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Abstract. The encryption mode of the Tweakable Block Cipher (TBC) of the 
SCREAM Authenticated Cipher is implemented in the MSP430 
microcontroller.  Assembly language versions of the TBC are prepared using 
both precomputed tweak keys and tweak keys computed “on-the-fly.”  Both 
versions are compared against published results for the assembly language 
version of SCREAM on the ATMEL AVR microcontroller, and against the C 
reference implementation in terms of performance and size.  The assembly 
language version using precomputed tweak keys achieves a speedup of 1.7 and 
memory savings of 9 percent over the reported SCREAM implementation in 
the ATMEL AVR.  The assembly language version using tweak keys computed 
“on-the-fly” achieves a speedup of 1.6 over the ATMEL AVR version while 
reducing memory usage by 15 percent. 
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1   Introduction 
 

Authenticated ciphers combine the functionality of confidentiality and integrity into one 
algorithm.  In 2014 the Competition for Authenticated Encryption: Security, Applicability, 
and Robustness (CAESAR) called for submission of authenticated cipher candidates [1].  
CAESAR candidates are evaluated in terms of security, size, robustness, flexibility, and 
performance.  Software reference implementations written in C code are required as part of 
Rounds One and Two submissions.  Many of the Round One submissions contained the 
authors’ evaluations in both hardware and software.  Additionally, several Round One 
submissions investigated the software performance of the authors’ algorithms on various 
types of platforms, including high-end CPU and resource-constrained microcontrollers 
suitable for embedded applications.  
  

SCREAM (Side-channel resistant authenticated encryption with masking) is one of the 
29 CAESAR Round Two candidates.  As part of the submission, the SCREAM authors 
conducted both hardware and software evaluations in several different configurations, and 
listed comparisons in area and performance of known cryptographic block ciphers, such as 
AES.  As part of the software evaluation, the SCREAM authors conducted evaluations on 
high-end CPUs (Cortex A15, Atom, Core i7), and on an 8-bit microcontroller, the ATMEL 
AVR ATtiny 45 [2].  This research builds upon the SCREAM authors’ observations by 
implementing SCREAM-10 (E) (i.e., SCREAM Tweakable Block Cipher (TBC) encryption 
mode consisting of ten steps) on the Texas Instruments TI MSP430 microcontroller.  The 
MSP430 results are compared to the ATMEL AVR results in terms of size (ROM and RAM 
bytes) and performance (clock cycles per block and cycles per byte).    
 
2   MSP430 Microcontroller 
 



 

2.1 MSP430 Background 
 
The TI MSP430F5529 Launch Pad Evaluation Kit was used in this research.  This launch 
pad contains the 16-bit MSP430 CPU.  The MSP430 can be clocked at speeds up to 25 MHz 
given the proper power configurations, however, the default setting of 8 MHz 
(corresponding to PMMCoreVx = 0) was used in this research.  This configuration 
contains 128kB of Flash RAM and 8 kB of RAM.  The MSP430, like the ATMEL AVR, 
uses a RISC instruction set.  However, the MSP430 is a 16-bit processor vice the 8-bit 
ATMEL AVR.  The MSP430 can address up to 1MB of memory, which requires a 20-bit 
address space and use of the MSP430X instruction set.  However, only two MSP430X-
specific instructions are used in this research, calla and reta.  

 
The MSP430 uses twelve 16-bit general purpose registers (R4 – R15).  Although the 

MSP430 is advertised as a RISC instruction set, it utilizes seven addressing modes, 
including register, indexed, symbolic, absolute, indirect register, indirect register auto-
increment, and immediate.  The latency for operations is variable, with register operations 
taking only a single cycle, and ALU operations in absolute mode taking up to six cycles.  
However, five-cycle absolute mov.w and six-cycle absolute xor.w operations can still be 
advantageous to overall performance, since the overhead of multiple load-and-store 
operations is avoided, as well as the overhead of corresponding push and pop commands 
[3].  
 
2.2 Related Work 
 
The MSP430 has been used extensively in cryptographic research, in particular for 
comparison of light-weight cipher implementations in embedded and wireless sensor 
networks.  Law et al. compared the performances of five block ciphers in C implementations 
on the MSP430 [4].  Cazorla et al. constructed 12 lightweight and five conventional block 
cipher implementations in C using the MSP430 [5].  Wenzel-Brenner et al. compared 12 
SHA-3 candidates on seven different CPU platforms using C implementations [6].  
 

Other research has measured algorithm performance on the MSP430 using a 
combination of C and assembly language.  For example, Düll et al. investigated 
performance of Elliptic-Curve Cryptography (ECC) using base code written in C but 
optimizing high-performance field multiplication in assembly language [7].  Burlow et al. 
extensively studied various implementations of block ciphers in both C and assembly 
language, and made performance comparisons between implementations [8]. Gouvêa and 
López produced high-speed implementations of several authenticated encryption modes of 
AES (such as Counter-with-CBC MAC Mode, Galois Counter Mode, Offset Codebook 
Mode, etc.) using the MSP430 with the CC430F6137 chip.  The authors implemented these 
modes in C, with critical functions written in assembly.  The authors also compared and 
contrasted performance with and without the MSP430’s built-in AES instruction set [9].  
 
 Additionally, Schwabe, Yang, and Yang investigated pure assembly language 
implementations of SHA-3 candidates on the ARM11 processor.  They noted that assembly 
language implementations of some candidates had a speedup of 2 over C implementations, 
and emphasized the importance of assembly language in performance evaluations of 
cryptographic algorithms [10]. 
 
3   Methodology 
 
In support of this research several versions of SCREAM-10 (E) were implemented on the 
MSP430.  The first version was a C implementation ported directly from the SCREAM 
Reference C implementation available at [11], and formatted to run on the MSP430.  The 
SCREAM authors, in producing their ATMEL AVR implementation, attempted to follow 



 

insofar as possible the benchmarking methodology for hash functions outlined in [12].  This 
research is informed by the methodology used in [12], but deviates from this methodology 
as it measures block ciphers on the MSP430, not hash functions on the ATMEL AVR. 
However, the subsequent implementations of SCREAM-10 (E) in this research are written 
entirely in assembly language, and should provide a rational basis for comparison between 
ATMEL AVR and MSP430 performance. 
 

The SCREAM authors, as discussed in [2], noted the degradation in performance in their 
own implementation resulting from computation of tweak keys “on-the-fly.”  Therefore, 
one assembly language implementation uses precomputed tweak keys, and another uses 
tweak keys computed on-the-fly, thus providing a basis for comparison in terms of size and 
performance.  In contrast to [9], no comparison with the code using the AES instruction set 
is possible, since the SCREAM block cipher does not employ AES. 
  

The two assembly language versions employ registers R8 – R15 as global variables 
containing the 128-bit status word, which eliminates the need to save and restore these 
registers during function calls.  However, this reduces the amount of available registers to 
four (R4-R7), which necessitates some saving and restoring of registers, as well as use of 
RAM locations for memory-to-memory (i.e., absolute) operations.  The MSP430F5529 
contains a 32-bit by 32-bit hardware multiplier which was not used in these designs.  
Additionally, there is no multiplication operation in the instruction set.  This code uses a 
look-up table to conduct the finite possible numbers of multiplications required for 
computation of the round constants. 

 
This research is conducted in TI CCS Code Composer Studio.  Like the TI IAR 

Embedded workbench environment, CCS allows for clock cycle measurement in the 
debugging mode, which is used to measure cycle counts in this research.   
 
4   Results 
 
The results of the three implementations in comparison to those reported in [2] are shown 
in Table 1. 
 

Table 1. Comparison of SCREAM-10 (E) implementations on ATMEL AVR and MSP430 
 

 ROM Bytes RAM 
Bytes 

Cycles/ 
block 

Cycles/ 
byte 

Cycles/ 
S Box 

Cycles/ 
L Box 

Implementation Code  Tables Total  
ATMEL AVR 

C 1398 2048 3446 160 7646 478 - - 
MSP 430 

C  2104 1150 3254 254 17296 1081 131 317 
Assembly  

Precomputed 
Tweak Keys 

2184 1048 3232 46 4424 277 70 108 

Tweak Keys 
on-the-fly  

2002 1048 3096 46 4752 297 70 108 

 
As expected, the C implementation struggles against all three assembly language 

implementations in terms of cycle count, but is generally on par in terms of size.  However, 
the MSP430 assembly version using precomputed tweak keys exhibits a speedup of 1.7 over 
the ATMEL AVR version, and reduces total memory usage by 9 percent.  The MSP430 
assembly version which computes tweak keys on-the-fly is less efficient, and exhibits a 
speedup of 1.6 over the ATMEL AVR.   
 



 

There are several observations to be made.  One observation is that the MSP430 
outperforms the ATMEL AVR for this particular application using assembly language.  
This is most likely due to the 16-bit MSP430 versus the 8-bit ATMEL AVR, and possibly 
due to advantages provided by the variety of addressing modes available in the MSP430.  
 

A second observation is that, as noted by the SCREAM authors in [2], precomputation 
of tweak keys in SCREAM is more efficient than tweak keys computed “on-the-fly.”  While 
this is not universally true for all tweakable block ciphers, the structure of SCREAM lends 
itself to easy precomputation of tweak keys, since each tweak key is repeated every three 
steps.  Precomputation of tweak keys in this case is also memory-efficient, since only 32 
additional bytes are required to store all three precomputed tweak keys.  Overall, the version 
with precomputed tweak keys uses only 4 percent more memory than the version employing 
tweak keys on-the-fly, but enjoys a speedup of 1.07.  In terms of cycles, 108 cycles are 
required for tweak key precomputation, plus approximately 10 cycles per step of recurring 
overhead.  In contrast, tweak keys computed on-the-fly forego the 108 cycle initial 
computation, but require approximately 50 cycles per step.  
 

The third observation supports claims in [2] and [13] that the bitslice construction used 
in the S Box is efficient.  For example, in the relatively inefficient C implementation, each 
step consumes 1729 cycles (averaged over a 10-step implementation).  Since there are two 
rounds and thus two S Box calls per step, 262 cycles (i.e., 131 cycles per S Box call) are 
spent in the S Box out of 1729 cycles per step, or only 15 percent of total cycle count.  This 
efficiency is achieved by using only xor, and, and not operations for the bitslice S Box, 
and no look-up table accesses.  The assembly versions reduce the cycle count of each S Box 
to 70 cycles per call.  
 
5   Conclusion 
 
The SCREAM Tweakable Block Cipher encryption mode with 10 steps was successfully 
implemented on the MSP430 microcontroller using the Reference C code and two assembly 
language implementations.  The assembly language versions have a significantly reduced 
cycle count on the MSP430 in comparison to the ATMEL AVR using similar design 
methodology.  For this application, precomputation of tweak keys is faster than tweak keys 
computed on-the-fly, and uses only slightly more memory.  However, this is due to the 
simple nature of SCREAM tweak keys, and might not be applicable to Tweakable Block 
Ciphers in general.  The bitslice and LS-cipher construction used in SCREAM are efficient 
in both C and assembly languages.  
 

Future study could involve the implementation of full authenticated cipher candidates 
in MSP430 assembly language, comparison of precomputed tweak keys versus tweak keys 
computed on-the-fly in other algorithms which support such a comparison, and 
implementations of authenticated ciphers on the new TI MSP432 32-bit microcontroller.  
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