
Indistinguishability Obfuscation from

Functional Encryption for Simple Functions

Prabhanjan Ananth∗ Abhishek Jain† Amit Sahai ‡

Abstract

We show how to construct indistinguishability obfuscation (iO) for circuits from any
non-compact functional encryption (FE) scheme with sub-exponential security against un-
bounded collusions. We accomplish this by giving a generic transformation from any such
FE scheme into a compact FE scheme. By composing this with the transformation from
sub-exponentially secure compact FE to iO (Ananth and Jain [CRYPTO’15], Bitansky and
Vaikuntanathan [FOCS’15]), we obtain our main result.

Our result provides a new pathway to iO.
We use our technique to identify a simple function family for FE that suffices for our

general result. We show that the function family Fsimple is complete, where every fsimple ∈
Fsimple consists of three evaluations of a Weak PRF followed by finite operations. We believe
that this may be useful for realizing iO from weaker assumptions in the future.

∗Center for Encrypted Functionalities and Department of Computer Science, UCLA. prabhanjan@cs.ucla.edu
This work was partially supported by grant #360584 from the Simons Foundation.
†Department of Computer Science, John Hopkins University. abhishek@cs.jhu.edu. Research supported in

part from a DARPA/ARL SAFEWARE award and NSF CNS-1414023.
‡Center for Encrypted Functionalities and Department of Computer Science, UCLA. sahai@cs.ucla.edu.

Research supported in part from a DARPA/ONR PROCEED award, a DARPA/ARL SAFEWARE award, NSF
Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award,
a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
This material is based upon work supported by the Defense Advanced Research Projects Agency through the
U.S. Office of Naval Research under Contract N00014-11-1-0389. The views expressed are those of the author
and do not reflect the official policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government.

0

1 Introduction

Program obfuscation [Had00, BGI+01] concerns with the problem of making a computer pro-
gram “unintelligible” while still preserving its functionality. While general-purpose program
obfuscation remained an elusive goal for several decades, Garg et al [GGH+13b] changed this
picture by providing the first candidate construction of indistinguishability obfuscation (iO).
Since then, iO has found tremendous appeal in cryptography by enabling several advanced
cryptographic goals such as deniable encryption [SW14], functional encryption [GGH+13b],
round-optimal secure computation [GGHR14], digital watermarking [NW15, CHV15], time-lock
puzzles [BGJ+15], and more.

While the research direction of using iO to build other cryptographic primitives has met
much success, building iO itself from standard cryptographic assumptions has so far proven to
be notoriously difficult. The security of candidate iO constructions in the works of [GGH+13b,
BGK+14, BR14, AGIS14, Zim15, SZ14, AB15] is only proven in generic models and lacks a
reduction in the standard model. The recent works of Pass et al. [PST14] and Gentry et al.
[GLSW15] provide the first standard model reductions based on different assumption on multi-
linear maps (see [PST14] and [GLSW15] for the description of their respective assumptions).

However, all of these candidates rely on the same core cryptographic primitive, namely,
multilinear maps [GGH13a, CLT13, GGH15, CLT15]. This situation is unsatisfactory in light
of several recent attacks on [CHL+15, GHMS14, BWZ14, CLT14, CGH+15] on most multilinear
maps candidates known so far.1

Very recently, the independent works of Ananth and Jain [AJ15] and Bitansky and Vaikun-
tanathan [BV15a] presented a new direction for building iO. They give a transformation via
functional encryption [SW05, BSW11], specifically transforming compact public-key functional
encryption (FE) for NC1 to iO for P/Poly. Very roughly, in a compact FE scheme, the running
time of the encryption algorithm must only have a sublinear dependence on the size complexity of
functions from the function family supported by the scheme. However, presently, the only known
FE constructions that achieve this compactness property are based on iO [GGH+13b, Wat14].
As such, this approach, so far, has not yielded any new iO candidates.

1.1 This Work

In this work, we continue to explore this line of research. Our vision is to progressively reduce
compact FE to weaker primitives, eventually culminating in its realization from standard cryp-
tographic assumptions. While we do not know how to fully realize this vision yet, we make
some progress in this work.

We focus on weakening the requirements on FE for building iO. In particular, we consider
the following two goals: (a) While [AJ15, BV15a] require FE for NC1 to build iO, we set out to
identify the simplest, concrete function family for FE that suffices for building iO. (b) Further,
we aim to remove the “compactness” requirement from FE for realizing iO. We now proceed
to describe our results.

iO from FE for “simple” functions. We consider the function family Fsimple where every
fsimple ∈ Fsimple corresponds to three weak PRF evaluations followed by some simple, finite
operations. See Figure 1 for an illustration of fsimple and Figure 3 in Section 4 for a formal
description.

Our main result is that collusion-resistant FE for Fsimple is sufficient to obtain iO for P/Poly.

1To further emphasize this point, we remark that while [GLSW15] provides a reduction to a concrete assump-
tion on multilinear maps, no instantiation of multilinear maps where their assumption can be conjectured to hold
is presently known.

1

Figure 1 A figure illustrating the functionalities for which keys are needed to obtain iO. The circles represent
the constants found in the function key, that are fed to the components in boxes. The box labeled “Finite”
represents a finite (constant) set of operations.

Theorem 1 (Informal) Public-key functional encryption for Fsimple with sub-exponential in-
distinguishability security in the selective model against unbounded collusions implies indistin-
guishability obfuscation for P/Poly.

We can, in fact, further simplify Fsimple such that each function in Fsimple corresponds to a
“local” evaluation of a polynomial-stretch PRG followed by some simple, finite operations.2

We stress that Theorem 1 holds even if the FE scheme is not compact. Therefore, in
addition to simplifying the class of functions for FE required to obtain iO, we also remove the
compactness requirement from FE.

Compact FE from Non-Compact Collusion-Resistant FE. The key step underlying the
above result is an unconditional transformation from any (not necessarily compact) public-key
FE for NC1 that is secure against unbounded collusions (w.r.t. selective indistinguishability
security definition of [BSW11]) to a selective-secure compact public-key FE for NC1.3 The
resulting scheme also inherits security against unbounded collusions. While our focus is on
the public-key setting, our transformation also works in the secret-key setting. That is, if we
start with a secret-key collusion-resistant FE scheme, then we obtain a secret-key compact FE
scheme.

Our transformation relies on a specific form of randomized encodings [IK00, AIK04, AIK06]
that we refer to as program-decomposable randomized encodings. By instantiating our trans-
formation with a variant of the randomized encoding of Kilian [Kil88] (which we show satisfies
the program-decomposability property) and then combining it with the compact FE to iO
transformation of [AJ15, BV15a], we obtain Theorem 1.

Bootstrapping iO. As an application of Theorem 1, we prove a bootstrapping theorem for
iO. Specifically, we define a different function family F , similar at a high level to Fsimple. We
then show that iO for F implies iO for P/Poly. (See Appendix A for a description of F .)

Theorem 2 (Informal) Indistinguishability obfuscation for F with sub-exponential indistin-
guishability security implies indistinguishability obfuscation for P/Poly.

Previously, [GIS+10, BCG+11, App14] established bootstrapping theorems for virtual black-
box obfuscation [BGI+01]. The work of [GGH+13b] gave the first bootstrapping theorem for

2This approach only yields compact FE with bounded collusion-resistance, but it suffices for constructing iO.
See Remark 4 in Section 3 for details.

3There exist general bootstrapping theorems that transform any compact FE scheme for NC1 into a compact
FE scheme that supports circuits in P/Poly [GVW12, ABSV15]. Hence for simplicity, we only focus on NC1.

2

iO, reducing iO for general functions to iO for NC1 assuming fully-homomorphic encryption.
Subsequently, Canetti et al [CLTV15] showed a similar bootstrapping theorem assuming sub-
exponentially secure puncturable PRFs computable in NC1. Recently, Bitansky et al. [BGL+15]
established the first bootstrapping theorem for iO where obfuscating a circuit of size k allows
the obfuscation of all circuits of size any polynomial in k. Our bootstrapping theorem can be
viewed as an alternative proof to their result (in particular, our functionality F is different from
their work).

Concurrent Work. In a concurrent and independent work, [BV15b]4 show how to build iO
from the GGHZ assumption [GGHZ14] on composite order multilinear maps (see [GGHZ14] for
a formal description of their assumption). They obtain this result via a similar approach as
in our work, namely, they show a transformation from non-compact collusion-resistant FE to
compact FE.

While our focus is on simplifying the requirements on FE for building iO, we note that we
can also use Theorem 1 to obtain this result by instantiating the non-compact FE scheme with
the FE scheme of Garg et al [GGHZ14].

Other Related Work. Initial definitional works on FE [BSW11, O’N10] primarily considered
the fully collusion-resistant setting where the adversary can obtain any polynomial number of
decryption keys. However, FE for general circuits was also considered and achieved in the setting
where the adversary can only obtain a single decryption key [SS10]. This was later generalized to
the bounded-key setting [GVW12]. Both these schemes achieved non-compact FE. Goldwasser
et al. [GKP+13] made partial progress towards realizing the goal of making such FE schemes
compact. They achieve a single-key FE scheme for single-bit-output functions, where the size
of the ciphertexts depend only on the depth of the functions. Note however, that while none
of these schemes require iO or multilinear maps, we do not currently know how to achieve iO
starting with these works, due to the limitations discussed in this paragraph.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We assume that the reader is
familiar with basic cryptographic concepts.

Given a PPT sampling algorithm A, we use x
$←− A to denote that x is the output of A when

the randomness is sampled from the uniform distribution.

2.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation (iO) that was defined by Barak et
al. [BGI+01].

Definition 1 (Indistinguishability Obfuscator (iO)) A uniform PPT algorithm iO is called
an indistinguishability obfuscator for a circuit class {Cλ}, where Cλ consists of circuits C of the
form C : {0, 1}λ → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}λ (i.e., it belongs
to the input space of C), we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

4This refers to a revision of their ePrint paper.

3

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x, we have:∣∣∣Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

2.2 Public-Key Functional Encryption

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ are sets of
size, functions in λ. Let F = {Fλ}λ∈N be an ensemble where each Fλ is a finite collection of
functions. Each function f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.

A public-key functional encryption (FE) scheme FE for F consists of four algorithms (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec):

• Setup. FE.Setup(1λ) is a PPT algorithm that takes as input a security parameter λ and
outputs a public key, (master) secret key pair (FE.pk,FE.msk).

• Key Generation. FE.KeyGen(FE.msk, f) is a PPT algorithm that takes as input a master
secret key FE.msk and a function f ∈ Fλ and outputs a functional key FE.skf .

• Encryption. FE.Enc(FE.pk, x) is a PPT algorithm that takes as input a public key FE.pk
and a message x ∈ Xλ and outputs a ciphertext ct.

• Decryption. FE.Dec(FE.skf , ct) is a deterministic algorithm that takes as input a func-
tional key FE.skf and a ciphertext ct and outputs a string y ∈ Yλ.

Correctness. There exists a negligible function negl(·) such that for all sufficiently large
λ ∈ N, for every message x ∈ Xλ, and for every function f ∈ Fλ,

Pr
[
f(m)← FE.Dec(FE.KeyGen(FE.msk, f),FE.Enc(FE.pk,m))

]
≥ 1− negl(λ)

where (FE.pk,FE.msk) ← FE.Setup(1λ), and the probability is taken over the random coins of
all algorithms.

Selective Security. We recall indistinguishability-based selective security for FE. This secu-
rity notion is modeled as a game between the challenger and the adversary where the adversary
can request functional keys and ciphertexts from the challenger. Specifically, the adversary
can submit function queries f to the challenger and receive corresponding functional keys. It
can also submit a message query of the form (x0, x1) and in response, the challenger encrypts
message xb and sends the ciphertext back to the adversary. The adversary wins the game if she
can guess b with probability significantly greater than 1/2 and if f(x0) = f(x1) for all function
queries f . The only constraint here is that the adversary has to declare the challenge messages
at the beginning of the game itself.

Definition 2 (IND-secure FE) A public-key functional encryption scheme FE = (FE.Setup,
FE.KeyGen,FE.Enc,FE.Dec) for a function family F is said to be qkey-selectively secure if for
any PPT adversary A, for all sufficiently large λ ∈ N, the advantage of A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined as follows:

4

1. Challenge message query: A submits a message pair (x0, x1) to C.

2. The challenger C computes (FE.pk,FE.msk) ← FE.Setup(1λ) and sends FE.pk to the ad-
versary. It then computes ct = FE.Enc(FE.msk, xb) and sends ct to A.

3. Function queries: The following is repeated up to qkey times: A submits a function query
f ∈ Fλ to C. The challenger C computes the function key FE.skf ← FE.KeyGen(FE.msk, f)
and sends it to A.

4. If there exists a function query f such that f(x0) 6= f(x1), then the output of the ex-
periment is ⊥. Otherwise, the output of the experiment is b′, where b′ is the output of
A.

Remark 1 (Selective-security against unbounded collusions) One can consider a strength-
ening of the above definition where the adversary is allowed to make any unbounded polynomial
number of function queries. We refer to this as selective security against unbounded collusions.

2.2.1 Compactness

We now recall the notion of compact FE from [AJ15]. In a compact FE scheme, the running
time of the encryption algorithm only depends on the security parameter and the input message
length. In particular, it is independent of the complexity of the function family supported by
the FE scheme.

Definition 3 (Compact FE) Let p(·) be a polynomial. A selectively secure public-key FE
scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec), defined for an input space X = {Xλ} and
function space F = {Fλ} is said to be compact if for all λ ∈ N, the running time of the
encryption algorithm FE.Enc, on input 1λ, FE.pk and a message x ∈ Xλ, is p(λ, qkey, |x|).

Remark 2 (Sublinear dependence) As observed in [BV15a], a milder form of compact FE
where the running time of the encryption algorithm is sublinear in the size of any f ∈ F is
sufficient to obtain iO. For simplicity of exposition, however, we will use Definition 3 in this
manuscript. Indeed, our main transformation presented in Section 3 holds for this stronger
definition.

3 Compact FE from Collusion-Resistant FE

We give a generic transformation from any collusion-resistant FE scheme (CRFE) that is not
necessarily compact to a compact FE (CFE) scheme. We start by giving an overview of our
approach in Section 3.1. Next, in Section 3.2 we define the notion of program decomposable
randomized encodings that is used in our transformation. We then describe our transformation
in Section 3.3 followed by its security proof in Section 3.4

3.1 Overview

Recall that in a non-compact FE scheme, the running time of the encryption algorithm may
depend polynomially on the complexity of functions from the function family supported by the
scheme. Our goal is to remove this dependence generically, i.e., give a transformation from any
non-compact FE scheme into a compact FE scheme where the running time of the encryption
algorithm is independent of the function family.

5

Towards that end, let us first recall some related results known in the literature and folklore.
The works of [GVW12, ABSV15] show that dependence on the depth of the function can be
removed generically by using any (efficient) randomized encoding [IK00, AIK04, AIK06]. Recall
that a randomized encoding of any polynomial-sized circuit can be computed in only logarithmic
depth. Given this observation, their transformation is simple: instead of issuing a key for a
function f , we issue a key for a function f ′ where f ′ takes input x for f and computes an RE
of (f, x). Indeed, this idea has been used extensively throughout cryptography (see [App11] for
a survey).

Next, we note the folklore observation that dependence on the function output-size can also
be removed generically if the underlying FE scheme is collusion-resistant. Very roughly, if a
function f has `-bit outputs, then the idea is to issue ` different keys Kf1 , . . . ,Kf` , where Kfi

corresponds to computing the ith bit of the output of f . Now, since each function key only
corresponds to binary functions, the resulting scheme will not have output-size dependence.

Of course, in a non-compact FE scheme, the running time of the encryption algorithm may
grow polynomially with the size of the function (in particular, the number of gates in the circuit
representation of the function). As such, the above simple transformations do not suffice for
our purpose.

Our Idea. Towards that end, our main idea is to further leverage collusion-resistance to achieve
compactness generically. Very roughly, instead of issuing a key for a circuit C, our idea is to issue
multiple keys KG1 , . . . ,KG` where each key KGi corresponds to computing a “small component”
of C. From an efficiency viewpoint, we require that ` is some fixed polynomial in the security
parameter and for every i, the size of the circuit Gi computed by KGi is independent of |C|.
From a security viewpoint, intuitively, we want that given a key set KG1 , . . . ,KG` corresponding
to a circuit C and an encryption of a message x, an evaluator should only learn C(x).

Put differently, on the one hand, we want to “decompose” the process of computing C(x)
into ` different parts such that the size of each part is independent of |C|. At the same time,
these parts should be “tied” together in such a manner that when put together, they reveal
C(x), and nothing else otherwise. A natural approach to achieve the efficiency requirement is
to simply let Gi correspond to evaluating the ith gate of C. Note, however, that this must be
done in a manner that preserves the security of the FE.

Program-Decomposable Randomized Encodings. To address this problem, we once again
turn to randomized encodings. Our idea is to use a specific form of RE that we refer to as
program decomposable RE (PD-RE). In a PD-RE scheme, the encoding process includes a “de-
composition” process for programs5 that decomposes a circuit C into several parts C1, . . . , C`,
where for every i, we have that |Ci| is independent of |C|. For every i, the encoding algorithm

Enc on input Ci and x outputs an encoding Ĉi, x. The decoding algorithm takes as input
the tuple {Ĉi, x} and should output y = C(x). The efficiency requirement is that for every i,
|Enc| is independent of |C|. The security requirement, however, is still the same as in stan-

dard RE: for any C = C1, . . . , C` and input pair (x0, x1), the encodings (Ĉ1, x0, . . . , Ĉ`, x0) and

(Ĉ1, x1, . . . , Ĉ`, x1) are computationally indistinguishable as long as C(x0) = C(x1).
We observe that many RE schemes from the literature directly yield PD-RE schemes. For

example, Yao’s garbling technique [Yao86] yields a PD-RE scheme for general circuits. For any
circuit C, Ci corresponds to its ith gate and Enc on input (Ci, x) corresponds to computing
the ith “garbled gate table.” Later, we also identify another PD-RE scheme by modifying the
RE scheme of Kilian [Kil88] (which in turn uses Barrington’s theorem [Bar86]). This allows

5For concreteness, we will restrict our discussion to circuits here, although this notion is compatible with other
computing models such as branching programs. See Section 3 for details.

6

us to identify a simple, concrete function family for collusion-resistant FE that suffices for our
transformation. (See Section 4 for details.)

Given such a PD-RE scheme, we obtain a compact FE construction as follows: a key for a
circuit C consists of a key set {KGi}i∈`. For every i, the function Gi associated with the key Ki

takes as input a message x and computes Enc(Ci, x). Note that this is a randomized procedure,
and that the randomness among different evaluations must be correlated. (We address this
further below.) An evaluator who is given a key set {KGi}i∈` and an encryption ct of x can now

first perform ` FE decryptions of ct (one with each key Ki) to obtain a PD-RE (Ĉ1, x, . . . , Ĉ`, x)
of (C, x). Next, it can perform the RE decoding procedure to obtain C(x). From the security
of PD-RE, we are guaranteed that the evaluator cannot learn anything else.

We remark that the “program decomposability” property of garbled circuits has been used
in many cryptographic schemes in the past. To the best of our knowledge, the first such use is
due to Beaver et al. [BMR90] who used garbled circuits to construct constant-round multiparty
computation protocols. We note, however, that in their construction, they only use the fact
that each gate table can be computed in constant depth; for our purposes, it is important that
the size of each decomposed unit is independent of the total size of the circuit. This property of
garbled circuits was recently used by Bitansky et al. [BGL+15] in their construction of succinct
REs.

More Details. We now provide some more details of the above construction. First note that
the program encoding procedure is a randomized functionality. To provide randomness to each
invocation of the program encoding procedure Enc, as an initial “straw man” proposal, we
consider the following: we can modify the encryption algorithm of FE scheme to additionally
encrypt a random key K for a weak pseudo-random function (PRF) along with the input
message x. The function Gi computed by the key KGi now consists of the following steps: on
input (K,x), it first evaluates K on a random tag hardwired in its description to obtain ri.
Next, it computes and outputs Enc(Ci, x) using randomness ri.

We highlight a couple of problems with the above approach: first, we note that different
invocations of program encoding procedure Enc of known PD-RE schemes critically use cor-
related randomness – intuitively, this use of correlated randomness is needed to make different
parts of program decomposition “talk with each other” when decoding. We address this need
for correlation by explicitly considering set systems that capture the necessary correlations, and
incorporating this into our construction: we refer the reader to Section 3 for details. A more
important problem is that we cannot directly rely upon the standard security of the underlying
FE scheme to prove the security of the new scheme. This is because Enc is a randomized
functionality whereas standard FE only considers deterministic functions. The recent work of
[GJKS15] studies the problem of public-key FE for randomized functions; however, they give a
specific construction using iO which is therefore not suitable for our purposes.6

To address this problem, we apply the “trapdoor circuits” technique of De Caro et al
[CIJ+13]. Very roughly, we modify Gi such that it works in two modes: in the “honest”
mode, it performs the same functionality as discussed above. In the “trapdoor” mode, it out-
puts a fixed value hardwired in its description. Using this idea, in our proof, we can switch from
honest computation of Enci to the PD-RE simulator. This step only relies on the security of the
underlying PD-RE. Now, we can simply change the message x0 in the ciphertext to x1 by rely-
ing upon the security of the underlying FE scheme. Finally, we change Gi again to the honest
mode, completing the proof. We remark that several recent works [GGHR14, BS15, ABSV15])
make a similar use of the trapdoor circuits technique in the context of FE.

6In the secret-key setting, [KSY15] show a generic transformation from any secret-key FE for deterministic
functions into one that supports randomized functions. However, no such transformation is known in the public-
key setting.

7

3.2 Program Decomposable Randomized Encodings

Let x be a string of length ` and let S be a subset of [`]. We define x|S to be the string that is

obtained by concatenating all the bits of x corresponding to positions in S. We refer to this as
“x being restricted to S”.

Syntax. A Program Decomposable RE, defined for a function family F , consists of a tuple of
algorithms (Decomp,PrgEnc,Dec) described below:

• Program Decomposition: Let f be a function in F with input length `inp. The deterministic
algorithm Decomp takes as input security parameter λ, a description of f and performs
the following steps:

1. Compute a set of program components P = (P1, . . . , P`prg) representing f .

2. Generate two set systems S = {S1, . . . , S`prg} and I = {I1, . . . , I`prg}, where Si ⊆
[`R], Ii ⊆ [`inp] for all i ∈ [`prg], and `R is a polynomial in (λ, `prg).

3. Output (P,S, I, `R).

• Program Encoding: Let P = P1, . . . , P`prg be a program decomposition and x = x1, . . . , x`inp
be an input for P that we wish to encode. Let S = {S1, . . . , S`prg} and I = {I1, . . . , I`prg}
be two set systems with Si ⊆ [`R], Ii ⊆ [`inp]. Let r be a string of length `R chosen
uniformly at random.

PrgEnc is a PPT algorithm that takes as input a program component Pi, string x|Ii ,

random string r|Si and outputs an encoding P̂i, x.

• Output Decoding: Dec is a deterministic polynomial-time algorithm that takes as input

an encoding tuple

({
P̂i, x

}
i∈[`prg]

)
and outputs a value y.

This completes the description of the algorithms of a program-decomposable RE. We now state
our efficiency requirements and then formally define correctness and security of PD-RE.

Efficiency. On any input f , we require the output
(
P = {Pi}i∈`prg ,S = {Si}i∈`prg , I =

{Ii}i∈`prg
)

of the Decomp algorithm to be such that:

• For every i ∈ [`prg], |Pi|= p(λ) where p(·) is a fixed polynomial that is independent of |P |.

• Every set in S and I is of size q = q(λ), where q(·) is a fixed polynomial that is independent
of |P |.

A direct consequence of the above two properties is that the running time of PrgEnc is t(λ),
where t(·) is a fixed polynomial that is independent of |P |.

Correctness. We say that a program decomposable RE (Decomp,PrgEnc,Dec) for F is correct
if for every f ∈ F and input x to f , we have the following quantity to be at least negl(λ):

Pr
[
Dec

(
PrgEnc

(
P1, x|I1 ; r|S1

)
, . . . ,PrgEnc

(
P`prg , x|I`prg ; r|S`prg

))
= P (x)

]
where

(
P,S =

{
S1, . . . , S`prg

}
, I =

{
I1, . . . , I`prg

}
, `R
)
← Decomp(f), and r is a string of length

`R picked uniformly at random.

8

Security. We say that a program decomposable RE (Decomp,PrgEnc,Dec) for F is secure if
for every PPT adversary A, every f ∈ F and input pair (x0, x1) such that f(x0) = f(x1), we
have that:∣∣∣Pr

[
A
(
P̂1, x0, . . . , ̂P`prg , x0

)
= 1
]
− Pr

[
A
(
P̂1, x1, . . . , ̂P`prg , x1

)
= 1
]∣∣∣ = negl(λ),

where P̂i, xb ← PrgEnc

(
Pi, x

b

|Ii ; r|Si

)
,
(
P,S =

{
S1, . . . , S`prg

}
, I =

{
I1, . . . , I`prg

}
, `R

)
←

Decomp(f), and r is a random string of length `R.

3.3 Our Transformation: From CRFE to CFE

Let CRFE = (CRFE.Setup,CRFE.KeyGen,CRFE.Enc,CRFE.Dec) be any public-key FE scheme
for a function family FCRFE that is selective-secure against unbounded collusions. We defer
the description of FCRFE to later. Given CRFE, we construct a compact public-key FE scheme
CFE = (CFE.Setup,CFE.KeyGen,CFE.Enc,CFE.Dec) for a function family F . The family Fλ =
{Fλ}λ∈N comprises of functions with input length λ. The associated message space is denoted
by X = {Xλ}λ, where Xλ = {0, 1}λ. The resulting scheme CFE inherits the security properties
of CRFE, namely, it achieves selective-security against unbounded collusions.

Our transformation uses the following additional tools:

• A program-decomposable RE scheme PDRE = (PDRE.Decomp,PDRE.PrgEnc,PDRE.Dec)
for the function family F .

• Weak pseudorandom function7 family PRF = {PRFK(·) : {0, 1}λ → {0, 1}} and a sym-
metric encryption scheme Sym = (Sym.Setup,Sym.Enc, Sym.Dec). We assume that the
ciphertexts produced by Sym are pseudorandom.

We now describe the compact FE scheme scheme CFE below.

Setup CFE.Setup(1λ): On input security parameter λ, execute CRFE.Setup(1λ) to obtain
(CRFE.MSK,CRFE.PK). Output the master secret key CFE.MSK = CRFE.MSK and the public
key CFE.PK = CRFE.PK.

Key Generation CFE.KeyGen(CFE.MSK, f): On input a master secret key CFE.MSK = CRFE.MSK
and a function f ∈ Fλ,

• Execute PDRE.Decomp(f) to obtain (P,S, I, `R). Parse P = (P1, . . . , P`prg).
• Pick tags tag1, . . . , tag`R , where tagi ∈ {0, 1}λ with `R = poly(`prg, λ).
• Parse S as {S1, . . . , S`prg}. Assign TAGi = (tagk)k∈Si for i ∈ [`prg].
• Pick strings CT1, . . . , CT`prg uniformly at random. (The length of CTi will be clear later).
• Execute CRFE.KeyGen(CRFE.MSK,Encode[Pi,TAGi, Ii, CTi]) with i ∈ [`prg] to obtain CRFE.ski.

The function Encode[·, ·, ·, ·] is described in Figure 2.

Output CFE.skf =
(
CRFE.sk1, . . . ,CRFE.sk`prg

)
.

Encryption CFE.Enc(CFE.PK, x): On input a public key CFE.PK = CRFE.PK and a message x,
sample a PRF key K. Execute CRFE.Enc(CRFE.PK, (x,K,⊥,mode = 0)) to obtain CRFE.CT.

7A weak pseudorandom function is a type of pseudorandom function wherein the adversary, in the security
game, is handed evaluations of the weak PRF on random points. This is in contrast to the scenario of PRFs,
where the adversary can choose his queries.

9

Encode[P,TAG, I, CT](x,K,Sym.K,mode)

If mode = 0:

• Parse TAG as
(
tag1, . . . , tagp

)
.

• Execute the weak pseudo-random function PRFK(tagi) to get strings ri. Assign r = r1||· · · ||rp.

• Execute PDRE.PrgEnc
(
P, x|I ; r

)
to obtain the encoding P̂, x. Output P̂, x.

If mode = 1:

• Execute Sym.Dec(Sym.K,CT) to obtain P̂, x. Output P̂, x.

Figure 2

Output the ciphertext CFE.CTx = CRFE.CT.

Decryption CFE.Dec(CFE.skf ,CFE.CTx): On input a ciphertext CFE.CTx = CRFE.CT and
a functional key CFE.skf = (CRFE.sk1, . . . ,CRFE.sk`prg), execute the decryption algorithm

CRFE.Dec(CRFE.ski,CRFE.CT) to obtain P̂i, x. Execute PDRE.Dec

({
P̂i, x

}
i∈[`prg]

)
to obtain

y. Output y.
This completes the description of the compact FE scheme.

Correctness. Observe that the output of CRFE.Dec(CRFE.ski,CRFE.CT) is an encoding P̂i, x.
These encodings are “valid”, meaning that they can be obtained by first running the de-
composition algorithm on f and then encoding the resulting decomposed program compo-
nents along with x. Therefore, by the correctness of PDRE, we have that the output of

PDRE.Dec

({
P̂i, x

}
i∈`prg

)
is f(x).

Compactness. First observe that the run-time of CFE.Enc depends only on |x|, run-time of
CRFE.Enc and λ. So it suffices for us to focus on CRFE.Enc. Since we make no assumptions on
the compactness of CRFE, it could very well be the case that the run-time of CRFE.Enc depends
polynomially on the size complexity of functions in FCRFE. Note, however, that the size of any
Encode ∈ FCRFE is simply a fixed polynomial in λ since it only involves weak PRF evaluations
and computing PrgEnc, whose complexity is polynomial in λ. Summing up, we have that the
run-time of CFE.Enc is poly(λ, |x|), as required.

Security. We prove the following theorem in Section 3.4:

Theorem 3 (Security of CFE) If CRFE is a public-key FE with selective-security against
unbounded collusions, PDRE is a secure PD-RE scheme and PRF is a weak PRF, we have that
CFE is a public-key compact FE with selective-security against unbounded collusions.

Remark 3 (Secret-key setting) The above transformation is presented in the public-key set-
ting. It is easy to see that the same transformation also works in the secret-key setting. Namely,
if we start with a secret-key collusion-resistant FE scheme, we obtain a secret-key compact FE
scheme.

Remark 4 (Replacing weak PRF with PRG) We can replace the weak PRF in the above
approach with a particular type of PRGs. We require the property that each block in the output

10

of PRG can be computed in time independent of the stretch of PRG. Now, the ith program
component can be encoded using (as randomness) the corresponding ith block in the output
of PRG. Also note that the generic symmetric-key encryption (used in mode 1) can also be
instantiated with a one-time pad implemented using a standard PRG. This is because we only
need one-time security of the hardwired ciphertext in our proof. Finally, we note that with this
approach, the resulting scheme will not be collusion-resistant, although this does not affect the
implication to iO.

Remark 5 (Bootstrapping theorem) If we choose weak PRFs in NC1 and suitably instan-
tiate Program Decomposable RE (for ex., garbled circuits), Theorem 3 yields a bootstrapping
mechanism for transforming a non-compact collusion-resistant FE for NC1 into a compact
collusion-resistant FE for P/poly (assuming DDH or LWE). This is a generalization of the
bootstrapping theorem of [ABSV15] which was (non-)compactness preserving.

3.4 Proof of Theorem 3

The main idea is to hardwire the output program encodings in the functional keys. After this,
we can use the security of Program Decomposable RE to switch from one input to another.
However, functional keys do not hide its associated function and hence to enable the hardwiring
process, we use the trapdoor branch. We compute a symmetric encryption of the output en-
coding. We then switch the mode in the message to now decrypt this (symmetric) ciphertext
instead of executing the encoding procedure. Once this is done, we have the program encoding
hardwired as desired. We now explain the technical details.

We define the advantage of a PPT adversary A in Hybridi.b to be AdvA,i.b.

∀ b ∈ {0, 1}, Hybrid1.b: This corresponds to the real experiment when the challenger uses the
challenge bit b. That is, when the adversary submits a message pair (x0, x1), the challenger
encrypts the message xb as part of the challenge ciphertext. The hybrid outputs whatever the
adversary outputs.

∀ b ∈ {0, 1}, Hybrid2.b: The output of the functional keys w.r.t the challenge ciphertext is hard-
wired in their respective CT components.

At the beginning of the game, the challenger samples a symmetric key Sym.K by exe-
cuting Sym.Setup. It answers challenge message query from the adversary as in the previ-
ous hybrid. Denote the challenge ciphertext answered by the challenger to be CFE.CT∗ =
CFE.Enc(CFE.PK, (xb,K, 0)).

Upon receiving a function query f , the challenger first executes PDRE.Decomp(f) to obtain
(P,S, I, `R). It then picks the tags tag1, . . . , tag`R uniformly at random with tagi ∈ {0, 1}λ.
Let the set family S (resp., I) be denoted by {S1, . . . , S`prg} (resp., {I1, . . . , I`prg}). For i =
1, . . . , `prg, it does the following:

1. Assigns TAGi = ∪k∈Si (tagk) for i ∈ [`prg]. Alternately, denote TAGi = (˜tag1, . . . , ˜tagp),
where p = |Si|.

2. Execute the weak pseudo-random function PRFKj (tagj) to get strings rj . Assign r =
r1||· · · ||rp.

3. Execute PrgEnc(Pi,x|Ii ; r) to obtain the encoding P̂i,x, where x = xb. Output P̂i,x.

4. The challenger encrypts P̂i,x by executing Sym.Enc(Sym.K, P̂i,x) to obtain Sym.cti. It
sets CTi = Sym.cti.

5. In the final step, it executes CRFE.KeyGen(CRFE.MSK,Encode[Pi,TAGi, Ii, CTi]) to obtain
CRFE.ski.

11

The challenger then sends across the functional key CFE.skf = (CRFE.ski)i∈[`prg] to the adver-
sary. The challenger repeats the above process for every function query.

Lemma 1 Assuming the security of Sym, we have |AdvA,1.b−AdvA,2.b|≤ negl(λ) for b ∈ {0, 1},
where negl is a negligible function.

∀ b ∈ {0, 1}, Hybrid3.b: The challenger changes the mode in the challenge ciphertext from
mode = 0 to mode = 1. That is, upon receiving the message query (x0, x1), the challenger
first samples the symmetric secret key Sym.K by executing Sym.Setup. It then computes the
challenge ciphertext CFE.CT∗ ← CFE.Enc(CFE.PK, (⊥,⊥,Sym.K,mode = 1)). It sends CFE.CT∗

to the adversary. The functional queries are answered as in the previous hybrid.

Lemma 2 Assuming the selective security of CRFE, we have |AdvA,2.b −AdvA,3.b|≤ negl(λ) for
b ∈ {0, 1}, where negl is a negligible function.

∀ b ∈ {0, 1}, Hybrid4.b: This hybrid is identical to Hybrid2.b except that the randomness supplied
to PDRE.PrgEnc is picked uniformly at random. Recall that the randomness in Hybrid2.b was
generated by executing weak pseudorandom functions. More precisely, we pick a random string
r ∈ {0, 1}`R at random. replace Bullet 2 in Hybrid2.b with the following.

2. Set r = r|Si .

As before, the output of this hybrid is the adversary’s output.

Lemma 3 Assuming the security of PRF , we have |AdvA,3.b−AdvA,4.b|≤ negl(λ) for b ∈ {0, 1},
where negl is a negligible function.

Lemma 4 Assuming the security of PDRE, we have |AdvA,4.0 −AdvA,4.1|≤ negl(λ), where negl
is a negligible function.

3.5 Proof of Theorem 3 cont’d: Proofs of Lemma 1,2,3,4

Proof of Lemma 1. We construct a reduction B that uses A to break the security of Sym.
The message query by the adversary is answered by B as in Hybrid1. The When B receives

a function query of f , it first decomposes f into program components and then computes its
encodings using the randomness derived from a weak PRF. This is performed as described
in Hybrid2.b. We denote the resulting encodings to be P̂i,x, for i ∈ [`prg], where x = xb.

At this point, B submits {P̂i,x}i∈[`prg] to the challenger of Sym. In return it receives the ci-
phertexts {CTi = Sym.cti}i∈[`prg]. Finally, B computes CRFE.ski ← CRFE.KeyGen(CRFE.MSK,
Encode[Pi,TAGi, Ii, CTi]) for i ∈ [`prg]. It then sends CFE.skf = {CRFE.ski}i∈[`prg] to the adver-
sary.

If Sym’s challenger answers with a random string then we are in Hybrid1.b otherwise we are
in Hybrid2.b. Thus, the advantage of B breaking the security of Sym is |AdvA,1.b−AdvA,2.b| which
is negligible in λ.

Proof of Lemma 2. We construct a reduction B that uses A to break the security of CRFE.
When the reduction receives message query (x0, x1), it computes the following pairs of

messages: (
ỹ0 = (xb,K,⊥, 0), ỹ1 = (⊥,⊥, Sym.K, 1)

)
,

where K is a weak PRF key and Sym.K is the secret key sampled using Sym.Setup. It then
forwards the message query (ỹ0, ỹ1) to the challenger of CRFE. The reduction B then forwards

12

the challenge ciphertext, received from the challenger of CRFE, to A. When B receives a
functional query f , it computes the functions Gi = Encode[Pi,TAGi, Ii, CTi], for i ∈ [`prg] as in
Hybrid2.b (or Hybrid3.b). It then forwards the functions G1, . . . , G`prg to the challenger of CRFE.
Upon receiving {CRFE.ski}i∈[`prg] from the challenger, B then sends CFE.skf = {CRFE.ski}i∈[`prg]
to the adversary.

We have to first argue that B is a valid adversary in the game of CRFE. To do this we argue
that for every query Gi = Encode[Pi,TAGi, Ii, CTi] submitted by B, it holds that Gi(ỹ0) =
Gi(ỹ1). This is because we encrypt the output Gi(ỹ0) in CTi and the output of Gi(ỹ1) is the
decryption of CTi. Now that we have shown that B is a valid adversary, observe that if the
challenger of CRFE uses ỹ0 to encrypt the challenge message then we are in Hybrid2.b and if
it uses ỹ1 to encrypt the challenge message then we are in Hybrid3.b. Thus, the advantage of
B in breaking the security of CRFE is |AdvA,2.b − AdvA,3.b| which, by the security of CRFE, is
negligible in λ.

Proof of Lemma 3. We construct a reduction B that uses A to break the security of PRF .
B answers the challenge message query as in the previous hybrid. Upon receiving a function

query f , it first computes Decomp(f) as in Hybrid3.b (or Hybrid4.b). Let `prg be the number of
program components. The reduction then picks tags tag1, . . . , tag`R at random from {0, 1}λ,
where `R is a polynomial in (`prg, λ). It then queries the PRF oracle to get the evaluations of
tagi for every i ∈ [`R]. Denote by r the concatenation of the bits obtained from the evaluations.
Then, B proceeds as in Hybrid3.b or Hybrid4.b.

If the PRF oracle returned PRF evaluations then we are in Hybrid3.b otherwise we are in
Hybrid4.b. Thus, the advantage of B breaking the security of PRF is |AdvA,3.b−AdvA,4.b| which
by the security of PRF is negligible in λ.

Proof of Lemma 4. We construct a reduction B that uses A to break the security of PDRE.
We just focus on the case when A makes a single message and function query. The general case
when A makes multiple message and function queries follows from a standard hybrid argument.
B handles the challenge message query (x0, x1) as in Hybrid4.0 or Hybrid4.1. Upon receiving

a function query f from A, it forwards this along with (x0, x1) to the challenger of PDRE. In

return it receives (P,S, I) and encodings {P̂i,x}i∈[`prg]. It then uses these encodings and the
set systems to generate the functional key CFE.skf = {CRFE.ski}i∈[`prg]. This functional key is
then forwarded to the adversary.

We first remark that B is a valid adversary in the security game of PDRE. To show this,
it suffices to argue that f(x0) = f(x1). This plainly follows from the fact that A is a valid
adversary in the game of CFE.

If the challenger of PDRE hands B the encodings of {P̂i,x}i∈[`prg] where x = x0 then we
are in Hybrid4.0, else if x = x1 we are in Hybrid4.1. This translates to the fact that B wins the
security game of PDRE with advantage |AdvA,4.0 − AdvA,4.1| which, by the security of PDRE is
negligible in λ.

4 Instantiations of Program Decomposable RE

We describe two different instantiations of PD-RE: one based on based on Kilian’s RE for
polynomial-size branching programs [Kil88, Bar86] and another based on Yao’s garbled circuits
technique [Yao86]. The former instantiation helps us identify a simple function family Fsimple

such that collusion-resistant FE for Fsimple suffices for our transformation in Section 3.

13

NC1 randomized encodings. We show how to instantiate program-decomposable RE used
in our transformation in Section 3 with a variant of Kilian’s RE [Kil88]. Since Kilian’s RE is
described for polynomial-size branching programs, we start by first briefly recalling the notion
of branching programs.

Kilian’s RE. We work over the symmetric group S5. A branching program with input length

`inp over S5 is represented by BP = (BP,χ), where BP =
(

(g01, g
1
1), . . . , (g0`prg , g

1
`prg

)
)

and

χ : [`prg]→ [`inp]. Here, gbi ∈ S5. The evaluation of BP on input x is
`prg∏
i=1

g
xχ(i)
i .

A randomized encoding of (BP, x) is just
{
rig

xχ(i)
i r−1i+1

}
i∈[`prg]

, where r1, r`prg+1 = 1S5 (the

identity in S5 is denoted by 1S5) and ri, ∀i ∈ [2, `prg], is sampled at random from S5. To
evaluate, just compute the product of all the group elements in the encoding. That is, the

evaluation is
`prg∏
i=1

rig
xχ(i)
i r−1i+1. Note that this is same as evaluating BP on x.

Program-decomposable RE. We now describe how to derive a PD-RE scheme from Kilian’s RE.
We refer to the resulting PD-RE scheme as PDREBP.

• Decomp: It takes as input a branching program BP = (BP,χ), where BP and χ are
as defined above. It then assigns the program component Pi = (i, g0i , g

1
i). The final

program is P = {Pi}i∈[`prg]. The set systems are computed in the following manner: first,
construct a string r of length `R. This string comprises of blocks with Block1 = (⊥, r2),
Block`prg = (r`prg ,⊥) and Blocki = (ri, ri+1) for i ∈ [2, `prg − 1]. The set Si is set to
be all the positions in r corresponding to Blocki. The set system S is set to {Si}i∈[`prg].
Similarly, the set Ii is set to be {χ(i)}. And the set system I is just {Ii}i∈[`prg]. The final
output is (P,S, I, `R).

• PrgEnc: It takes as input
(
Pi = (i, g0i , g

1
i), xχ(i); ri = r|Si

)
. It then parses ri as (u, v).

There are three cases:

– Case 1. i = 1: It computes g̃ = g
xχ(i)
i · v−1. It outputs P̂i, x = g̃.

– Case 2. i = `prg: It computes g̃ = u · gxχ(i)i . It outputs P̂i, x = g̃.

– Case 3. i ∈ [2, `prg − 1]: It computes g̃ = u · gxχ(i)i · v−1. It outputs P̂i, x = g̃.

This completes the description of PrgEnc.

• Dec: It takes as input
(
P̂i, x

)
i∈[`prg]

and outputs
`prg∏
i=1

P̂i, x.

The output distribution of the program encoding algorithm is identical to the output distribution
of Killian’s RE.

We remark that the above PD-RE scheme can only be defined for NC1 circuits since the
existence of poly-sized branching programs for P/poly is not known.

Compact FE from Collusion-Resistant FE for “Simple” Functions. We now describe
a concrete function family Fsimple that suffices for our transformation in Section 3.

Let BP be a polynomial-size branching program. Let BP = (BP,χ), where BP = ((g01, g
1
1),

. . . , (g0`prg , g
1
`prg

)). With respect to every element in the branching program BP, we define a

120× 120 table (∵ |S5|= 120).

The Table function. We now define a function Table as follows:

14

• Case 1. i = 1: For b ∈ {0, 1}, we have Tablegbi
[u][v] = gbi · v−1.

• Case 2. i = `prg: For b ∈ {0, 1}, we have Tablegbi
[u][v] = u · gbi .

• Case 3. i ∈ [2, `prg − 1]: For b ∈ {0, 1}, we have Tablegbi
[u][v] = u · gbi · v−1.

Function family Fsimple. Given, the function Table, we can now replace the generic function
family FCRFE (consisting of functions Encode) used in our transformation in Section 3 with a
simple function family Fsimple consisting of functions fsimple described in Figure 3. We replace
the generic encryption scheme used in Encode with the concrete symmetric encryption scheme
defined in [Gol09], where an encryption of a message m is (s, PRFK(s)⊕m).

fsimple[P = (i, g0i , g
1
i), τi, τi+1, I, CT = (s0, s1)](x,K,Sym.K,mode)

If mode = 0:

• u← PRFK(τi).

• v ← PRFK(τi+1).

• If xχ(i) = 0, output Tableg0i [u][v]. Else, output Tableg1i [u][v].

If mode = 1:

• Output PRFK(s0)⊕ s1.

Figure 3

By making the above modifications in our transformation, we obtain the following theorem:

Theorem 4 Let Fsimple be the function family described in Figure 3. A public-key FE scheme
for Fsimple with selective-security against unbounded collusions implies a compact FE scheme
for NC1 with selective-security.

Garbled circuits. We show that Yao’s garbled circuits [Yao86] can be viewed as an instan-
tiation of the Program Decomposable RE scheme we define in Section 3. Before we show this,
we briefly recall the notion of garbled circuits. We first define an encoder that takes as input a
circuit C and input x. In the following description, we assume that C has fan-in 2 and fan-out 1.
The encoder then computes an encoding of C(x) as follows. First, two wire keys are associated
to every wire denoting bits 0 and 1.

1. A table of ciphertexts is then created for every gate in the circuit. To be more precise, there
is a PPT algorithm GateGarb that takes as input a description of gate G, keys (Ka

0 ,K
a
1)

corresponding to its first input wire wa, keys (Kb
0,K

b
1) corresponding to its first second

wire wb and keys (Kc
0,K

c
1) corresponding to its output wire wc of G. It then outputs a

table TG. We denote the randomness taken by GateGarb to be rG. It is important to note
here that |rG| depends only on λ (and not on the size of C).

2. There is a deterministic procedure ChooseInp that chooses one of the input wire keys
corresponding to the appropriate bit of x. That is, ChooseInp takes as input Wi, the
description of ith input wire of C, along with its associated keys (Ki

0,K
i
1) and it outputs

the key Ki
xi .

So the final garbled circuit is
(
{TG}G∈Gates(C) ,

{
Ki
xi

}
i∈[|x|]

)
, where Gates(C) is a set of all gates

in C.
We now show to build an Program Decomposable RE scheme using garbled circuits.

15

• Decomp(C): It takes as input a circuit C. The program components are nothing but the

gates in C and its input wires. That is, P =
{
{PG = G}G∈Gates(C), {Pi}i∈[`inp]

}
, where Pi

is the description of ith input wire of C and `inp is the input length of C. We now deal with
computing the set systems. We first construct a string r. This string is made up of blocks,
one for every gate and every input wire of C. A block corresponding to a gate G, denoted
by BlockG, contains the wire keys of G’s input wires and its output wire. Furthermore,
BlockG also contains rG which is the randomness used by GateGarb to compute the table
of ciphertexts corresponding to G. We note that two blocks corresponding to two different
gates could contain same strings. For example, let the output wire of G be fed to the gate
G′ through the wire w. Then, both BlockG and BlockG′ contain wire keys of w. A block
corresponding to the ith input wire key wi of G, denoted by Blocki, contains the wire keys
corresponding to wi.

Let `R = |r|. The set SG ⊆ [`R] comprises of all the positions in r corresponding to BlockG
-substring of r. Further the set Si, associated to the ith input wire of C, comprises of all
the positions in r corresponding to Blocki -substring of r. It then computes the set system

S =
{
{SG}G∈Gates(C), {Si}i∈[`inp]

}
. On the other hand, Ii = {i} for all i ∈ [`inp]. The set

system I is then set to be {Ii}i∈[`inp].

Finally, it outputs
(
{PG}G∈Gates(C) ,S, I, `R

)
.

• PrgEnc(Pi, xi; ri = r|Si): It takes as input program component Pi, input bit xi and ran-

domness ri. If Pi is a gate, it does the following. It parses ri as a sequence of wire keys,
denoted by K, and string rG. It then executes GateGarb(Pi,K; rG) and the resulting TG
is output. Else if Pi is an input wire key, it executes ChooseInp(Pi, ri) to obtain Ki

xi which
is then output.

• Dec
(
{TG}G∈Gates(C) ,

{
Ki
xi

}
i∈[`inp]

)
: It takes as input table of ciphertexts w.r.t to every

gate G in the circuit and input wire keys Ki
xi . It then executes the garbled circuit decoding

procedure to recover the output y.

5 Implications to iO

Here we state the implications of our main result towards achieving general-purpose iO.

iO from Collusion-Resistant FE. We first recall the main result of [AJ15, BV15a]:

Theorem 5 ([AJ15, BV15a]) Public-key compact FE for NC1 with sub-exponential security
in the selective model for a single key query implies iO for P/Poly.

Combining Theorem 5 with our transformation from Section 3, we obtain the following:

Theorem 6 Public-key FE for NC1 with sub-exponential security in the selective model against
unbounded collusions implies iO for P/Poly.

Combining Theorem 4 in Section 4 with Theorem 5, we obtain:

Theorem 7 Public-key FE for Fsimple (see Figure 3) with sub-exponential security in the se-
lective model against unbounded collusions implies iO for P/Poly.

16

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In TCC, 2015.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In CRYPTO, 2015.

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding barrington’s theorem. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 646–658. ACM,
2014.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In
45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October
2004, Rome, Italy, Proceedings, pages 166–175, 2004.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. Computational Complexity,
15(2):115–162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In CRYPTO, 2015.

[App11] Benny Applebaum. Randomly encoding functions: A new cryptographic paradigm
- (invited talk). In Information Theoretic Security - 5th International Conference,
ICITS 2011, Amsterdam, The Netherlands, May 21-24, 2011. Proceedings, pages
25–31, 2011.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions.
In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, pages 162–172, 2014.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 1–5, 1986.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai,
and Guy N. Rothblum. Program obfuscation with leaky hardware. In Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings, pages 722–739, 2011.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 19-23,
2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2001.

17

[BGJ+15] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. IACR
Cryptology ePrint Archive, 2015:514, 2015.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. In Advances in Cryptology - EU-
ROCRYPT 2014 - 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings, pages 221–238, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Suc-
cinct randomized encodings and their applications. In STOC, 2015.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–
513, 1990.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In TCC, pages 1–25, 2014.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. In TCC, 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS, 2015.

[BV15b] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. Cryptology ePrint Archive, Report 2015/163, 2015. http:

//eprint.iacr.org/.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps
against zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In CRYPTO,
2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CHV15] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable
software watermarking. IACR Cryptology ePrint Archive, 2015:373, 2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
pages 519–535, 2013.

18

http://eprint.iacr.org/
http://eprint.iacr.org/

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multi-
linear maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 476–493, 2013.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of
two candidate fixes of multilinear maps over the integers. IACR Cryptology ePrint
Archive, 2014:975, 2014.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear
maps over the integers. In CRYPTO, 2015.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II, pages 468–497, 2015.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE
Computer Society, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 498–
527, 2015.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round se-
cure MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February
24-26, 2014. Proceedings, pages 74–94, 2014.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure func-
tional encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666,
2014.

[GHMS14] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing with-
out zeroes: Cryptanalyzing multilinear maps without encodings of zero. IACR
Cryptology ePrint Archive, 2014:929, 2014.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wa-
dia. Founding cryptography on tamper-proof hardware tokens. In Theory of Cryp-
tography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings, pages 308–326, 2010.

19

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional en-
cryption for randomized functionalities. In Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II, pages 325–351, 2015.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 555–564. ACM, 2013.

[GLSW15] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishabil-
ity obfuscation from the multilinear subgroup elimination assumption. In FOCS,
2015.

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications,
volume 2. Cambridge university press, 2009.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pages 162–179, 2012.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology
- ASIACRYPT 2000, 6th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000,
Proceedings, pages 443–457, 2000.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 294–304, 2000.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, pages 20–31, 1988.

[KSY15] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for random-
ized functionalities in the private-key setting from minimal assumptions. In Theory
of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, pages 352–377, 2015.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against
arbitrary removal strategies. IACR Cryptology ePrint Archive, 2015:344, 2015.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I, pages 500–517, 2014.

20

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010,
pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005, Proceedings, pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In David B. Shmoys, editor, Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
475–484. ACM, 2014.

[SZ14] Amit Sahai and Mark Zhandry. Obfuscating low-rank matrix branching programs.
Technical report, Cryptology ePrint Archive, Report 2014/773, 2014. http://eprint.
iacr. org, 2014.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO, 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT, 2015.

A Bootstrapping Theorem for iO

In this section, we prove a bootstrapping theorem for iO. Concretely, we show how to construct
FE for Fsimple from iO for function family F . This, when combined with our main result yields
iO for arbitrary circuits.

Prior works [GGH+13b, Wat14] present constructions of FE based on iO and additional
well studied cryptographic assumptions. Of particular interest is the work of [Wat14] who show
how to build FE based on iO and one-way functions. Using this work, we get a bootstrapping
theorem for iO: from [Wat14], we have FE for Fsimple from iO for F (where F is described next)
and then using the result on iO for P/poly from FE for Fsimple, we achieve iO for P/poly from
iO for F .

We describe the function family F in Figure 4 that is sufficient to obtain FE for Fsimple

via [Wat14]. In [Wat14], there are different functions that are obfuscated as part of the public
key and the functional key whose description also change in the hybrids. We take all this into
account while designing the template for all functions in Fsimple. Furthermore, in the description
of the obfuscated program as part of the functional key for f , we substitute f with the concrete
functions in Fsimple.
We formally state the bootstrapping theorem below.

Theorem 8 For any circuit class C = {C : {0, 1}n → {0, 1}}, there exists an iO scheme for C
assuming the existence of sub exponentially secure iO for F and sub exponentially secure one
one-way functions. Further, |f |= poly(λ, n), for every f ∈ F .

21

f ∈ F

Hardwired value: v, (puncturable) PRF key K.

1. Execute one of the following steps:

• ⊥
• PRG evaluation

• Simple IF-ELSE check based on v and the input.

2. Puncturable PRF evaluation.

3. Execute one of the following steps:

• ⊥
• Two levels of successive PRF evaluations, followed by constant operations.

Remark: In Waters [Wat14], the last step of the program in the functional key for
f , is the evaluation of f on the decryption of a ciphertext. The decryption ciphertext
is one level of PRF evaluation. Also, f ∈ Fsimple also comprises of PRF evaluations
followed by constant operations. This is the second level of PRF evaluations.

Figure 4 Every function in the function family F has the above template. ⊥ indicates that this particular step
is empty.

A consequence of the above theorem is that for every (sufficiently large) input length n ∈ N,
in order to obfuscate C ∈ P/poly it suffices to obfuscate a class of functions whose size is a
fixed polynomial in the security parameter for n. And in particular, only depends on the input
length of circuit C.

22

	Introduction
	This Work

	Preliminaries
	Indistinguishability Obfuscation
	Public-Key Functional Encryption
	Compactness

	Compact FE from Collusion-Resistant FE
	Overview
	Program Decomposable Randomized Encodings
	Our Transformation: From CRFE to CFE
	Proof of Theorem 3
	Proof of Theorem 3 cont'd: Proofs of Lemma 1,2,3,4

	Instantiations of Program Decomposable RE
	Implications to iO
	Bootstrapping Theorem for iO

