
Compact Implementations of LEA Block Cipher
for Low-End Microprocessors

Hwajeong Seo1, Zhe Liu2, Jongseok Choi1, Taehwan Park1, and Howon Kim1⋆

1 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,jschoi85,pth5804,howonkim}@pusan.ac.kr

2 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue R. Coudenhove-Kalergi, L–1359 Luxembourg-Kirchberg, Luxembourg
{zhe.liu}@uni.lu

Abstract. In WISA’13, a novel lightweight block cipher named LEA
was released. This algorithm has certain useful features for hardware
and software implementations, i.e., simple ARX operations, non-S-box
architecture, and 32-bit word size. These features are realized in several
platforms for practical usage with high performance and low overheads.
In this paper, we further improve 128-, 192- and 256-bit LEA encryption
for low-end embedded processors. Firstly we present speed optimization
methods. The methods split a 32-bit word operation into four byte-wise
operations and avoid several rotation operations by taking advantages of
efficient byte-wise rotations. Secondly we reduce the code size to ensure
minimum code size. We find the minimum inner loops and optimize them
in an instruction set level. After then we construct the whole algorithm
in a partly unrolled fashion with reasonable speed. Finally, we achieved
the fastest LEA implementations, which improves performance by 10.9%
than previous best known results. For size optimization, our implemen-
tation only occupies the 280B to conduct LEA encryption. After scaling,
our implementation achieved the smallest ARX implementations so far,
compared with other state-of-art ARX block ciphers such as SPECK and
SIMON.

Keywords: Low-power Encryption Algorithm, AVR, Speed Optimiza-
tion, Speed Optimization

1 Introduction

In 2013, Low-power Encryption Algorithm (LEA) was announced by the At-
tached Institute of ETRI [7]. This algorithm has software-friendly architecture
and efficient implementation results on wide range of computational devices from
high-end machines such as personal computers and smart phones, to low-end

⋆ Corresponding Author

2 Hwajeong Seo, Zhe Liu, Jongseok Choi, Taehwan Park, and Howon Kim

Table 1. Instruction set summary for AVR [2]

Mnemonics Operands Description Operation #Clock

ADD Rd, Rr Add without Carry Rd ← Rd+Rr 1

ADC Rd, Rr Add with Carry Rd ← Rd+Rr+C 1

EOR Rd, Rr Exclusive OR Rd ← Rd⊕Rr 1

LSL Rd Logical Shift Left C|Rd ← Rd<<1 1

LSR Rd Logical Shift Right Rd|C ← 1>>Rd 1

ROL Rd Rotate Left Through Carry C|Rd ← Rd<<1||C 1

ROR Rd Rotate Right Through Carry Rd|C ← C||1>>Rd 1

LD Rd, X Load Indirect Rd ← (X) 2

ST Z, Rr Store Indirect (Z) ← Rr 2

microprocessors such as AVR and ARM processors are also drawn in previous
papers [7, 8]. In this paper, we re-visit previous results on low-end devices and
further improve performance in various platforms. This result can contribute to
compact design of LEA in terms of high speed and low capacity and ensure the
secure and robust communications between low-end devices.

The remainder of this paper is organized as follows. In Section 2, we recap
the basic specifications of LEA and target platform. In Section 3, we present
the compact implementations of LEA block cipher. In Section 4, we evaluate the
performance of proposed methods in terms of clock cycles and code size. Finally,
Section 5 concludes the paper.

2 Related Works

2.1 LEA Block Cipher

In 2013, Low-power Encryption Algorithm (LEA) was announced by the At-
tached Institute of ETRI [4]. This algorithm has simple Addition-Rotation-
eXclusive-or (ARX) and non-S-box architecture for high performance on both
software and hardware environments. LEA is a block cipher with 128-bit block
and word size is 32-bit. Various security levels including 128-bit, 192-bit and
256-bit are available. The number of rounds is 24, 28 and 32 for 128-, 192- and
256-bit keys, respectively. The algorithm consists of key schedule, encryption
and decryption operations.

2.2 8-bit Embedded Platform AVR

The 8-bit AVR embedded processor is equipped with an ATmega128 8-bit pro-
cessor clocked at 7.3728 MHz [2]. It has a 128 KB EEPROM chip and 4 KB
RAM chip. The ATmega128 processor has RISC architecture with 32 registers.
Among them, 6 registers (R26∼R31) serve as the special pointers for indirect ad-
dressing. The remaining 26 registers are available for arithmetic operations. One
arithmetic instruction incurs one clock cycle, and memory instructions or 8-bit

Title Suppressed Due to Excessive Length 3

Table 2. 32-bit instructions over 8-bit AVR, where R12-R15, R16-R19 and R20 represent
destination, source and temporal registers, respectively

Addition Exclusive-or Right Rotation

ADD R12, R16 EOR R12, R16 CLR R20 ROR R12

ADC R13, R17 EOR R13, R17 LSR R15 ROR R20

ADC R14, R18 EOR R14, R18 ROR R14 EOR R15, R20

ADC R15, R19 EOR R15, R19 ROR R13

multiplication incur two processing cycles. In Table 1, the detailed instructions
used in this paper are drawn.

Previous 8-bit microprocessor results show that LEA is estimated to run
at around 3,040 cycles for encryption on AVR AT90USB82/162 where AES
best record is 1,993 cycles [7, 6]. Former implementation used separated mode
to optimize performance in terms of speed by considering high performance.
In case of AES, they used the conventional approach [6] to reduce memory
consumption and high speed. The lookup tables are the forward and inverse
S-boxes, each 256 bytes, because 32-bit look-up table access is not favorable
due to limited storages over low-end devices. S-box pointer is always placed
in Z register and the variable is stored into SRAM for fast access speed. For
efficient MixColumn computation, a left shift with conditional branch to skip
the bit-wise exclusive-or operation is established. Finally, the MixColumns step
is implemented without the use of lookup tables as a series of register copies, xors
operations, taking a total of 26 cycles. The InvMixColumns step is implemented
similarly, but is more complicated and takes a total of 42 cycles. Recently, ARX-
based block ciphers (SPECK and SIMON) are introduced [4, 3]. They provides
efficient rotation operation by multiplying the byte and general multi-precision
addition, rotation and exclusive-or operations are studied.

3 Proposed Method

Unlike modern processors, embedded processor provides limited computing power
and storage capacities. We need to carefully re-design the algorithm to meet the
requirements of speed and size factors over resource constrained environments.
In this section, we introduce LEA implementation techniques for low-end micro-
processors.

3.1 On the Fly versus Separate Computation Modes

LEA block cipher consists of key schedule and encryption/decryption. The key
schedule generates each round pair to be used for encryption. If target platform
has enough storages, whole round key pairs can be pre-computed in offline and
stored into storages. By selecting the methods of round key generation, we can
achieve the two opposite properties including size and speed. Firstly, on the fly
method generates round key on the spot and then directly encrypts plaintext

4 Hwajeong Seo, Zhe Liu, Jongseok Choi, Taehwan Park, and Howon Kim

Algorithm 1 Efficient Shift Offset and Direction in AVR

Require: direction d, offset o
Ensure: direction d, offset o
1: o = o mod 8
2: if o>4 then o = 8− o, d =!d
3: return d, o

with these round key pairs. The main benefits are two folded. Additional storages
for round keys are not needed and source code size is reduced by rolling the
encryption and key scheduling. Secondly, separated computation mode literally
executes key schedule and encryption processes separately. The round keys are
computed in offline and then stored into temporal storages. After then these
values are simply loaded and used during encryption or decryption process. The
method can avoid the key generation process.

3.2 Speed Optimization

Core operations of LEA are 32-bit wise addition, bit-wise exclusive-or and rota-
tion. When it comes to a 8-bit processor, 32-bit wise instruction is not straight-
forwardly computable. For this reason, we sliced a 32-bit instruction into four
8-bit instructions. The detailed process is described in Table 2. In case of ad-
dition and bit-wise exclusive-or, four 8-bit instructions are conducted for 32-bit
single instruction. From 9th to 32th bit, carry bits are concerned during addi-
tion operation. In case of rotation, we shift four 8-bit registers and then conduct
carry handling to rotate the carry bits. Among operations, rotation operation is
particularly crucial operation in microprocessors, because there is no 32-bit wise
rotation supported and carry handling is complicated process than any other op-
erations. In order to overcome this problem, we set several efficient computation
strategy. Firstly, shift operation over 8-bit offset is omitted because 8-bit shift
is simply established by ordering of inner word. Secondly, as we can find in [1],
shift operation by (5, 6, 7)-bit is simply replaced by (3, 2, 1)-bit shifts in opposite
direction. The detailed 8-bit shift process is available in Algorithm 1. Firstly
offsets in multiple times of 8-bit are reduced and then remaining bits over 4-bit
is changed into opposite direction. For left rotation by 9-bit, we simply conduct
one bit left shift with register arrangements so this approach saves 8-bit left
rotation instructions.

For further improvements of performance, we retained variables in registers
rather than memory. For encryption, we allocate sixteen registers (R0 ∼ R15)
for plaintext (X0, X1, X2, X3) and eight registers (R16 ∼ R23) are reserved
for purpose of temporal storages. Combining proposed rotation techniques and
register allocation, we can schedule registers described in Figure 1. The figure
describes from round 1 to round 4 of encryption, where each box represents 8-bit
and remaining steps are iterated in same order. As we explained before, shift
with over 8-bit is computed without cost by ordering the results. In case of 128-
bit key scheduling, sixteen registers are assigned for master key and remaining

Title Suppressed Due to Excessive Length 5

R3 R2 R1 R0R7 R6 R5 R4R11 R10 R9 R8R15 R14 R13 R12Round1

R6 R5 R4 R7R8 R11 R10 R9R15 R14 R13 R12R3 R2 R1 R0Round2

R11 R10 R9 R8R12 R15 R14 R13R3 R2 R1 R0R6 R5 R4 R7Round3

R15 R14 R13 R12R0 R3 R2 R1R6 R5 R4 R7R11 R10 R9 R8Round4

X0X1X2X3

Fig. 1. Register alignments for LEA encryption in AVR

registers are used for temporal registers. The delta variable is not retained into
registers due to limited number of registers so it is obtained from memory in
every round.

3.3 Size Optimization

In previous section, we show the highest speed record with loop unrolled opti-
mizations. This ensures the best possible performance but it increases code size
significantly. In order to minimize the code size, an implementation with “rolled”
loops is the most feasible choice. The size-first method rolls whole source codes
by number of iteration (N). If size of source code is (S), the size of looped ver-
sion is calculated in (S

N + A), where (A) represents overheads of counter, offset
and branch operations. However, the performance is relatively slower than that
of unrolled version. One possible solution is to partially unroll the loops. For
instance, the body of the loop can be replicated multiple times, which replaces
a number of loop iterations by non-iterated straight-line code.

Minimum Loop Implementation 128-bit LEA block cipher consists of 24
rounds. As described in Figure 2, each round again boiled down to three addition,
six exclusive-or and three rotation operations. These operations are grouped into
three inner loops and iterated by three times in a round. In order to minimize the
source code, we only implemented single inner loop operation and then iterated
the inner loop by three times3. This process computes one round function. After
then, 24 times of round operations are iterated. Of the 26 registers, the 16
registers are assigned for plaintext and four registers for rotation counter, one
for round counter and five for temporal registers. Since the number of general
purpose registers is highly limited, efficient scheduling of register is important.

3 The 32-bit wise inner loops are optimal choice because each instruction set occupies 2
bytes and 32-bit instruction only needs four consecutive instructions(8 bytes = 4×2)
If we use 8-bit instruction as a minimum loop for 32-bit addition, we should use 1
ADD, 1 MOV, 1 INC, 1 CPSE and 1 RJMP and total 10 bytes with far slow performance.

6 Hwajeong Seo, Zhe Liu, Jongseok Choi, Taehwan Park, and Howon Kim

Xi[3]

ROR3

Xi[2]Xi[1]Xi[0]

ROR5

ROL9

Xi+1[3]Xi+1[2]Xi+1[1]Xi+1[0]

Rki[5]

Rki[4]Rki[3]

Rki[2]
Rki[1]

Rki[0]

Outer
Loop

Inner
Loop

Xi[3]Xi[2]Xi[1]Xi[0]

Xi+1[3]Xi+1[2]Xi+1[1]Xi+1[0]

Outer
Loop

Inner
Loop

ROR9

ROL5

ROL3

Rki[0]

Rki[1]
Rki[2]

Rki[3] Rki[4]

Rki[5]

Ki[3]Ki[2]Ki[1]Ki[0]

Ki+1[3]Ki+1[2]Ki+1[1]Ki+1[0]

Outer
Loop

Inner
Loop

ROL1

ROLi

δ[i mod 4]

ROL3

ROLi+1

δ[i mod 4]

ROL6

ROLi+2

δ[i mod 4]

ROL11

ROLi+3

δ[i mod 4]

Ki+1[3]Ki+1[2]Ki+1[1]Ki+1[0]

Ki[3]Ki[2]Ki[1]Ki[0]

Outer
Loop

Inner
Loop

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

Fig. 2. Inner and outer loops of LEA encryption

We firstly computed value in Xi[3] and then stored the results, because Xi[3]

is once used but not used in following operations. After each round, the variable
X is shifted by one word size (32-bit) to align the variables for looped operation.
Cases of 192-, 256-bit implementations are also achieved with same program but
different number of rounds (28 and 32 times), because their basic architectures
are identical to that of 128-bit encryption.

Since LEA decryption has a similar structure of encryption. The techniques
for encryption can be applied to the decryption with simple modification. Each
round in Figure 3 consists of three subtraction, six exclusive-or and three rota-
tion operations. This inner loop is iterated by three times in a round and then
each round operation is repeated by 24 times for 128-bit decryption. The decryp-
tion computes opposite way in that of encryption, so we firstly use Xi[0] and
then store the results into Xi[0] registers, because following operations do not
need Xi[0] variables any more. After each round operation, variable alignments
follow by word size (32-bit). The 16 registers are assigned for ciphertext and
four registers for rotation offsets, one for round counter and five for temporal
registers.

Key scheduling consists of eight rotation and four addition operations. The
loop is grouped into four identical inner loops. The loop contains two rotation
and four addition operations. Firstly whole keys are loaded into registers and
then key scheduling is conducted by size of inner loop. Each round has different
rotation count and delta variables. Due to limited number of registers, we re-

Title Suppressed Due to Excessive Length 7

Xi[3]

ROR3

Xi[2]Xi[1]Xi[0]

ROR5

ROL9

Xi+1[3]Xi+1[2]Xi+1[1]Xi+1[0]

Rki[5]

Rki[4]Rki[3]

Rki[2]
Rki[1]

Rki[0]

Outer
Loop

Inner
Loop

Xi[3]Xi[2]Xi[1]Xi[0]

Xi+1[3]Xi+1[2]Xi+1[1]Xi+1[0]

Outer
Loop

Inner
Loop

ROR9

ROL5

ROL3

Rki[0]

Rki[1]
Rki[2]

Rki[3] Rki[4]

Rki[5]

Ki[3]Ki[2]Ki[1]Ki[0]

Ki+1[3]Ki+1[2]Ki+1[1]Ki+1[0]

Outer
Loop

Inner
Loop

ROL1

ROLi

δ[i mod 4]

ROL3

ROLi+1

δ[i mod 4]

ROL6

ROLi+2

δ[i mod 4]

ROL11

ROLi+3

δ[i mod 4]

Ki+1[3]Ki+1[2]Ki+1[1]Ki+1[0]

Ki[3]Ki[2]Ki[1]Ki[0]

Outer
Loop

Inner
Loop

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

Fig. 3. Inner and outer loops of LEA decryption

load delta variables every time when it is in needs. The counter values are also
re-loaded from memory. Since rotation and delta variables are changed in every
round, we should schedule these offsets with counter variables. For efficient 128-
bit loop encryption implementations, we stored duplicated six 32-bit round key
pairs. The 16 registers are assigned for secret/round key and four registers for
rotation counter, two for round counter and six for temporal registers. In order
to reduce the source code size, program is written in looped fashion. For looped
version, we re-aligned plaintext, ciphertext and round keys in every inner round.
Looped version always accesses to same index of registers but we should ensure
that the registers contain different variables by the round. We rotated destination
registers by word size in an every inner round to align the variables properly.

Separated Method Block cipher can be computed in separated key schedul-
ing and encryption/decryption operations. This method firstly computes whole
key chains once and stores them into storages. And then encryption/decryption
operations follow. Since key scheduling method is executed once before encryp-
tion process, separated mode can avoid overheads of key generation. For key
scheduling operation, we firstly load secret key pairs and delta variables by the
number of rounds. After key generation, we stored whole round key pairs into
RAM. For encryption operation, we load plaintext and round keys by 128-bit and
192-bit to conduct encryption process. In case of decryption, we load ciphertext
and access round keys in reverse order to conduct decryption process.

8 Hwajeong Seo, Zhe Liu, Jongseok Choi, Taehwan Park, and Howon Kim

Xi[3]

ROR3

Xi[2]Xi[1]Xi[0]

ROR5

ROL9

Xi+1[3]Xi+1[2]Xi+1[1]Xi+1[0]

Rki[5]

Rki[4]Rki[3]

Rki[2]
Rki[1]

Rki[0]

Outer
Loop

Inner
Loop

Xi[3]Xi[2]Xi[1]Xi[0]

Xi+1[3]Xi+1[2]Xi+1[1]Xi+1[0]

Outer
Loop

Inner
Loop

ROR9

ROL5

ROL3

Rki[0]

Rki[1]
Rki[2]

Rki[3] Rki[4]

Rki[5]

Ki[3]Ki[2]Ki[1]Ki[0]

Ki+1[3]Ki+1[2]Ki+1[1]Ki+1[0]

Outer
Loop

Inner
Loop

ROL1

ROLi

δ[i mod 4]

ROL3

ROLi+1

δ[i mod 4]

ROL6

ROLi+2

δ[i mod 4]

ROL11

ROLi+3

δ[i mod 4]

Ki+1[3]Ki+1[2]Ki+1[1]Ki+1[0]

Ki[3]Ki[2]Ki[1]Ki[0]

Outer
Loop

Inner
Loop

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

ROR1

ROLi

δ[i mod 4]

Fig. 4. Inner and outer loops of LEA key scheduling

On-the-fly Method On-the-fly method is the challenging task over resource
constrained embedded processors because this operation mode is required to
retain more number of parameters including delta, round key, plaintext and
counter variables for rotation and round. Since the storages for these parameters
are beyond capacity of registers in embedded processors, additional memory is
in needs. Memory access is one of the most expensive operations but we should
retain intermediate variables to memory due to limited number of registers. For
on-the-fly computations, we firstly load secret key, delta and counter variables
and then generate round keys in every session. The round key pairs are not
placed within registers because sub-sequent operations also need many registers
for plaintext and counter variables. In each inner round, we re-load round keys to
generate the next round key pairs and intermediate ciphertext pairs are also re-
loaded and placed back to memory after computations. This process is iterated
by the number of rounds.

Decryption is conducted in reverse way of encryption process. In the case of
encryption, round key pairs are generated from initial secret keys and each key
is used directly for the encryption computations. On the other hand, decryption
conducts the operation from last round key pairs to first. For starter, we conduct
key scheduling in ordinary way to get final round key pairs after then we traced
back from last to first round keys. While conducting key scheduling in reverse
order, decryption process is conducted by each round. The key scheduling in
reverse order follows reverse order of ordinary key scheduling. Firstly delta vari-
ables are rotated by number of i. And then round keys are rotated. For better
performance, we conduct right rotation. Right rotation can compute the inverse

Title Suppressed Due to Excessive Length 9

Table 3. Scaled overheads of block ciphers in 128-bit encryption cases

Features LEA SPECK SIMON

Scaled in 32-bit addition 3 2 -

Scaled in 32-bit bit-wise and - - 2

Scaled in 32-bit exclusive-or 6 4 10

Scaled in 32-bit rotation (offset) 7 6 6

Size of master key (bit) 128 128 128

Total size of round key (bit) 4608 2048 2176

Number of Rounds 24 32 34

Scaled panelty point in speed (clock) - +40 -19

Scaled panelty point in size (proportion) - 1.57 1.1

operation of left rotation. After then both values are subtracted. The loops are
iterated by the number of rounds.

Scalable Implementation In order to support various protocols and environ-
ments, we need to ensure diverse security levels. If we implement one by one over
the embedded processors, it would consume more capacities to store. For this
reason, we implemented scalable encryption and decryption operations. Thanks
to simple architecture of LEA block cipher, we can easily implement scalable en-
cryption/decryption operations. LEA block cipher provides three different key
sizes including 128-, 192-, and 256-bit. The basic instruction is same for all key
sizes but only the number of round is varied. By assigning the number of rounds
differently, we can readily scale the three different encryption models. In case of
decryption, opposite order of encryption operations are conducted. As like en-
cryption case, we can only alter the round numbers to conduct the operations.

Loop Friendly Instruction Set For register realignments, MOVW instruction
relocates two adjacent register to destination within single clock cycle. In case
of memory load/store, we can use post increment or pre-decrement accesses.
This does not impose additional clock costs to calculate the indirect address. In
order to set the counter, we use LDI instruction to assign the value directly. The
ADIW and SBIW conduct addition and subtraction by word with immediate value.
These are used to modify memory address. Finally, INC and DEC operations are
used to increase and decrease the counter variables.

3.4 Implementations for 16-bit MSP Embedded Processors

The proposed techniques are not limited to 8-bit AVR processors. We also ap-
plied to other resource constrained devices such as 16-bit MSP processors. As
like 8-bit AVR, 32-bit wise ARX instructions are split into two consecutive 16-
bit operations. In case of rotation operation, we also adopted efficient rotation
method in Algorithm 1. For left rotation by 9-bit, we can replace the operations
into right shift by 7-bit (16-9) together with register ordering. Of twelve 16-bit

10 Hwajeong Seo, Zhe Liu, Jongseok Choi, Taehwan Park, and Howon Kim

registers, two or three registers are assigned for pointer and remaining ten or nine
registers are available for general purposes. However, plaintext and round keys
are larger than register capacities. For this reason, register utilizations should
be taken into accounts.

For LEA encryption process, we allocate eight registers (R4 ∼ R11) for plain-
text (X0, X1, X2, X3) and remaining registers are used for temporal storages.
The order of plaintext is also aligned by using techniques introduced in Figure 1.
In case of 128-bit key scheduling, eight registers are assigned for master key and
remaining registers are used for temporal registers. The delta variable is not kept
in the registers due to lack of register. The variables are re-loaded from memory
in every session. Finally we compute the LEA key scheduling and encryption
in 206.4 and 157.6 cycles/byte. This is the first LEA implementation on MSP
processors. We compared results with AES implementations. The results show
that 180 cycles/byte for AES encryption [5].

4 Results

4.1 Speed Optimization

In Table 4, comparison results of speed factor on AVR are described4. The
results introduced in WISA’13 [7] computes LEA encryption within 190 cy-
cles/byte. Our optimized implementation achieved 169.2 cycles/byte, which im-
proves performance by 10.9%. We also compared with other block ciphers. Of
many methods, we selected the most well known block cipher AES. AES follows
SPN architecture but LEA is ARX architecture. For fair comparison, we brought
the most well-known ARX based block ciphers such as SPECK and SIMON.

Firstly, optimized LEA shows lower performance than optimized AES by
26.4%. This is obvious that LEA is targeting the 32-bit processor but AES is
for 8-bit processors. Secondly, we compared with SPECK and SIMON. Direct
comparison with both algorithm is also unfair because number of arithmetic is
different to each other. In case of 128-bit SPECK encryption, each round consists
of 64-bit rotation by 3-bit and one 64-bit addition and two 64-bit exclusive-or
operations. When they are scaled into 32-bit operations each 64-bit operation is
split into 2 32-bit operation. Another factor is round key size. If round key is
getting large, memory access frequently happens and latency should be lower.
The SPECK has relatively small round key sizes (2048 bits). In case of 128-bit
SIMON encryption, each round consists of 64-bit rotation by 3-bit and one 64-
bit logical AND and five 64-bit exclusive-or operations. When they are scaled into
32-bit operation, the operations are changed into 10-bit rotation, two AND and
six exclusive-or. The SIMON has also small round key sizes by 2176 bits. We
scaled the operation by calculating the overheads of each operation. One 32-bit
operation needs four 8-bit operations (4 clock cycles) and 1 byte memory accesses

4 The performance is measured in clock cycles and bytes for timing and code size. Pre-
cise results are measured in AVR studio and program is complied with optimization
level 2.

Title Suppressed Due to Excessive Length 11

Table 4. Speed optimized results on AVR, encryption is measured in cycles/byte and
code size in bytes, ∗: estimated results, P/C: Pre-computed

Method ARCH KEY ENC ENC(scaled) ROM(byte) RAM(byte)

Speed(Separated)

LEA 128-bit ARX P/C 169.2 169.2 924 592

LEA 192-bit ARX P/C 224.6 N/A 1004 688

LEA 256-bit ARX P/C 256.1 N/A 1004 784

LEA 128-bit [7] ARX P/C 190 190 N/A N/A

SPECK 128-bit [3] ARX P/C 143 183 452 256

SPECK 192-bit [3] ARX P/C 147 N/A 632 272

SPECK 256-bit [3] ARX P/C 151 N/A 522 288

SIMON 128-bit [3] ARX P/C 337 318 510 544

SIMON 192-bit [3] ARX P/C 339 N/A 646 552

SIMON 256-bit [3] ARX P/C 357 N/A 522 576

AES 128-bit [6] SPN P/C 124.5 N/A 956∗ N/A

needs 2 clock cycles. With this conversion, we can draw objective complexity

(cycles/byte) of LEA (168 =
16×#round(24)×4+2× roundkey(4608)

8

16), SPECK (128 =
12×32×4+2× 2048

8

16) and SIMON (187 =
18×34×4+2× 2176

8

16). The detailed comparison
in Table 3. After scaling, our work is faster than SPECK and SIMON by 7.5 %
and 46.8 %, respectively.

4.2 Size Optimization

One 32-bit operation consists of four 8-bit operations. Each 8-bit operation needs
2 bytes for program instructions. In case of memory accesses, one byte access
operation needs 2 bytes. We calculated the relative costs in each round of block
cipher as follows. In case of LEA, its complexity is (176 = #operation(16) ×
4 × 2 + roundkey(192)/8 × 2) and for SPECK it is (112 = #operation(12) ×
4 × 2 + roundkey(64)/8 × 2) and for SIMON it is (160 = #operation(18) ×
4× 2 + roundkey(64)/8× 2). We compute relative complexity and after scaling
LEA implementation is 35% smaller than SPECK and SIMON. Furthermore, we
presented on-the-fly and parameterized version with only 1286 and 592 bytes,
respectively. The parameterized version is readily available in LEA because it
shares same structures throughout the all security levels.

5 Conclusion

One of the biggest challenges for Internet of Things is secure communications
between small and resource constrained embedded processors. In order to ensure
secure and robust transactions, we should conduct the encryption operation on
sensitive and important information. In this paper, we explore the optimal imple-
mentations pursuing high speed and small memory footprint for new light-weight

12 Hwajeong Seo, Zhe Liu, Jongseok Choi, Taehwan Park, and Howon Kim

Table 5. Size optimized results on AVR, Key and Enc are measured in cycles/byte
and code size in bytes. P/C: Pre-computed

Method KEY ENC DEC ROM(byte) ROM(scaled) RAM(byte)

Size(On-the-fly)

LEA 128-bit N/A 2576 5029 1286 1286 88

Size(Parameterized)

LEA 128-bit N/A 729.8 748.8 592 592 596

LEA 192-bit N/A 849.8 871.8 592 N/A 692

LEA 256-bit N/A 969.8 994.8 592 N/A 788

Size(Separated)

LEA 128-bit P/C 729.6 N/A 280 280 592

LEA 192-bit P/C 849.6 N/A 280 N/A 688

LEA 256-bit P/C 969.6 N/A 280 N/A 784

SPECK 128-bit [3] P/C 169 N/A 278 436 264

SPECK 192-bit [3] P/C 174 N/A 330 N/A 272

SPECK 256-bit [3] P/C 179 N/A 348 N/A 280

SIMON 128-bit [3] P/C 346 N/A 392 431 544

SIMON 192-bit [3] P/C 351 N/A 392 N/A 552

SIMON 256-bit [3] P/C 366 N/A 404 N/A 576

block cipher, LEA. This paper presents several optimization techniques includ-
ing efficient 32-bit wise ARX operations and minimum inner loop scheduling.
Furthermore, to the best of our knowledge, this is first scalable LEA block ci-
pher implementations over AVR processor. The program can compute various
key sizes with single code and no further modifications.

References

1. D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira. Efficient implementation of
elliptic curve cryptography in wireless sensors. Advances in Mathematics of Com-
munications, 4(2):169–187, 2010.

2. Atmel Corporation. ATmega128(L) Datasheet (Rev. 2467O–AVR–10/06). Avail-
able for download at http://www.atmel.com/dyn/resources/prod_documents/

doc2467.pdf, Oct. 2006.
3. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The

simon and speck block ciphers on avr 8-bit microcontrollers.
4. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.

The simon and speck families of lightweight block ciphers. IACR Cryptology ePrint
Archive, 2013:404, 2013.

5. C. P. Gouvêa and J. López. High speed implementation of authenticated encryption
for the msp430x microcontroller. In Progress in Cryptology–LATINCRYPT 2012,
pages 288–304. Springer, 2012.

6. D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software aes encryption.
In Fast Software Encryption, pages 75–93. Springer, 2010.

7. K. H. Ryu and D.-G. Lee. Lea: A 128-bit block cipher for fast encryption on common
processors. Information Security Applications, page 3.

Title Suppressed Due to Excessive Length 13

8. H. Seo, Z. Liu, T. Park, H. Kim, Y. Lee, J. Choi, and H. Kim. Parallel implemen-
tations of lea. In Information Security and Cryptology–ICISC 2013, pages 256–274.
Springer, 2014.

