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Abstract

We initiate the study of provably secure remote memory attestation to mitigate heap-based overflow
attacks. We present two protocols offering various efficiency and security trade-offs that detect the
presence of injected malicious code or data in remotely-stored heap memory. While our solutions offer
protection only against a specific class of attacks, our novel formalization of threat models is general
enough to cover a wide range of attacks and settings, and should be useful for further research on the
subject of matter.

1 Introduction

Memory corruption attacks are among the most common techniques used to take control of arbitrary programs.
These attacks allow an adversary to exploit running programs either by injecting their own code or diverting
program’s execution, often giving the adversary complete control over the compromised program. While
this class of exploits is classically embodied in the buffer overflow attack, many other instantiations exist,
including heap overflow and use-after-free vulnerabilities. Without question, this problem is of great
importance and has been extensively studied by the security community. Existing solutions (e.g., stack
and heap canaries [16, 19, 20], address space layout randomization (ASLR) [38], etc.) vary greatly in
terms of security guarantees, performance, utilized resources (software or hardware-based), etc. While
these techniques are implemented and deployed in many systems to prevent a number of attacks in practice,
their constructions are only appropriate in the context of local systems: for example, an authority checking
the integrity of heap canaries, has to monitor every single step of the program’s execution. However, this
requirement is making the exiting heap-based protection schemes hardly applicable to remote memory
attestation where the authority might reside outside of a local machine. For example, a straight-forward
construction to keep track of all locations of heap canaries and validate their integrity upon request not only
incurs non-negligible performance overheads, but also requires a trusted communication channel between the
program and a remote verifier.

More critically, none of the prior works targeting heap overflow attacks provided provable security
guarantees. Accordingly, without a clear adversarial model it is hard to judge the scope of the protection,
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and often the attackers, who are getting more and more sophisticated, are still able to bypass many such
mitigation techniques.

Proving that a given protocol can resist all possible attacks within a certain well-defined class is the gold
standard in modern cryptography. However, protocols that are provably secure are rather rarely used in real
systems; either because they commonly target extremely strong security definitions and hence are too slow
for practical use, or rely on impractical assumptions about attackers. Our work tries to bridge this gap in the
context of remote attestation by designing practical protocols with provable security guarantees satisfying
realistic threats and practical system requirements. Our treatment utilizes the formal provable-security
approach of modern cryptography that works hand in hand with applied systems expertise.

In this paper, we realized our theoretical findings as a working prototype system that can mitigate, (still
limited), heap overflow attacks in applications running remotely outside of user’s local computer. Although
the current implementation therefore focuses on protecting user’s programs running on the cloud environment
or firmware running outside of the main CPU, the proposed security model is general enough to be useful for
future works addressing other classes of adversaries.

We now discuss our focus and contributions in more detail.

1.1 Our Focus

Our focus is on the remote verification setting, motivated by the widespread of cloud computing. In our
setting, two entities participate in the protocol; a program that is potentially vulnerable, and a remote verifier
who attests the state of the program’s memory (e.g., heap). This setting is particularly useful for verifying
the integrity of software that is deployed and runs outside of a local machine: a deployed program on the
cloud is one example, and a firmware running outside of the main CPU is another example. Note that if
the cloud is completely untrusted, we cannot guarantee security without relying on secure hardware (and
our focus is software-based solution only). Hence we need to trust the cloud to a certain degree, but at the
same time we want to avoid changing the operating system there. Since we do not trust the program which is
potentially malicious, we create another entity, a wrapper, that is not directly affected by the program, unless
an adversary bypasses the protection boundary provided by an operating system.

In practice, system software (e.g., browser or operating system) is vulnerable to memory corruptions
because it heavily relies on unsafe low-level programming languages like C for either performance or
compatibility reasons. As we mentioned, we do not attempt to prevent entire classes of memory corruption
attacks (e.g., use-after-free or bad-casting) nor exploitation techniques (e.g., return-oriented programming
(ROP)) with one system. We only consider one particular type of memory corruption attack that overwrites a
consecutive region of memory (e.g., buffer) to compromise a control-sensitive data structure (e.g., function
pointer or virtual function table). However, we believe such memory corruptions are still very common (e.g.,
the recent GHOST vulnerability in GLibc [6]), and become more important in the cloud setting where we
have to rely on the cloud provider.

The prevalent solutions that insert “canaries” into memory and verify their integrity later [5, 16, 19, 20, 32],
do not immediately work in our setting. This is mainly because all canaries need to be sent and checked by
the remote verifier without leaking or without being compromised by an adversary. While heavy solutions
like employing secure channels (e.g. TLS) would help mitigate this problem, the resulting system would
need to transfer large quantities of data, making it unsuitable for practical use.

As we explain later in the paper, our solutions could be viewed as a novel variant of cryptographic
canaries, suitable for remote setting and providing provable security guarantees under precisely defined threat
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models.

1.2 RMA Security Definition

Providing security guarantees is not possible without having a well-defined security model. We start with
defining a remote memory attestation (RMA) protocol, whose goal is protecting the integrity of a program’s
data memory (e.g., heap). It is basically an interactive challenge-response protocol between a prover and a
verifier, which is initialized by a setup algorithm that embeds a secret known to the verifier into a program’s
memory. The goal of the verifier is to detect memory corruptions.

Next we propose the first security model for RMA protocols. The definition is one of our main contribu-
tions. Our model captures various adversarial capabilities (what attackers know and can do), reflecting real
security threats.

We assume that an attacker can have some a-priori knowledge of the memory’s contents (e.g., binary
itself) and can learn parts of it, adaptively, over time.

Since we target a setting where the communication between the prover and the verifier is over untrusted
channels, we let the adversary observe the legitimate communication between the prover and the verifier.
Moreover, we let it impersonate either party and assume it can modify or substitute their messages with those
of its choice. To model malicious writes to the memory we allow the attacker to tamper the memory. The
goal of the attacker is to make the verifier accept at a point where the memory is corrupted.

We note that no security may be possible if an attacker’s queries are unrestricted. Accordingly we state
security with respect to abstract classes of functions that model the read and write capabilities of the attackers.
This allows us to keep the definition very general. We leave it for the theorem statements that state the
security of particular protocols to specify these classes, and thus define the scope of attacks the protocol
defends against.

To prevent against the aforementioned GHOST attack [6] where a read (e.g., information leak) follows by
write to the same location and leaves the key intact, any solution in our setting needs to perform a periodic
key refresh. Our protocol definition and the security model take this into account.

An RMA protocol proven to satisfy our security definition for specific read and write capabilities classes
would guaranty security against any efficient attacker with such practical restrictions, under reasonable
computational assumptions. This is in contrast to previous schemes, which were only argued to protect
against certain specific attacks, informally.

1.3 Provably-Secure RMA Constructions

The idea underlying our solutions is simple and resembles the one behind stack or heap canaries. We embed
secrets throughout the memory and, for attestation, we verify that they are intact. This is similar to how
canaries are used, but for the setting where the verifier is remote the ideas need to be adapted. A simple
but illustrative example is the protocol where the prover simply sends to the verifier the hash of all of the
(concatenated) canaries. Here, the attacker can replay this value after modifying the memory. The following
discussion illustrates further potential weaknesses of this protocol uncovered when trying to derive provable
security guarantees.

For clarity, instead of calling the secrets canaries, let us refer to the secrets we embed in the memory as
shares, i.e., we split a secret into multiple shares and spread them out in memory. Let’s assume for simplicity
for now that the shares are embedded at equal intervals. Then an adversary who injects malicious code, and
hence writes a string that is at least one-block long, will over-write at least one share, even if it knows the
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shares’ locations. Verification just checks whether the original secret can be reconstructed and used in a
simple challenge-response protocol that prevents re-plays. For example, the verifier could send a random
challenge, and the prover would reply with the hash of the reconstructed secret and the challenge. Note that
the prover will run in a totally separate memory space so the secrecy of the reconstructed key at time of
verification is not an issue.

The standard security of an n-out-of-n secret sharing scheme ensures that unless the attacker reads all
memory (and in this case no security can be ensured anyway), the key is information-theoretically hidden.

However, the adversary could read and then tamper the memory while leaving the share intact. To
mitigate this, the periodic updates could re-randomize all shares, while keeping the same secret. The size
of the blocks and the frequency of the updates are the parameters that particular applications could choose
for the required tradeoff between security and efficiency. In an ideal setting, we would refresh the shares
whenever the leakage of the secret happens. However, since the occurrence of such events is not always clear,
the alternative solution of refreshing “often" enough may lead to unreasonable overheads. In our current
implementation, we keep it as a parameter (e.g., certain time period) and developers can simply incorporate
proper timing with our implementation.

Despite the solution approach above being so simple and sound, it turns out that assessing its security
and practicality needs to deal with numerous subtleties and complications, both from the systems and
cryptographic points of view. For example, our system can not fix the size of memory object, which naturally
underutilizes the memory space (e.g., de-fragmentation). In our system, we support various memory slots for
allocation, from the smallest 8 byte objects incrementally to over 100 mega bytes, depending on the user’s
configuration.

The obvious choice for producing the secrets to be embedded in the memory is to use an n-out-of-n secret
sharing scheme as a building block for our constructions. It turns out however, that the standard security of
secret sharing schemes is not sufficient to guarantee the security of the protocol. First, we have to extend the
security definition to take into account key updates. The attacker should be able to access the whole memory
as long as it does not do it in between consecutive updates. The extended notion is known as proactive secret
sharing [21]. Also, for the proof we need the additional properties that modifying at least one share implies
changing a secret, and one extra property we discuss later. Fortunately, all these are satisfied by a simple
XOR-based secret sharing scheme.

We show that combing the simple XOR-based secret sharing scheme (or any generic secret sharing
scheme with some extra properties we define) and the hash-based challenge-response protocol yields a secure
and efficient RMA protocol, for attackers with restricted, but quite reasonable abilities to read and tamper the
memory. However, the proof we provide relies on the idealistic random oracle (RO) model [10]. It is known
that in principle, protocols proven secure in the RO model may have no secure “real” hash instantiation [14].
Therefore for security-critical applications it may be desirable to have protocols which provably provide
guarantees in the standard (RO devoid) model.

An intuitively appealing solution is to employ some symmetric-key identification protocol, e.g., replying
with a message authentication code (MAC) of the random challenge, where the MAC is keyed with the
reconstructed secret. However, given the capabilities that we ascribe to realistic adversaries, a formal proof
would require a MAC secure even in the presence of some leakage on and tampering of the secret key. The
latter property is also known as security against related key attacks (RKA) [8]. Unfortunately, there are
no suitable leakage and tamper-resilient MACs for a wide class of leakage and tampering functions, as the
existing solutions, e.g. [7, 13], only address specific algebraic classes of tampering functions and are rather
inefficient.

Somewhat unexpectedly, we utilize a public key encryption scheme for encrypting the random challenge
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and the (reconstructed) secret. This solution requires that the public key of the verifier is stored so that it
is accessible by the prover, and cannot be tampered (otherwise we would need a public-key scheme secure
with respect to related public key attacks, and similarly to the symmetric setting, there are no provably secure
schemes wrt this property, except for few works addressing a narrow class of tamper functions [9, 40]).

To ensure non-malleability of the public key, our system separates the memory space of a potentially
malicious program from its prover (e.g., different processes), and store its public key in the prover’s memory
space. Since the verification procedure is unidirectional (e.g., a prover accesses the program’s memory),
our system can guarantee the non-malleability of the public key in practice (e.g., unless no remote memory
overwriting or privilege escalation). This level of security is afforded by memory protection afforded by
deployed computational platforms (e.g. MMU commodity processors).

It is natural to expect some form of non-malleability from the encryption scheme. Otherwise, the attacker
could modify a legitimate response for one challenge into another valid one for the same key and a new
challenge. An IND-CCA secure encryption such as Cramer Shoup [17] could work for us. We note however
that IND-CCA secure is an overkill for our application since we do not need to protect against arbitrary
maulings of the ciphertext; instead, the attacker only needs to produce a valid ciphertext for a particular
message, known to the verifier. We show that an encryption scheme secure against a weaker notion of
plaintext-checking attacks [33] is sufficient for us. Accordingly, we use the "Short" Cramer-Shoup (SCS)
scheme proposed and analyzed very recently by Abdalla et al. [1]. This allows us to save communication
one group element compared to regular Cramer Shoup. We show how one can optimize further and save an
additional group element in the communication by slightly increasing computation.

1.4 Implementation Results

To demonstrate the feasibility of RMA, we implemented a prototype system that supports arbitrary pro-
grams without any modification (e.g., tested with popular software with a large codebase, such as Firefox,
Thunderbird and SPEC Benchmark). Our evaluation shows that the prototype incurs negligible performance
overheads and detects heap-based memory corruptions with the remote verifier.

In a bit more detail, we implemented both, the hash- and encryption-based, protocols. Interestingly, both
protocols showed similar performance, despite the latter one relying on public key operations, which are
much slower than a hash computation. This is because the significant part of the performance overhead comes
from the implementation of the custom memory allocator, side-effects of memory fragmentation and network
bandwidth, which all make the differences in times of crypto operations insignificant.

1.5 Related Work

Canary-based protection has been adopted to prevent stack smashing [2]: e.g., ProPolice [19], Stack-
Guard [16], StackGhost [20]. Similarly, canaries (or guard as a general form) have been used for heap
protection, in particular metadata of heap [34, 41] (e.g., double free): HeapSheild [12] or AddressSani-
tizer [35]. Unlike these practical measures, the main goal of RMA is to provide a provable guarantee of the
memory integrity, under the context of software-based remote attestation.

Software-based attestation has been explored in various contexts: peripheral firmware [18, 25, 27],
embedded devices [15, 26, 37], or legacy software [36]. That line of work, which falls under the generic idea
of software based attestation is different from ours in two main differences. First, the setting of firmware
attestation uses a different adversarial model. There, an adversary aims to tamper with the firmware on a
peripheral and still wants to convince an external verifier that the firmware has not been tampered with. In its
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attack, the adversary has complete access to the device prior to the execution of the attestation protocol; the
protocol is executed however without adveresarial inteference. Our model considers an adversary who can
glean only partial information on the state of the memory prior to its attack, but who acts as man-in-the-middle
during the attestation protocol.

Challenge-response protocols are natural solutions in both situations. Since we aim for solutions that
admit rigorous security proofs we rely on primitives with cryptographic guarantees. In contrast due to
constraints imposed by the application domain solutions employed peripheral attestation cannot afford to rely
on cryptographic primitives. Instead, counstructions employ carefully crafted check-sum functions where
unforgeability heuristically relies on timing assumptions and lack of storage space on the device. Jacobsson
and Johansson [24] show that such assumptions can be grounded in the assumptions that RAM access is
faster than access to the secondary storage [24]. Our work is similar in its goals with that of Armknecth et al.
[4] who provide formal foundations for the area of software attestation.

More recently, a handful of hardware-based (e.g., coprocessor or trusted chip) attestation has been
proposed as well: Flicker [30] and TrustVisor [29] using TPM, InkTag [23] based on a hypervisor, and Haven
using Intel SGX [3, 22, 31]. Our work differs in that we do not explicitly rely on hardware assumptions and
is built on top of the provable security guarantee.

Finally, a recent paper [28] addresses the problem of a virus detection from a provable security perspective.
The authors introduce the virus detection scheme primitive that can be used to check if computer program
has been infected with a virus injecting malicious code. They describe a compiler, which outputs a protected
version of the program that can run natively on the same machine. The verification is triggered by an external
verifier.

Even though the considered problems and the basic idea of spreading the secret shares are similar, the
treatment and the results in [28] are quite different from ours. The major difference is that the attacker in the
security model of [28] is not allowed to learn any partial information about the secret shares. Our security
definition, in turn, does take partial leakage of the secret into account. Their security definition, however,
allows the attacker to learn the contents of the registers during the attack. This is not a threat in our setting
since the computations happen within the trusted wrapper. Also, their solutions do not rely on the PKI, which
is a plus. The other important difference is that the proposal in [28] is mostly of theoretical interest, while our
solution is quite efficient. The work [28] has additional results about protection against tiny overwrites but
that requires CPU modifications.

1.6 Outline

We start with explaining the notation in Section 2. Next we define the functionality and security of Remote
Memory Attestation (RMA) Protocols in Section 3. Section 4 presents the building blocks for our construc-
tions. In Section 5 we present two RMA protocols and prove that they satisfy our security model. The first
protocol is quite efficient, and its security is based on the random oracle model. Security of our second
construction relies only on standard computational assumptions, and is less efficient (but still practical).
Finally, in Section 6 we present our implementations results and follow with conclusions in Section 8.

2 Notation

We denote by {0, 1}∗ the set of all binary strings of finite length. If X is a string, then |X| denotes its length
in bits. If S is a set, then |S| denotes the size of S; X $← S denotes that X is selected uniformly at random
from S. If A is a randomized algorithm, then the notation X $←A denotes that X is assigned the outcome of
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the experiment of running A, possibly on some inputs. If A is deterministic, we drop the dollar sign above
the arrow. If X,Y are strings, then X‖Y denotes the concatenation of X and Y . We write L :: a for the
list obtained by appending a to the list L and L[i, . . . , j] for the sublist of L between indexes i and j. We
write id for the identity function (the domain is usually clear from the context) and write US for the uniform
distribution on set S. If n is an integer we write [n] for the set 1, 2, . . . , n. For an integer k, and a bit b, bk

denotes the string consisting of k consecutive “b” bits.

3 Remote Memory Attestation

3.1 Syntax

We start with defining the abstract functionality of remote memory attestation (RMA) protocol.

Definition 3.1. [RMA protocol] A remote memory attestation protocol is defined by a tuple of algorithms
(SS, Init, (MA,MV), Update, Extract) where:

• The setup algorithm SS takes as input a security parameter 1κ and outputs a pair of public/secret keys
(pk , sk). (SS is run by the verifier.) This output is optional.

• The initialization algorithm Init takes as input a bitstring M (representing the memory to be protected),
a public key pk and the secret key sk and outputs a bitstring Ms (that represents the protected memory),
and a bitstring s (secret information that one can use to certify the state of the memory).

• The pair of interactive algorithms (MA,MV), ran by the prover and verifier resp., form the attestation
protocol. Algorithm MA takes as inputs the public key pk and a bitstring Ms and the verifier takes as
inputs the secret key sk and secret s. The verifier outputs a bit, where 1 indicates acceptance, and 0 –
rejection.

• The update algorithm Update takes as input a bitstring Ms and outputs a bitstring Ms
′ (this is a

"refreshed" protected memory). It can be ran by the prover at any point in the execution.

• The Extract algorithm takes as input a bitstring Ms (representing a protected memory) and outputs a
bitstring M (represented the real memory protected in Ms ) and secret s. This is used in the analysis
mostly, but also models how the OS can read the memory.

The correctness condition requires that for every (pk , sk) output by SS, everyM ∈ {0, 1}∗, and every (Ms , s)
output by Init(M, pk , sk), the second party in (MA(pk ,Ms),MV(sk , s)) returns 1 with probability 1. Also,
Extract(Ms) = (M, s′) for some s′ with probability 1. These conditions should hold even for an arbitrary
number of runs of Update protocol.

In practice the remote verifier initializes the wrapper with the secret before being sent to the cloud. The
wrapper later acts as the local prover to the remote verifier.

3.2 RMA Security

We now formally define the security model for an RMA protocol, which is part of our main contributions.
This step is essential for designing schemes that provide security guarantees.

We consider an attacker who can read the public key (if any), and can observe the interactions between
the prover and the verifier. But our adversary is significantly more powerful. In the first stage of its attack,
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the attacker can read arbitrary parts of the memory and can over-write a part of the memory by injecting a
data (code) of its choosing. Importantly, the adversary can intercept and modify the communication between
the prover and the verifier. This is captured by giving the adversary oracle access to the oracles that follow
the interactive RMA protocol, while the adversary can chose to observe a legitimate protocol by forwarding
the answers of one oracle to another; or it can choose to manipulate the conversation, or even supply inputs
of its own choosing. Also, the attacker can request to do an update at any point. In the second stage the
adversary specifies how it wants to alter the memory (where and what data it wants to over-write). The
memory is modified, one extra update is performed, and then the attacker can continue its actions allowed
in the first stage, with the exception that it is not given the ability to read the memory anymore. This
captures the fact noted in the Introduction, that security is only possible if the memory update procedure is
performed in between the read and write, which can be arbitrary and thus leave the secret intact (by reading
and over-writing it).

We say that the adversary wins if it makes the verifier accept in the second stage, despite the memory
being modified by the attacker. This captures the idea that the verifier does not notice that the memory has
been corrupted.

We observe that it is necessary to restrict the adversary’s abilities, for a couple of reasons. First, as we
mentioned in the Introduction, no security may be possible if an attacker’s queries are unrestricted, e.g.,
if the adversary reads the whole memory in between the secret updates or reads a block and immediately
over-writes it so that the secret share is intact. Moreover, note that the adversary which can over-write
memory bit by bit, could eventually learn the whole secret by fixing each bit for both possible values, one by
one and observing the corresponding response by the prover and the verifier’s decision.

Second, it seems difficult to have a single solution that protects against a very wide class of attacks.
Hence, it makes sense to have multiple solutions for various applications and classes of attacks. But instead of
having multiple security definitions tailored for each case, one can have a rather general easily “customizable”
definition.

Accordingly we state security with respect to the classes of functions for read and write queries that
describe the legitimate read and tamper requests the attacker can do. This allows our definition to be quite
general, and we leave it to the theorem statements for particular protocols and applications to specify these
classes and hence outline the scope of attacks the protocol prevents against.

We now present the formal definition and then follow with further informal explanations of how the
definition captures practical threats.

Definition 3.2. [RMA scheme security.] Let L and T be two classes of leakage and tampering functions.
Consider an RMA protocol Π = (SS, Init, (MA,MV),Update,Extract). We define its security via the
experiment Exp

rma-(L,T )
A,Π involving the adversary A which we present in Figure 1.

We call Π secure wrt L and T if for every (possibly restricted) efficient adversary A the probability that
Exp

rma-(L,T )
A,Π returns 1 is negligible in the security parameter.

The design of the above model is influenced directly by studying the practical threats. In particular,
reading memory to leak information has been a prerequisite pretty much to all attacks from ten years back.
Taking the man-in-the-middle attacks into account is motivated by the observation that even though we trust
the cloud provider, we do not necessarily trust the path between the provider and the client, e.g., when using
a cafe’s wifi. We demand that the secure attestation be done without employing secure channels.

REMARK. Turns out that the practical classes of read and write functions may not describe the necessary
restrictions by themselves. Thus one can further restrict the adversaries, but again, this is done in the security
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Exp
rma-(L,T )
A,Π :

(pk , sk)← SS
M ← A(pk)
(Ms , s)← Init(M, pk , sk)

g′ ← ARead(·),Tamper(·),MA(pk ,Ms),MV(sk ,s),Update

Ms ← Update(Ms)
Ms ← g′(Ms)

ATamper(·),MA(pk ,Ms),MV(sk ,s)

Output 1 iff MV accepts in the 2nd stage
and at that point the first part of Extract(Ms) is not M .

Oracle Read(f):
if f 6∈ L return ⊥

otherwise return f(Ms)

Oracle Tamper(g):
if g 6∈ T return ⊥
Ms ← g(Ms)

Figure 1: Game defining the security of the memory attestation scheme Π =
(SS, Init, (MA,MV),Update,Extract).

statements. For instance, security of our constructions will tolerate any attacker who can read all but one
“block” of the memory and can over-write any arbitrary part of the memory as long as that part is longer than
some minimum number of bits.

4 Building Blocks

Both our constructions use as a building block a secret sharing scheme, which we now define.

4.1 Refreshable Secret Sharing Scheme

Our schemes rely on an n-out-of-n secret sharing scheme where one needs all of the shares to reconstruct the
secret; any subset of n− 1 shares is independent from the secret. In addition to the standard property, we
also require that it is possible to refresh shares in such a way that all subsets of n− 1 shares, each obtained in
between updates, are independent of the secret. This property is known as proactive secret sharing [21]. In
addition, we will require two extra property we discuss later.

4.1.1 Syntax

We first provide the syntax of the secret sharing schemes that we consider.

Definition 4.1. A refreshable n-out-of-n secret sharing scheme is defined by algorithms (KS,KR,SU) for
sharing and reconstructing a secret, and for refreshing the shares1. For simplicity we assume that the domain
of secrets is {0, 1}κ (where κ is the security parameter). The sharing algorithm KS takes a secret s and
outputs a set (s1, s2, . . . , sn) of shares2. The reconstruction algorithm KR takes as input a set of shares
s1, s2, . . . , sn and returns a secret s. The update algorithm SU takes as input a set of shares (s1, s2, . . . , sn)
and returns the updated set (s′1, s

′
2, . . . , s

′
n), a new re-sharing of the same secret.

1We use the mnemonics KS,KR to indicate that we think of the secret as being some cryptographic key.
2We do not use the set notation for simplicity.
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For correctness we demand that for any s ∈ {0, 1}κ and any (s1, s2, . . . , sn) obtained via (s1, s2, . . . ,
sn)

$← KS(s) it holds that KR((s1, s2, . . . , sn)) = s and KR(SUi((s1, s2, . . . , sn)) = s with proba-
bility 1 for any integer i ≥ 1, where SUi((s1, s2, . . . , sn)) denotes i consecutive invocations of SU as
SU(SU(. . . SU((s1, s2, . . . , sn)) . . .)).

4.1.2 Security

We require that the secret sharing scheme that we use satisfies three security properties.

SECRET PRIVACY. The most basic one, privacy for the secret, is defined via the experiments associated with
adversary A and parameterized with a bit b ∈ {0, 1}, presented in Figure 2. Our definition uses a different
style than that of [21], as the latter targets sharing of algebraic keys for public key operations.

Here we consider an adversary who can adaptively learn at most n− 1 key shares; at this point the shares
are refreshed using the KR algorithm and the adversary has the possibility to learn more shares, and so forth.

Exprssh-b
A,Π :

j ← 0

s, s′
$←A

If s, s′ /∈ {0, 1}κ then abort
If b = 0 then (s1, s2, . . . , sn)

$← KS(s),
otherwise (s1, s2, . . . , sn)

$← KS(s′).
d

$←ASomeSharesb(·)

Return d

Oracle SomeSharesb(i):
if i < 1 or i > n then return ⊥
j ← j + 1
If j = n then

(s1, s2, . . . , sn)
$← SU((s1, s2, . . . , sn))

j ← 0
Return si

Figure 2: Games defining the security of refreshable secret sharing scheme Π = (KS,KR, SU)

We say that (KS,KR,SU) is refreshable secret sharing scheme with secret privacy if for every adversary
A the distributions of its output are statistically close in both experiments.

OBLIVIOUS RECONSTRUCTION. We also require that the scheme enjoys oblivious reconstruction. Intuitively,
this demands that given an adversary who can read and replace some of the shares, it is possible to determine
at any point if the value encoded in the shares is the same as the original value or not.

More formally, fix a secret s ∈ {0, 1}κ and let (s1, s2, . . . , sn)
$← KS(s). Consider an adversary who

can intermitently issue two types of querries. On a query i ∈ {1, . . . , n} the adversary receives si; on a query
(i, v) ∈ ({1, 2, . . . , n} × {0, 1}κ the value of si is set to v.

We require that there exists a “secret changed?” algorithm SC, formalized in Figure 3, which given the
queries made by A and the answers it receives can efficiently decide (with overwhelming probability) if the
value of the secret that is encoded is equal to the value of the original secret.

SHARE UNPREDICTABILITY. This property demands that for any secret (chosen by the adversary) and any
sharing of the secret, following an Update an adversary cannot predict the value of any of the resulting fresh
shares. This intuition is formalized using the game Expunpred

A,Π in Figure 4. We say that Π satisfies share
unpredictability if for any adversary the probability that the experiment returns 1 is nonnegligible.

4.1.3 Secure Construction

Here we present a simple n-out-of-n refreshable secret-sharing scheme with oblivious reconstructability and
argue its security.
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Exprec
A,Π:

s
$←A;L← [ ]

{s1, s2, . . . , sn} ← KS(s)

AShareInfo(·)

b← SC(L)
s′ ← KR(s1, s2, . . . , sn)
return 1 iff (b = 1 and s = s′) or (b = 0 and s 6= s′)

Oracle ShareInfo(·):
On input i ∈ {1, . . . , n}
L← L :: (i, si)

return si
On input (i, v) ∈ {1, 2, . . . , n} × {0, 1}κ
L← L :: (i, v)
si ← v

Figure 3: Game defining the oblivious reconstruction property for secret sharing scheme Π = (KS,KR, SU)

Expunpred
A,Π :

s← {0, 1}κ
ARead(·)

(s1, s2, . . . , sn)← SU(s1, s2, . . . , sn)

ATamper(·)

return s ?
= KS(s1, s2, . . . , sn)

Oracle Read(i)

return si

Oracle Tamper(i, v)

si ← v

Figure 4: Game defining share unpredictability for for secret sharing scheme Π = (KS,KR, SU). We
demand that A quries his Tamper at least once.

Construction 4.2. [Refreshable secret sharing] We define the scheme (KS,KR, SU) as follows.

• KS takes secret s ∈ {0, 1}κ, picks si
$←{0, 1}κ for 1 ≤ i ≤ n−1, computes sn ← s⊕s1⊕ . . .⊕sn−1

• KR on input (s1, . . . , sn) returns s1 ⊕ . . .⊕ sn

• SU takes (s1, . . . , sn) and for 1 ≤ i ≤ n − 1, computes ri
$←{0, 1}κ, si

$← si ⊕ ri. Finally, sn ←
sn ⊕ r1 ⊕ . . .⊕ rn−1, and SU returns (s1, . . . , sn).

It is immediate to see that the above scheme is correct. The following theorem states (information-
theoretic) security.

Theorem 4.3. The scheme of Construction 4.2 is a refreshable secret sharing scheme with secret privacy,
oblivious reconstructability and share unpredictability.

Proof. The proof for the first part and third requirements is trivial and is omitted. To prove the oblivious
reconstruction property, we consider an algorithm SC which works as follows. Given the list L of queries
that the adversary A makes, it checks for the following invariant. If the adversary has replaced a share without
having read it first then SC returns 0 (i.e. the secret has changed). Otherwise, let I be the set of indexes for
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those shares that the adversary has replaced (and which therefore has also read). Let p be ⊕i∈Isi where si is
the original value for share i; let vi be the current value for share i and let v = ⊕i∈Ivi. The reconstruction
algorithm returns 1 if p = v and 0 otherwise. The intuition behind the construction of SC is that if the
adversary overwrites a share without knowing its value then most likely the final value of the secret will be
different from the original one. The same holds true if the adversary changes the value encoded by the shares
in I .

4.2 IND-PCA Secure Encryption

Our second construction uses a (labeled) encryption scheme that satisfies indistinguishability under plaintext-
checking attacks (is IND-PCA) [33]. We recall the primitive and the security definition.

LABELED ENCRYPTION. A labeled encryption scheme is given by algorithms (KeyGen, Enc,Dec) where
KeyGen is like in a standard asymmetric encryption scheme but the remaining algorithms take an additional
input, a label. We write Encl(pk, x) for encrypting plaintext x with respect to label l under public key pk and
write Decl(sk, c) for decrypting ciphertext c with respect to label l using secret key sk. Correctness of such
schemes demands that for any pk, sk output by the key generation algorithm, and label l and any plaintext x
it holds that Decl(sk, Encl(pk, x)) = x.

INDISTINGUISHABILITY UNDER PLAINTEXT-CHECKING ATTACKS. Roughly, such schemes guarantee
security against adversaries who can test if a ciphertext encodes a certain plaintext. This notion is formalized
below.

Definition 4.4. Let Π = (KeyGen, Enc,Dec) be an asymmetric encryption scheme and consider the
experiment in Figure 5. We say that Π satisfies indistinguishability of ciphertexts under plaintext-checking
attacks (ind-pca) if for any adversary efficient adversary A its advantage AdvOPCA

A,Π (1κ) defined by:

Pr
[
Exp

ind-pca-1
A,Π (1κ) = 1

]
− Pr

[
Exp

ind-pca-0
A,Π (1κ) = 1

]
is negligible.

Exp
ind-pca-b
A,Π :

(pk , sk)← KeyGen
(l∗, x0, x1)← A(pk)
C∗ ← Encl∗(pk, xb)
b′ ← AOPCA(·,·)(C∗)
Return b′

Oracle OPCA(x, (l, c))):
x′ ← Decl∗(sk, c)
if x = x′ return 1
else return 0

Figure 5: Game defining indistinguishability under plaintext-checking attacks for the security of labeled
encryption scheme Π = (KeyGen, Enc,Dec).

IND-PCA SCHEME. One concrete scheme which satisfies ind-pca security is the "Short" Cramer-Shoup
(SCS) scheme proposed and analyzed by Abdalla et al. [1] which we recall bellow.

Construction 4.5 (Short Cramer-Shoup (SCS)). The algorithms of the scheme use a collision resistant hash
function H and are as follows.
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• The key-generation, on security parameter κ, outputs a group G together with generators g, h (for secu-
rity parameter κ). It selects a secret key sk = (x, a, b, a′, b′) at random from [|G|]. The corresponding
public key is (c, d, h) = (h = gx, c = gahb, d = ga

′
hb
′
).

• The encryption of m with label l under public key (c, d, h) is obtained by sampling random coins
r ∈ [|G|] and computing C = (u = gr, e = hr ·m, v = (c · dα)r), where α = H(l, u, e).

• To decrypt using secret key sk = (x, a, b, a′, b′) the ciphertext C = (u, e, v) for label l one computes
m ← e/ux and checks that v = ua+αa′(e/m)b+αb

′
, where α = H(l, u, e). If the equality succeeds

the decryption outputs m, otherwise it outputs ⊥.

The following result about ind-pca security of the SCS scheme is by Abdalla et al. [1].

Theorem 4.6. Under the DDH assumption on G and assuming that H is a target collision resistant hash
function, the above scheme is indistinguishable under plaitext checking attacks.

5 RMA Constructions

We are now ready to present two constructions of an RMA protocol for a limited, but quite practical class
of attacks. The first construction combines a secret sharing scheme with a hash function, and does not rely
public key cryptography. The scheme is quite efficient and is secure in the random oracle model; the second
construction uses a public key encryption scheme secure under plaintext checking attacks.

Both construction share the same underlying idea. A secret is shared and the resulting shares are placed
in the memory. In our construction we assume that shares are at equal distance – other options are possible
provided that this placement ensures that tampering with the memory (using the tampering functions provided
to the RMA adversary) does tamper with these protective shares. The attestation protocol is challenge
response: the verifier selects a random nonce and sends it to the prover. Upon receiving the nonce, the prover
collects the shares, reconstructs the secret and uses it in a cryptographic operation; the verifier then confirms
that the secret used is the same that he holds.

In the first scheme, which we present below, the prover hashes the secret together with the nonce and
sends it to the verifier who checks consistency with his locally stored secret by and the nonce he has sent.

5.1 Hash-based RMA

Construction 5.1. [Hash-based RMA.] Fix a a refreshable n-out-of-n secret sharing scheme SSh =
(KS,KR, SU). Let Divide be any function that on input a bitstring of size greater than n breaks M into n
consecutive substrings (M1, . . . ,Mn). Let H : {0, 1}∗ → {0, 1}h be a hash function. These scheme does
not use asymmetric keys for the parties so below we omit them from the description of the algorithms.

We define the RMA protocol hash2rma(H) by the algorithms (SS, Init, (MA,MV),Update, Extract)
below:

• SS(1k) returns ε.

• Init on input M does

– s
$←{0, 1}κ

– (s1, . . . , sn)← KS(n, s)
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– (M1, . . . ,Mn)← Divide(M)

– Return (M1‖s1‖ . . . ‖Mn‖sn, s).

• Extract on input Ms parses Ms as M1‖s1‖ . . . ‖Mn‖sn, runs s← KR(s1, . . . , sn) and returns (M, s).

• MV on input s picks l $←{0, 1}l(κ) and sends l to MA

• MA on input Ms gets l from MV, calculates (M, s)← Extract(Ms), and sends back t = H(s||l).

• MV gets t from MA returns the result of the comparison t = H(s||l).

• Update on input Ms Ms as M1‖s1‖ . . . ‖Mn‖sn and returns SU(s1, . . . , sn).

The following theorem states the security guarantees the above construction provides.

Theorem 5.2. Let SSh = (KS,KR, SU) be an n-out-of-n refreshable secret sharing scheme. Let Divide
be any function that on input a bitstring M , which for simplicity we assume is nm bits, breaks M into n
consecutive substrings (M1, . . . ,Mn). Let hash2rma(H) = (SS, Init, (MA,MV), Update, Extract) be the
hash-based RMA protocol as per Construction 5.1.

Let L be the class of functions that on inputs integers a, b such that 1 ≤ a < b ≤ m, returns Ms [a . . . b].
Let T be the class of functions that on inputs an index 1 ≤ i ≤ n and bitstring c of size m+ k returns Ms

with its ith block changed to c.
Let us call the adversary restricted if during all its queries to Read and Tamper oracles between the

Update queries, there is a substring of Ms of length at least n, which has not been read, i.e., not returned by
Read.

Then if SSh has secret privacy, oblivious reconstructability and share unpredictability then hash2rma(H)
is secure wrt L and T and the adversaries restricted as above, in the random oracle model.

We remark that while our protocol descriptions and treatment assume that the shares are embedded into
the memory over equal intervals for simplicity, our implementations use blocks of increasing size, for systems
functionality purposes. Our security analyses still apply though. This is because it is clear how the read and
tamper queries correspond to reading and tampering the shares, and in addition, any tampering query to a
memory part that has not been read must change the secret.

We justify the restrictions in the security statement from the systems point of view. We require that an
attacker does not read the whole memory. This is reasonable, as reading incorrect memory address results in
segmentation fault (e.g., termination of the process). Given that 64-bit address of modern processors, it’s
unlikely that attackers infer the whole memory space.

Since our threat model is not arbitrary memory write: rather a consecutive memory overrun like buffer
overflow, it is natural to assume in this threat model an attacker needs to over-write the boundary between the
blocks.

Given that the memory randomization is a common defense (outside of our model though), attackers
should correctly identify the location of shares to overwrite (which is randomized), hence we do not model
completely arbitrary writes.

Proof. Our proofs follow the “game hopping” technique [11, 39] by considering a sequence of games
associated with an adversary.

In the description of the games below we write s0 for the secret that is selected in the initialization phase
(i.e. the secret whose shares are placed in the memory). The proof relies on the observation that for the class

14



of RMA adversaries that we consider, we can translate any query of an adversary towards its Read oracle to a
query reading a share (of the secret) from the memory; similarly we translate each query of the adversary to
its Tamper oracle to a query overwriting a share of the secret with some constant that the adversary chooses.
Key to our proof is that the restriction we place on a valid RMA adversary implies that at any point during
the execution there is at least one share which is not red by the adversary and which is in fact unpredictable.
In turn, this implies that the secret itself is unpredictable and therefore the adversary should not be able to
convince the verifier that it “knows" it. The difficulty in the proof is to argue the unpredictability of the secret
as the adversary can intertwine reading, writing, and updating the shares.

The games that we use are as follows.

• Game 0. This game is the same as Exp
rma-(L,T )
A,hash2rma(H).

• Game 1. In this game we only add some bookkeeping information useful for later simulations. We
maintain the list O of operations (read and write actions) to memory shares that correspond to the
queries that the attacker makes to its Read,Tamper oracles (per the assumption stated above).

Notice that if the underlying secret sharing scheme has the oblivious reconstruction property then
applying the algorithm SC (ensured by the oblivious reconstruction property) to the list O indicates, at
any point, if the queries of the adversary have modified the secret encoded by the shares in the memory.
In addition, by applying SC to any contiguous sublist of O[i, . . . , j] indicates if the secret encoded
by the shares right before entry i is added to O is the same or not as the secret encoded by the shares,
immediately following the addition of j’th entry to O.

Since in this game we only add the additional bookkeeping without affecting the output, the outputs of
Game 0 and Game 1 are indistinguishable.

• Game 2. In this game, we keep track (by using the list O) of the queries with which the adversary
interacts with the shares in the memory. If at any point the adversary tampers with a share that it did
not read we set the MV oracle to reject all queries in the second phase.

We claim that an adversary that wins in Game 1 also wins in Game 2: an adversary would observe a
difference between the games if it tampers with some share without reading it and yet it manages to
make oracle MV accept (in the second phase) in Game 1 – by construction the oracle would reject in
Game 2. Since the second phase of the game immediately follows an update of the shares, the only
way for the adversary to win is tamper with the memory (which guarantees that he tampers with at
least a share that did not read). This breaks the share unpredictability property of the underlying secret
sharing scheme.

• Game 3. This game is like Game 2, except that we modify the behavior of oracle MA when queried
at a moment when the secret encoded in the shares is different from the original one. More precisely,
whenever this is the case, the MA oracle will use a “fake" secret f i selected independently at random
from {0, 1}κ; we could simply select such a secret as soon as we detect that the underlying secret has
changed. However, the simulation needs to take care of the situation where MA is queried twice with
the same value at moments when the underlying secret is the same (but different from the original
value). We proceed as follows.

We will associate to each entry in the list O (which corresponds to a change in the underlying secret) a
new secret as follows. Whenever the j’th entry is added to O (the adversary may attempt to tamper
with the secret encoded in the shares) we check weather SC(O[1, . . . , j]) = 1; if this is the case we
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set f j = s0 (which indicates that at this point the underlying secret had not changed). Otherwise we
determine if O([i, . . . , j]) = 1 for some 1 < i < j; if this is the case we set f j = f i, otherwise we
select a fresh secret f j $←{0, 1}κ. The game maintains all of these values; at any point, we let f∗ be
the fake secret associated to the latest entry in O. It is useful for the discussion below to also introduce
notation for the value of the secret that is encoded by the shares at the different points in execution. We
therefore write rj for (the real) value that is encoded by the shares when entry j is made on list O and,
similarly write r∗ for its value at the current point in the execution.

The execution of the game uses these secrets as follows. Whenever the adversary issues query l to
oracle MA we check if the secret has not changed (i.e. if SC(O) = 1). If this is the case MA works
normally (i.e. uses s0); otherwise instead of reconstructing the current value r∗ of the underlying secret
we let MA use s∗. The rest of the game is unchanged.

We claim that any RMA adversary wins Game 2 about as often as it wins Game 3. The intuition is
that the difference between the games consists in how the oracles MA answer their queries: in Game
1 the oracles use the value r∗ whereas in Game 2 the oracles use the value f∗. The only way for
the adversary to notice the difference in the simulation is to query the random oracle on some value
(ri||l) – however, an adversary that issues such a query breaks the secrecy/share unpredictability of the
underlying shares (as at lest one of the secret shares is hidden from its view).

• Game 4. Finally in this game, we modify oracles MA and MV to use a freshly selected secret s1 (secret
s0 is still used in the initialization phase). Technically, we modify the game above as follows: we select
a fresh secret s1 which we associate to all positions i in O for which SC(O[1, . . . , i]) = 1. Whenever
the adversary queries MA we let the answer be H(s∗||l). Oracle MV always uses s1 for it checks.

Notice that the difference between Game 3 and Game 4 is the relation between the value that MA and
MV use as initial secret and the shares that are placed in the memory: in the first game the shares
and the secret are related whereas in the second game they are not. We show that if an adversary
distinguishes between the two games then the adversary breaks secrecy property of the secret sharing
scheme.

We argue that in Game 4 the adversary has negligible advantage to win. The restrictions on the adversary
demands that the tamper function that it sends before the last stage changes one unpredictable share.
In turn, this implies that in the second phase MA will use a secret independent from s1 (which is the
secret held by the verifier). Since the verifier produces (with overwhelming) probability a nonce that is
distinct from those used in phase 1 and the view of the advesary is independent of s1 (unless it queries
H(s1||l) to its oracle) we conclude that the RMA adversary does not win in Game 4, except with
negligible probability.

To conclude the proof, we claim that by the game-hopping technique, the adversary can win in the
original game only with negligible probability, under the assumptions stated in the theorem. And hence
the theorem statement follows.

5.2 Encryption-based RMA

The construction is based on a similar idea as that underlying the hash-based RMA protocol above. The
difference is in the attestation and verification algorithms. Instead of the hash, the prover computes and sends
the encryption of the secret currently encoded in the memory with the nonce sent by the verifier as label.
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Construction 5.3. [Encryption-based RMA.] Let SSh = (KS,KR,SU) and Divide be as in Construc-
tion 5.1. Let Π = (KeyGen, Enc,Dec) be a labeled asymmetric encryption scheme. The RMA scheme
enc2rma(Π) is defined by

• SS(1κ) runs (pk , sk)
$←KeyGen(1κ) and returns (pk , sk)

• Init is as in Construction 5.1.

• Extract on input Ms parses Ms as M1‖s1‖ . . . ‖Mn‖sn, runs s← KR(s1, . . . , sn) and returns (M, s).

• MV on input s picks l $←{0, 1}l(κ) and sends l to MA

• MA on input Ms gets l from MV and does

– (M, s1, . . . , sn)← Extract(Ms),

– C
$←Encl(s) and

– send C to the verifier.

• MV on input C calculates s′ ← Decl(C) and returns the result of the comparison s ?
= s′.

• The Update algorithm is as in Construction 5.1.

The intuition behind security of the construction is as follows. The prover sends the encrypted secret
(for some label chosen by the verifier) to the verifier; the goal of the adversary is to (eventually) create
a new ciphertext of the same secret under a new label received from the verifier. If this is possible, a
plaintext-checking oracle would allow to distinguish such an encryption from the encryption of a different
secret. The following proposition establishes the security of the above construction.

Theorem 5.4. If SSh is a refreshable secret sharing scheme with secret privacy, oblivious reconstructability
and share unpredictability and Π = (KeyGen, Enc,Dec) is an ind-pca secure then enc2rma(Π) defined by
Construction 5.3 is a secure RMA scheme with respect to L, T and any efficient but restricted adversary
defined in Theorem 5.2.

The proof of the theorem shares many of the steps we the proof of Theorem 5.2. In particular, Games
1-4 are obtained in a similar manner. We need to adapt the argument that concerns the gap between Game
3 and Game 4. For the encryption-based scheme we note that, informally, the difference between the two
games is that the encryption and verification algorithms use secrets s0 (in Game 3) and s1 (in Game 4); the
shares used in the initialization procedure are, in both games, shares of s0. Therefore, an adversary that can
differentiate between the two games can actually distinguish between ciphertexts of s0 and ciphertexts of s1

We turn this intuition into an adversary who can break ind-pca security of the underlying encryption scheme.
The reduction selects two secrets s0 and s1 and simulates the RMA scheme to an adversary (as in Game 4).
In particular we use the left-right encryption oracle to simulate the behaviour of the MA oracle, and use the
plaintext checking oracle to simulate the behavior of MV. The distance between Games 3 and 4 is therefore
the advantage of an adversary against ind-pca security.

OPTIMIZATION. The above theorem establishes that we can instantiate an RMA scheme using the SCS
scheme that we presented in Section 4. It turns out that we can further optimize the communication complexity
of that protocol (where each interaction requires the prover to send three group elements) by observing that
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the verifier already has the plaintext that the ciphertext it receives should contain. In this case, the prover
does not have to send the second component of the ciphertext (as this component can actually be recomputed
by the verifier using its secret key). For completeness, we give below the relevant algorithms of the optimized
scheme.

Construction 5.5. [SCS-based RMA.]

• SS(1κ) obtains G and (h, c, d), (x, a, b, a′, b′) by running KeyGenSCS(1κ).

• MV on input s picks l $←{0, 1}l(κ) and sends l to MA

• MA on input Ms and (h, c, d) gets l from MV, obtains the shares of the secret via (M, s1, . . . , sn)←
Extract(Ms), and samples random coins r ∈ [|G|] and computes (u = gr, e = hr ·m, v = (c · dα)r),
where α = H(l, u, e). It sends (u, v) to the server.

• MV on input its secret key (x, a, b, a′, b′) the challenge l and secret s operates as follows on input
(u, v) from the prover and returns the result of the comparison v = ua+αa′ · (ux)b+αb

′
, where

α = H(l, u, ux · s).

The following security statement follows directly from Theorem 5.6 and Theorem 4.6.

Theorem 5.6. If SSh is a refreshable secret sharing scheme with secret privacy, oblivious reconstructability
and share unpredictability. and Π = (KeyGen, Enc,Dec) is as per Construction 4.5 then the RMA protocol
defined by Construction 5.5 is a secure RMA scheme with respect to L, T and any efficient but restricted
adversary defined in Theorem 5.2, assuming the DDH problem is hard in the underlying group and the hash
is target collision-resistant.

6 Implementation

Our prototype can seamlessly enable the remote memory attestation in any applications that are using standard
libraries. At runtime, the prototype implementation interposes all memory allocations (malloc()) and
deallocations (free()) by incorporating LD_PRELOAD when the application starts executing. Before the
application runs, our custom runtime pre-allocates memory regions with varying sizes, and carefully insert
key shares between the memory objects.

In specific, end users needs to perform all these procedures by using a simple wrapper program, called
prover, that we provide. When requested, the prover launches the program, and then inserts our custom
library for memory allocations of the target application. Before the program starts, the prover pre-allocates a
list of chuncked memory, starting from 8 bytes object to a few mega bytes (128 MB by default) incrementally.
In our current prototype, we pre-allocate N blocks (configurable, 10 by default) per size (e.g., N 8-byte
blocks up to 128 MB).

For attestation, the prover initiates the secrets with the public key provided, performs the memory attention
of the program it launched, and communicates with the remote verifier. To access the memory of a remote
program, it attaches to the program via ptrace interface in UNIX-like operating system, and runs the
protocol.
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Component Lines of code

Verifier 298 lines of C
Prover 638 lines of C
Memory allocator 343 lines of C

Total 1,279 lines of code

Figure 6: The complexity of RMA in terms of lines of code of each components, including verifier, launcher
and memory allocator.

7 Evaluation

We evaluate a prototype of RMA in three aspects: 1) runtime overheads of computation-oriented tasks such
as SPEC benchmark; 2) worst case overheads (e.g., launching an application) that end-user might be facing
when using RMA; 3) break-down of performance overheads and data transferred on the course of remote
attestation by using our prototype. We performed all experiments with the prototype implementation of the
encryption-based RMA. As we mentioned in the Introduction, this protocol is not as efficient (in terms of
crypto operations) as the hash-based one, but it provides stronger security (no reliance on the random oracle
model), and performs equally well in the presense of system-dependent overheads.

7.1 Micro-benchmark

We evaluate a prototype of RMA by running the standard SPEC CPU2006 integer benchmark suite. All
benchmarks were run on Intel Xeon CPU E7-4820 @2.00GHz machine with 128 GB RAM, and the baseline
benchmark ran with standard libraries provided by Ubuntu 15.04 with Linux 3.19.0-16. As shown in Table 1,
RMA incurs negligible performance overheads: 3.1% on average, ranging from 0.0% to 4.8% depending on a
SEPC benchmark program. During the experiments, we found out that the significant part of performance
overheads comes from the implementation of the custom memory allocator and the side-effects of memory
fragmentation, thereby diluting the overheads related to crypto operations. We believe that different types
of applications requiring frequent validation or updates of share keys might need better optimization of
crypto-related software stack. It is worth noting that our prototype never focuses on optimization in any sort
(e.g., using a coarse-grained, global lock to support multi-threading) and the overall performance can be
dramatically improved if necessary.

7.2 Macro-benchmark

To measure performance overhands that end-user might be encountering when using RMA, we construct
a macro-benchmark with three applications for four different tasks; launching a web browser (Firefox), an
email client (Thunderbird), compressing and decompressing files (Tar). All experiment is conducted in a
laptop running Ubuntu 12.04 with standard glibc library (Ubuntu/Linaro 4.6.3-1ubuntu5), and we measured
each benchmark ten times (see Table 2). Note that launching application is the worst-case scenario to RMA
because it has to allocate memory space at program’s startup and initiate all key shares before executing the
program. According to our benchmark, it incurs acceptable performance overheads even in the worst-cast
construction, but we believe the latency that users actually feel is minimal: 0.023s in Firefox and 0.199s in
Thunderbird.
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Programs Baseline (s) RMA (s) Overhead (%)

400.perlbench 545 566 3.9%
401.bzip2 749 770 2.8%
403.gcc 521 537 3.1%
429.mcf 385 395 2.6%
445.gobmk 691 691 0.0%
456.hmmer 638 665 4.2%
458.sjeng 779 805 3.3%
462.libquantu 1,453 1,514 4.2%
464.h264ref 917 950 3.6%
471.omnetpp 540 547 1.3%
473.astar 606 635 4.8%
483.xalancbmk 361 373 3.3%

Table 1: Runtime overheads of SPEC benchmark programs with RMA. While our memory allocator causes
memory fragmentation, the simplicity of the implementation incurs negligible performance overheads to
SPEC benchmark programs, from 0.0% in gobmk up to 4.8% in astar.

Programs Baseline (s) RMA (s) Overhead (%) Description

Firefox 1.4283 1.4511 1.6% Launch Firefox with an empty page
Thunderbird 1.2467 1.4455 15.9% Launch Thunderbird
Tar (compress) 0.7857 0.7635 -2.8% Compress 74 MB of data with Tar
Tar (decompress) 0.7397 0.8169 10.4% Decompress 51 MB of the compressed data with Tar

Table 2: Average overheads of popular applications with RMA. Launching application is the worst case
metric to RMA because it includes the overheads of initiating key shares although it is one time cost. The
overhead of memory attestation varies depending on workloads, from -2.8% when compressing files to 15.9%
when launching an email client.

7.3 Performance Break-down

We also measured how long does it take to proceed each stage of the RMA protocol with our prototype
implementation. We denoted the amount of data that need to be transferred as well. In short, it is feasible to
implement the proposed RMA protocol in practice: our unoptimized system incurs negligible performance
overheads (see Table 3) and the amount of messages between the prover and the verifier is minimal (e.g.,
12 bytes up to 396 bytes). According to our evaluation, we believe our RMA protocol can be utilized in an
efficient manner in practice.

8 Conclusions

We initiated formal treatment of the problem of remotely testing if a memory (such as heap) has been infected
with a malicious code, without relying on trusted hardware. Our work combines solid theoretical foundations
of provable security with the systems expertise of the application. Towards this goal, we study the practical
threats and formalize the security definition for remote memory attestation protocols. Our security definition
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Seq Role Task Description Data Time

Verifier Generating public key and secret key - 0.291s
Prover Generating xor-ed of all shared key (482 shares on 128 MB memory) - 0.034s
Verifier INIT is sending to wrapper to get the xor-ed of all shares. - 0.4ms

1 Prover Sending xor-ed of all shared keys. 16 bytes 0.2ms
Verifier Receiving 16 bytes from the wrapper. - 0.5ms
Verifier Sending a challenge to wrapper. - 0.016ms

2 Prover Receiving a message from verifier 12 bytes 0.012ms
Prover Encrypting message - 0.409s

3 Prover Sending cipher to verifier 384-396 bytes 0.007s
4 Verifier Receiving cipher from the wrapper 384-396 bytes 0.357s

Verifier Decrypting cipher - 0.234s

Table 3: Time and data transferred when performing remote memory attestation of an application having
128 MB memory, which includes 482 number of shares.

is very general and can be easily customized for various settings classes of attacks. We propose two RMA
protocol constructions to prevent limited, but still practical classes of attacks, when the adversary overwrites
a consecutive region of memory to compromise a control-sensitive data structure. The first protocol uses a
hash function and a simple XOR-based secret sharing scheme. We prove its security in the random oracle
model. For stronger security guarantees in the standard model, we propose a protocol based on a recently
proposed public key encryption scheme, and the same XOR-based secret sharing scheme. We prove security
of this construction under the standard computational assumptions. We demonstrate feasibility of our design
with implementation results.
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