHA3 standard, and the side-channel power analysis
results show that our algorithm automatically identifies inde-
pendence among operations and implements shuffling, which
significantly improves the resilience of crypto software against
power analysis attacks. The main contribution of the work lies
in a framework of source code transformation to randomize
operations without any knowledge of the underlying systems,
which is generally applicable to any cryptographic algorithm.

The rest of this paper is organized as follows. Section
II introduces some preliminaries on shuffling and basics of
Keccak. In Section III, we present our algorithm to extract
dependence relationships among software statements and pro-
pose a methodology for automatic shuffling implementation. In
Section IV, we demonstrate correlation power analysis results
on Keccak protected with shuffling based on our algorithm.



We conclude the paper in Section V.

II. PRELIMINARIES

In this section, we introduce the concept of shuffling,
various data dependencies among operations and the rules
of data consistency. As an example to show independent
operations and shuffling, some basic details of Keccak are also
introduced in this section.

A. Countermeasure to Power Analysis Attacks - Operation
Shuffling

Operation shuffling is an effective countermeasure to miti-
gate the vulnerability of cryptographic systems against differ-
ential power analysis. As the leakage comes from intermediate
variables produced by operations, if there are np possible time
locations of a leaky operation, i.e., the shuffling space is np,
for a large number of power leakage traces, the leakage of such
intermediate variable is randomly spread onto np time points,
and the corresponding correlation and signal-noise-ratio (SNR)
for power analysis attacks will be effectively decreased to
1/np [6], [7].

Assume one piece of software code is composed of n inde-
pendent segments with some of them producing key-dependent
intermediate variables, C = {C0, C1, · · · , Cn−1}, they can
be executed in any order without changing the algorithm
functionality. Their execution order is determined by an array,
Order, which is a random permutation of {0, 1, · · ·n − 1}.
Algorithm 1 below illustrates the implementation of operation
shuffling.

Algorithm 1 Shuffling execution
Input: C = {C0, C1, · · · , Cn−1}, and a random order array, Order

1: for i = 0→ n− 1 do
2: switch Order[i] do
3: case 0
4: Execute C0

5: case 1
6: Execute C1

7: · · ·
8: case n− 1
9: Execute Cn−1

10: end for

Shuffling implementation includes two critical steps, extrac-
tion of statement dependency and generation of the random ex-
ecution order array Order. Fisher-Yates algorithm [14], shown
in Algorithm 2, is an efficient algorithm for generating such an
array. It is an unbiased algorithm, which means the resulting
Order array will be fully random [15]. Its computational
complexity is linear, O(n), where n is the array size. Thus
we adopt this algorithm for random order array generation and
expect it to impose small execution overhead in large crypto
systems.

B. Data Dependencies and Operation Consistency

For operation shuffling, the most important step is to extract
the dependency relationships of statements so as to identify

Algorithm 2 Permutation table generation with Fisher-Yates
algorithm
Input: The size of the permutation table, n
Output: A permutation table Order at size n

1: Generate an array Order= {0, 1, · · · , n− 1}
2: for i = n− 1→ 1 do
3: j ← random integer 0 ≤ j ≤ i
4: Exchange Order[j] and Order[i]
5: end for

the space for shuffling. We first make some definitions for
software source code:
• We denote a piece of code C as a set of sequential

statements A = {A[0], A[1], · · · , A[N − 1]}, in which
N is the number of statements, also called the size
of the code. We assume the code is branch-free and
loop-free, i.e., consisting of only sequential static single
assignments (SSA).

• For each statement A[i], it includes the variable set
V [i] = {vi[0], vi[1], · · · }. Each statement can have differ-
ent number of variables, where vi[0] is statement A[i]’s
only output and other variables are its inputs.

• For statements A[i] and A[j], with i > j, if there is data
dependence between the two statements, we say that A[i]
depends on A[j], denoted as A[i]⇒ A[j].

There are three type of data dependencies between two
sequential statements, A[i] and A[j], where i > j, defined
in [16]:
• Read after write (RAW): if A[i] uses a variable that was

defined by A[j], their execution order has to be preserved;
• Write after read (WAR): if A[i] redefines a variable

that was used by A[j], their execution order has to be
preserved;

• Write after write (WAW): if A[i] redefines a variable
that was defined by A[j], their execution order has to
be preserved. Some compilers may optimize this WAW
dependency if no usage of the variable is found between
the two statements. At the source code level, we keep
such data dependency.

Shuffling, although aims at changing the execution order of
statements, should preserve their inherent data dependencies.
We define this as the rule of operation consistency.

Example 2.1: For a piece of code:

a = b+c+d
e = a+f
a = g+h

They are denoted as a sequence of statements A =
{A[0], A[1], A[2]}, where: A[0] : V [0] = {a, b, c, d}

A[1] : V [1] = {e, a, f}
A[2] : V [2] = {a, g, h}

.

There exists RAW dependence between A[1] and A[0],
WAR dependence between A[2] and A[1], and WAW depen-



dence between A[2] and A[0]. Therefore, we have A[1] ⇒
A[0], A[2] ⇒ A[1], and A[2] ⇒ A[0]. The order of A[0],
A[1], A[2] cannot be permuted because of these dependence
relationships.

C. Operations in Keccak

We choose Keccak [17], the newly selected new hash stan-
dard SHA-3 as an examples to apply the operation shuffling
tool on. As the security of these primitives depends heavily on
statistical properties of the operations and the key length, there
is rich and iterative data processing and many operations are
independent, e.g., the individual key byte processing of each
round in bock ciphers like AES, which is the fundamental for
operation shuffling.

Keccak is based on the Sponge construction with iterative
permutations. Each permutation function f works on a state
at a fixed length. For Keccak, MAC-Keccak is recommended
by the Keccak designers for message authentication using a
secret key [17]:

MAC(M,K) = H(K||M). (1)

where the key K is concatenated with the message M as the
input for the hash function.

The default Keccak mode is Keccak-1600, with the bit
length at 1600. All of the 1600-bit states are organized in
a 3-D array, 5 × 5 × 64, as shown in Figure 1. Each bit is
addressed with three coordinates, written as S(x, y, z), x, y ∈
{0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. 2-D entities, plane, sheet and
slice, and 1-D entities, lane, column and row, are also defined
in Keccak and shown in Figure 1.
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Fig. 1: Terminology used in Keccak

The f permutation function of Keccak-1600 consists of 24
rounds, where each round has five sequential operations:

Ri+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Ri), i ∈ {0, 1, · · · , 23} (2)

in which Ri stands for the input state of the ith round, R0

is the initial input determined by K||M , and the key bits
occupying the bottom plane first. In this paper, we focus on
the linear θ step for side-channel attacks. Details of other
operations can be found in [17].
θ is a linear operation over 11 input bits and outputs a single

bit, shown as follows:

S′(x, y, z) = S(x, y, z)⊕ (⊕4
i=0S(x− 1, i, z))

⊕ (⊕4
i=0S(x+ 1, i, z − 1)) (3)

The θ computation is done in two successive steps, θ1
and θ2. θ1 first calculates the parity bit of each column, i.e.,
compressing a 1600-bit state into a 320-bit plane called the
θplane by 320 independent bit operations:

θplane(x, z) = ⊕4
y=0S(x, y, z)

x ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. (4)

In the second step, θ2 outputs the XOR between every bit
of the state and two neighboring parity bits of the θplane:

θout(x, y, z) = S(x, y, z)⊕ θplane(x− 1, z)

⊕ θplane(x+ 1, z − 1)

x, y ∈ {0, 1, ..., 4}, z ∈ {0, 1, ..., 63}. (5)

The intermediate result of operation θ1 in the first round,
θplane, contains key information directly and has been used
to extract the secret key in previous work [18], [19], [20],
[21]. The θ1 computation consists of many independent op-
erations on key segments, i.e., it is leaky and suitable for
operation shuffling. It is much harder to extract independent
key-sensitive intermediate variables from later operations and
rounds though. In this paper, we will use the leakages of θplane
to discuss the effect of our algorithm.

III. METHODOLOGY AND ALGORITHM

In this section, we describe our methodology of extracting
the operation dependencies in cryptographic software, and the
algorithm for automatic operation shuffling at the source code
level.

A. Statement Dependencies Extraction

The simple Example 2.1 shows that the data dependence
relationship determines the constraints for operation shuffling
and should be extracted first. For a piece of code with N
statements, we use an N × N matrix M to denote the
dependencies of these N statements, and it should only be
lower-triangular. With the row index i and the column index j,
if M [i][j] = 1, it means that A[i]⇒ A[j] for 0 ≤ i, j ≤ N−1,
j < i. The algorithm for dependence matrix generation is
shown in Algorithm 3.

Algorithm 3 Dependence extraction
Input: The source code of the crypto algorithm
Output: Lower triangular dependence matrix M for the crypto
algorithm

1: N ← number of statements |A|
2: Generate an N ×N matrix M , initialized at zero
3: for i = 1→ N − 1 do
4: for j = 0→ i− 1 do
5: if V [j][0] ∈ V [i] then . A[i]⇒ A[j], WAW and RAW
6: M [i][j]← 1
7: end if
8: if V [i][0] ∈ V [j] then . A[i]⇒ A[j], WAW and WAR
9: M [i][j]← 1

10: end if
11: end for
12: end for



Using Algorithm 3, we can extract the dependence relation-
ships of all the statements. This dependence matrix can help
designers to automate shuffling. To find the statements group
which allows shuffling is to find a sub-matrix in M along the
main diagonal with all its elements zero, i.e., the corresponding
statements do not depend on each other.

We use the Keccak source code (Keccak-simple32BI pro-
vided by [22]) as example here and apply Algorithm 3. There
are 344 statements (SSAs) for the first two rounds (in one
loop), and thus the dependence matrix size is 344× 344. We
only show the first 36×36 dependency sub-matrix for the first
36 statements in Fig. 2 due to the space constraint.
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Fig. 2: The dependence relationship of the first 36 statements
of Keccak

For the 36 × 36 matrix, the square (i, j) in black color
means M [i][j] = 1, i.e., A[i] ⇒ A[j]. For these 36
statements, it is clear to see that A[0] to A[9] are in-
dependent on each other, and thus these 10 statements
can be randomly permuted. This is also true for A[10] to
A[19]. Note that the sub-matrix does not need to be com-
posed by consecutive rows and columns. For example, the
group of statements {A[21], A[23], A[25], A[27], A[29]} and
{A[20], A[22], A[24], A[26], A[28]} can also be permuted as
their corresponding sub-matrices are both zero. We also ana-
lyze the AES code from [23] using our algorithm. There are 55
statements for each round after expansion. Similar dependence
result is obtained for AES, and more details will be given
in Section III-B2. For larger cryptographic software, large N
and complex dependencies will make the manual shuffling
impossible. Automatic methods should be designed to find the
shuffling space.

So far we have shown that shuffling is done on operations
within basic blocks, i.e., relying on the data flow of basic
blocks and exploiting the data independence. Shuffling can
also be applied at the higher control flow level between basic
blocks if the basic blocks are independent from each other.

For example, the MixColumns step of an AES round consists
of four basic blocks with each basic block working on one
column of the AES state. These four blocks do not depend
on each other and their orders can be permuted. However, the
space for shuffling at the basic block level may be limited. To
fully explore the space for shuffling, we can apply multi-level
permutations, where independent statements inside each basic
block are permuted and meanwhile the serialization of basic
block execution is also randomized (permuted).

B. Automatic Shuffling

With the dependence relationships among sensitive state-
ments extracted, we can exploit it for automatic shuffling. We
start from a simple case of single leakage, i.e., one sensitive
statement for one intermediate variable, and then discuss the
more general and complex cases of many leakages from many
statements.

1) Random Insertion of One Statement: We assume that
only one statement A[m] in the code contains the sensitive
information. Thus the problem reduces to insert A[m] into the
program code randomly with the number of possible position
of A[m] be maximum. We classify all the statements into three
categories. For the data flow graphs of the program, all the
statements that A[m] directly and indirectly depends on should
be executed before A[m], and we put them into the category
of Ancestors. All the statements that depend on A[m] should
be executed after A[m], and we put them into the category
of Offspring. The method to extract Ancestors based on the
dependency relationship matrix is shown in Algorithm 4 and
the method to extract Offspring is similar.

Algorithm 4 Random insertion of A[m]

Input: The N × N dependence matrix M , the index m of the
statement containing the sensitive information
Output: list Ancestors

1: Ancestors.insert(m), finished = 0
2: while (!finished) do
3: finished = 1
4: for i=0 → Ancestors.size do
5: for j=0 → Ancestors[i] do
6: if (M[Ancestors[i]][j] = 1) & (j /∈ Ancestors) then
7: Ancestors.insert(j), finished = 0
8: end if
9: end for

10: end for
11: end while
12: Ancestors.remove(m)
13: AscendSort(Ancestors)

After extracting these two lists, the rest of the statements are
all assigned to a list Independent, which are all independent
on A[m]. There may be data dependencies between statements
in the list Independent and the original schedule in the
program source code should be kept after we reschedule the
program: all the statements in Ancestors are executed first
and then Independent, and Offspring at last. For execution,
only the statement A[m] is floating and can be inserted to any
place of Independent and leakage of A[m] is spread from one



point to |Independent| points. The techniques above are based
on the well-known code scheduling theory employed in the
field of compiler optimization. For Keccak, assume the 50th

statement contains the secret information and designers want
to insert it to other positions, using our algorithm, we find the
Ancestors list with size 20, Offspring list with size 205, and
Independent size 118. Which means that the 50th statement
can be inserted randomly at any one of 118 positions.

2) Shuffling of All Statements: Method shown in Sec-
tion III-B1 is to explore the largest number of possible
positions for one single statement which contains the secret
information. This method will reduce the leakage of one
key byte/word, but is not applicable to decrease all leakages
of different key bytes. Next we devise another method for
shuffling all leaky statements. We separate all the statements
into different levels, such that the statements at the same level
are independent of each other and can be permuted randomly
without violating the rule of operation consistency. Statements
at different levels have data dependencies and should preserve
a certain execution order: statements at the lower level should
be executed before statements at the higher level.

Algorithm 5 shows the procedure to separate all statements
into different levels based on the dependence relationship
matrix. It is actually running a reverse depth-first search on
the data flow graphs of the program, and assign the statements
(nodes in the DFGs) to different depths.

Algorithm 5 Execution level extraction
Input: The N ×N dependence matrix M
Output: Execution level array L[N ]

1: Initialize an zero array L[N ]
2: for i = 1→ N − 1 do
3: level = 0, newlevel = 0
4: for j = 0→ i− 1 do
5: if M [i][j] = 1 then
6: newlevel = L[j] + 1
7: if newlevel > level then
8: level = newlevel
9: end if

10: end if
11: end for
12: L[i] = level
13: end for

We apply our algorithms on AES and Keccak, and the
results show that our algorithms can effectively extract the de-
pendence relationship of statements and explore the shuffling
space. For example, for the loop-free AES implementation,
55 statements are separated into 8 levels and the maximum
number of statements at a level is 16; for Keccak (Keccak-
simple32BI), the 344 statements can be separated into 26
levels, with the maximum number of statements at a level
as 50. Statements at each level can be executed in a random
order while the execution order between levels is specified.
If the number of statements in one level is too small, the
shuffling space is limited. To solve this problem, some dummy
statements can be added into this level to increase the shuffling
space but with moderate performance penalty. Note here the

independent statements may not all be leaky operations, i.e.,
producing key-dependent intermediate variables. They just
represent data flow dependencies. Only a portion of them are
leaky statements and permutation on them would decrease the
side-channel leakage.

IV. EXPERIMENTAL RESULTS AND EVALUATION

A. The Tool for Source Code Transformation

Our algorithms shown above operate on statements at the
source code level without need to understand the target cryp-
tographic algorithm. Therefore, tools based on the proposed
algorithms only need some lexical analysis, but no complex
semantic analysis like compilers do. In this work, we develop a
source code transformation tool based on our algorithms using
Python and its strong text processing packages. The structure
of our tool is shown in Figure 3.

Crypto
Source 
Code

Dependency 
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Automated  
Code 

Generation

Report: Dependency & Shuffling

Random Insertion

Random Shuffling

Designers

Fig. 3: Automatic source code transformation with shuffling

Our automatic source code transformation tool consists of
the following steps for shuffling:

1) Lexical analysis: Read and parse the loop-free source
code, extract all the variables in each statement. Lexical
analysis is the first step for compilation process and there
exists mature tools that can be applied, for example, we
use FLEX [24] here.

2) Dependence analysis: Use Algorithm 3 shown in
Section III to analyze the dependence relationships
among the statements in source code and generate the
dependence matrix.

3) Space exploration: Use Algorithms 4 and 5 to explore
the space for random insertion and statement shuffling.

4) Code generation: Based on the shuffling space explo-
ration results, embed an run-time permutation engine ac-
cording to Algorithm 1 that contains code for generating
the random execution order array given by Algorithm 2,
and generate a report to the designer about dependence
relationships and shuffling space at the same time.

As described before, only part of the independent statements
leak secret information and permutation on them would reduce
the leakage. If some knowledge about the secret information
can be used in the “Random Shuffling” step, the implemen-
tation will be more efficient. For example, as most of the
previous attacks on Keccak software implementation focus on
θ step, we can apply the code transformation to this part of
source code only and the implementation can be both effective
in reducing the leakage and still efficient.



The designers only need to run this tool one time at the de-
sign stage. The generated code will be in the format shown in
Algorithm 1 and contains code that generate the random order
array at run-time. The computational complexity of Algorithm
3, 4 and 5 are all O(n2). For one round of Keccak which
contains 344 statements, our Python implementation needs less
than one second to finish all the work including dependency
extraction and shuffling generation. The code will then be
compiled before running on an experimental platform. Note
that the transformations done by our tool will be orthogonal
to normal compilation process and will not be changed. At
runtime, an random array Order will be generated each time
before the cryptographic execution, and the computational
complexity of random array generation algorithm is O(n).
Details about the overhead on target platform will be discussed
in Section IV-C.

B. Side-Channel Leakage Reduction

To evaluate the effect of our automatic shuffling application,
we run our algorithm on the source code of MAC-Keccak,
Keccak-simple32BI, and generate an automatically shuffled
version. We implement both the original and shuffled imple-
mentations on a 32-bit Microblaze processor running on an
SASEBO-GII board with a Virtex-5 FPGA [25].

We use similar setting for Keccak as previous papers [19].
Without loss of generality, we assume the key size is 320 bits,
i.e., occupying the first plane. For software implementations,
there are many intermediate variables that can be used for side-
channel analysis. The same as previous works [19], we attack
the first step of θ which compresses five planes (including
the key plane) into one plane.With our dependency detection
algorithm, statements of θ1 are all separated into the first level
which contains 10 statements. Meanwhile, the results of θ1 are
called in step θ2 and they are separated to second level which
also contains 10 statements. We only permute the two groups
with each group containing 10 leaky statements. Thus each of
the original two leakage points is spread onto 10 points and
we expect to see a 10 times decrease of the leakage. For power
analysis, we collect power traces for the two implementations
using a LeCroy WaveRunner 640Zi oscilloscope. We use
both correlation power analysis (CPA) and mutual information
analysis (MIA) [26] to attack the targeted implementations,
which give similar results. Due to page limit we only present
and discuss CPA results in this paper.

We first run CPA in time domain on the two MAC-Keccak
implementations. The leakage model is Hamming weight of
eight bits of θ1, and the correlation results are shown in Fig. 4.

Fig. 4(a) shows the correlation result between the Hamming
weight of eight bits of θ1 output and power consumption
for the unprotected Keccak implementation based on 1, 000
power traces. With just 1, 000 traces for the unprotected MAC-
Keccak, the peak correlations at the two leakage points are big
(0.55 and 0.27) and stand out from the noisy correlations at
other non-leaky time points (varying between 0.1 and -0.1).
For the shuffled Keccak implementation, the peak correlation
is much smaller with the countermeasure and therefore it re-
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(b) Power leakage of Keccak protected with shuffling

Fig. 4: Power leakage of the unprotected and shuffled Keccak
on Microblaze

quires more power traces to reduce the variance of correlations
at the other non-leakage points. With 15, 000 power traces
the smaller peak leakage correlations are clearly visible in
Fig. 4(b). Note the number of traces would not affect the
peak correlations at the leaky time points, but just reduce the
noisy correlations with more traces for better visualization. For
shuffled implementation of Keccak, the two leakage points are
spread onto twenty time points clearly. The average correlation
of these points is close to 0.055, which is about 1

10 of 0.55,
the correlation of the original implementation. The largest
correlation is only about 0.09. With the decrease of correlation
(SNR), the trace numbers needed for protected implementation
will be 36 times that for unprotected implementation to achieve
the same success rate by the formula in [27].

Note that Fig. 4 only shows the leakage reduction of one
key byte. With group of statements permuted and different
statements involve different key bytes, the leakages on other
key bytes are also reduced significantly. This will make the
full key recovery much harder.

Previous works show that while some countermeasures like
random delay can reduce the leakages in time domain, they are
ineffective in frequency domain [28], [29]. Thus we also check
if our operation shuffling algorithm can improve the side-
channel security of embedded crypto systems in frequency
domain. We find that in frequency domain, the SNR is much
smaller and thus we use Hamming weight of 32 bits instead
of 8 bits together for correlation analysis. For the unprotected
MAC-Keccak implementation, the highest correlation at cer-
tain frequency is very clear and reaches 0.2. While for shuffled



implementation, the largest correlation is very unclear and only
about 0.05 instead. This result shows that shuffling can also
effectively improve the resilience of the crypto system to side-
channel attacks in frequency domain.

C. Overhead Evaluation

Evaluating the execution time and resource overhead is
important for countermeasure design because of the limited
resources in embedded systems. The comparison of binary
file size and clock cycles for three different MAC-Keccak
implementations on Microblaze is shown in Table I. Note
here that the secret sharing scheme is a manual two-share
masking implementation and one random number is involved
for masking [30]. The shuffling implementation is the one that
our automation tool generates.

TABLE I: Resource and execution comparison of differ-
ent schemes

Implementations File size (Byte) Clock cycles
Original [22] 31040 1670

Shuffling 40128 2580
Secret Sharing [30] 69272 6780

All these three implementations are implemented in plain
C language on the same platform with the same compilation
and measurement settings. The second column of Table I
gives the binary file size of each implementation and the third
column shows the execution clock cycles. We can see that
shuffling incurs 29.3% memory overhead and the execution
time is 1.54X compared to the unprotected version. For secrete
sharing, the memory overhead is 123% and the execution
time is 4.06X. This is because secret sharing involves share
generation and de-masking and needs more resources than
other schemes.

From the overhead results and the analysis above, we
can see that our algorithm is effective to automate shuffling
implementations to decrease the side-channel leakage. While
some other countermeasures such as masking involve the
modification of source code which is labor-intensive and
requires a thorough understanding of the crypto algorithm,
our scheme is easy to design and it requires no knowledge
of the target algorithm. Our algorithms and tool be applied to
different cryptographic algorithms to help improve the system
security.

V. CONCLUSION

In this paper, we present a method to explore the design
space for operation shuffling in cryptographic systems au-
tomatically. Our method can detect the dependence among
statements and guide automatic implementation of shuffling.
We test the proposed scheme on Keccak. Results show that
our algorithms and tool are efficient in transforming the source
code for leakage reduction, effectively improving the resilience
of cryptographic systems against power analysis attacks with
less resource overhead than the secret sharing scheme. The

future work will include automatic leakage analysis to aid
efficient implementation of source code statements shuffling
and finer-grained compiler-assisted implementations.
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