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SUMMARY: In previous work I proposed a fully homomorphic 

encryption without bootstrapping which has the weak point in the 

enciphering function. In this paper I propose the improved fully 

homomorphic encryption scheme on non-associative octonion ring over 

finite field without bootstrapping technique. I improve the previous 

scheme by (1) adopting the enciphering function such that it is difficult to 

express simply by using the matrices and (2) constructing the 

composition of the plaintext p with two sub-plaintexts u and v. The 

improved scheme is immune from the “p and -p attack”. The improved 

scheme is based on multivariate algebraic equations with high degree or 

too many variables while the almost all multivariate cryptosystems 

proposed until now are based on the quadratic equations avoiding the 

explosion of the coefficients. The improved scheme is against the 

Gröbner basis attack.  

   The key size of this scheme and complexity for enciphering 

/deciphering become to be small enough to handle. 

keywords: fully homomorphic encryption, multivariate algebraic 

equation, Gröbner basis, octonion 

 

§1. Introduction 

A cryptosystem which supports both addition and multiplication (thereby preserving 

the ring structure of the plaintexts) is known as fully homomorphic encryption (FHE) 

and is very powerful. Using such a scheme, any circuit can be homomorphically 

evaluated, effectively allowing the construction of programs which may be run on 

encryptions of their inputs to produce an encryption of their output. Since such a 

program never decrypts its input, it can be run by an untrusted party without revealing 

its inputs and internal state. The existence of an efficient and fully homomorphic 

cryptosystem would have great practical implications in the outsourcing of private 

computations, for instance, in the context of cloud computing.  

mailto:tfkt8398yagi@hb.tp1.jp
http://en.wikipedia.org/wiki/Ring_(mathematics)
http://en.wikipedia.org/wiki/Cloud_computing
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With homomorphic encryption, a company could encrypt its entire database of 

e-mails and upload it to a cloud. Then it could use the cloud-stored data as desired-for 

example, to calculate the stochastic value of stored data. The results would be 

downloaded and decrypted without ever exposing the details of a single e-mail. 

Gentry’s bootstrapping technique is the most famous method of obtaining fully 

homomorphic encryption. In 2009 Gentry, an IBM researcher, has created a 

homomorphic encryption scheme that makes it possible to encrypt the data in such a 

way that performing a mathematical operation on the encrypted information and then 

decrypting the result produces the same answer as performing an analogous operation 

on the unencrypted data[9],[10].  

But in Gentry’s scheme a task like finding a piece of text in an e-mail requires 

chaining together thousands of basic operations. His solution was to use a second 

layer of encryption, essentially to protect intermediate results when the system broke 

down and needed to be reset.  

Some fully homomorphic encryption schemes were proposed until now [11], [12], 

[13],[14],[15]. 

   In previous work[1],[18] I proposed a fully homomorphic encryption without 

bootstrapping which has the weak point in the enciphering function. In this paper I 

propose the improved fully homomorphic encryption scheme on non-associative 

octonion ring over finite field without bootstrapping technique where I adopt the 

enciphering function such that it is difficult to express simply by using the matrix. 

The plaintext p consists of two sub-plaintexts u and v. The proposed fully 

homomorphic encryption scheme is immune from the “p and -p attack”. 

In this scheme I adopt a fully homomorphic encryption scheme on 

non-associative octonion ring over finite field which is based on computational 

difficulty to solve the multivariate algebraic equations of high degree while the 

almost all multivariate cryptosystems [2],[3],[4],[5],[6],[7] proposed until now are 

based on the quadratic equations avoiding the explosion of the coefficients. Our 

scheme is against the Gröbner basis [8] attack, the differential attack, rank attack and 

so on.  

Organization of this paper is as follows. In Sec.2 preliminaries for octonion 

operation are described. In Sec.3 we construct proposed fully homomorphic 

encryption scheme. In Sec.4 we analyse proposed scheme to show that proposed 

scheme is immune from the Gröbner basis attacks by calculating the complexity to 

obtain the Gröbner basis for the multivariate algebraic equations. In Sec.5 we describe 

the size of the parameters and the complexity for enciphering and deciphering. In 

Sec.6 we describe conclusion.  
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§2. Preliminaries for octonion operation 

In this section we describe the operations on octonion ring and properties of octonion 

ring. 

§2.1 Multiplication and addition on the octonion ring O 

Let q be a fixed modulus to be as large prime as O (2
80

).  

Let O be the octonion [16] ring over a finite field Fq.  

               O={(a0,a1,…,a7) | aj∈ Fq (j=0,1,…,7)}             (1) 

We define the multiplication and addition of A,B∈O as follows. 

                    A=(a0,a1,…,a7),  aj∈ Fq (j=0,1,…,7),            (2) 

              B=(b0,b1,…,b7), bj∈ Fq (j=0,1,…,7).               (3) 

AB mod q 

= (a0b0 - a1b1- a2b2- a3b3-a4b4- a5b5-a6b6-a7b7 mod q, 

a0b1+a1b0+a2b4+a3b7-a4b2+a5b6-a6b5-a7b3 mod q, 

a0b2-a1b4+a2b0+a3b5+a4b1-a5b3+a6b7-a7b6 mod q, 

a0b3-a1b7-a2b5+a3b0+a4b6+a5b2-a6b4+a7b1 mod q, 

a0b4+a1b2 - a2b1 - a3b6+a4b0+a5b7+ a6b3 - a7b5 mod q, 

 a0b5-a1b6+a2b3-a3b2-a4b7+a5b0+a6b1+a7b4 mod q, 

             a0b6+a1b5 - a2b7+a3b4 - a4b3 - a5b1+a6b0 +a7b2 mod q, 

             a0b7+a1b3+a2b6-a3b1+a4b5-a5b4-a6b2+a7b0 mod q)         (4) 

A+B mod q 

=(a0+b0 mod q, a1+b1 mod q, a2+b2 mod q, a3+b3 mod q , 

a4+b4 mod q, a5+b5 mod q, a6+b6 mod q, a7+b7 mod q ).        (5) 

Let 

                      |A|
2
= a0

2
+a1

2
+…+a7

2
 mod q.                (6) 

If |A|
2
≠0 mod q, we can have A

-1
, the inverse of A by using the algorithm 

Octinv(A) such that  
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A
-1
= (a0 / |A|

2
 mod q, -a1 / |A|

2
 mod q,…, -a7 / |A|

2
 mod q) ← Octinv(A) . (7) 

Here details of the algorithm Octinv(A) are omitted and can be looked up in the 

Appendix A. 

 

§2.2 Order of the element in O 

In this section we describe the order “J ” of the element “A” in octonion ring, that 

is, 

A
J+1

=A mod q. 

Theorem 1 

Let A:=(a10,a11,…,a17)∈O, a1j∈Fq  (j=0,1,…,7). 

Let ( an0 ,an1,…,an7) :=A
n∈O , anj∈Fq  (n=1,2,…;j=0,1,…,7).   

a00 , anj’s(n=1,2,…;j=0,1,…) and bn’s(n =0,1,…) satisfy the equations such that 

N:= a11
2
+…+a17

2
  mod q 

a00:=1, b0:=0, b1:=1, 

              an0= an-1,0 a10 – bn-1N mod q ,(n=1,2,…),             (8) 

              bn = an-1,0+ bn-1a10 mod q ,(n=1,2,…),               (9)  

              anj= bna1j mod q ,(n=1,2,…;j=1,2,…,7) .            (10) 

(Proof:) 

Here proof is omitted and can be looked up in the Appendix B. 

 

Theorem 2 

For an element A=(a10,a11,…,a17)∈O, 

A
J+1

=A mod q, 

where  

J= LCM {q
2
-1, q-1}=q

2
-1, 

N:=a11
2
+ a12

2
+…+a17

2≠0 mod q. 

(Proof: ) 
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Here proof is omitted and can be looked up in the Appendix C. 

 

§2.3. Property of multiplication over octonion ring O 

A,B,C etc.∈O satisfy the following formulae in general where A,B and C have 

the inverse A
-1
 ,B

-1
 and C

-1 
mod q.   

1) Non-commutative  

AB≠BA  mod q. 

2) Non-associative 

A(BC)≠(AB)C  mod q. 

3) Alternative  

                                (AA)B=A(AB)  mod q,            (11) 

                                A(BB)=(AB)B  mod q,             (12) 

                                (AB)A=A(BA)  mod q.            (13) 

4) Moufang’s formulae [16],  

                              C(A(CB))=((CA)C)B  mod q,         (14) 

A(C(BC))=((AC)B)C  mod q,        (15) 

(CA)(BC)=(C(AB))C  mod q,        (16) 

(CA)(BC)=C((AB)C)  mod q.        (17) 

5) For positive integers n,m, we have 

             (AB)B
n
 =((AB)B

n-1
)B=A(B(B

n-1
B))=AB

n+1
   mod q,    (18) 

             (AB
n
)B =((AB)B

n-1
)B=A(B(B

n-1
B))=AB

n+1    
mod q ,     (19) 

            B
n
 (BA) =B(B

n-1
(BA))= ((BB

n-1
)B)A=B

n+1
A  mod q ,     (20) 

             B(B
n
 A)=B(B

n-1
(BA))= ((BB

n-1
)B)A=B

n+1
A  mod q.      (21) 

From (12) and (19), we have 

[(AB
n
)B]B =[AB

n+1
]B  mod q, 

(AB
n
)(BB) =[(AB

n
)B]B =[AB

n+1
]B= AB

n+2  
mod q, 

(AB
n
)B

2
= AB

n+2  
mod q, 
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…    … 

(AB
n
)B

m
= AB

n+m  
mod q. 

In the same way we have 

B
m
(B

n
 A)= B

n+m
A  mod q. 

6) Lemma 1 

A(B((AB)
n
))=(AB)

n+1   
mod q, 

(((AB)
n
)A)B =(AB)

n+1  
mod q

 
. 

where n is a positive integer and B has the inverse B
-1
. 

(Proof:)  

From (14) we have 

B(A(B((AB)
n
)=((BA)B)(AB)

n
=(B(AB))(AB)

n
=B(AB)

n+1  
mod q. 

Then 

B
-1
(B(A(B(AB)

n
))= B

-1
(B (AB)

n+1
)  mod q, 

A(B(AB)
n
)= (AB)

n+1  
mod q. 

In the same way we have  

(((AB)
n
)A)B=(AB)

n+1  
mod q.           q.e.d. 

7) Lemma 2 

A
-1
(AB)= B mod q, 

(BA)A
-1
= B mod q . 

 (Proof:) 

Here proof is omitted and can be looked up in the Appendix D. 

 
 

8) Lemma 3 

A(BA
-1
)= (AB)A

-1 
mod q. 

 (Proof:) 

From (17) we substitute A
-1 

to C, we have 
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(A
-1
A)(B A

-1
)= A

-1
 ((AB) A

-1
) mod q, 

(B A
-1
)= A

-1
 ((AB) A

-1
) mod q. 

We multiply A from left side , 

A(B A
-1
)= A(A

-1
 ((AB) A

-1
))= (AB) A

-1
 mod q.        q.e.d. 

We can express A(BA
-1
), (AB)A

-1  
such that 

ABA
-1

. 

 

9) From (13) and Lemma 2 we have 

A
-1
((A(BA

-1
))A)= A

-1
(A((BA

-1
)A))=

 
(BA

-1
)A=B mod q, 

(A
-1
((AB)A

-1
))A=((A

-1
(AB))A

-1
)A= A

-1
(AB)=B mod q

 
. 

10) Lemma 4 

(BA
-1
)(AB)=B

2 
mod q

 
. 

(Proof:) 

From (17), 

(BA
-1
)(AB)=B((A

-1
A)B)=B

2  
mod q.      q.e.d. 

11a) Lemma 5a 

(ABA
-1
)( ABA

-1
 )= AB

2
A

-1 
mod q. 

(Proof:) 

From (17), 

(ABA
-1
)( ABA

-1
 )  mod q 

=[A
-1
 (A

2
(BA

-1
))][(AB)A

-1
]= A

-1
 {[(A

2
(BA

-1
))(AB)]A

-1
}  mod q 

= A
-1
 {[(A(A(BA

-1
)))(AB)]A

-1
}  mod q 

= A
-1
 {[(A((AB)A

-1
))(AB)]A

-1
}  mod q 

= A
-1
 {[(A(AB))A

-1
))(AB)]A

-1
}  mod q. 

We apply (15) to inside of [ . ], 

= A
-1
 {[(A((AB)(A

-1
(AB)))]A

-1
}  mod q 
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= A
-1
 {[(A((AB)B))]A

-1
}  mod q 

= A
-1
 {[A(A(BB))]A

-1
}  mod q 

={ A
-1
 [A(A(BB))]}A

-1  
mod q 

=(A(BB))A
-1  

mod q 

                 =AB
2
A

-1 
mod q.                     q.e.d. 

11b) Lemma 5b 

[A1(…(ArBAr
-1
)…)A1

-1
] [A1(…(ArBAr

-1
)…)A1

-1
] 

= A1(…(ArB
2
Ar

-1
)…)A1

-1
 mod q. 

where 

Ai∈O has the inverse Ai
-1
mod q (i=1,…,r). 

(Proof:) 

As we use Lemma 5a repeatedly we have 

{A1( [A2(…(ArBAr
-1
)…)A2

-1
] )A1

-1
 }{A1( [A2(…(ArBAr

-1
)…)A2

-1
] )A1

-1
 } mod q 

=A1( [A2(…(ArBAr
-1
)…)A2

-1
] [A2(…(ArBAr

-1
)…)A2

-1
] )A1

-1
 mod q 

=A1(A2([A3(…(ArBAr
-1
)…)A3

-1
][A3(…(ArBAr

-1
)…)A3

-1
)A2

-1
] )A1

-1
 mod q 

…       … 

= A1(A2(…([ArBAr
-1
] [ArBAr

-1
])…)A2

-1
)A1

-1
 mod q 

= A1(A2(…(ArB
2
Ar

-1
)…)A2

-1
)A1

-1
 mod q 

q.e.d. 

11c) Lemma 5c 

A1
-1
 (A1BA1

-1
) A1  

= B mod q. 

where 

A1∈O has the inverse A1
-1
mod q. 

(Proof:) 

A1
-1
 (A1BA1

-1
) A1= A1

-1
 [((A1B)A1

-1
) A1] mod q, 
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From Lemma 2 we have 

= A1
-1
 (A1B) =B mod q.      q.e.d. 

11d) Lemma 5d 

Ar
-1

 (…(A1
-1
 [A1(…(ArBAr

-1
)…)A1

-1
] A1)…)Ar  

= B mod q. 

where 

Ai∈O has the inverse Ai
-1
mod q (i=1,…,r). 

(Proof:) 

As we use Lemma 5c repeatedly we have 

Ar
-1

 (…(A1
-1
 [A1(…(ArBAr

-1
)…)A1

-1
] A1)…)Ar  

= Ar
-1
 (…(A2

-1
 [A2(…(ArBAr

-1
)…)A2

-1
] A2)…)Ar mod q 

…       … 

= Ar
-1
[ArBAr

-1
]Ar mod q 

    =B mod q    q.e.d. 

 

12) Lemma 6 

(AB
m
A

-1
)( AB

n
A

-1
 )= AB

m+n
A

-1   
mod q. 

(Proof:) 

From (16), 

[A
-1
 (A

2
(B

m
A

-1
))][(AB

n
)A

-1
]= {A

-1
 [(A

2
(B

m
A

-1
))(AB

n
)]}A

-1  
mod q

 

= A
-1
{ [(A(A(B

m
A

-1
))(AB

n
)]A

-1
}  mod q 

 = A
-1
{ [(A((AB

m
)A

-1
))(AB

n
)]A

-1
}  mod q 

                 = A
-1

 { [((A(AB
m
))A

-1
))(AB

n
)] A

-1
}  mod q 

 = A
-1
 { [((A

2
B

m
)A

-1
))(AB

n
)] A

-1
}  mod q. 

We apply (15) to inside of { . }, 

= A
-1
 { (A

2
B

m
)[A

-1
((AB

n
)A

-1
)]}  mod q 
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= A
-1
 { (A

2
B

m
)[A

-1
(A(B

n
A

-1
))]}  mod q 

= A
-1
 { (A

2
B

m
)(B

n
A

-1
)}  mod q 

= A
-1
 { (A

-1
(A

3
B

m
))(B

n
A

-1
)}  mod q. 

We apply (17) to inside of { . }, 

= A
-1
 { A

-1
([(A

3
B

m
)B

n
]A

-1
)]}  mod q 

= A
-1
 { A

-1
((A

3
B

m+n
)A

-1
)}  mod q 

= A
-1
 { (A

-1
(A

3
B

m+n
))A

-1
}  mod q 

= A
-1
 { (A

2
B

m+n
)A

-1
}  mod q 

={ A
-1
 (A

2
B

m+n
)) }A

-1  
mod q 

=(AB
m+n

)A
-1  

mod q
 

     =AB
m+n

A
-1 

mod q.                 q.e.d 

  

13) A∈O satisfies the following theorem. 

Theorem 3 

A
2
=w1+vA mod q, 

where   

∃w,v∈Fq, 

1=(1,0,0,0,0,0,0,0)∈O, 

A=(a0,a1,…,a7)∈O. 

(Proof:) 

A
2
 mod q 

=(  a0a0-a1a1- a2a2- a3a3-a4a4- a5a5-a6a6-a7a7 mod q, 

a0a1+a1a0+a2a4+a3a7-a4a2+a5a6-a6a5-a7a3 mod q, 

a0a2-a1a4+a2a0+a3a5+a4a1-a5a3+a6a7-a7a6 mod q, 

a0a3-a1a7-a2a5+a3a0+a4a6+a5a2-a6a4+a7a1 mod q, 

a0a4+a1a2-a2a1-a3a6+a4a0+a5a7+a6a3-a7a5 mod q, 
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a0a5-a1a6+a2a3-a3a2-a4a7+a5a0+a6a1+a7a4 mod q, 

a0a6+a1a5-a2a7+a3a4-a4a3-a5a1+a6a0+a7a2 mod q, 

a0a7+a1a3+a2a6-a3a1+a4a5-a5a4-a6a2+a7a0 mod q) 

=(2a0
2
- L mod q, 2a0a1 mod q, 2a0a2 mod q, 2a0a3 mod q, 2a0a4 mod q, 2a0a5 mod q, 

2a0a6 mod q, 2a0a7 mod q) 

where 

L= a0
2
+a1

2
+a2

2
+a3

2
+a4

2
+a5

2
+a6

2
+a7

2
 mod q. 

Now we try to obtain u, v∈Fq that satisfy A
2
=w1+vA mod q. 

w1+vA= w(1,0,0,0,0,0,0,0)+v(a0,a1,…,a7) mod q, 

A
2
= (2a0

2
- L mod q, 2a0a1 mod q, 2a0a2 mod q, 2a0a3 mod q, 2a0a4 mod q, 

 2 a0a5 mod q,2a0a6 mod q, 2a0a7 mod q). 

Then we have  

A
2
=w1+vA=-L1+2 a0A mod q, 

w= -L mod q, 

                   v=2a0
 
mod q.              q.e.d. 

14)  Theorem 4 

A
h 
=wh1+vhA mod q 

where h is an integer and wh,vh ∈Fq. 

(Proof:) 

From Theorem 3 

A
2
=w21+v2A=-L1+2a0A mod q. 

If we can express A
h 
such that  

A
h
=wh1+vhA mod q∈O , wh,vh∈Fq, 

Then  

A
h+1

=(wh1+vhA)A mod q 

 =whA+vh(-L1+2 a 0A ) mod q 
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 =-Lvh1+( wh+2a 0vh)A mod q. 

We have 

wh+1= -L vh mod q∈Fq, 

                 vh+1= wh+2a0vh
  

mod q∈Fq.          q.e.d. 

15) Theorem 5 

D∈O does not exist that satisfies the following equation. 

B(AX)=DX mod q , 

where B,A,D∈O, and X is a variable. 

   

(Proof:) 

When X=1, we have 

BA=D mod q. 

Then  

B(AX)=(BA)X mod q. 

We can select C∈O that satisfies 

                     B(AC)≠(BA)C mod q.                   (22) 

We substitute C∈O to X to obtain 

                        B(AC)=(BA)C mod q.                 (23) 

(23) is contradictory to (22).                        q.e.d.  

 

16) Theorem 6 

D∈O does not exist that satisfies the following equation. 

                       C(B(AX))=DX mod q                  (24) 

where C,B,A,D∈O, C has inverse C
-1 

mod q and X is a variable.  

B,A,C are non-associative, that is, 

                        B(AC)≠(BA)C mod q.                (25) 
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(Proof:) 

If D exists, we have at X=1 

C(BA)=D mod q. 

Then  

C(B(AX))=(C(BA))X mod q. 

We substitute C to X to obtain 

C(B(AC))=(C(BA))C mod q. 

From (13) 

C(B(AC))=(C(BA))C=C((BA)C) mod q 

Multiplying C
-1

 from left side , 

                          B(AC)=(BA)C mod q               (26) 

(26) is contradictory to (25).                     q.e.d.  

 

17) Theorem 7 

D and E∈O do not exist that satisfy the following equation. 

C(B(AX))= E (DX) mod q 

where C,B,A,D and E∈O have inverse and X is a variable.  

A,B,C are non-associative, that is, 

                          C(BA)≠(CB)A mod q.              (27) 

(Proof:) 

If D and E exist, we have at X=1 

                          C(BA)=ED mod q                  (28) 

We have at X=(ED)
-1
=D

-1
E

-1
 mod q.

 

C(B(A(D
-1
E

-1
)))= E (D(D

-1
E

-1
)) mod q=1, 

(C(B(A(D
-1

E
-1
)))

-1
 mod q=1, 

((ED)A
-1
)B

-1
)C

-1
 mod q=1,
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                       ED =(CB)A mod q.                    (29)
 

From (28) and (29) we have 

                       C(BA) =(CB)A mod q.                  (30)
 

 (30) is contradictory to (27).                     q.e.d.  

 

18) Theorem 8 

D∈O does not exist that satisfies the following equation. 

A(B(A
-1
X))=DX mod q 

where B,A,D∈O, A has inverse A
-1 

mod q and X is a variable. 

(Proof:) 

If D exists, we have at X=1 

A(BA
-1
)=D mod q. 

Then  

                        A
 
(B(A

-1
X))=(A(BA

-1
))X mod q.           (31) 

We can select C∈O such that  

                       (BA
-1
)(CA

2
) ≠ (BA

-1
)C)A

2 
mod q.        (32) 

That is, (BA
-1
), C and A

2
 are non-associative. 

Substituing X=CA in (31), we have 

A
 
(B(A

-1
(CA)))=(A(BA

-1
))(CA) mod q. 

From Lemma 3 

A
 
(B((A

-1
C)A)))=(A(BA

-1
))(CA) mod q. 

From (17) 

A
 
(B((A

-1
C)A)))=A([(BA

-1
)C]A) mod q. 

Multiply A
-1
 from left side we have 

B((A
-1
C)A))= ((BA

-1
)C)A mod q. 

From Lemma 3 
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B(A
-1
(CA))=((BA

-1
)C)A mod q. 

Transforming CA to ((CA
2
)A

-1
), we have 

B(A
-1
((CA

2
)A

-1
))=((BA

-1
)C)A mod q. 

From (15) we have 

((BA
-1
)(CA

2
))A

-1
=((BA

-1
)C)A mod q. 

Multiply A from right side we have 

                  ((BA
-1
)(CA

2
)=((BA

-1
)C)A

2 
mod q.              (33)

 

(33) is contradictory to (32).                                  q.e.d.  

 

§3. Concept of proposed fully homomorphic encryption scheme  

Homomorphic encryption is a form of encryption which allows specific types of 

computations to be carried out on ciphertext and obtain an encrypted result which 

decrypted matches the result of operations performed on the plaintext. For instance, 

one person could add two encrypted numbers and then another person could decrypt 

the result, without either of them being able to find the value of the individual 

numbers. 

 

§3.1 Definition of homomorphic encryption 

A homomorphic encryption scheme HE := (KeyGen; Enc; Dec; Eval) is a 

quadruple of PPT (Probabilistic polynomial time) algorithms. 

In this work, the medium text space Me of the encryption schemes will be 

octonion ring, and the functions to be evaluated will be represented as arithmetic 

circuits over this ring, composed of addition and multiplication gates. The syntax of 

these algorithms is given as follows. 

-Key-Generation. The algorithm KeyGen, on input the security parameter 1
λ
,  

outputs (sk) ← KeyGen(1
λ
) , where sk is a secret encryption/decryption key. 

-Encryption. The algorithm Enc, on input system parameter q, secret keys(sk) and 

a plaintext p∈Fq, outputs a ciphertext C ←Enc(sk; p). 

-Decryption. The algorithm Dec, on input system parameter q, secret key(sk) and a 

ciphertext C, outputs a plaintext p*←Dec(sk;C). 
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-Homomorphic-Evaluation. The algorithm Eval, on input system parameter q, an 

arithmetic circuit ckt, and a tuple of n ciphertexts (C1,…, Cn), 

outputs a ciphertext C’ ←Eval(ckt; C1,…, Cn). 

 

The security notion needed in this scheme is security against chosen plaintext 

attacks (IND-CPA security), defined as follows. 

Definition 1 (IND-CPA security). A scheme HE is IND-CPA secure if for any PPT 

adversary Ad it holds that: 

Adv
CPA

HE [λ] :=|Pr[Ad(Enc(sk;0)) = 1] - Pr[Ad(Enc(sk;1)) = 1]|= negl(λ) 

where (sk) ←KeyGen(1
λ
). 

 

§3.2 Definition of fully homomorphic encryption 

A scheme HE is fully homomorphic if it is both compact and homomorphic with 

respect to a class of circuits. More formally: 

Definition 2 (Fully homomorphic encryption). A homomorphic encryption scheme 

FHE :=(KeyGen; Enc; Dec; Eval) is fully homomorphic if it satisfies the following 

properties: 

1. Homomorphism: Let CR = {CRλ}λ∈N be the set of all polynomial sized 

arithmetic circuits. On input sk ←KeyGen(1
λ
),∀ckt ∈ CRλ,∀(p1,…, pn)∈Fq

n
 

where n = n(λ), ∀(C1,…,Cn)  

where Ci← Enc(sk;ui, it holds that: 

Pr[Dec(sk;Eval(ckt; C1,…,Cn)) ≠ ckt(p1,…, pn)] = negl(λ). 

2. Compactness: There exists a polynomial μ = μ(λ) such that the output length of 

Eval is at most μ bits long regardless of the input circuit ckt and the number of its 

inputs. 

§3.3 Proposed fully homomorphic enciphering/deciphering functions  

We propose a fully homomorphic encryption (FHE) scheme based on the 

enciphering/deciphering functions on octonion ring over Fq.  

 

First we define the medium text M as follows. 

We select the element B=(b0,b1,b2,…,b7) and H=(b0,-b1,-b2,…,-b7)∈O such that, 
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LB:=|B|
2
= b0

2
+b1

2
+…+b7

2
 mod q=0, 

b0≠0 mod q, 

b1≠0 mod q. 

 

Then we have  

LH:=|H|
2
= b0

2
+b1

2
+…+b7

2
 mod q=0, 

B+H=2b01 mod q, 

B
2
=2b0B mod q, 

H
2
=2b0H mod q, 

BH=HB=0 mod q. 

Let u,v∈Fq be sub-plaintexts where a plaintext p is given such as 

p:=u+2b0v mod q. 

Let w∈Fq be a random number.  

We define the medium text M by 

M:= R1(…(Rr(u1+vB+wH)Rr
-1
)…)R1

-1∈O, 

where  

p= u+2b0v mod q, 

Ri∈O is selected such that Ri
-1∈O exists (i=1,…,r) and 

 RiB≠BRi mod q(i=1,…,r), 

RiH≠Hi mod q(i=1,…,r). 

Then  

|M|
2
=| R1(…(Rr(u1+vB+wH)Rr

-1
)…)R1

-1
|
2
 

=(u+b0(v+w))
 2
+(v-w)

2
(b0

2
+b1

2
+…+b7

2
) mod q, 

=(u+b0(v+w))
 2
-(v-w)

2
b0

2
 mod q, 

=(u+2b0v)(u+2b0w) mod q. 

Here we simplify the expression of medium text M such that 
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M:= R(u+vB +wH)R
-1∈O. 

Let  

M1:=R(u1+v1B +w1H)R
-1∈O, 

p1= u1+2b0v1 mod q, 

M2:=R(u2+v2B +w2H)R
-1∈O, 

p2= u2+2b0v2 mod q. 

We have 

M1M2 = [R (u11+v1B +w1H)R
-1
][R(u21+v2B +w2H) R

-1
] 

= R [u1u2+(u1 v2+ v1 u2+2 b0 v1 v2)B+ (u1w2+w1 u2+2 b0 w1 w2)H] R
-1 

=M2M1 mod q.              

We show the reason as follows by using Lemma 5b. 

[R BR
-1
][RBR

-1
]= RB

2
R

-1
= 2 b0RBR

-1
 mod q, 

[R HR
-1
][RHR

-1
]= RH

2
R

-1
=2 b0RHR

-1
 mod q, 

and 

[R (B+H)R
-1
] =[R B R

-1
+ R HR

-1
] =2 b01 mod q. 

We multiply [R BR
-1
] from right side, we have 

[R B R
-1
+ R HR

-1
] [R BR

-1
]= 2 b01[R BR

-1
]= 2 b0 [R BR

-1
] mod q, 

2 b0 [R B R
-1
]+ [R HR

-1
] [R BR

-1
] = 2 b0 [R BR

-1
] mod q. 

Then 

[R HR
-1
][RBR

-1
]= 0 mod q. 

In the same manner we have 

[R BR
-1
][RHR

-1
]= 0 mod q. 

 

Here I define the some parameters for describing FHE.  

Let q be as a large prime as O(2
80

). 

Let M=(m0,m1,…,m7)=R(u1+vB +wH)R
-1∈O

 
be the medium plaintext. 

Let p:=(u1+2b0v) mod q. 

Let X=(x0,…,x7) ∈O[X] be a variable. 

Let E(p,X) and D(X) be a enciphering and a deciphering function of user A. 

Let C(X)=E(p,X)∈O[X] be the ciphertext. 

Ai , Zi∈O is selected randomly such that Ai
-1
 and Zi

-1
 exist (i=1,…,k) which are the 

secret keys of user A. 

Enciphering function C(X)=E(p,X) is defined as follows. 

 C(X)=E(p,X):= 

A1((…((Ak((M[(Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
))…))Z1

-1
) mod q∈O[X]      (34) 
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=( e00x0+e01x1+ …+e07x7, 

   
e10x0+e11x1+ …+e17 x7, 

      ….    …. 

e70x0+e71x1+ …+e77 x7),                                     (35) 

= {eij}(i,j=0,…,7)                                        (36) 

with eij∈Fq (i,j=0,…,7) which is published in cloud centre. 

Here we notice how to construct enciphering function. 

We show a part of process for constructing enciphering function E(p,X) as follows. 

A1
-1
X 

(A1
-1

X)Z1 

A2
-1
 ((A1

-1
X)Z1) 

(A2
-1

 ((A1
-1
X)Z1)) Z2 

… 

(Ak
-1
((…((A1

-1
X)Z1))…))Zk 

M[(Ak
-1
((…((A1

-1
X)Z1))…))Zk] 

 (M[(Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
 

Ak(M[(Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
) 

… 

A1((…((Ak((M[(Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
))…)) Z1

-1
) 

 

 

Let D be the deciphering function defined as follows . 

        G1(X):=(Ak
-1
((…((A1

-1
X )Z1))…))Zk,                 (37) 

G2(X):=A1((…((Ak(X Zk
-1
))…)) Z1

-1
),                    (38) 

             D(X):= G1(C(G2(X)) mod q=MX.                    ( 39) 

D(1)=M=(m0,m1,…,m7) =R1(…(Rr(u1+vB +wH)…)R1
-1
 

=R[u1+vB +wH]R
-1 

= R[ u1+v(b0,b1,…,b7)+ w(b0,-b1,…,-b7) ]R
-1
. 

Then we obtain the plaintext p as follows. 

Let M’= u1+vB +wH =(m0’, m1’,…,m7’):= R
-1

 (m0,m1,…,m7) R mod q 

= Rr
-1
(…(R1

-1
 (m0,m1,…,m7) R1)…)Rr mod q. 

By solving the following equations, we have the plaintext p. 
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M’= u1+vB +wH mod q. 

By multiplying B from rightside we have 

M’B=(u+2b0v)Bmod q. 

Then we obtain p such that 

p= u +2b0v = [M’B]0/b0  mod q, 

 

where we denote the first element of octonion M such as 

[M]0. 

 

§3.4 Elements on octonion ring assumption EOR(k,r,n;q) 

Here we describe the assumption on which the proposed scheme bases. 

Elements on octonion ring assumption EOR(k,r,n;q). 

Let q be a prime more than 2. Let k ,r and n be integer parameters. Let A:=(A1,…,Ak)

∈O
k
, Z:=(Z1,…,Zk)∈O

k
 ,R:=(R1,…,Rr)∈O

r
.Let Ci(X) := E(pi ,X)= (A1((…((Ak(Mi 

[(Ak
-1
((…((A1

-1
X)Z1))…))Zk]))Zk

-1
))…)) Z1

-1
 mod q∈O[X] where medium text 

Mi=(mi0,…, mi7):= R1(…(Rr(ui1+viB+wiH)Rr
-1
)…)R1

-1∈O , plaintext pi = ui+2[B]0vi 

mod q(i=1,…,n), X is a variable.  

In the EOR(k,r,n;q) assumption, the adversary Ad is given Ci(X) (i=1,…,n ) 

randomly and his goal is to find a set of elements A=(A1,…,Ak)∈O
k
 , Z=(Z1,…,Zk)∈

O
k
 ,R=(R1,…,Rr)∈O

r
, with the order of the elements A1,…, Ak , Z1,…,Z k, R1,…,Rr 

and plaintexts pi(i=1,…,n). For parameters k = k(λ), r = r(λ)  and n=n(λ) defined in 

terms of the security parameter λ and for any PPT adversary Ad we have 

Pr [(A1((…((Ak(Mi[(Ak
-1
((…((A1

-1
X)Z1))…))Zk]))Zk

-1
))…)) Z1

-1
 mod q = Ci(X) 

(i=1,…,n) : A=(A1,…, Ak), Mi(i=1,…,n)←Ad (1
λ
, Ci(X) (i=1,…,n))]= negl(λ). 

To solve directly EOR(k,r,n;q) assumption is known to be the problem for 

solving the multivariate algebraic equations of high degree which is known to be 

NP-hard. 

§3.5 Syntax of proposed algorithms 

The syntax of proposed scheme is given as follows. 

-Key-Generation. The algorithm KeyGen, on input the security parameter 1
λ
 and 

system parameter q, outputs sk=(A,Z,R,B,H)←KeyGen(1
λ
), where sk is a secret 

encryption /dencryption key. 
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-Encryption. The algorithm Enc, on input system parameter q, and secret keys 

sk=(A,Z,R,B,H) and a plaintext p∈Fq, outputs a ciphertext 

C(X;sk,p)←Enc(sk;p). 

-Decryption. The algorithm Dec, on input system parameter q, secret keys sk and 

a ciphertext C(X;sk,p), outputs plaintext Dec(sk; C(X;sk,p)) where C(X;sk,p) 

←Enc(sk; p). 

-Homomorphic-Evaluation. The algorithm Eval, on input system parameter q, an 

arithmetic circuit ckt, and a tuple of n ciphertexts (C1,…, Cn), outputs an 

evaluated ciphertext C’←Eval(ckt; C1,…, Cn) where Ci=C(X;sk,pi) (i=1,…,n). 

 

Theorem 9 

For any p,p’∈O , 

if E(p, X)= E (p’, X) mod q , then p= p’ mod q. 

That is , if p ≠ p’ mod q, then E(p, X)≠E (p’, X) mod q. 

(Proof) 

If E E(p, X)= E (p’, X) mod q , then 

G1(E(p, (G2(X))= G1(E(p’, (G2(X)) mod q 

MX=M’X mod q 

 where  

M=R1(…(Rr((u1+vB+wH)Rr
-1
)…)R1

-1
 mod q, 

p= u +2b0v mod q, 

M’=R1(…(Rr(u’1+v’ B +w’H)Rr
-1
)…)R1

-1
 mod q, 

p’ =u’+2b0v’ mod q. 

We substitute 1 to X in above expression, we obtain  

M =M’ mod q. 

R1(…(Rr(u1+vB+wH)Rr
-1
)…)R1

-1 

= R1(…(Rr(u’1+v’ B +w’H)Rr
-1
)…)R1

-1
 mod q 

u1+vB+wH = u’ 1+v’B+w’H mod q. 

Then by multiplying B from rightside we have 

uB+vB
2
+w HB= u’ B+v’B

2
+w’HB mod q, 
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uB+ 2b0vB = u’B+2b0v’B mod q, 

[uB+ 2b0vB ]0=[ u’ B+2b0v’B]0 mod q, 

(u+ 2b0v)b0=(u’ +2b0v’)b0 mod q, 

As b0≠0 mod q, 

(u+2b0v) =(u’+2b0v’) mod q, 

p= u +2b0v = u’ +2b0v’ = p’, 

                      q.e.d. 

 

Next it is shown that the encrypting function E(p,X) has the property of fully 

homomorphism. 

We simply express above encrypting function such that 

A1((…((Ak((M[(Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
))…)) Z1

-1
)mod q 

=A((M[(A
-1

X)Z])Z
-1
)mod q. 

 

§3.6 Addition/subtraction scheme on ciphertexts  

 

Let  

M1:=R[(u11+v1B +w 1H)]R
-1∈O, 

M2:=R[(u21+v2B +w2 H)]R
-1∈O

 

be medium texts to be encrypted where  

p1=(u1+ 2b0v1) mod q, 

p2=(u2+ 2b0v2) mod q. 

Let C1(X)= E(p1, X) and C2(X)= E (p2, X) be the ciphertexts. 

C1(X)± C2(X) mod q =E(p1,X) ± E (p2,X) mod q 

=A1((…((Ak((M1[(Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
))…)) Z1

-1
) 

±A1((…((Ak((M2[(Ak
-1
((…((A1

-1
X)Z1))…))Zk]) Zk

-1
))…)) Z1

-1
) mod q 

=A1((…((Ak(([M1 ±M2] [(Ak
-1
((…((A1

-1
X)Z1))…))Zk]) Zk

-1
))…)) Z1

-1
) mod q 

=A1((…((Ak(([R(u11+v1B+w1H±(u21+v2B+w2H))R
-1
] 

[(Ak
-1
((…((A1

-1
X) Z1))…))Zk])Zk

-1
))…)) Z1

-1
) mod q 
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=A1((…((Ak(([R((u1±u2)1+(v1±v2)B+(w1±w2)H))R
-1
] 

 [(Ak
-1
((…((A1

-1
X)Z1))…))Zk]) Zk

-1
))…)) Z1

-1
) mod q  

= E(p1± p2,X) mod q. 

 

§3.7 Multiplication scheme on ciphertexts 

§3.7.1 Multiplicative property of B and H 

  We notice multiplication of B and H again where 

B+H=2b01 mod q, 

B
2
=2b0B mod q, 

H
2
=2b0H mod q, 

BH=HB=0 mod q. 

For any A∈O , form (11) we have 

(RBR
-1
)( (RBR

-1
) A) mod q 

=( (RBR
-1
) (RBR

-1
)) A mod q 

        =(RB
2
R

-1
)A mod q  (From Lemma5a)    

= (2b0) (RBR
-1
)A mod q                   (40a) 

 

(RBR
-1
)( (RHR

-1
) A) mod q 

=( (RBR
-1
) (R(2b01-B)R

-1
)) A mod q 

=(2b0) ( (RBR
-1
) (R1R

-1
)) A- ( (RBR

-1
) (RBR

-1
)) Amod q  

=(2b0)(RBR
-1
) A- (2b0)(RBR

-1
) Amod q  

                      =0 mod q                          (40b) 

In the same manner we have 

(RHR
-1
)( (RHR

-1
) A) mod q 

                    = (2b0) (RHR
-1
)A mod q                  (40c) 

                 (RHR
-1
)( (RBR

-1
) A) =0 mod q              (40d) 

 



24 

 

 

§3.7.2 Multiplication of ciphertexts 

Here we consider the multiplicative operation on the ciphertexts. 

Let C1(X)= E(p1, X) and C2(X)= E (p2, X) be the ciphertexts. 

C1(C2(X)) mod q =E(p1,E(p2,X)) mod q 

=A1((…((Ak((M1[(Ak
-1
((…((A1

-1
{A1((…((Ak((M2[(Ak

-1
((…((A1

-1
X)Z1))…))Zk]) Zk

-1
))…)) 

Z1
-1
) })Z1))…))Zk]) Zk

-1
))…)) Z1

-1
) mod q 

=A1((…((Ak((M1[M2[(Ak
-1
((…((A1

-1
X)Z1))…))Zk]]) Zk

-1
))…)) Z1

-1
) mod q 

=A1((…((Ak(M1(M2[(Ak
-1
((…((A1

-1
X)Z1))…))Zk]))Zk

-1
))…)) Z1

-1
) mod q.      (41) 

=A((M1(M2[(A
-1

X)Z]))Z
-1
) mod q. 

Substituting R (u11+v1B +w1H) R
-1
, R (u21+v2B +w2H) R

-1 
to M1, M2 , 

we have from (40a)~(40d) 

=A(( [R(u11+v1B+w1H)R
-1
]([R (u21+v2B +w2H) R

-1
] [(A

-1
X)Z]))Z

-1
) mod q, 

= A(( [R (u11) R
-1
]([R(u21+v2B+w2H) R

-1
][(A

-1
X)Z]))Z

-1
) mod q. 

+ A(( [R (v1B) R
-1
] ([R(u21+v2B+w2H) R

-1
][(A

-1
X)Z]))Z

-1
) mod q 

+ A(( [R (w1H) R
-1
] ([R(u21+v2B+w2H) R

-1
] [(A

-1
X)Z]))Z

-1
 ) mod. 

= A(( [R (u11) R
-1

 ]([R(u21) R
-1

 ][(A
-1

X)Z]))Z
-1
) mod q. 

+ A(( [R (u11) R
-1

] ([R (v2B) R
-1

][(A
-1
X)Z]))Z

-1
) mod q 

+ A(( [R (u11) R
-1

] ([R (w2H) R
-1

][(A
-1
X)Z]))Z

-1
) mod q 

+ A(( [R (v1B) R
-1
 ]([ R (u21) R

-1
][(A

-1
X)Z]))Z

-1
) mod q 

+ A(( [R (v1B) R
-1
 ]([ R (v2B) R

-1
][(A

-1
X)Z]))Z

-1
) mod q 

+ A(( [R (v1B) R
-1
 ]([ R (w2H) R

-1
][(A

-1
X)Z]))Z

-1
) mod q 

+A(([R (w1H) R
-1
 ]([ R (u21) R

-1
 ][(A

-1
X)Z]))Z

-1
) mod q 

+ A((([R (w1H) R
-1
 ]([ R (v2B) R

-1
 ][(A

-1
X)Z]))Z

-1
) mod q 

+ A(([R (w1H) R
-1
 ]([ R (w2H) R

-1
 ][(A

-1
X)Z]))Z

-1
) mod q 

=A(([R (u1u21+ u1v2B + u1w2H+ v1u2B + v1v2BB + v1w2BH+ 

w1u2H + w1v2HB +w1w2HH) R
-1
] [(A

-1
X)Z]))Z

-1
) mod q 

=A(([R(u1u21+(u1v2+v1u2+2b0v1v2)B+(u1w2+w1u2+2b0w1w2)H)R
-1
] 
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[(A
-1

X)Z]))Z
-1
)mod q                                         (41a) 

= A(( [R(u1+v1B +w1H))R
-1
)(R(u2+v2B +w2H)R

-1
)][(A

-1
X)Z]))Z

-1
) mod q     

= A(( (M1M2 ) [(A
-1

X)Z]))Z
-1
) mod q. 

Here we can show that E(p1,E(p2,X)) mod q is the ciphertext of the multiplication of 

p1and p2 as follows. 

p1=( u1+ 2b0v1) mod q, 

p2=( u2+ 2b0v2) mod q, 

p1p2=( u1+ 2b0v1) ( u2+ 2b0v2) mod q, 

=u1u2+2b0 (v1u2+v2u1+2b0v1v2 ) mod q. 

The ciphertext of p1p2 is given from definition, 

E(p1p2,X))= A(( [R(u*+v*B+ w*H)R
-1
)][(A

-1
X)Z]))Z

-1
) mod q 

where 

u*+2b0v*= p1p2 mod q, 

w*∈Fq. 

From (41a) we have 

u1u2+2b0(u1v2+v1u2+2b0v1v2)= p1p2 mod q, 

(u1w2+w1u2+2b0w1w2)∈Fq. 

Then we have 

E(p1, E(p2,X))=E(p1p2,X)) mod q. 

 It has been shown that in this method we have the multiplicative homomorphism 

on the plaintext p. 

 

§3.10 Property of proposed fully homomorphic encryption 

(IND-CPA security). Proposed fully homomorphic encryption is IND-CPA secure. 

As adversary Ad does not know sk, Ad is not able to calculate M from the value of 

E(u,X). 

For any PPT adversary Ad it holds that: 
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Adv
CPA

HE [λ] :=|Pr[Ad(E(u0,X)) = 1] - Pr[Ad((E(u1,X))= 1]|= negl(λ) 

where sk ←KeyGen(1
λ
). 

 

(Fully homomorphic encryption). Proposed fully homomorphic encryption 

=(KeyGen; Enc; Dec; Eval) is fully homomorphic because it satisfies the following 

properties: 

1. Homomorphism: Let CR = {CRλ}λ∈N be the set of all polynomial sized arithmetic 

circuits. On input sk ←KeyGen(1
λ
), ∀ckt ∈ CRλ, ∀(p1,…,pn) ∈ P

n
 where n = 

n(λ), ∀(C1,…,Cn) where Ci ←(E(ui,X)), (i =1,…,n), 

we have D(sk;Eval(ckt; C1,…,Cn)) = ckt(p1,…,pn). 

Then it holds that: 

Pr[D(sk; Eval(ckt; C1,…,Cn)) ≠ ckt(p1,…,pn)] = negl(λ). 

2. Compactness: As the output length of Eval is at most klog2q=kλ where k is a 

positive integer, there exists a polynomial μ = μ(λ) such that the output length of Eval 

is at most μ bits long regardless of the input circuit ckt and the number of its inputs. 

§4. Analysis of proposed scheme 

Here we analyze the proposed fully homomorphism encryption scheme. 

§4.1 Computing plaintext p and Ai , Zi (i=1,…,k) from coefficients of ciphertext 

E(p,X) to be published 

Ciphertext E(ps,X) is published by cloud data centre as follows. 

E(ps,X)= A1((…((Ak((Ms[(Ak
-1
((…((A1

-1
X)Z1))…))Zk]))Zk

-1
))…)) Z

-1
)  

=A((R[us1+vsB+wsH]R
-1
)[(A

-1
X)Z]))Z

-1
) mod q∈O[X] ,   

=( es00x0+es01x1+ …+es07x7, 

   
es10x0+es11x1+ …+es17 x7, 

      ….       …. 

es70x0+es71x1+ …+es77 x7)  mod q,             

={esjk}(j,r=0,…,7;s=1,2,3)                           

with esjt∈Fq (j,t=0,…,7;s=1,2,3) which is published,  

where  
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ps=us+2b0vs mod q,( s=1,2,3) 

Ai, Zi, Rj∈O to be selected randomly such that Ai
-1
, Zi

-1 
and Rj

-1 
exist (i=1,…,k ; 

j=1,…,r) are the secret keys of user A. 

We try to find plaintext ps from coefficients of E(ps,X), esjt∈Fq(j,t =0,…,7; 

s=1,2,3). 

In case that k=8, r=8 and s =3 the number of unknown variables (us,vs,ws, Ai , Zi, 

Rj (k,r=1,…,8;s=1,2,3)) is 201(=3*3+3*8*8), the number of equations is 192(=64*3) 

such that  

F100(M, Ai , Zi, Rj)=e100 mod q,             

F101(M, Ai , Zi, Rj)=e101 mod q, 

   ・・・   ・・・ 

F107(M, Ai , Zi, Rj)=e107 mod q,                               (42)  

   ・・・   ・・・ 

   ・・・   ・・・ 

F377(M, Ai , Zi, Rj)=e377 mod q, 

where F100,…,F377 are the 49(=8*2*3+1)
th
 algebraic multivariate equations. 

 

Then the complexity G required for solving above simultaneous equations by 

using Gröbner basis is given [8]such as  

G>G’=(191+dregCdreg)
w
=(4799C191)

w 
>> O(2

80
),                   (43) 

where G’ is the complexity required for solving 192 simultaneous algebraic equations 

with 191 variables by using Gröbner basis, 

where w=2.39, and  

dreg = 4608 (=192*(49-1)/2 - 0√(192*(49^2-1)/6)).                  (44) 

  The complexity G required for solving above simultaneous equations by using 

Gröbner basis is enough large to be secure. 

 

§4.2 Computing plaintext pi and dijk (i,j,k=0,…,7)   

We try to computing plaintext pi and dijk (i,j,k=0,…,7) from coefficients of ciphertext 

E(pi,X) to be published. 

At first let E(Y,X)∈O[X,Y] be the enciphering function such as 

E(Y,X):= A1((…((Ak((Y[((Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
))…)) Z1

-1
) mod q∈O[X,Y] , 
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=(d000x0y0+d001x0y1+ …+d077x7y7, 

   
d100x0y0+d101x0y1+ …+d177x7y7, 

          ….    …. 

d700x0y0+d701x0y1+ …+d777x7y7) mod q,                        (45a) 

={dijk}(i,j,k=0,…,7)                                         (45b) 

with dijk∈Fq (i,j,k =0,…,7) . 

Next we substitute Mi to Y, where 

Mi:=R[ui1+viB+wiH]R
-1 

pi=(ui+ 2b0vi) mod q, 

       Mi=(mi0,mi1,…,mi7)∈O.                  (46) 

We have 

E(pi,X)=A1((…((Ak((Mi[((Ak
-1
((…((A1

-1
X)Z1))…))Zk])Zk

-1
))…)) Z1

-1
)mod q∈  O[X] ,         

=(d000x0mi0+d001x0mi1+ …+d077x7mi7, 

  
d100x0mi0+d101x0mi1+ …+d177x7mi7, 

          ….             …. 

d700x0mi0+d701x0mi1+ …+d777x7mi7) mod q,                       (47a) 

={dijk}(i,j,k=0,…,7)                                         (47b) 

with dijk∈Fq (i,j,k =0,…,7) . 

Then we obtain 64 equations from (35) and (47a) as follows. 

d000mi0+d001mi1+ …+d007mi7=e00 

d010mi0+d011mi1+ …+d017mi7=e01                                          (48a) 

         ….           …. 

d070mi0+d071mi1+ …+d077mi7=e07
 

d100mi0+d101mi1+ …+d107mi7=e10 

d110mi0+d111mi1+ …+d117mi7=e11                                           (48b) 

   ….               …. 

d170mi0+d171mi1+ …+d177mi7=e17
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….              …. 

….              …. 

d700mi0+d701mi1+ …+d707mi7=e70 

d710mi0+d711mi1+ …+d717mi7=e71                                           (48c) 

      ….          …. 

d770mi0+d771mi1+ …+d777mi7=e77
 

For M1,…, M8 we obtain the same equations, the number of which is 512. 

We also obtain the 8 equations such as 

| E(pi,1)|
2
= |Mi|

2
= mi0

2
+mi1

2
+…+mi7

2
 mod q,(i=1,…,8).                (49) 

The number of unknown variables Mi and dijk (i,j,k=0,…,7) is 576(=512+64). 

The number of equations is 520(=512+8). 

Then the complexity G required for solving above simultaneous quadratic 

algebraic equations by using Gröbner basis is given such as  

G≈G’=(520+dregCdreg)
w
 =(780C260)

w
=O(2

1699
)>> 2

80
,                 (50) 

where G’ is the complexity required for solving 520 simultaneous quadratic algebraic 

equations with 519 variables by using Gröbner basis, 

where w=2.39,  

and  

dreg = 260(=520*(2-1)/2 - 0√(520*(4-1)/6)                    (51) 

 

It is thought to be difficult computationally to solve the above simultaneous 

algebraic equations by using Gröbner basis. 

 

§4.3 Attack by using the ciphertexts of p and -p  

I show that we can not easily distinguish the ciphertexts of p and -p. 

 

We try to attack by using “p and -p attack”. 

We define 

the medium text M by  

M:=R(u1+vB +wH)R
-1∈O,                                         (52) 

where 
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a plaintext p=u+2b0v mod q∈Fq, and a random number w∈Fq,                                                                              

the medium text M- by  

M-:= R(u’1+v’B +w’H)R
-1∈O,                                      (53) 

where random numbers u’,v’,w’∈Fq such that 

-p=u’+2b0v’ mod q. 

By using simple style expression of E(p, X) 

C(X):=E(p, X)= A((M[(A
-1
X)Z])Z

-1
) mod q∈O[X] ,                     (54) 

the ciphertext of -p is defined by  

C-(X):=E(-p, X)= A(((M-[(A
-1
X)Z])Z

-1
)  mod q∈O[X] .                 (55) 

p=u+2b0v mod q, 

p’=-p=u’+2b0v’ mod q, 

p+p’=0=(u+u’)+ 2b0 (v+v’). 

 

We have  

C(X)+ C-(X) = E(p, X)+ E(-p, X)= E(p-p, X)= E(0, X) 

=A(( [M + M-][(A
-1

X)Z])Z
-1

)  mod q 

= (A( [R(u1+vB +wH +u’1+v’B +w’H)R
-1

] [(A
-1
X)Z])Z

-1
) mod q 

= (A( [R((u+u’)1+(v+v’)B+ (w+w’)H)R
-1
] [(A

-1
X)Z])Z

-1
) mod q    

= (A( [R((v+v’) (-2b01+B )+ (w+w’)H)R
-1
] [(A

-1
X)Z])Z

-1
) mod q  

= (A( [R(-(v+v’) H+ (w+w’)H)R
-1
] [(A

-1
X)Z])Z

-1
) mod q 

= (A( [R( (-v-v’+ w+w’)H)R
-1
] [(A

-1
X)Z])Z

-1
) mod q 

≠0 mod q (in eneral)                                             (56) 

 

We can calculate | C(1)+ C-(1) |
2
 as follows.  
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Then, from |H|
2
=0 mod q, we have  

| C(1)+ C-(1) |
2
=| E(0, 1)|

2 

= |(A( [R( (-v-v’+ w+w’)H)R
-1

] [(A
-1
1)Z])Z

-1
) |

2
 mod q 

= | (-v-v’+ w+w’)H |
2
 mod q 

=0 mod q. 

But we can find many M- such that 

|C(1) + C-(1)|
2
=| A(([M + M-][(A

-1
1)Z])Z

-1
) |

2
 =|[M + M-]|

2
 mod q, 

=( u+u’+2b0(v+v’))( u+u’+2b0(w+w’)) 

=0 mod q, 

because we can select many set of u’,v’and w’ such that  

u+u’+2b0(w+w’)=0 mod q 

and 

p+p’= u+u’+2b0(v+v’)≠0 mod q. 

That is, even if  

| C(1)+ C-(1) |
2
=0 mod q, 

it does not always hold that 

p+p’ =0 mod q. 

 

It is said that the attack by using “p and -p attack” is not efficient. 

Then we can not easily distinguish the ciphertexts of p and -p. 

 

§5. The size of the modulus q and the complexity for enciphering/ 

deciphering  

We consider the size of the system parameter q. We select the size of q such that 
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O(q),the size of the plaintext is larger than O(2
80

). Then we need to select modulus q 

such as O (q )= 2
80

. 

In case of k=8, O(q)=2
8
, the size of eij∈Fq (i,j=0,…,7) which are the coefficients 

of elements in E(p,X)= A((M[(A
-1
X)Z])Z

-1
)mod ∈O[X] is  

(64)(log2q)bits =5120bits, and the size of system parameters q is as large as 80bits. 

  

In case of k=8 , O(q)=2
8
, the complexity to obtain E(p,X)  is 

(32*512+16*16)(log2q)
2
+16*( log2q)

3
= O(2

27
) bit-operations, 

where 16*16*(log2q)
2
+16*( log2q)

3
 is the complexiy for inverse of A

-1
 and Z

-1
. 

And the complexity required for deciphering is given as follows. 

Let C:=A1((…((Ak((M[(Ak
-1
((…((A1

-1
1)Z1))…))Zk]) Zk

-1
))…)) Z1

-1
) mod q. 

We have  

(Ak ((…((A1
-1
 C )Z1)) Z2))….))Zk =M[(Ak

-1
((…((A1

-1
1)Z1))…))Zk] mod q, 

M=[(Ak ((…((A1
-1
 C )Z1)) Z2))…)) Zk][(Ak

-1
((…((A1

-1
1)Z1))…))Zk]

-1
mod q. 

=R1(…(Rr(u1+vB+w H)Rr
-1
)…)R1

-1
 

M’=(m0’,m1’,…,m7’): = (u1+vB+w H)= Rr
-1
 (…(R1

-1
M R1)…) Rr  

p =[M’B]0/b0 mod q. 

Then the complexity G is  

(16*64+15*64+16*64+2)(log2q)
2
+(1+8)*[8*(log2q)

2
+(log2q)

3
] 

+9*(log2q)
2
 +( log2q)

3
 

=(3091)(log2q)
2
+(10)( log2q)

3
= O(2

25
) bit-operations.  

On the other hand the complexity of the enciphering and deciphering in RSA 

scheme is  

O(2(log n)
3
)=O(2

34
) bit-operations  

where the size of modulus n is 2048bits. 

 Then our scheme requires small memory space and complexity to encipher and 

decipher so that we are able to implement our scheme to the mobile device. 

 

§6. Conclusion 

We proposed the new fully homomorphism encryption scheme based on the octonion 

ring over finite field that requires small memory space and complexity to encipher 

and decipher. It was shown that our scheme is immune from the Gröbner basis 
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attacks by calculating the complexity to obtain the Gröbner basis for the multivariate 

algebraic equations and immune from “p and -p attack”. 

The proposed scheme does not require a “bootstrapping” process so that the 

complexity to encipher and decipher is not large. 
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Appendix A: 

 

Octinv(A) ---------------------------------------------------------------------------------------------- 

S ← a0
2
+a1

2
+…+a7

2
 mod q. 

% S
-1
 mod q 

q[1] ← q div S ;% integer part of q/S 

r[1] ← q mod S ;% residue 

k ←1  

q[0] ← q 

r[0] ← S 

while r[k] ≠ 0  

begin  

k← k + 1  

q[k] ← r[k−2] div r[k−1]  

r[k] ← r[k−2] mod [rk−1]  

end 

Q [k−1] ← (-1)*q[k−1]  

L[ k−1] ← 1  

i ← k−1  

while  i > 1 

begin 

Q[ i−1] ← (-1)*Q[ i] *q[i−1] + L[ i]  

L[ i−1 ] ← Q[ i ] 

i← i−1  

 end 

 

invS ← Q[1] mod q 

invA[0] ← a0*invS mod q 

For i=1,…,7, 

invA[i] ← (-1)*ai*invS mod q 

Return A
-1
= (invA[0], invA[1],…, invA[7]) 

--------------------------------------------------------------------------------------------------------------  
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Appendix B: 

Theorem 1 

Let A=(a10,a11,…,a17)∈O, a1j∈ Fq  (j=0,1,…,7). 

Let A
n
=( an0 ,an1,…,an7)∈O , anj∈ Fq  (n=1,…,7;j=0,1,…,7).   

a00 ,anj ’s(n=1,2,…;j=0,1,…)and bn’s (n=0,1,…) satisfy the equations such that 

N= a11
2
+…+a17

2
 mod q 

a00=1, b0=0, b1=1, 

an0= an-1,0 a10 – bn-1N mod q ,(n=1,2,…)                               (8) 

bn= an-1,0+ bn-1a10 mod q ,(n=1,2,…)                                  (9) 

anj= bna1j mod q ,(n=1,2,…;j=1,2,…,7) .                            (10) 

(Proof:) 

We use mathematical induction method. 

[step 1] 

When n=1, (8) holds because 

a10= a00 a10 - b0N=a10 mod q. 

(9) holds because 

b1= a00+ b0a10 =a00 =1mod q. 

(10) holds because 

a1j= b1a1j = a1j mod q ,(j=1,2,…,7) 

[step 2] 

When n=k, 

If it holds that  

ak0= ak-1,0 a10 - bk-1N mod q ,(k=2,3,4,…) , 

bk= ak-1,0+ bk-1a10 mod q, 

akj= bka1j mod q ,( j=1,2,…,7),  

from (9)  

bk-1= ak-2,0+ bk-2a10 mod q ,(k=2,3,4,…), 

then 

A
k+1

=A
k
A=( ak0 , bka11,…, bka17)(a10,a11,…,a17) 

=( ak0 a10 - bkN, ak0 a11+ bka11 a10,…, ak0 a17+ bka17 a10 ) 

=( ak0 a10 - bkN, (ak0 + bka10)a11,…, (ak0 + bka10)a17) 

=( ak+1,0, bk+1,0 a11,…, bk+1,0 a17), 

as was required.                             q.e.d. 
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Appendix C: 

Theorem 2 

For an element A=(a10,a11,…,a17)∈O, 

A
J+1

=A mod q, 

where  

J:= LCM {q
2
-1,q-1}=q

2
-1, 

N:=a11
2
+ a12

2
+…+a17

2
≠0 mod q.  

(Proof:) 

From (8) and (9) it comes that 

an0= an-1,0 a10 - bn-1N mod q , 

bn= an-1,0+ bn-1a10 mod q , 

an0 a10 + bn N= (an-1,0 a10 - bn-1N) a10 +(an-1,0+ bn-1a10)N= an-1,0 a10
2 
+ an-1,0 N mod q , 

bn N= an-1,0 a10
2 
+ an-1,0 N- an0 a10 mod q , 

bn-1 N= an-2,0 a10
2 
+ an-2,0 N- an-1,0 a10 mod q , 

an0= 2 a10an-1,0 - ( a10
2 
+N) an-2,0 mod q , (n=1,2,… ) . 

 

1) In case that – N ≠ 0 mod q is quadratic non-residue of prime q, 

Because - N≠0 mod q is quadratic non-residue of prime q, 

(-N)
(q-1)/2

=-1 mod q. 

an0 - 2 a10 an-1,0 +( a10
2 
+N) an-2,0=0 mod q , 

an0=(β
n
(a10-α) + (β- a10)α

n
)/( β- α) over Fq[α] 

bn=(β
n
-α

n
)/( β- α) over Fq[α] 

where α,β are roots of algebraic quadratic equation such that  

t
2
-2a10t+a10

2
+N=0.  

α = a10 + √−𝑁 𝑜𝑣𝑒𝑟 𝐹𝑞[𝛼],  

β = a10 − √−𝑁  over Fq[α].  

We can calculate 𝛽𝑞2
as follows.  

𝛽𝑞2
= (a10 − √−𝑁)𝑞2

 over Fq[α] 



39 

 

 

 

= (a10
𝑞 − √−𝑁(−𝑁)(𝑞−1)/2)𝑞 over Fq[α] 

= (a10 − √−𝑁(−𝑁)(𝑞−1)/2)𝑞 over Fq[α] 

= (a10
𝑞 − √−𝑁(−𝑁)(𝑞−1)/2(−𝑁)(𝑞−1)/2) 𝑜𝑣𝑒𝑟 𝐹𝑞[𝛼] 

= a10 − √−𝑁(−1)(−1)  over Fq[α] 

= a10 − √−𝑁 over Fq[α] 

= 𝛽 𝑜𝑣𝑒𝑟 𝐹𝑞[𝛼].  

In the same manner we obtain  

𝛼𝑞2
= 𝛼 𝑜𝑣𝑒𝑟 𝑭𝒒[𝛼].  

𝑎𝑞2,0 = (𝛽𝑞2
(a10 − 𝛼) + (𝛽 − a10)𝛼𝑞2

)/(𝛽 − 𝛼) 

=(β(a10-α) + (β- a10)α)/( β- α)=a10  mod q. 

𝑏𝑞2 = (𝛽𝑞2
− 𝛼𝑞2

)/(𝛽 − 𝛼) = 1 mod q. 

Then we obtain 

A
q2

=(aq2,0
 
,bq2a11,…,bq2a17)  

   =( a10, a11,…,a17)=A mod q 

 

2) In case that -N≠0 mod q is quadratic residue of prime q 

an0=(β
n
(a10-α) + (β- a10)α

n
)/( β- α)  mod q, 

bn0=(β
n
-α

n
)/( β- α)  mod q , 

As α,β∈Fq, from Fermat’s little Theorem  

β
q
=β mod q, 

α
q
=α mod q. 

Then we have 

aq0=(β
q
(a10-α) + (β- a10)α

q
)/( β- α) mod q 

=(β(a10-α) + (β- a10)α)/( β- α) mod q 

=a10  mod q 

bq=(β
q
-α

q
)/( β- α)=1 mod q. 
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Then we have 

a
q
=(aq0

 
,bqa11,…,bqa17) 

=( a10, a11,…,a17)=a mod q. 

 

We therefore arrive at the equation such as 

A
J+1

=A mod q for arbitrary element A∈O,  

where  

J= LCM { q
2
-1,q-1}=q

2
-1,  

as was required.            q.e.d. 

 

We notice that  

in case that –N=0 mod q  

a00=1, b0=0, b1=1, 

From (8) 

an0= an-1,0 a10 mod q ,(n=1,2,…), 

then we have 

an0= a10 
n 
mod q ,(n=1,2,…). 

aq0= a10 
q
= a10

 
mod q. 

From (9), 

bn= an-1,0+ bn-1a10 mod q ,(n=1,2,…)      

= a10 
n-1

+ bn-1a10 mod q 

= 2a10 
n-1

+ bn-2a10
2
 mod q 

…   … 

= (n-1)a10 
n-1

+ b1a10
n-1

 mod q 

= na10 
n-1

 mod q. 

Then we have 

anj= na10 
n-1

a1j mod q ,(n=1,2,…;j=1,2,…,7) .    

aqj= qa10
q-1

a1j mod q =0,( j=1,2,…,7) . 
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Appendix D: 

Lemma 2 

A
-1
(AB)= B 

(BA)A
-1
= B 

 (Proof:) 

A
-1
= (a0 / |A|

2
 mod q, -a1 / |A|

2
 mod q,…, -a7 / |A|

2
 mod q). 

AB mod q 

= ( a0b0-a1b1- a2b2- a3b3-a4b4- a5b5-a6b6-a7b7 mod q, 

a0b1+a1b0+a2b4+a3b7-a4b2+a5b6-a6b5-a7b3 mod q, 

a0b2-a1b4+a2b0+a3b5+a4b1-a5b3+a6b7-a7b6 mod q, 

a0b3-a1b7-a2b5+a3b0+a4b6+a5b2-a6b4+a7b1 mod q, 

a0b4+a1b2-a2b1-a3b6+a4b0+a5b7+a6b3-a7b5 mod q, 

a0b5-a1b6+a2b3-a3b2-a4b7+a5b0+a6b1+a7b4 mod q, 

a0b6+a1b5-a2b7+a3b4-a4b3-a5b1+a6b0+a7b2 mod q, 

a0b7+a1b3+a2b6-a3b1+a4b5-a5b4-a6b2+a7b0 mod q). 

 

[A
-1
(AB)]0 

={ a0(a0b0-a1b1- a2b2- a3b3-a4b4- a5b5-a6b6-a7b7) 

+a1(a0b1+a1b0+a2b4+a3b7-a4b2+a5b6-a6b5-a7b3) 

+ a2(a0b2-a1b4+a2b0+a3b5+a4b1-a5b3+a6b7-a7b6) 

+a3(a0b3-a1b7-a2b5+a3b0+a4b6+a5b2-a6b4+a7b1) 

+a4(a0b4+a1b2-a2b1-a3b6+a4b0+a5b7+a6b3-a7b5) 

+ a5(a0b5-a1b6+a2b3-a3b2-a4b7+a5b0+a6b1+a7b4) 

+a6(a0b6+a1b5-a2b7+a3b4-a4b3-a5b1+a6b0+a7b2) 

+a7(a0b7+a1b3+a2b6-a3b1+a4b5-a5b4-a6b2+a7b0)} /|A|
2 
mod q 

={( a0
2
+a1

2
+…+a7

2
) b0} /|A|

2
 =b0 mod q 

where [M ]n denotes the n-th element of M∈O. 

 [A
-1
(AB)]1 

={ a0(a0b1+a1b0+a2b4+a3b7-a4b2+a5b6-a6b5-a7b3) 

-a1(a0b0-a1b1- a2b2- a3b3-a4b4- a5b5-a6b6-a7b7) 

-a2(a0b4+a1b2-a2b1-a3b6+a4b0+a5b7+a6b3-a7b5) 
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-a3(a0b7+a1b3+a2b6-a3b1+a4b5-a5b4-a6b2+a7b0) 

+a4(a0b2-a1b4+a2b0+a3b5+a4b1-a5b3+a6b7-a7b6) 

- a5(a0b6+a1b5-a2b7+a3b4-a4b3-a5b1+a6b0+a7b2) 

+a6(a0b5-a1b6+a2b3-a3b2-a4b7+a5b0+a6b1+a7b4 ) 

+a7(a0b3-a1b7-a2b5+a3b0+a4b6+a5b2-a6b4+a7b1)} /|A|
2
 mod q 

={( a0
2
+a1

2
+…+a7

2
) b1} /|A|

2
=b1 mod q. 

 

Similarly we have 

[A
-1
(AB)]i=bi mod q (i=2,3,…,7). 

Then 

A
-1
(AB)= B mod q. 

   
 q.e.d. 


