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Abstract

We initiate a formal investigation on the power of predictability for argument of knowledge systems
for NP. Specifically, we consider private-coin argument systems where the answers of the prover can be
predicted, given the private randomness of the verifier.

We show that predictable arguments of knowledge (PAoK) can be made extremely laconic, with
the prover sending a single bit, and assumed to have only one round (two messages) without loss of
generality. We then explore constructs of PAoK. For specific relations we obtain PAoK from Extractable
Hash Proof systems (Wee, Crypto ’10); we also show that PAoK are equivalent to Extractable Witness
Encryption. Unfortunately, the latter poses serious doubts on the existence of PAoK for all NP. However,
we show that for the class of random self-reducible problems in NP we can avoid the problem relying
on the assumption of public-coin differing-inputs obfuscation (Ishai et al., TCC ’15).

Finally, we apply PAoK in the context of leakage-tolerant PKE protocols. At PKC ’13 Nielsen et
al. have shown that any leakage-tolerant PKE protocol requires long keys already when it tolerates
super-logarithmic leakage. We strengthen their result proving a more fine-grained lower bound for any
constant numbers bits of leakage.
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1 Introduction

Consider the classical proof system for Graphs Non-Isomorphism where, on common input a tuple of graphs
(G0, G1), the verifier choses a uniformly random bit b, and sends a uniformly random permutation of the
graph Gb to the prover. If the two graphs are not isomorphic the prover can reply correctly sending back the
value b.

A peculiar property of the above proof system is that the verifier knows in advance the answer of the
prover, i.e., the answer given by the prover is predictable. Another interesting property is that it uses only
one round of communication and that the prover sends a single bit. Following the work of Goldreich et al.
in [14] we call a proof system with this property extremely laconic. We study the notion of predictability in
interactive proof systems for NP, specifically, we focus on the more cryptographic setting where the prover’s
strategy is efficiently computable and, moreover, we aim for the notion of knowledge soundness, where any
convincing polynomial-time prover must “know” the witness relative to the instance. We formalise this
notion of Predictable Arguments of Knowledge (PAoK) and explore their properties and applications.

1.1 Our Contributions

Characterizing PAoK. In Section 3, we show that PAoK can always be made extremely laconic both in
term of round complexity and in term of the number of bits send by the prover (i.e. message complexity).
For the former we show that we can collapse any multi-round PAoK into a one-round PAoK with higher
message complexity. For the latter we show how to reduce the message length to a single bit using the
Goldreich-Levin Hard-Core Theorem (see Goldreich and Levin [13]). Interestingly, we can wrap up the
two results together showing that any PAoK, no matter of the round or message complexity can be made
extremely laconic.

We sketch the main idea used in the first step. Consider a PAoK with round complexity ρ and a random
sequence of challenges (c1, . . . , cρ) where ci is for round i. Without loss of generality the verifier can define
all the challenge before any answers of the prover. Let (a1, . . . , aρ) be the predicted answers. Consider
for simplicity a cheating prover who can answer all of these challenges with probability 1/2. Then for
many possible challenges (c1, . . . , cρ) there must exists a round i such that the prover cannot answer ci
with ai with probability 1 even if it is given (c1, . . . , ci−1) and (a1, . . . , ai−1). Hence the verifier could
sample (c1, . . . , cρ) and (a1, . . . , aρ), choose a uniformly random i, send (c1, . . . , ci−1) and (a1, . . . , ai−1)
and expect to get back ai. This would give non-zero probability of catching the cheating prover on many
instances.

A main problem with this idea, however, is that if the round complexity of the protocol grows with
the security parameter (which is the interesting case), the soundness will be vanishing. Therefore, we
would like to amplify the soundness, however we cannot use sequential composition, as we are trying to
construct a one-round protocol. Furthermore, in general, interactive arguments do not amplify soundness
when compose in parallel (see Bellare et al. [2] and Pietrzak and Wikström [22]). It turns out that a more
involved construction, inspired by parallel composition of the above simple protocol will actually allow to
boost the soundness negligibly close to 1. We refer the reader to Section 3.2 for the details.

Constructions. In Section 4 we explore constructs of PAoK. In Section 4.1 we show how to obtain a
PAoK, for some specific relations, using an Extractable Hash-Proof system (see Wee [24]).

Next, we show that PAoK for a relation R is equivalent to Extractable Witness Encryption (Ext-WE)
(see Goldwasser et al. [15]) for R. The main ideas are the following. From Ext-WE to PAoK we encrypt
a random bit a using the encryption scheme and then ask the prover to return a. For the other direction,
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namely from PAoK to Ext-WE, we first make the PAoK extremely laconic, generate a challenge/answer pair
(c, a) for the PAoK, and then encrypt a single bit β as (c, a⊕ β). We give the details in Section 4.2 .

The equivalence between PAoK and Ext-WE can be seen as a negative result for PAoK, as Ext-WE is
implausible to exist for all of NP (see Garg et al. [9]). For this reason we relax the knowledge soundness
requirement of both PAoK and Ext-WE to weaker variants where the extractor is given the randomness used
to sample the instance; this approach is inspired by the notion of public-coin differing-inputs obfuscation
(diO) (see Ishai et al. [18]). Weak PAoK and weak Ext-WE are still equivalent. We then show that weak
Ext-WE can be constructed from public-coin diO. The main idea is to obfuscate, for a given instance x, the
circuit which on input w such that (x,w) is in the relation outputs the message. As a corollary we get a
weak PAoK for all NP. See Section 5 for the details.

We note that the lack of a (full) auxiliary input in the notion of weak PAoK means that it does not even
have sequential composition, which makes the notion much harder to work with. We can in particular not
prove that weak PAoK can always be made extremely laconic.

Finally, we show that if an NP relation R has a weak PAoK and R is random self reducible, then there
also exists a PAoK for R. As a corollary we get PAoK for all random self-reducible languages in NP.
Roughly speaking, a language is random self reducible if solving any instance is as hard as solve a random
instance. Namely, there exists a reduction that allows to solve an instance given the solution for a random
one. The main idea of the protocol is that the verifier “translates” the given instance x to a random instance x′

and execute the weak PAoK over x′ with the prover. Notice that the prover is an efficient machine, therefore
even given the witness w for the x, it cannot solve the instance x′. To solve this we define the natural notion
of witness reconstructible relation that allows to reconstruct the witness for x′ given the randomness that
generates x′ from x and a valid witness w for x. The verifier therefore sends both the challenge for x′

and also the randomness. Here is where the notion of weak PAoK kicks in, in fact, the protocol remains
knowledge sound even when the prover knows the randomness used to create the instance. See Section 4.3
for the details.

Applications. We mainly investigate the notion of PAoK because we find it intriguing in its own right. We
do, however, note that PAoK have a number of interesting properties and applications. Note for instance that
a PAoK clearly is honest-verifier zero-knowledge, and therefore can be made zero-knowledge using standard
reductions. In Appendix A we show an application of PAoK to proving lower bounds on the complexity of
leakage-tolerant protocols. In particular, we show that if one uses a public-key encryption (PKE) scheme to
implement secure message transmission, and the resulting protocol can tolerate leakage of even a constant
number of bits, then the scheme needs to have secret keys which are as long as the total number of bits
transmitted using that key.

Since the typical interpretation of PKE is that an unbounded number of messages can be encrypted using
a fixed public key, this shows that typical PKE cannot be used to realize leakage-tolerant secure message
transmission even against a constant number of leaked bits. This strengthens an earlier result by Nielsen et
al. [19] who showed a lower bound for schemes tolerating super-logarithmic leakage.

For the proof we need that there exists a PAoK for a relation associated to the PKE scheme, essentially
proving knowledge of the secret key. The result can therefore be interpreted as showing that either a PKE
does not give secure message transmission secure against a constant number bits of leakage or there does not
exists a PAoK for the applied PKE scheme. Proving that such a PAoK does not exists seems very challenging
using current techniques, so our result indicates that we probably cannot base leakage-tolerant message
transmission secure against leaking a constant number of bits on PKE with our current proof techniques.
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1.2 Related Work

A study of interactive proofs with laconic provers was done also in [12, 14]. They do not investigate proofs
of knowledge. As explained above our notion of PAoK is related to Ext-WE first proposed by Goldwasser
et al. in [15], where they directly assume that the construction of Garg et al. in [10] is extractable. Our
technique for weak PAoK from public-coin diO is related to the work of Boyle et al. [4].

In [9] Garg et al. showed that the notion of Ext-WE is “implausible”, namely, assuming a virtual
black-box obfuscation (VBB) for a specific function then Ext-WE for a specific NP relation is impossible.
The reason relies on the auxiliary information that an adversary might have on the input, if such kind of
VBB exists then the auxiliary input can be an obfuscated circuit that allows to decrypt ciphertexts but does
not give any information about the witness. As stated by the authors of [9], this can be interpreted as an
“implausibility” of the notion of Ext-WE (for all of NP). Notice that the result holds only when the adversary
gets an arbitrary auxiliary input.

As mentioned above, in general, arguments do not compose nicely in parallel, however there are some
exceptions like 3-messages arguments [2, 6], public-coin arguments [21, 8] and simulatable (a generalization
of both 3-messages and public-coin) arguments [17, 7]. (multi-round) PAoK are inherently private coins
so the mentioned works do not apply directly. More relevant to ours is the work of Haitner on random-
terminating arguments [16].

2 Notation

For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a string,
we denote its length by |x|; if X is a set, |X | represents the number of elements in X . When x is chosen
randomly in X , we write x←$ X . When A is an algorithm, we write y ← A(x) to denote a run of A on
input x and output y; if A is randomized, then y is a random variable and A(x; r) denotes a run of A on input
x and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for any
input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ ∈ N denote the security parameter. We say that a function µ : N → R
is negligible in the security parameter κ if µ(κ) = κ−ω(1). A positive function ν is noticeable if there exist
a positive polynomial p(·) and a number κ0 such that ν(κ) > 1/p(κ) for all κ > κ0. For two ensembles
X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y if they are identically distributed and X ≈ Y to denote
that they are statistically or computationally close.

Vectors and matrices are typeset in boldface. For a vector v = (v1, . . . , vn) we sometimes write v[i] for
the i-th element of v and v↓i for the vector (v1, . . . , vi).

3 Predictable Arguments of Knowledge

LetR ⊆ {0, 1}∗×{0, 1}∗ be an NP-relation, naturally defining a language LR := {x : ∃w s.t. (x,w) ∈ R}.
We are typically interested in efficiently samplable relations, for which there exists a ppt algorithm SamR
taking as input the security parameter (and random coins r) and outputting a pair (x,w) ∈ R. An interactive
protocol for R features a prover P (holding a value x ∈ LR together with a corresponding witness w) and a
verifier V (holding x), where the goal of the prover is to convince the verifier that x ∈ LR. At the end of the
protocol execution the verifier outputs either acc or rej; we write 〈P(1κ, x, w),V(1κ, x)〉 for the random
variable corresponding to the verifier’s verdict.
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We start by defining Predictable Arguments of Knowledge (PAoK) in Section 3.1 as one-round interac-
tive protocols in which the verifier generates a challenge (to be sent to the prover) and can at the same time
predict the prover’s answer to that challenge; we insist on (computational) extractable security, meaning that
from any prover convincing a verifier with some probability we can extract a witness with probability related
to the prover’s success probability. The main result of this section is that PAoK can be assumed without loss
of generality to be one-round and extremely laconic (i.e., the prover sends a single bit). In particular, in
Section 3.2, we show that any multi-round PAoK can be squeezed into a one-round PAoK; In Section 3.3 we
show that, for any ` ∈ N, there exists a laconic PAoK if and only if there exists a PAoK where the prover’s
answer is of length `.

3.1 The Definition

We focus on one-round protocols where the verifier speaks first by sending a challenge message c, to which
the prover returns an answer a. Importantly, we are interested in protocols where the verifier can predict the
prover’s answer at the time when it generates the challenge. Such protocols are fully specified by a tuple of
two ppt algorithms Π = (Chall,Resp) as described below:

1. V samples (c, b)← Chall(1κ, x) and sends c to P.
2. P samples a← Resp(1κ, x, w, c) and sends a to V.
3. V outputs acc if and only if a = b.

We say that prover P and verifier V, running the protocol above, execute a PAoK Π upon input security
parameter 1κ, common input x and prover’s private input w; we denote with 〈P(1κ, x, w),V(1κ, x)〉Π (or
simply 〈P(1κ, x, w),V(1κ, x)〉 when Π is clear from the context) the output of such interaction. We say that
a prover P succeeds on the instance x and auxiliary input w if 〈P(1κ, x, w),V(1κ, x)〉 = acc.

Definition 1 (Predictable Arguments of Knowledge). Let Π = (Chall,Resp) be as specified above, and let
R be an NP relation. Consider the properties below.

Completeness: There exists a negligible function µ such that for all (x,w) ∈ R, we have that:

Pr
P,V

[〈P(1κ, x, w),V(1κ, x)〉 = acc] > 1− µ(κ).

f -Knowledge soundness with error ε: For all ppt provers P∗ there exists a non-uniform extractor K and
a non-zero polynomial q(·) such that for any x ∈ {0, 1}∗ and any auxiliary input z ∈ {0, 1}∗ the
following holds. Whenever p(κ) = Pr[〈P∗(1κ, x, z),V(1κ, x)〉 = acc] > ε(κ), then

Pr
K

[
∃w s.t. f(w) = y

(x,w) ∈ R : y←$ K(1κ, x, z)

]
> q(p(κ)− ε(κ)).

Let ` be the size of the prover’s answer, we call Π a predictable argument of knowledge (PAoK) for R if Π
satisfies completeness and f -knowledge soundness for any efficient computable function f , and moreover
ε − 2−` is negligible. We call it a laconic PAoK if ` = 1. We call it an f -PAoK if knowledge soundness
holds for a specific function f .

We now turn to define a weaker form of extractability, that roughly says that the protocol is sound and
moreover random instances are extractable. To gain in generality we consider random elements from any
efficiently samplable distribution. Consider the property below.
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Weak f -Knowledge soundness with error ε: For all ppt provers P∗ and all ppt algorithms Sam there
exists a non-uniform extractor K and a non-zero polynomial q(·) such that for all auxiliary inputs
zP , zS ∈ {0, 1}∗ the following holds. Whenever p(κ) := Pr[〈P∗(1κ, r, zP ),V(Sam(1κ, zS ; r))〉 =
acc] > ε(κ), then

Pr
K,r

[
∃w s.t. f(w) = y

(x,w) ∈ R :
x := Sam(1κ, zs; r),
y←$ K(1κ, r, zp, zs)

]
> q(p(κ)− ε(κ)).

Definition 2 (Weak PaoK). Let Π = (Chall,Resp) be as specified above, and let R be an NP relation. We
call Π a weak PAoK (wPAoK) for R if Π satisfies completeness and weak knowledge soundness with error
ε, and moreover ε− 2−` is negligible (where ` is the length of the prover’s answer). We call it an f -wPAoK
if weak knowledge soundness holds for a specific function f .

Notice that weak knowledge soundness connects the average-case hardness of a language (with instances
sampled over a public-coin distribution) to the correctness of the argument system. However, given a prover
that succeeds on a randomly sampled instance x in a weak PAoK the definition does not give any guarantee
that the knowledge extractor is able to extract a witness for the same random instance x.

The above might seem to be a quite weak extraction guarantee. However, in Section 4.3 we will show
that a weak PAoK can be used to obtain a full-fledged PAoK for languages that are random self-reducible.

3.2 On Multi-Round PAoK

In this section we consider a natural extension of predictable arguments where there are ρ > 1 rounds. In
particular, we show that multi-round PAoK can be squeezed into a one-round PAoK (maintaining knowledge
soundness).

In a multi-round predictable argument the verifier produces many challenges c = (c1, . . . , cρ). W.l.o.g.
we can assume that all the challenges are generated together and then forwarded one-by-one to the prover;
this is because the answers are known in advance. Specifically a ρ-round PAoK is fully specified by a tuple
of algorithms Π = (Chall,Resp), as described below:

1. V samples (c,b)←$ Chall(1κ, x), where c := (c1, . . . , cρ) and b := (b1, . . . , bρ)
2. For all i ∈ [ρ] in increasing sequence:

• V forwards ci to P;
• P computes (a1, . . . , ai) := Resp(1κ, x, w, c1, . . . , ci) and forwards ai to V;
• V checks that ai = bi, and returns rej if this is not the case.

3. If all challenges are answered correctly, V returns acc.

Notice that now algorithm Resp takes as input all challenges up-to round i in order to generate the i-th
answer.1

Definition 3 (ρ-round PAoK). Let R be an NP relation, Π = (Chall,Resp) be as above, and denote by ` the
size of each answer produced by the prover. We call Π a ρ-round PAoK for R if Π satisfies completeness
and knowledge soundness with error ε, and moreover ε− 2−ρ` is negligible.

Let Π = (Chall,Resp) be a ρ-round PAoK. Consider the following protocol between prover P′ and
verifier V′—let us call it the collapsed protocol for future reference—for a parameterϕ ∈ N to be determined
later:

1In the description above we let Resp output also all previous answers a1, . . . , ai−1; while this is not necessary it can be
assumed w.l.o.g. and will simplify the proof of Theorem 1.
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1. For all i ∈ [ϕ] and j ∈ [ρ], V′ samples (ci,j ,bi,j)←$ Chall(1κ, x). For each j ∈ [ρ] let:

Cj := (c1,j
↓j , c

2,j
↓j , . . . , c

ϕ,j
↓j )

Bj := (b1,j
↓j ,b

2,j
↓j , . . . ,b

ϕ,j
↓j ).

V′ sends the vectors C =
(
C1,C2, . . . ,Cρ

)
.

2. For all i ∈ [ϕ] and j ∈ [ρ], P′ computes the answer ai,j ←$ Resp(1κ, x, w,Cj [i]). For each j ∈ [ρ]
let:

Aj := (a1,j ,a2,j , . . . ,aϕ,j).

P′ sends the vector A := (A1,A2, . . . ,Aρ).
3. V′ sets B := (B1,B2, . . . ,Bρ) and outputs acc if and only if A = B.

We write Π′ := (Resp′ϕ,Chall
′
ϕ) for the algorithms describing the generation of the challenge C and

the predicted answer B by the prover, and the generation of the answer A by the verifier in the collapsed
protocol (respectively).

Theorem 1. For any polynomial ρ(·) and any function f if Π = (Chall,Resp) is a ρ(κ)-round f -PAoK
with knowledge error ε(κ), then the above collapsed protocol Π′ = (Chall′ϕ,Resp

′
ϕ) with parameter ϕ =

ω(log κ) · ρ is an f -PAoK with knowledge error εω(log κ).

Proof. We start showing knowledge soundness of Π′. Let P′ be a prover for the collapsed protocol, and
define p′ := Pr[〈P′(1κ, x, z),V′(1κ, x)〉 = acc]. We construct a prover P∗ (with oracle access to P′) that
convinces the verifier V of the ρ-round PAoK Π with probability greater than 1/3.

We start by setting up some notation. For any vector c, any challenge C as defined in the collapsed
protocol, and any pair of indexes i, j, let C|ci,j=c be defined as C but with the vector ci,j set to c. Let
Zi(B,C) be the indicator random variable for the event

∀j ∈ [ρ] : ai,j = bi,j , where A = P′(1κ,C).

For any i ∈ [ϕ] define δi to be the following probability:

δi := Pr

[
ϕ∑
k=1

Zk(B,C) = i : (B,C)←$ Chall′ϕ(1κ, x)

]
.

Finally, let k∗ ∈ [0, ϕ− 1] be the first index for which the following holds:

k∗ + 1

ϕ
δϕ−k∗−1 6

1

2ρ

∑
i>ϕ−k∗

δi. (1)

Before proceeding with the proof, we establish that for any P′ that succeeds with noticeable probability p′

there exists an index k∗ having the property required in Eq. (1). This can be seen as follows. Suppose that
Eq. (1) does not hold then:

δ1 >
ϕ

2ρ

ϕ∑
i=2

δi =
ϕ

2ρ

(
δ2 +

ϕ∑
i=3

δi

)

>
ϕ

2ρ

((
ϕ

2 · 2ρ

ϕ∑
i=3

δi

)
+

ϕ∑
i=3

δi

)
=

ϕ

2ρ

(
ϕ

2 · 2ρ
+ 1

) ϕ∑
i=3

δi

>
ϕ

2ρ
·
ϕ−1∏
i=2

(
1 +

ϕ

i2ρ

)
· p′ > ϕ

2ρ
·
(

1 +
1

2ρ

)ϕ−3

· p′ > 1,
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where the last inequality holds if we set ϕ = ω(log κ)ρ. We reached a contradiction.

For any i ∈ [ϕ], and for a parameter τ ∈ N, we define the procedure Resp
P′

τ (1κ, x, c1, . . . , cj) that upon
input an instance x and challenges c = (c1, . . . , cj), and given oracle access to a prover P′, outputs answers
a1, . . . , aj . The description of the procedure follows:

1. For τ many trials:

• Sample (C,B) as in the collapsed protocol and choose i∗←$ [ϕ].
• Using oracle access to prover P′(1κ, ·), compute the value:

Z =
∑

i∈[ϕ]\{i∗}

Zi(B,C|ci∗,j=c).

If Z 6 k∗ break the loop and output ai
∗,j .

2. Output ⊥ if no answer has been found.

Notice that the index k∗ depends only on the description of P′, therefore we can assume that k∗ is
passed to P∗ as auxiliary input. Consider now an execution of the ρ-round protocol between P∗P

′
and V on

common input x and prover’s auxiliary input z∗ := (z, k∗), where the prover executes the procedure Respτ
with oracle access to P′(1κ, x, z) and the verifier samples (b, c)←$ Chall(1κ, x). We can upper bound the
probability that P∗ fails in convincing V as follows:

Pr
[
〈P∗P

′
(1κ, x, z∗),V(1κ, x)〉 6= acc

]
6 Pr

[
∃j : Resp

P′

τ (1κ, x, c↓j) 6= b↓j

]
6
∑
j∈[ρ]

Pr
Respτ ,c

[
Resp

P′

τ (1κ, x, c↓j) 6= b↓j

]
. (2)

Next, we analyze the probability that Respτ forwards the right answer in a generic round j ∈ [ρ]. The
analysis is facilitated by first looking at the algorithm Resp∞ that executes the main loop until it finds a valid
answer; later we will show that the probability that the number of executions is less than τ is overwhelming
in κ. In case the algorithm Resp∞ ends there are two possible situations:

• The algorithm accepts a wrong answer, let us call this event Fail. In this case, the number of errors
made by P′ is k∗ + 1 (including the answer ai

∗,j). Observe that, since i∗ is uniformly random, at any
iteration we have Pr[Fail] = δϕ−k∗−1

k∗+1
ϕ .

• The algorithm accepts a correct answer, let us call this event Success. In this case, the number of errors
made by P′ is at most k∗. Observe that, by definition, at any iteration Pr[Success] =

∑
i>ϕ−k∗ δi.

Recalling the definition of the index k∗ from Eq. 1, we obtain:

Pr[Fail] 6
k∗ + 1

ϕ
δϕ−k∗−1 6

1

2ρ

∑
i>ϕ−k∗

δi =
1

2ρ
Pr[Success],

and thus the probability that Resp∞ fails is less than 1
2ρ . (We are conditioning on the event that Resp∞

terminates here.)
Since Pr[Success] ≥ δϕ = p′, we have Pr[Fail] + Pr[Success] > p′. Hence, by the tail inequality

of the geometric distribution the probability that Resp∞ makes more than τ = p′−1ω(log κ) iterations is
negligible. Therefore, we can upper bound the probability that Respτ fails by 1

2ρ + negl(κ). Combining this
with Eq. (2) we get that P∗ is successful in the ρ-round protocol with probability 1−ρ( 1

2ρ +negl(κ)) ≥ 1/3.
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We finally define the f -knowledge extractor of protocol Π′ on prover P′ to be the same f -knowledge
extractor of protocol Π on prover P∗P

′
.2 Recall that the knowledge soundness of Π is ε(κ); moreover prover

P∗ succeeds with probability greater than 1/3 whenever executed with oracle access to a prover P′ for Π′

that succeeds with noticeable probability. It follows that the knowledge soundness of Π′ is εω(log κ).

To complete the proof we show that the completeness error of the collapsed protocol is negligible. Notice
that for any j ∈ [ρ], given an instance (x,w) ∈ R:

1− µ(κ) > Pr [〈P(1κ, x, w),V(1κ, x)〉 = acc] = Pr
[
∧i∈[ρ](ai = bi)

]
> Pr

[
∧i∈[j](ai = bi)

]
.

Therefore:
Pr
[〈
P′(1κ, x, w),V′(x)

〉
= acc

]
> (1− µ)ρ·ϕ.

Recall that we set ϕ = ω(log κ)ρ hence the right-hand side of the equation above is overwhelming.

3.3 On Laconic PAoK

We show that laconic PAoK (where the size of the prover’s answer is ` = 1 bit) are equivalent to PAoK.

Theorem 2. Let R be an NP relation. There exists a PAoK for R if and only if there exists a laconic PAoK
for R.

Proof sketch. Consider Π = (Chall,Resp) to be a PAoK for R, with ` = poly(κ). We write (c,b) for
the output of Chall(1κ, x) and a for the output of Resp(1κ, x, w, c); note that |a| = |b| = `. Define the
following laconic protocol Π′ = (Chall′,Resp′):

• Upon input 1κ, x, define Chall′(1κ, x) := (c′, b′) where c′ = (c, r) and b′ = 〈b, r〉 for a random
r←$ {0, 1}`.
• Upon input 1κ, x, w, c′, define Resp′(1κ, x, w, c′) := 〈a, r〉where c′ = (c, r) and a = Resp(1κ, x, w, c).

Clearly, Π′ is laconic. Notice that the bit b′ is an hard-core predicate [13] for the relationRip = {(b, (c, r)) : (c,b) ∈
Chall(1κ, x), r ∈ {0, 1}`}. Moreover, the inverter of the Goldreich-Levin Theorem [11] works for any sur-
jective function and, for any fixed function g(b) := (c, r) such that (b, (c, r)) ∈ Rip, it does not require the
function g(·) to be efficiently computable in order to invert it. With this in mind, it is not hard to reduce
knowledge soundness of Π′ to the hardness of the Goldreich-Levin predicate. We skip the technical details.

We proceed to prove the other direction. Let Π′ = (Chall′,Resp′) be a laconic PAoK for the relation R,
and consider the protocol Π` below which, for a parameter ` = poly(κ), simply repeats Π′ sequentially for
ρ(κ) times:

1. For i ∈ [ρ(κ)] where ρ(κ) = ω(`1/2/ log1/2 κ), proceed as follows:

• Execute protocol Π′;
• If the execution aborts then output rej, otherwise proceed to the next iteration.

2. If all the ρ executions were accepting, then return acc.

It is well known that sequential repetition amplifies the knowledge soundness error of private-coin arguments
of knowledge; thus Π` is a ρ-round PAoK with knowledge soundness error ε`. We can now apply Theorem 1
to obtain a one-round PAoK.

2Strictly speaking, the definition of f -knowledge soundness does not consider provers with oracle access, however, since P′ is
efficient, we can define a new prover P̂ that executes P∗ and emulates each invocation to the oracle using the code of P′.
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4 Constructing PAoK

We give two constructions of PAoK. In Section 4.1 we show that we can construct a PAoK from any ex-
tractable hash-proof system [24] (Ext-HPS); if the Ext-HPS is defined w.r.t. a relation R, we obtain a PAoK
for a related relation R′ where R and R′ share the same x and the witness for x w.r.t. R′ is the randomness
used to sample the instance (x,w) ∈ R.

In Section 4.2 we investigate the relationship between PAoK and Extractable Witness Encryption [10,
15]; while Ext-WE for all of NP is implausible [9] we put forward a weaker variant of Ext-WE (weak Ext-
WE) which we show to be equivalent to weak PAoK. Since, as we show, weak Ext-WE can be obtained
for arbitrary NP relations using public-coin differing-inputs obfuscation [18]—see Section 5—we obtain a
weak PAoK for all of NP as a corollary.

Finally, in Section 4.3, we use a weak PAoK for NP to construct a PAoK for any random self-reducible
relation.

4.1 Construction from Extractable Hash-Proof Systems

The definition below is adapted from [24].

Definition 4 (Ext-HPS). Let H = {hpk} be a set of hash functions indexed by a public key pk , and
let R be an NP-relation. An extractable hash-proof system for R is a tuple of ppt algorithms ΠHPS :=
(SetupHash,SetupExt,Ext,Pub,Priv) such that the following properties are satisfied.

Public evaluation: For all (pk , sk)← SetupExt(1κ), and (x,w)← SamR(1κ; r), we have Pub(1κ, pk , r) =
hpk (u).

Extraction mode: For all (pk , sk)← SetupExt(1κ) and all (x, y), we have that π = hpk (x)⇔ (x,Ext(1κ, sk , x, π)) ∈
R.

Hashing mode: For all (pk , sk)← SetupHash(1κ), and for all (x,w) ∈ R, we have that Priv(1κ, sk , x) =
hpk (x).

Indistinguishability: The ensembles {pk : (pk , sk) ← SetupHash(1κ)}κ∈N and {pk : (pk , sk) ←
SetupExt(1κ)}κ∈N are statistically indistinguishable.

Let R be an efficiently samplable relation with sampling algorithm SamR. Define the relation R′, such
that (x,w′) ∈ R′ if and only if (x,w) ∈ R where (x,w) := SamR(1κ;w′). Consider the following pair
of ppt algorithms Π = (Chall,Resp), defining a one-round interactive argument for R′ (as described in
Section 3.1).

1. Algorithm Chall(1κ, x) runs (pk , sk)← SetupHash(1κ), and defines c := pk and b := Priv(1κ, sk , x).
2. Algorithm Resp(1κ, x, w′, c) defines a := Pub(1κ, pk , w′).

Theorem 3. Let R, R′ and SamR be as above. Assume that ΠHPS is an Ext-HPS for the relation R. Then
Π = (Chall,Resp) as defined above is an f -extractable PAoK for the relation R′ and where f(·) returns the
second output of SamR(·).

Proof. Completeness follows by the correctness property of the hashing mode of the underlying HPS. In
order to show knowledge soundness, we consider a mental experiment where algorithm Chall is defined
differently. In particular, the verifier samples (pk , sk) ← SetupExt(1κ) using the extraction mode instead
of the hashing mode. By the indistinguishability property of the HPS this results in a statistically close
distribution.
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Now, we can define the extractor K of the PAoK as follows. Let P∗ be a ppt algorithm such that
〈P∗(1κ, x, z),V(1κ, x)〉Π = acc with probability p(κ), where P∗ uses auxiliary input z ∈ {0, 1}∗. Define
K(1κ, x, z) := Ext(1κ, sk , x, a) where a is the message sent by P∗. By definition of protocol Π we get
that whenever P∗ succeeds then c = hpk (x) = a. Thus the extraction property of the HPS implies that
w←$ Ext(1κ, sk , x, a) is a valid witness for x, i.e. R(x,w) = 1 with probability 1. The proof now follows
by the fact that for all w′ such that SamR(1κ;w′) = (x,w), we also have R′(x,w′) = 1.

Instantiations. We consider two instantiations of Theorem 3, based on the constructions of Ext-HPS given
in [24].

• The first construction is for the Diffie-Hellman relation RDH := {(gr, gαr) : g ∈ G, α, r ∈ Zq},
for a group G of prime order q. Note that SamR(r) := (gr, gαr). The corresponding relation R′DH is
R′DH := {(gr, r) : g ∈ G, r ∈ Zq}, and f(r) = fα(r) := gαr.
• The second construction is based on factoring. Let RQR := {(g2kr, gr) : g←$ QR+

N , r ∈ [(N −
1)/4]}, where N is a Blum integer. Note that SamR(r) := (g2kr, gr). The corresponding relation
R′QR is R′QR := {(g2kr, r) : g←$ QR+

N , r ∈ [(N − 1)/4]}, and f(r) := gr.

4.2 Equivalence to Extractable Witness Encryption

We show that full-fledged PAoK imply extractable witness encryption (Ext-WE), and viceversa. We start by
recalling the definition of Ext-WE, taken from [9].

Extractable Witness Encryption. Let R be an NP-relation. A WE scheme Π = (Encrypt,Decrypt) for
R (with message spaceM = {0, 1}) consists of two ppt algorithms, specified as follows:3 (i) Algorithm
Encrypt takes as input a security parameter 1κ, a value x ∈ {0, 1}∗, and a message β ∈ {0, 1}, and
outputs a ciphertext γ; (ii) Algorithm Decrypt takes as input a security parameter 1κ, a ciphertext γ, a value
w ∈ {0, 1}∗, and outputs a message β ∈ {0, 1} or a special symbol ⊥.

Definition 5 (Ext-WE). Let R be an NP-relation, and ΠWE = (Encrypt,Decrypt) be a WE scheme for R.
We say that ΠWE is an Ext-WE scheme for R if the following requirements are met.

Correctness: For any x ∈ L and β ∈ {0, 1}, we have that Decrypt(1κ, w,Encrypt(1κ, x, β)) = β with
probability one, where (x,w) ∈ RL.

Extractable security: For any ppt adversary A = (A0,A1) and for any noticeable function ε(·), there
exists a non-uniform extractor K and a non-zero polynomial q(·) such that the following holds. For
any auxiliary information z ∈ {0, 1}∗ and for any tuple (x, st)←$ A0(1κ, z), whenever

Pr [A1(1κ, st , x,Encrypt(1κ, x, β), z) = β : β←$ {0, 1}] > 1

2
+ ε(κ)

then we have Pr[(x,K(1κ, x, z)) ∈ RL] > q(ε(κ)).

Since constructing an Ext-WE scheme for all of NP (w.r.t. arbitrary auxiliary inputs) is implausible [9],
a corollary of our analysis below is that full-fledged PAoK for all NP is also implausible. Motivated by
this negative result, we define a weaker flavour of Ext-WE (weak Ext-WE) which is similar in spirit to our
definition of weak PAoK. As we show, for any relation, we can construct a weak Ext-WE from any weak
PAoK for the same relation (and viceversa). Finally we obtain a weak PAoK for NP by noting that any
public-coin differing-inputs obfuscator already gives a weak Ext-WE scheme (see Section 5).

3WE for arbitrary-length messages can be obtained encrypting each bit of the plaintext independently.
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Definition 6 (Weak Ext-WE). Let R be a relation, and ΠWE = (Encrypt,Decrypt) be a WE scheme for
R. We say that ΠWE is a weak Ext-WE scheme for R if it satisfies correctness as per Definition 5, and if
extractable security is replaced by weak extractable security, specified below.

Weak Extractable security: For any ppt adversary A, any ppt algorithm Sam and for any noticeable func-
tion ε(·) there exists a non-uniform extractor K and a non-zero polynomial q(·) such that for any
auxiliary information zA, zS ∈ {0, 1}poly(κ) the following holds. Whenever

Pr [A(1κ, r,Encrypt(1κ, Sam(1κ, zS ; r), β), zA) = β : β←$ {0, 1}] > 1

2
+ ε(κ)

then Pr[(x,w) ∈ RL : x := Sam(1κ, zS ; r), w←$ K(1κ, x, r, zA, zS)] > q(ε(κ)).

Theorem 4. Let R be an NP-relation. There exists a (weak) PAoK for R if and only if there exists a (weak)
Ext-WE scheme for R.

Proof. Let Π = (Chall,Resp) be a PAoK for the relation R. Without loss of generality, by our analysis
in Section 3, we can assume that the PAoK is laconic (i.e., the output of Resp is a single bit a ∈ {0, 1}).
Consider the following construction of an Ext-WE scheme ΠWE = (Encrypt,Decrypt) forR (with message
spaceM = {0, 1}):

• Upon input 1κ, x and message β, define Encrypt(1κ, x, β) := (c, β⊕b) := γ where (c, b)←$ Chall(1κ, x).
• Upon input 1κ, w, γ, where γ = (γ1, γ2), define Decrypt(1κ, w, γ) = γ2⊕awhere a← Resp(1κ, x, w, c).

Let A = (A0,A1) be an adversary for the WE scheme. Assume that there exists a noticeable function ε(·)
such that

Pr [A1(1κ, st , x, γ, z) = β : β←$ {0, 1}; γ←$ Encrypt(1κ, x, β)] >
1

2
+ ε(κ)

for (st , x)←$ A0(1κ, z) (where z ∈ {0, 1}∗ is the auxiliary input). We use A to construct a prover P∗

attacking knowledge soundness of Π. Prover P∗ first runs (st , x)←$ A0(1κ, z), and then interacts with the
honest verifier of Π on common input x, as follows:

1. Receive challenge c from the verifier.
2. Sample β′←$ {0, 1} and run A1(1κ, st , x, γ, z) on γ := (c, β′), obtaining a bit β.
3. Send a := β ⊕ β′ to the verifier.

For the analysis, note that the ciphertext simulated by P∗ has the right distribution (in particular, the second
component is a random bit). Since β′ = β ⊕ b we get that P∗ outputs a = b with probability at least
1/2 + ε(κ) and thus P∗ convinces V with probability p(κ) ≥ 1/2 + ε(κ). We are now in a position to run
the extractor K of Π, and hence we obtain a valid witness w←$ K(1κ, x, z) with probability q(ε(κ)). The
statement follows. A similar argument shows that ΠWE is a weak Ext-WE whenever Π is a weak PAoK.

Conversely, let ΠWE = (Encrypt,Decrypt) be an Ext-WE scheme for the relation R, with message
spaceM = {0, 1}. Consider the following construction of a PAoK Π = (Chall,Resp):

• Upon input 1κ, x, define Chall(1κ, x) := (Encrypt(1κ, x, b), b) where b←$ {0, 1}.
• Upon input 1κ, x, w, c, define Resp(1κ, x, w, c) := Decrypt(1κ, w, c).

Fix any x and let P∗ be a malicious prover for the PAoK. Assume that there exists a polynomial p(·) such
that

p(κ) := Pr [〈P∗(1κ, x, z),V(1κ, x)〉 = acc] ≥ ε(κ).
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where z ∈ {0, 1}∗ is the auxiliary input. We use P∗ to construct an adversary A := (A0,A1) attacking
extractable security of ΠWE. Adversary A0(1κ, z) outputs x, and then A1 is given a challenge ciphertext γ
that is either an encryption of β = 0 or an encryption of β = 1 (under x), and its goal is to guess β. To do
so A proceeds as follows:

1. Forward γ to P∗.
2. Let a be the answer sent by P∗; output β := a.

For the analysis, note that the challenge simulated by A1 has the right distribution (in particular, it is a
witness encryption of a random bit). Since a = b = Decrypt(1κ, x, w, γ) with probability at least p(κ), we
get that A1 guesses β with at least the same probability. We are now in a position to run the extractor K of
ΠWE, and hence we obtain a valid witness w←$ K(1κ, x, z) with probability q(p(κ)− ε(κ)). The statement
follows. A similar argument shows that Π is a weak PAoK whenever ΠWE is a weak Ext-WE.

4.3 PAoK for Random Self-Reducible Languages

We construct a PAoK for languages that are random self-reducible. Random self-reducibility is a very
natural property, with many applications in cryptography (see, e.g., [1, 23, 20]).

4.3.1 Random Self Reducibility

Informally a function is random self-reducible if, given an algorithm that computes the function on random
instances, one can compute the function on any input. When considering NP relations, one has to take a
little more care while defining random self-reducibility. We say thatOR(·) is an oracle for the relation R, if
on any input x ∈ LR we have that (x,OR(x)) ∈ R.

Definition 7 (Self-Reducible Relation). An NP-relationR for a language L is random self-reducible if there
exists a pair of ppt algorithms (W0,W1) such that for any oracle OR for the relation R the following holds.

• For any x ∈ L, we have that (x,w) ∈ R where w is defined as follows:

– Let x′ := W0(x;ω) where ω←$ {0, 1}poly(|x|) and set w′ := OR(x′);
– Let w := W1(x,w′;ω);

Then (x,w) ∈ R.
• The value x′ is uniformly distributed over L.

We call the pair of algorithms W = (W0,W1) an average-to-worst-case (AW) reduction.

Notice that the reduction W has oracle access to a “powerful” oracle that produces a witness for a
randomized instance, and uses this witness to compute a witness for the original instance. As a toy example,
consider the discrete logarithm problem in a cyclic group G of prime order q and with generator g. Given
an instance x and an oracle ODLOG one can find w such that gw = x as follows: (i) Pick a random z ∈ Zq,
compute x′ = x · gz and ask to the oracle a witness for x′; (ii) Given w′ such that gw

′
= x′ compute

w := w′ − z.
Notice that given w and the auxiliary information z, one can easily compute a valid witness w′ for the

instance x′. This example inspires the following property of a random self-reducible relation R:

Definition 8 (Witness Re-constructibility). A random self-reducible relation R with AW reduction W =
(W0,W1) is witness reconstructible for W if there exists a ppt algorithm W such that for any ω ∈ {0, 1}poly(|x|)

and for any (x,w) ∈ R the following holds: Let x′ be the oracle call made by W(x;ω), and define
w′ := W(x,w;ω); then (x′, w′) ∈ R.
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4.3.2 The protocol

We show how to use a weak PAoK for a random self-reducible relation R, to construct a fully-extractable
PAoK for the same relation. The idea is to map the input instance x into a random instance x′, and to
additionally send the prover the auxiliary information needed to compute a valid witness w′ for x′. This way
a honest prover essentially behaves as an oracle for the underlying relation R.

Let R be a random self-reducible NP-relation which is witness reconstructible and has AW reduction
W = (W0,W1). Let Π′ := (Chall′,Resp′) be a weak PAoK for R. Consider the following protocol
Π = (Chall,Resp):

1. Upon input 1κ, x algorithm Chall returns c := (c′, x′, ω) and b such that x′ = W0(x;ω) (for ω←$ {0, 1}poly(|x|))
and (c′, b)←$ Chall(1κ, x′).

2. Upon input 1κ, x, w, (c′, x′, ω) algorithm Resp returns a such that a←$ Resp(1κ, x′, w′, c′) for w′ :=
W(x,w;ω).

Theorem 5. Let R be a random self-reducible NP-relation which is witness reconstructible and has AW
reduction W = (W0,W1). Let Π′ be a weak PAoK for R, with knowledge error ε. Then protocol Π
described above is a PAoK for R with knowledge error ε.

Proof. For any ppt prover P∗ we need to define a knowledge extractor K such that for any instance x for
which p(κ) := Pr[〈P∗(1κ, x, z),V(1κ, x)〉 = acc] > ε(κ) the extractor K produces a witness w for x with
probability q(p(κ)− ε(κ)) for an inverse-polynomial function q(·). Let K′ be the weak-knowledge extractor
of Π′, for prover P∗ and sampler W0, and denote by q′(·) the corresponding inverse-polynomial function.
Notice that for any zP ∈ {0, 1}∗ the extractor K′(1κ, x, ω, zP ) produces a witness for x′ = W0(x;ω) with
probability q′(p(κ) − ε(κ)) where the probability is over the choice of ω and over the random coins of of
K′. Consider the knowledge extractor K that works as follow:

1. Pick a random ω←$ {0, 1}poly(κ).
2. Compute w′←$ K′(1κ, x, ω, zP ) and let x′ = W0(x;ω).
3. If (x′, w′) ∈ R then output w := W1(x,w′;ω), otherwise output ⊥.

Clearly, the probability of K outputting ⊥ is the same as K′ outputting an invalid witness on a random
instance. Hence:

Pr
K

[(x,w) ∈ R : w←$ K(1κ, x, zP )] > q′(p(κ)− ε(κ)).

5 Weak PAoK for NP

We recall the notion of public-coin differing-inputs obfuscation. This notion was proposed by Ishai et al.
in [18] and it avoids the negative result of [9] by imposing the restriction that two almost functionally-
equivalent circuits can be safely obfuscated only if it is hard to find an input where they differ even given
the randomness that produced the two circuits.

We first need to define public-coin differing-inputs samplers.

Definition 9 (Public-Coin Differing-Inputs Sampler for Circuits). An efficient non-uniform sampling algo-
rithm Sam = {Samκ}κ∈N is called a public-coin differing-inputs sampler for the parametrized collection of
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circuits C = {Cκ}κ∈N if the output of Samκ is distributed over Cκ × Cκ and for every efficient non-uniform
algorithm A there exists a negligible function ε such that for all κ ∈ N:

Pr
r

[C0(x) 6= C1(x) : (C0, C1)←$ Samκ(r), x←$ Aκ(r)] 6 ε(n).

While reading the definition below, keep in mind that the sampler cannot “keep any secret” from the
adversary.

Definition 10 (Public-Coin Differing-Inputs Obfuscator for Circuits). A uniform ppt algorithm diO is a
public-coin differing-inputs obfuscator for the parametrized collection of circuits C = {Cκ}κ∈N if the fol-
lowing requirements are met.

• Correctness: ∀κ,∀C ∈ Cκ, ∀x we have that Pr[C ′(x) = C(x) : C ′←$ diO(1κ, C)] = 1.
• Security: For every public-coin differing-inputs sampler Sam = {Samκ}κ∈N for the collection C, ev-

ery efficient non-uniform (distinguishing) algorithm D = {Dκ}κ∈N, there exists a negligible function
ε such that for all κ ∈ N:∣∣∣Pr[Dκ(r, C ′) = 1 : (C0, C1)←$ Samκ(r), C ′←$ diO(1κ, C0)]−

Pr[Dκ(r, C ′) = 1 : (C0, C1)←$ Samκ(r), C ′←$ diO(1κ, C1)]
∣∣∣ 6 ε(κ),

where the probability is over the choice of r and the coins of diO.

Consider the following construction of a WE scheme ΠWE = (Encrypt,Decrypt) for any relation R.4

• Upon input 1κ, x and message β ∈ {0, 1}, define Encrypt(1κ, x, β) := diO(Cx,β) := γ where Cx,β
is the circuit that hard-wires x and β and, upon input a value w, it returns β iff (x,w) ∈ R (and
otherwise ⊥).
• Upon input 1κ, x, w, γ, define Decrypt(1κ, x, w, γ) = γ(w).

Theorem 6. If diO is a public-coin differing input obfuscator then the scheme ΠWE described above is a
weak Ext-WE scheme for the relation R.

Proof. Suppose that ΠWE is not a weak Ext-WE. This means there exists a ppt sampler Sam′, a ppt ad-
versary A, and a noticeable function ε(·) such that for infinitely many κ there exist auxiliary informations
zA, zS ∈ {0, 1}poly(κ) for which

Pr
[
A(1κ, r,Encrypt(1κ, Sam′(1κ, zS ; r), β), zA) = β : β←$ {0, 1}

]
>

1

2
+ ε(κ)

but where for any non-uniform extractor K :

Pr

[
(x,w) ∈ RL :

x := Sam′(1κ, zS ; r),
w←$ K(1κ, x, r, zA, zS)

]
6 negl(κ). (3)

It is not hard to see that from the equation above, we can derive a public-coin differing-input sampler
for the circuits (Cx,0, Cx,1). Specifically, let Sam = {Samκ}κ∈N be the following non-uniform machine
where Samκ on input randomness r: (i) Sets x := Sam′(1κ, zs; r); (ii) Outputs (Cx,0, Cx,1). Notice that

4Recall that, as shown in Theorem 4, given a weak Ext-WE for a relation we can construct a weak PAoK for the same relation.
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Cx,0, Cx,1 differ only in the inputs w such that (x,w) ∈ R, therefore, to keep the syntax coherent,5 for any
non-uniform machine A′:

Pr
r

[
Cx,0(w) 6= Cx,1(w) :

(Cx,0, Cx,1) := Samκ(r),
w←$ A′κ(r)

]
6 negl(κ).

However an encryption of β is just diO(Cx,β), therefore we obtain that Dκ(r, C ′) := A(1κ, r, C ′, zA) is a
distinghuisher for diO. This contradicts the assumption that diO is a public-coin differing-inputs obfuscator.
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A Application to Leakage-Tolerant Secure Message Transmission

In this section we show an application of PAoK. We show that if you use a public-key encryption scheme to
implement secure message transmission and the resulting protocol can tolerate leakage of even a constant
number of bits, then the scheme will have to have secret keys which are as long as the total number of bits
transmitted using that key. Since the typical interpretation of public-key encryption is that an unbounded
number of messages can be encrypted using a fixed public key, this shows that typical public-key encryption
cannot be used to realize leakage-tolerant secure message transmission even against a constant number of
leaked bits.

This strengthens an earlier result which showed this was the case for schemes tolerating a super-
logarithmic number of bits of leakage. For the proof we need that there exists a PAoK for a relation as-
sociated to the public-key encryption scheme, essentially proving knowledge of the secret key. The result
can therefore be interpreted as showing that either a public-key encryption does not give secure message
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Functionality F+lk
SMT

Running with parties Rec, Sen and adversary S, the functionality F+lk
SMT is parametrized by the security

parameter κ, message space M and the set of all admissible leakage functions Φ. Hence, F+lk
SMT

behaves as follows:

• Upon input (send, Sen,Rec,m) send a message (send,Sen,Rec, |m|) to S. Once S allows to
forward the message, send (sent, Sen,m) to Rec.
• Upon input (leak, X, φZ) for X ∈ {Sen,Rec} and φZ ∈ Φ send a message (leak, X) to S.

Receive (leak, X ′, φS) from S, check that φS ∈ Φ, and that |φZ(·)| = |φS(·)| and X ′ = X .
Send (leak, φS(m)) to S and (leaked, |φS(m)|) to X ′.

Figure 1: Ideal functionality F+lk
SMT for secure message transmission with leakage

transmission secure against a constant number of bits of leakage or there does not exists a PAoK for the
applied public-key encryption scheme. Proving that such a PAoK does not exists seems very challenging
using current techniques, so the result indicates that we probably cannot base leakage-tolerant message
transmission secure against leaking a constant number of bits on public-key encryption with our current
proof techniques.

Syntax of PKE. A tuple of algorithms (KGen,Enc,Dec) is said to be a PKE scheme for message spaceM
if the following holds: (i) Algorithm KGen takes as input the security parameter and returns a pair (pk , sk);
(ii) Algorithm Enc takes as input a public key pk and a message m ∈ M, and outputs a ciphertext γ; (iii)
Algorithm Dec takes as input a secret key sk and a ciphertext γ, and outputs a message m ∈ M or ⊥. We
require that for all m ∈ M one has Dec(sk ,Enc(pk ,m)) = m with overwhelming probability over the
randomness of (KGen,Enc,Dec).

Message transmission with leakage. We recall the notion of leakage tolerance—introduced by Bitansky
et al. [3]—for secure message transmission. Informally, in a leakage-tolerant message transmission protocol
leakage queries from an adversary A are viewed as a form of partial corruptions, where A does not receive
the complete state of the chosen party but just some function of it. Security is then achieved if such an
adversary can be simulated in the UC framework [5]. Without loss of generality we will consider only
dummy adversaries—adversaries which just carry out the commands of the environment. I.e., it is the
environment which specifies all leakage queries. We will therefore completely drop the adversary in the
notation for clarity.

Let ΠPKE be a protocol between a sender Sen and a receiver Rec. The ideal-world functionality for
secure message transmission with leakage is depicted in Fig. 1. We say that ΠPKE is a leakage-tolerant
secure implementation of F+lk

SMT if there exists a simulator S such that no environment Z can distinguish
between the real life protocol ΠPKE and S interacting with the ideal functionality F+lk

SMT. We denote with
IDEALF+lk

SMT,S,Z
(Φ, κ) the output of the environment Z when interacting with simulator S in the simulation.

Consider the following protocol ΠPKE between a sender Sen and a receiver Rec, supposed to realize
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F+lk
SMT via a public-key encryption scheme (KGen,Enc,Dec) with message space M, assuming authenti-

cated channels:

1. Sen transmits to Rec that it wants to forward a message m ∈M;
2. Rec samples (pk , sk) = KGen(1κ; rG), and sends pk to Sen;
3. Sen computes γ = Enc(pk ,m; rE) and forwards the result to Rec;
4. Rec outputs m′ = Dec(sk , γ; rD).

Note that at the end of the execution of ΠPKE the state of Sen is σS = (m, rE) whereas the state of Rec is
σR = (sk , rG, rD,m

′). Denote with REALΠPKE,Z(Φ, κ) the output of the environment Z after interacting
with parties Rec, Sen in a real execution of ΠPKE.

Definition 11 (Leakage-tolerant PKE protocol). We say that ΠPKE is a (λ, ε)-leakage-tolerant PKE protocol
(w.r.t. a set of leakage functions Φ) if ΠPKE securely implements F+lk

SMT, i.e., there exists a probabilistic
polynomial-time simulator S such that for any environment Z leaking at most λ bits of information it holds
that

{IDEALF+lk
SMT,S,Z

(Φ, κ)}κ∈N ≈ε {REALΠPKE,Z(Φ, κ)}κ∈N.

Necessity of long keys. Nielsen et al. [19] have shown that any leakage-tolerant PKE protocol (as per Def-
inition 11) requires long keys already when ΠPKE tolerates super-logarithmic leakage. Below we strengthen
their result proving a more fine-grained lower bound for any λ = O(1) bits of leakage.

Consider the following NP relation, depending upon a PKE scheme (KGen,Enc,Dec):

RPKE := {((pk , γ,m), (sk , rG)) : (pk , sk) = KGen(1κ; rG) ∧ Dec(sk , γ) = m} (4)

We show the following theorem.

Theorem 7. Let Π = (Chall,Resp) be a PAoK for the above relation RPKE, with knowledge soundness
error 2−` + ε, perfect completeness, and prover’s answers of length ` ≥ 1. Let ΠPKE be an (`, ε′)-leakage-
tolerant PKE protocol. Then it must be that |SK| > (1− 2−` − ε− µ− 2ε′)|M|, where SK is the space of
all secret keys.

Before we sketch the proof, we give an interpretation of the Theorem 7. When the knowledge soundness
of the PAoK is negligible and the PKE protocol is (`, negl)-leakage-tolerant it means that |SK| > (1 −
2−`+1)|M|

Proof sketch. We make the proof for the case where the decryption algorithm is deterministic and has perfect
correctness. Probabilistic decryption can be handled as in [19].

We construct an environment Z which uses ` bits of leakage on the receiver’s state after the execution of
Π, for which the existence of a simulator S implies our bound. The environment Z works as follows:

1. Input a uniformly random m ∈M to Sen.
2. Let the protocol terminate without any leakage queries or any corruptions, i.e., simply deliver all

messages between Sen and Rec. As part of this Z learns pk and γ from observing the authenticated
channel between Sen and Rec.

3. After the protocol terminates, let Rec prove via leakage queries that x := (pk , c,m) ∈ LRPKE
using

Π = (Chall,Resp). Notice that Rec can do this as it knows a valid witness w := (sk , rG). More
in detail, Z runs (c, b)←$ Chall(1κ, x) and specifies a single leakage query defined as φx,cZ (σRec) =
φx,cZ (w) = Resp(1κ, x, w, c) (the values x and c are hard-wired into the function).
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4. Finally Z outputs 1 if and only if a = b, where a is the output of Z’s leakage query.

Note that the total amount of leaked information is equal to the communication complexity of the prover
in Π, i.e., ` bits. By completeness of the PAoK, we know that REALΠPKE,Z(Φ, κ) = 1. From this we
conclude that IDEALF+lk

SMT,S,Z
(Φ, κ) = 1 except with negligible probability, by security of the protocol.

We write out what this means. The simulation proceeds as follows:

1. First Z inputs a uniformly random m ∈M to the ideal functionality on behalf of Sen. As a result S is
given (send,Sen,Rec, |m|).

2. Then S must simulate the communication of the protocol, which in particular means that it must output
some pk and γ to Z.

3. After the simulation of the protocol terminates, the environment runs (c, b)←$ Chall(1κ, x) and makes
the leakage query φx,cZ with which Rec proves that x = (pk , γ,m) ∈ LRPKE

. Such leakage query is
answered by S using another function φS producing a value a.

4. Finally Z outputs 1 if and only if a = b

Since Z is computing (c, b) as the verifier of Π would have done, and the value a is computed by S
which is PPT, and since Z outputs 1, it follows from soundness that x ∈ LRPKE

except with probability
ε = 2−` + negl(κ). This means that there exist (sk , rG) such that (pk , sk) = KGen(1κ; rG) and m =
Dec(sk , γ). In particular, there exists sk ∈ SK such that m = Dec(sk , γ). Let Mpk ,γ ⊂ M denote the
subset of m′ ∈ M for which there exist sk′ ∈ SK such that m′ = Dec(sk ′, γ). An argument identical to
the one in [19, Theorem 1] shows that m ∈Mpk ,γ except with probability ε+ ε′. Combined with the above,
this implies that |Mpk ,γ | ≥ (1−2−`−negl(κ)−2ε′)|M|. Take twom0 6= m1 ∈Mpk ,γ . By definition there
exist sk0, sk1 ∈ SK such that m0 = Dec(sk0, γ) and m1 = Dec(sk1, γ). From m0 6= m1, we conclude
that sk0 6= sk1, so |SK| ≥ |Mpk ,γ |. From this we get the theorem.
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