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Abstract.
We initiate the study of sanitizable signatures over encrypted data. While previous solutions for saniti-
zable signatures require the sanitizer to know, in clear, the original message-signature pair in order to
generate the new signature, we investigate the case where these data should be hidden from the sanitizer
and how this can be achieved with encryption. We call this primitive sanitizable signcryption, and argue
that there are two options concerning what the sanitizer learns about the sanitized output: in semi-
oblivious sanitizable signcryption schemes the sanitizer may get to know the sanitized message-signature
pair, while fully oblivious sanitizable signcryption schemes even protect the output data. Depending on
the application, either notion may be preferable.

We continue to show that semi-oblivious sanitizable signcryption schemes can be constructed in principle,
using the power of multi-input functional encryption. To this end, we wrap a regular sanitizable signature
scheme into a multi-input functional encryption scheme, such that functional decryption corresponds
to the sanitization process. Remarkably, the multi-input functional encryption scheme cannot easily be
transferred to a fully oblivious sanitizable signcryption version, so we give a restricted solution based
on fully homomorphic encryption for this case.
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1 Introduction
Sanitizable signatures allow a designated party, the sanitizer, to alter parts of a signed message and to
derive a signature for the new message. Here, the original signer determines the admissible modifications
during signature creation and the scheme enforces that the sanitizer cannot perform other operations to
get a valid signatures. Introduced by Ateniese et al. [ACdT05] and, in a slightly different version, by
Steinfeld et al. [SBZ02] and Miyazaki et al. [MSI+03], sanitizable signatures are related to concepts like
redactable [SBZ02, JMSW02, HHH+08] and homomorphic [JMSW02, ABC+12] signatures but differ in
an important aspect from these primitives: sanitization is linked to the secret sanitization key, whereas
redactable and homomorphic schemes support only public modifications.

1.1 Sanitization over Encrypted Data

Usually, sanitizable signatures are not concerned about the confidentiality of the message towards the
sanitizer, but only about the sanitized parts towards receivers. That is, the sanitizer becomes aware of
the original message and only after sanitization the modified parts hide the original data. In fact, many
sanitizable signature schemes actually require the sanitizer to use the original message to create the new
message and signature, e.g., [ACdT05, CLM08, BFF+09, BFLS10]. In other words, the signer needs to
trust the sanitizer not to reveal the original data, deliberately or unintentionally.

A straightforward idea to reduce the trust required from the sanitizer is to hide the original data
via encryption. The setting somehow advocates a “sign-then-encrypt” approach, instead of the common
“encrypt-then-sign” to secure communication, because, ultimately, in a sanitizable signature scheme the
receiver should retrieve the signature over the sanitized message in clear.1 Still, in order not to exclude
any options to build solutions, we more broadly speak of sanitizable signcryption schemes, allowing either
of the orders of using signatures with encryption, or even more advanced combinations.

There are two “natural” options to capture the desired formalism for sanitizable signcryption. We
motivate them through corresponding application examples. The first setting is the one in which the
sanitizer remains unaware of the original message but learns the sanitized message. We call this semi-
oblivious sanitizable signcryption and the setting is depicted in Figure 1. A typical application may
be electronic health records where only administrative data, say, about procedures, may appear in the
sanitized message, but any clinical information like diagnoses should also be omitted from the sanitizer.
Here, the sanitizer may be generally responsible for such administrative data and, therefore, has good
reason to learn the sanitized message.
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c(m,σ)

Sanitizer

?!
(m′, σ′)

?
?

?

Receiver(s)

Figure 1: Pictorial overview of semi-oblivious sanitizable signcryption: the sanitizer does not learn the original cleartexts but
sees the sanitized data after processing.

1An extra layer of complication for constructions following the encrypt-then-sign approach would also be that the signer
would need to be able to translate admissible operations on the message to admissible operations on the ciphertext of the
message.
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The other option is to use fully oblivious sanitizable signcryption schemes (or, for short, oblivious san-
itizable signcryption schemes) where the sanitizer basically only sees an encrypted version of the sanitized
data, as shown in Figure 2. Note that this case appears to be much more challenging since the sanitizer
has to perform the entire sanitization task obliviously, and that we somehow need to make sure that the
receiver can decrypt the sanitized data. A typical application example may be a secure transmission from
the signer to the receiver where the ISP, acting as a sanitizer here, may prune data if the receiver indicates
a current lack of bandwidth (e.g., transmitting only textual parts of e-mails).2

Both models inherit the basic security properties of sanitizable signatures: unforgeability, immutabil-
ity (preventing inadmissible modifications of the malicious sanitizer), privacy (hiding the sanitized parts),
unlinkability (guaranteeing that sanitized signatures of the same origin cannot be linked), and account-
ability (allowing a judge to distinguish signatures originating from the signer or sanitizer). In addition,
we introduce the notion of indistinguishability, akin to chosen-ciphertext security of encryption schemes,
which prevents any party apart from the signer, thus especially the sanitizer, to learn the original data for
semi-oblivious sanitizable signcryption schemes. For the fully oblivious sanitizable signcryption case, one
additionally requires that only the (designated) receiver learns the sanitized message-signature pair.

Signer

c(m,σ)

Sanitizer

??
c(m′,σ′)

Receiver

Figure 2: Pictorial overview of fully oblivious sanitizable signcryption: the sanitizer here does not even learn the sanitized
data after processing.

1.2 Constructing Sanitizable Signcryption Schemes

We present two constructions showing the feasibility of building sanitizable signcryption schemes. The first
one for semi-oblivious sanitizable signcryption schemes is based on a combination of a regular sanitizable
signatures with multi-input functional encryption [GGG+14]. Multi-input functional encryption (miFE)
can be viewed as a generalization of functional encryption [SW08, BSW11, O’N10] where applying a
decryption key skf to a ciphertext results in the multi-input function f of the underlying inputs. The
initial proposal of miFE contains a construction based on indistinguishability obfuscation. Later, several
other constructions based on weaker assumptions, offering various trade-offs between efficiency and security,
were proposed [BLR+14, BKS15, AJ15].

The idea is now to let the signer use the regular sanitizable encryption scheme to create the original
signature and link the admissible changes to the sanitizer’s signature key. Then, encapsulate these data
in a multi-input functional encryption scheme, where the sanitizer holds the decryption key skf for the
function f which performs exactly the sanitization process on the data, including potential checks for
admissibility of operations. The security of the miFE scheme implements the confidentiality of the original
data, and the other required security properties of sanitizable signcryption schemes are guaranteed through
the inner sanitizable scheme. Interestingly, the non-triviality requirement of miFE schemes about function

2This, sadly, was also Nokia’s intention when they decrypted, through a man-in-the-middle kind of process, HTTPS-
encrypted data run through the Xpress browsers and routed through their servers, as reported in 2013. Their goal was to
compress traffic to save on the receiver’s side. Their solution broke end-to-end security, even without letting the users be
aware of the risk. See [Mey13] for more details. Note that we do not claim that sanitizable signcryption offhandedly solves
that problem, but it is a first step towards balancing out confidentiality requirements with the ability to modify data in a
controlled way.
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inputs, called compatibility, imposes on us to start with a perfectly private sanitizable scheme, such as in
[BFLS10].

To construct fully oblivious sanitizable signcryption schemes it seems now straightforward to augment
the above solution, but this time letting the function f not only sanitize, but finally also re-encrypt
the sanitized pair under the receiver’s public key. This, however, does not work, exactly because of the
compatibility requirement, as we will discuss. We therefore settle for a weaker solution based on fully
homomorphic encryption (FHE) [Gen09], where the sanitizer operates on the encrypted data, executing
the underlying sanitizable scheme “through the encryption”, and the output remains encrypted.

The FHE solution comes with some caveats, though. Firstly, since FHE schemes do not provide full
chosen-ciphertext security we settle for a weaker, chosen-plaintext-like solution for our setting. Secondly,
we do not obtain a scheme which is publicly verifiable in the sense that anyone can check the validity of the
sanitized version. The reason is that, even if our homomorphic scheme is able to evaluate the verification
operation in principle, the result is an encryption of the decision bit. Only the designated receiver can verify
(and possibly publish later) the sanitized message-signature pair. Due to the structure of FHE schemes,
compared to the functional encryption case, the signer needs to know the intended receiver in advance. In
some cases, it may be easier then for the signer to sanitize and re-sign the message directly. However, the
example with the ISP displays a case where the receiver is known beforehand, and the decision whether
sanitization should be applied or not, can be made by the sanitizer “on the fly”. This is still possible with
our FHE-based construction. Overcoming any, or even all of these restrictions remains an open problem.

1.3 Related Work

Sanitizable signature schemes meanwhile come in various flavors in terms of multiple users, with n signers
and m sanitizers [CJL12], or of extra functionality. For instance, identity-based solutions have been
considered in [MSP10], aggregation has been added in [IKO+07], trapdoor sanitizable schemes with ad-
hoc delegation have been considered in [CLM08, YSL10], and (blockwise) detectability to identify the
source of individual message blocks has been introduced in [BPS12]. We consider here the basic case of a
single signer and sanitizer only, with the fundamental signature functionality. While the idea of sanitization
over encrypted data applies equally well to the aforementioned augmented settings, considering all these
cases is beyond the scope of our work.

The notion of signcryption has been introduced by Zheng [Zhe97]. For an introduction to such schemes,
we refer to the textbook of Dent and Zheng [DZ10]. Concerning signcryption schemes with advanced
operational features, in 2002, Malone-Lee introduced the first functional signcryption system in terms of
an identity-based signcryption scheme [ML02]. However, apart from this extension, we are unaware of any
other functional combinations, especially not of any using some form of malleable signatures.

Recently, other notions of signatures supporting different functionality such as functional signatures
[BGI14], policy-based signatures [BF14], delegatable functional signatures [BMS13], and operational sig-
natures [BDF+14] evolved. The latter work provides a general framework for signatures supporting oper-
ations which, unlike the former ones, also includes sanitizable signatures. However, they do not work over
encrypted data which is the focus of our work here.

2 Preliminaries
In this section, we introduce the basic building blocks for constructing sanitizable signcryption. These
primitives comprise (regular) sanitizable signatures as well as multi-input functional encryption and fully
homomorphic encryption.
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2.1 Notation and Syntax

Throughout this work, we denote the security parameter by λ. Algorithms are usually indicated by a sans-
serif font as KeyGen or Enc. We only consider probabilistic polynomial-time (ppt) algorithms referring
to those which run in time polynomial in the security parameter and, therefore, often omit the security
parameter from the input. We write m ∈ {0, 1}n to describe a string composed of n bits for an integer
n ∈ N. Strings of arbitrary but finite length are denoted by m ∈ {0, 1}∗. The length of a string m is
denoted by |m|. If m1 and m2 are strings, then m1‖m2 describes their concatenation.

We say that a function negl : N→ R is negligible if it vanishes faster than any inverse polynomial, i.e.,
for every polynomial p, there is a bound N ∈ N such that for all λ > N we have that negl(λ) < 1

p(λ) . We
will always use negl to describe a negligible function.

Let E be an event, then Pr [E] denotes the probability of event E happening. Conditional probabilities
are denoted by Pr [A | B] which can be read as the probability of event A occurring, given that event B
has occurred. The probability space over which the probabilities are taken is given in subscript. We write
x← S to denote that an element x is chosen uniformly at random from a set S.

Examples of sets S are the message space M, key space K, and ciphertext space C. Note that each
of these sets may depend on the security parameter or public key, however, to gain readability we have
decided not to writeMλ orMpk but remain withM, respectively. Informally, an oracle can be seen as a
black-box function which will return a specific output for given inputs. Let O be an oracle that takes two
inputs and has an internal key k. We denote that an adversary A, running solely on the security parameter
1λ, has access to this oracle by AO(·,·,k)(1λ). Oracles carrying the name of a concrete function will always
evaluate this function and not be specified separately. By definition, any oracle query execution requires
constant time.

2.2 Sanitizable Signatures

Sanitizable signatures are malleable digital signatures which allow a signer to designate a third party,
the so-called sanitizer, to alter the original message at some later point and still derive a valid signature
verifiable under the signer’s public key. During the signing process, the signer determines which parts of
the message are modifiable by specifying a description adm ∈ {0, 1}∗ of admissible parts for the message.
In the simplest case, messages are sequences of blocks m = m1‖ . . . ‖m` with ` ∈ N, and the description
adm consists of the indices of admissible message blocks which the sanitizer can change.

The sanitization is performed by an additional algorithm, inherent to sanitizable signatures, called
Sanit. The sanitizer derives a new valid signature, given the sanitizer’s secret key sksan. It alters the
message according to a modification description mod ∈ {0, 1}∗ (if permitted by adm), which in the
blockwise example above may, for example, be seen as a list of block indices and modified block data, i.e.,
(j,m′j). In the context of blockwise sanitization, we say that a modification mod is admissible according
to adm, if each block index of every pair in mod also appears in adm. To enforce compatibility of
the desired modifications with adm in general, we will sometimes misuse notation by viewing mod as a
function applying the modifications to the given message, i.e., mod(m) 7→ m′ for messages m,m′ from the
respective message spaceM, and adm as a predicate indicating whether a modification is admissible or
not, i.e., adm(mod) ∈ {0, 1}.3

Apart from the common algorithms for key generation for signer KeyGensig and sanitizer KeyGensan,
signing messages Sign, verifying signatures Verify, and the sanitization functionality Sanit, a sanitizable
signature scheme comes with several other algorithms to specify accountability for a message-signature
pair, identifying either the signer or the sanitizer as the source of the pair. In the original definition given

3Note that we assume the sanitzer’s algorithm Sanit always performs a sanity check on the given modification, i.e., whether
adm(mod) = 1 and that this check can be carried out efficiently in the security parameter.
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by [ACdT05], a Proof and Judge algorithm perform this task. The idea is that a signer, given his secret key,
can create a proof of origin which can be verified by Judge. However, running Proof required knowledge
of the signer’s secret key and, thus, his cooperation. To allow any party to determine a signature’s origin,
Brzuska et al. [BPS12] introduced (non-interactive) public accountability. They discovered that public
accountability and transparency, the later requiring that it is infeasible to determine if a message was
sanitized or not, are mutually exclusive. Since for example in our semi-oblivious sanitizable signcryption
case the encrypted signatures of the signer are easy to distinguish from the signature in clear produced by
the sanitizer, as long as both parties behave honestly, determining the origin is straightforward which is
why transparency cannot be achieved. This, on the other hand, allows us to revert to public accountability
and makes the Proof algorithm obsolete which is achievable, as long as the underlying sanitizable signature
scheme is publicly accountable, too. We nonetheless keep it here for sake of generality, but let it output
⊥ in our concrete solutions.

Definition 2.1 A sanitizable signature scheme is a tuple of ppt algorithms (KeyGensig, KeyGensan, Sign,
Sanit, Verify, Proof, Judge) where

Key Generation. The two key generation algorithms KeyGensig and KeyGensan each take a security
parameter 1λ as input and output a pair of public key pk and secret key sk, i.e., (pksig, sksig) ←
KeyGensig(1λ) and (pksan, sksan)← KeyGensan(1λ).

Signing. The Sign algorithm takes as input a message m ∈ M, a signer’s secret key sksig, a
sanitizer’s public key pksan, as well as a description adm specifying admissible modifications of the
message. It outputs a message-signature pair (m,σ) where we assume that adm is recoverable from
any valid pair given the corresponding sanitizer’s secret key sksan (or ⊥ in case of an error), i.e.,
(m,σ)← Sign(m, sksig, pksan,adm).

Sanitization. The Sanit algorithm takes as input a message-signature pair (m,σ), a signer’s
public key pksig, a sanitizer’s secret key sksan, as well as a description mod of intended modi-
fications. The algorithm first checks whether σ is a valid signature for m, then, retrieves adm
from the given message-signature pair, checks whether mod is admissible, and, if so, modifies
the message accordingly to m′. Finally, it outputs a derived message-signature pair (m′, σ′), i.e.,
(m′, σ′)← Sanit((m,σ), pksig, sksan,mod).

Verification. The Verify algorithm takes as input a message-signature pair (m,σ) as well as both a
signer’s and a sanitizer’s public key pksig and pksan. It outputs a bit b ∈ {0, 1} indicating whether the
signature is valid (in case b = 1) or not (if b = 0). We require Verify to be deterministic and, hence,
write Verify((m,σ), pksig, pksan) = b.

Proof. The Proof algorithm takes as input a signer’s secret key sksig, a message-signature pair
(m,σ), a set of polynomially many message-signature pairs {(mi, σi) | i ∈ {1, . . . , t}}, as well as a
sanitizer’s public key pksan. It outputs a string π ∈ {0, 1}∗ ∪ {⊥} called proof which might be empty
(if π =⊥), i.e., π ← Proof(sksig, (m,σ), {(mi, σi) | i ∈ {1, . . . , t}}, pksan).

Judging. The Judge algorithm takes as input valid a message-signature pair (m,σ), a signer’s and
sanitizer’s public key pksig and pksan, as well as a proof π ∈ {0, 1}∗ ∪ {⊥}. It outputs a decision
b ∈ {0, 1} indicating whether the signer (if b = 1) or sanitizer (if b = 0) generated the given message-
signature pair (or ⊥ in case of an error). We require Judge to be deterministic and, hence, write
Judge((m,σ), pksig, pksan, π) = b.

We require the scheme to achieve the following correctness properties:
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Perfect signer correctness. For all security parameters λ ∈ N, all signer’s key pairs (pksig, sksig) ←
KeyGensig(1λ), all sanitizer’s key pairs (pksan, sksan) ← KeyGensan(1λ), all messages m ∈ M, all descrip-
tions adm ∈ {0, 1}∗, and all signatures σ ← Sign(m, sksig, pksan,adm) we have

Verify((m,σ), pksig, pksan) = 1.

Perfect sanitizer correctness. For all security parameters λ ∈ N, all signer’s key pairs (pksig, sksig)←
KeyGensig(1λ), all sanitizer’s key pairs (pksan, sksan)← KeyGensan(1λ), all messages m ∈M, all signatures
σ such that Verify((m,σ), pksig, pksan) = 1, all descriptions mod ∈ {0, 1}∗ such that mod matches the
adm recoverable from (m,σ), i.e., adm(mod) = 1, and all derived message-signature pairs (m′, σ′) ←
Sanit((m,σ), pksig, sksan,mod) such that mod(m) = m′ we have

Verify((m′, σ′), pksig, pksan) = 1.

Perfect proof correctness. For all security parameters λ ∈ N, all signer’s key pairs (pksig, sksig) ←
KeyGensig(1λ), all sanitizer’s key pairs (pksan, sksan) ← KeyGensan(1λ), all messages m ∈ M, all de-
scriptions adm ∈ {0, 1}∗, all signatures σ ← Sign(m, sksig, pksan,adm), all descriptions mod ∈ {0, 1}∗
which match adm, i.e., with adm(mod) = 1, all derived signatures (m′, σ′) ← Sanit((m,σ), pksig, sksan,
mod) such that Verify((m′, σ′), pksig, pksan) = 1 and mod(m) = m′, any (polynomially many) messages
m1, . . . ,mt ∈ M with descriptions adm1, . . . ,admt ∈ {0, 1}∗ and signatures σi ← Sign(mi, sksig, pksan,
admi) such that (m,σ) = (mi, σi) holds for some index i ∈ {1, . . . , t}, and all proofs π ← Proof(sksig,
(m′, σ′), {(mi, σi) | i ∈ {1, . . . , t}}, pksan) we have

Pr
[
Judge((m′, σ′), pksig, pksan, π) = 1

]
= 0 .

We say that the scheme is length-invariant if the size of (sanitized and original) signatures only depends
on the security parameter.

Ateniese et al. [ACdT05] described several desirable security properties which where later formalized
by Brzuska et al. [BFF+09, BFLS10]. The basic set of properties consists of:

Unforgeability: It should be infeasible to forge a new message-signature pair for outsiders.
Immutability: It should be infeasible for a sanitizer to modify inadmissible parts of the message.
Privcacy: It should be infeasible to learn the original content of modified message parts.
Unlinkability: It should be infeasible to link sanitized messages originating from the same source.
Transparency: It should be infeasible to determine whether a message was sanitized or not.
Accountability: It should be infeasible to blame the opposite party for a signature one has created.

Some of them come in strong and weak versions, depending on the oracles available to the adversary.
Since we give the formal definitions for sanitizable signcryption schemes in Appendix A, and the ones for
regular sanitizable signatures are easy to derive, we omit definitions of the above properties here.

2.3 Multi-input Functional Encryption

In [GGG+14], Goldwasser et al. introduced the notion of multi-input functional encryption, which extends
the original functional encryption scheme to support multi-variate functions, i.e., supporting functions
which take more than one input.
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Definition 2.2 Let F be a family of n-ary functions. A multi-input functional encryption scheme for F
is a tuple of four ppt algorithms (Setup,Enc,KeyGen,Dec) where

Setup. The Setup algorithm takes an integer n ∈ N, representing the function’s arity, as input and
outputs a master secret key Msk as well as a sequence of n encryption keys EK = (EK1, . . . ,EKn),
i.e., (Msk,EK)← Setup(n).

Encryption. The Enc algorithm takes as input an encryption key EK ∈ EK and a message m ∈M.
It outputs a ciphertext c ∈ C, i.e., c← Enc(EK,m).

Key Generation. The KeyGen algorithm takes the master secret key Msk and an n-ary function
f ∈ F as input. It outputs a secret key skf for the function f , i.e., skf ← KeyGen(Msk, f).

Decryption. The Dec algorithm takes as input a secret key skf and n ciphertexts c1, . . . , cn such
that ci was encrypted using the i-th encryption key EKi for every i ∈ {1, . . . , n}. Finally, it outputs a
string z (or ⊥ in case of an error). We require Dec to be deterministic, i.e., Dec(skf , c1, . . . , cn) = z.

We require the scheme to have perfect correctness, i.e., for all n ∈ N, all f ∈ F , all (Msk, (EK1, . . . ,EKn))←
Setup(n), allm1, . . . ,mn ∈M, all c1 ← Enc(EK1,m1), . . . , cn ← Enc(EKn,mn), and all skf ← KeyGen(Msk,
f) we have

Dec(skf , c1, . . . , cn) = f(m1, . . . ,mn) .

Note that, unlike [GGG+14], we have decided to assume perfect correctness, whereas Goldwasser et
al. allow for a negligible error. The reason is to simplify later proofs. However, all proofs presented equally
hold given schemes with negligible error probability with slight but negligible loss in the success probability
of the adversary.

Naturally, the security notions for general public-key encryption schemes can be adopted to fit the
advanced primitive of functional encryption. Goldwasser et al. formalize both indistinguishability-based
and simulation-based security notions for multi-input functional encryption schemes. Since the notions we
will be using are solely of the indistinguishability-based flavor, we limit ourselves to these notions and refer
to [GGG+14] for a detailed analysis on further security notions as well as their relations and feasibility.

The definition of indistinguishability-based security for multi-input functional encryption Goldwasser
et al. give only allows for non-adaptive queries to the challenger, i.e., the attacker needs to specify all
challenge queries before seeing any of the encrypted values. A more general definition, which we needed
for our proofs later, is to allow for adaptive queries. Therefore, we state an adaptive version in the following.
Note that it can be shown by a simple hybrid argument, that the two notions are equivalent.

Goldwasser et al. show that the notion of full indistinguishability-based security —given all encryption
keys as well as polynomial challenges and decryption keys— is achievable under the assumption of sub-
exponential secure indistinguishability obfuscators for general circuits, for which a candidate construction
was given in [GGH+13], and sub-exponentially secure one-way functions. This matches our requirements.
For more details on the achievablity of this notion, we refer to [GGG+14].

Definition 2.3 Let FE = (Setup, Enc, KeyGen, Dec) be a multi-input functional encryption scheme for
the n-ary function family F . We say that FE is miIND-secure if for all ppt adversaries A there exists a
negligible function negl such that

Pr
[
ExpmiIND

A,FE (λ) = 1
]
≤ 1

2 + negl(λ),

where the probability is taken over the random coins of A and the miIND experiment which is defined as
follows:
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ExpmiIND
A,FE (λ)

I ← A(1λ);
(Msk,EK)← Setup(n);
b← {0, 1};
b′ ← AKeyGen(Msk,·),LoREnc(EK,·,·,b)(EKI);
if (b = b′ ∧ “compatibilities okay”) then

return 1.
else return 0.

LoREnc(EK,m0,m1, b)

for i = 1, . . . , n do
if |m0,i| 6= |m1,i| then

return ⊥ .
else

EKi ← EK;
cb,i ← Enc(EKi,mb,i);

return (cb,1, . . . , cb,n).

where EKI = (EKi)i∈I and LoREnc takes two messages of the form m0 = (m0,1, . . . ,m0,n) and m1 =
(m1,1, . . . ,m1,n). The requirement “compatibilities okay” demands the following:

Function compatibility, requiring that any two message vectors m0 and m1 queried to the LoREnc
oracle cannot be split by any function f for which A has queried its KeyGen oracle. Here, splitting
means that for any possible input (x1, . . . , xn) for f , it does not matter whether elements of m0,i
or m1,i are used as xi in any subset of the positions specified by the set I; the function values still
concur on all these inputs. As consequence, only challenge queries can be asked which cannot be split
by any of the currently held decryption keys.

Message compatibility, requiring that any function f queried to the KeyGen oracle cannot split
any of the challenge message vectors queried.

For a formal definition of function and message compatibility, we refer to [GGG+14].
Even though the above definition is stated in great generality, we will only consider the case when

all encryption keys are handed to the adversary. This is also referred to as the “public-key setting”.
Lastly, we want to remark that there is a second important security property for functional encryption
schemes, namely function privacy [SSW09, BRS13, AAB+13, BS15]. Intuitively, this notion requires that
a decryption key skf does not leak any information about the function f . Since we will not need to keep
the decryption key functions secret for our construction, we will not elaborate further on this property.

2.4 Fully Homomorphic Encryption

A fully homomorphic encryption scheme can be seen as a public-key encryption scheme which permits any
kind of efficient (arithmetical) operation on encrypted data by offering an additional evaluation algorithm
which, unlike functional encryption, yields encrypted results after evaluation.

Definition 2.4 A fully homomorphic encryption scheme is a tuple of four ppt algorithms (KeyGen, Enc,
Dec, Eval) where

Key Generation. The KeyGen algorithm takes a security parameter 1λ as input and outputs a pair
of public key pk and secret key sk, i.e., (pk, sk)← KeyGen(1λ).

Encryption. The Enc algorithm takes as input a public key pk and a message m ∈ M. It outputs
a ciphertext c ∈ C, i.e., c← Enc(pk,m).

Decryption. The Dec algorithm takes as input a secret key sk and a ciphertext c ∈ C. It outputs a
message m ∈ M (or ⊥ in case of an error). We require Dec to be deterministic and, hence, write
Dec(sk, c) = m.

Evaluate. The Eval algorithm takes as input a public key pk, a circuit Cn for n inputs, and n
ciphertexts c1, . . . , cn. It outputs a ciphertext c′ ← Eval(pk, Cn, c1, . . . , cn).
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We require the scheme to achieve perfect correctness, i.e., for all n ∈ N, all circuits Cn, all λ ∈ N,
all (pk, sk) ← KeyGen(1λ), all m1, . . . ,mn ∈ M, all c1 ← Enc(pk,m1), . . . , cn ← Enc(pk,mn), and all
c′ ← Eval(pk, Cn, c1, . . . , cn) we have

Dec(sk, c′) = Cn(m1, . . . ,mn).

To exclude the trivial scheme where the Eval algorithm just strings the description of the circuit
together with the ciphertext and leaves the decryption algorithm to manage the entire evaluation itself,
we require fully homomorphic encryption schemes to be compactly evaluable and circuit private [Gen09].
The security notions for fully homomorphic encryption schemes can be similarly defined as for regular
encryption schemes, and likewise, we refer to Gentry for a formal treatment thereof.

3 Semi-Oblivious Sanitizable Signcryption
As mentioned in the introduction, there are two scenarios for sanitizable signcryption, depending on
whether the sanitizer may see the sanitized message or not. In this section, we address the first case,
namely when sanitization and decryption are interwoven.

3.1 The Primitive

Here, we define the new primitive of semi-oblivious sanitizable signcryption. The scenario we have in mind
is the one depicted in Figure 1 and consists of two stages. In the first stage, with data flow from signer
to sanitizer, a message is signed and the pair is encrypted to ensure integrity, authenticity, as well as
confidentiality at this point. In the second stage, the sanitizer modifies the encrypted message-signature
pair “through the encryption” and, simultaneously, decrypts the resulting data to get a pair in clear. This
derived pair can now be forwarded to any designated receivers.

As for general signcryption schemes, we are equipped with a setup algorithm and two key generation
algorithms for sender (in our case, the signer) and receiver (here, the sanitizer). The SignEnc algorithm
takes care of the first phase of our scenario by combining the generation of a signature with an encryption
of the tuple. Only after this has been performed, the SanDec algorithm will be able to handle the second
phase and both sanitize and then decrypt the message-signature pair. Note that this initially limits the
sanitization process to encrypted tuple only. Nevertheless, in our generic construction, using the publicly
available encryption keys of the functional encryption scheme, the sanitizer can re-encrypt a sanitized
message-signature pair and then repeat the sanitization process to achieve multiple sanitization, if required,
but it is not a property native to the primitive itself.

Next, we discuss the additional algorithms —Verify, Proof, and Judge— which stem from the ac-
countability requirement of sanitizable schemes and augment traditional signcryption schemes. The main
difference to the case of regular sanitizable schemes is that these algorithms need to be able to process en-
crypted data, too. We usually write m̃σ indicating either an encrypted or unencrypted message-signature
pair (m,σ) (and, accordingly, m̃∗σ∗ if we have an associated pair (m∗, σ∗)). Note that, for our construction,
we achieve publicly evaluable versions for Verify and Judge, and since our Proof algorithm always outputs
⊥, we also obtain a trivial publicly evaluable algorithm Proof, too.

Note that working over encrypted data causes some interesting practical challenge. Usually, the de-
scription adm of the set of admissible operations on a message-signature pair can be read off the signature,
given the sanitizer’s secret key. Here, the signature is now encrypted as it may otherwise leak information
about the message. This does not directly cause any problem since the adversary usually decides which
modification mod should be performed, and the validity is checked still implicitly by the sanitation algo-
rithm. In practice, usability might be more difficult since the sanitizer needs to be told which modifications
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should be performed. If adm should be available to the sanitizer, one can attach adm in clear to the
ciphertext, but should be aware that this information is not authenticated then (unless one adds another
regular signature on top).

Definition 3.1 A semi-oblivious sanitizable signcryption scheme is a tuple of ppt algorithms sOSSC =
(Setup, KeyGensig, KeyGensan, SignEnc, SanDec, Verify, Proof, Judge) such that

Setup. Upon input of the security parameter 1λ, the algorithm outputs a master secret key Msk as
well as public parameters pparam, i.e., (Msk, pparam)← Setup(1λ).

Key Generation (Signer). The algorithm KeyGensig takes as input the master secret key Msk and
outputs a signer’s public and secret key, i.e., (pksig, sksig)← KeyGensig(Msk).

Key Generation (Sanitizer). The algorithm KeyGensan takes as input the master secret key Msk
and outputs a sanitizer’s public and secret key, i.e., (pksan, sksan)← KeyGensan(Msk).

SignEnc. Upon input of a message m, a description adm of the admissible parts, a signer’s se-
cret key sksig, a sanitizer’s public key pksan, as well as public parameters pparam, the algorithm
SignEnc outputs an encrypted message-signature pair (or ⊥ in case of an error), i.e., c(m,σ) ←
SignEnc(m,adm, sksig, pksan, pparam).

SanDec. Upon input of an encrypted message-signature pair c(m,σ), a description of desired modifi-
cations mod, a sanitizer’s secret key sksan, a signer’s public key pksig, and public parameters pparam,
the algorithm SanDec outputs a decrypted and sanitized version of a message-signature pair (or ⊥ in
case of an error), i.e., (m′, σ′)← SanDec(c(m,σ),mod, sksan, pksig, pparam).

Verify. Upon input of a message-signature pair m̃σ, either in clear (m,σ) or encrypted c(m,σ), public
keys of both signer pksig and sanitizer pksan, as well as public parameters pparam, the algorithm Verify
returns a bit b indicating whether the (encrypted) message-signature pair is valid or not. We require
Verify to be deterministic and, hence, write Verify(m̃σ, pksig, pksan, pparam) = b.

Proof. Upon input of a signer’s secret key sksig, a possibly encrypted message-signature pair m̃σ,
a possibly empty list of (possibly encrypted) message-signature pairs {m̃1σ1, . . . , m̃tσt}, a sanitizer’s
public key pksan, and public parameters pparam, the algorithm Proof outputs a string π ∈ {0, 1}∗∪{⊥},
i.e., π ← Proof(sksig, m̃σ, {m̃1σ1, . . . , m̃tσt}, pksan, pparam).

Judge. Upon input of a possibly encrypted message-signature pair m̃σ, the public keys of both signer
pksig and sanitizer pksan, a string π ∈ {0, 1}∗∪{⊥}, as well as public parameters pparam, the algorithm
Judge outputs a bit d indicating which party has generated the given pair (or ⊥ in case of an error).
Here, d = 1 refers to the signer and d = 0 to the sanitizer. We require Judge to be deterministic and,
hence, write Judge(m̃σ, pksig, pksan, π, pparam) = d.

We expect a semi-oblivious sanitizable signcryption scheme to have the following correctness properties:

Perfect signer correctness. For all security parameters λ ∈ N, all system instantiations (Msk, pparam)
← Setup(1λ), all signer’s key pairs (pksig, sksig)← KeyGensig(Msk), all sanitizer’s key pairs (pksan, sksan)←
KeyGensan(Msk), all messages m ∈M, all descriptions adm ∈ {0, 1}∗, and all encrypted signatures (c(m,σ),
adm)← SignEnc(m,adm, sksig, pksan, pparam) we have

Verify(c(m,σ), pksig, pksan, pparam) = 1 .
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Perfect sanitizer correctness. For all security parameters λ ∈ N, all system instantiations (Msk,
pparam) ← Setup(1λ), all signer’s key pairs (pksig, sksig) ← KeyGensig(Msk), all sanitizer’s key pairs
(pksan, sksan) ← KeyGensan(Msk), all messages m ∈ M, all descriptions adm ∈ {0, 1}∗, all encrypted
signatures (c(m,σ),adm) ← SignEnc(m,adm, sksig, pksan, pparam), all descriptions mod ∈ {0, 1}∗ which
match adm, and all derived message-signature pairs (m′, σ′) ← SanDec(c(m,σ),mod, sksan, pksig, pparam)
with mod(m) = m′ we have

Verify((m′, σ′), pksig, pksan, pparam) = 1 .

Perfect proof correctness. For all security parameters λ ∈ N, all system instantiations (Msk, pparam)
← Setup(1λ), all signer’s key pairs (pksig, sksig)← KeyGensig(Msk), all sanitizer’s key pairs (pksan, sksan)←
KeyGensan(Msk), all messages m ∈ M, all descriptions adm ∈ {0, 1}∗, all encrypted signatures (c(m,σ),
adm) ← SignEnc(m,adm, sksig, pksan, pparam), all descriptions mod ∈ {0, 1}∗ which match adm, all
derived signatures (m′, σ′)← SanDec(c(m,σ),mod, sksan, pksig, pparam) such that Verify((m′, σ′), pksig, pksan,
pparam) = 1 and mod(m) = m′, any (polynomially many) valid, possibly encrypted, message-signature
pairs m̃1σ1, . . . , m̃tσt such that c(m,σ) = m̃iσi holds for some i ∈ {1, . . . , t}, and all proofs π ← Proof(sksig,
(m′, σ′), {m̃1σ1, . . . , m̃tσt}, pksan, pparam) we have

Judge((m′, σ′), pksig, pksan, π, pparam) = 0 .

3.2 The Construction

The construction we present in the following is a generic composition of a sanitizable signature scheme with
a multi-input functional encryption scheme. Roughly, the idea is to use the functional encryption scheme
to perform operations on the ciphertexts. More concretely, the signer signs a message m (together with
the description adm of admissible operations) to get a signature σ, and then encrypts the data under the
functional encryption scheme. Here, we assume as in Definition 2.1 that the underyling sanitizable scheme
is length-invariant, i.e., all signatures, including the descriptions of adm, are of equal length, depending
only on the security parameter, such that the encryption of the signatures does not leak information
about the message through the ciphertext length. The sanitizer is given a secret decryption key skSanit
corresponding to the function Sanit which applies the modifications mod to get the message m′ and derive
a new signature σ′ under the underlying sanitizable scheme.

Note that we construct decryption keys for probabilistic functions. However, current (multi-input)
functional encryption constructions, usually based upon indistinguishability obfuscation, only support de-
terministic functions. Nevertheless, we can “derandomize” the functions using the inputs to generate
randomness, which is done be passing these through a pseudorandom function and utilizing the pseu-
dorandom output as random coins for the probabilistic function in question. See [CLTV14] for further
details. An alternative is to use sanitizable signature schemes which have deterministic algorithms, more
precisely such that Verify, Judge, and Sanit are deterministic. This might, however, impact the choice of
candidates or which security property are achievable for this primitive.

Construction 3.2 Assume a sanitizable signature scheme S = (S.KeyGensig, S.KeyGensan, S.Sign, S.Sanit,
S.Verify, S.Proof, S.Judge) as well as a multi-input functional encryption scheme FE = (FE.Setup, FE.Enc,
FE.KeyGen, FE.Dec). Then we define sOSSC = (Setup, KeyGensig, KeyGensan, SignEnc, SanDec, Verify,
Proof, Judge) as follows.

Setup. Upon input of the security parameter 1λ, the algorithm initializes the functional encryption
scheme and computes decryption keys skVf and skJ for the publicly evaluable functions S.Verify and
S.Judge, respectively. Finally, it outputs a master secret key Msk as well as public parameters pparam,
consisting of the encryption keys EK = (EK1, . . . ,EK4) as well as the computed decryption keys.
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Setup(1λ) :

(Msk,EK)← FE.Setup(4);
skVf ← FE.KeyGen(Msk, S.Verify(·, ·, ·));
skJ ← FE.KeyGen(Msk, S.Judge(·, ·, ·, ·));
pparam← (EK, skVf , skJ);
return (Msk, pparam).

KeyGen (Signer). The algorithm KeyGensig takes as input the master secret key Msk, generates
a signer’s key pair for S, as well as a universal decryption key for the identity function ID(·) and
outputs these.

KeyGensig(Msk) :

(sk′sig, pksig)← S.KeyGensig(1λ);
skID ← FE.KeyGen(Msk, ID(·));
sksig ← (sk′sig, skID);
return (pksig, sksig).

KeyGen (Sanitizer). The algorithm KeyGensan takes as input the master secret key Msk, generates
a sanitizer’s key pair for S, as well as decryption key skSanit for the function S.Sanit, with the
sanitizer’s secret key hard-coded inside, and outputs these.

KeyGensan(Msk) :

(sk′san, pksan)← S.KeyGensan(1λ);
skSanit ← FE.KeyGen(Msk, S.Sanit(·, ·, sk′san, ·));
sksan ← skSanit;
return (pksan, sksan).

SignEnc. Upon input of a message m, a description adm of admissible parts, a signer’s secret key
sksig, a sanitizer’s public key pksan, as well as public parameters pparam, the algorithm SignEnc uses
the sanitizable signature scheme to compute a signature σ on m, then encrypts both message and
signature to c(m,σ) using FE under EK1 and returns this value (or ⊥ in case of an error).

SignEnc(m,adm, sksig, pksan, pparam) :

sk′sig ← sksig;

(m,σ)← S.Sign(m, sk′sig, pksan,adm);

EK1 ← pparam;

c(m,σ) ← FE.Enc(EK1, (m,σ));

return c(m,σ).

SanDec. Upon input of an encrypted message-signature pair c(m,σ), a description of desired modifi-
cations mod, a sanitizer’s secret key sksan, a signer’s public key pksig, and public parameters pparam,
the algorithm SanDec uses FE.Dec with skSanit on the tuple as well as encryptions under EK2 and
EK3 of the remaining inputs pksig and mod. It finally returns the sanitized pair (m′, σ′) output by
the decryption procedure (or ⊥ in case of an error).
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SanDec(c(m,σ),mod, sksan, pksig, pparam) :

skSanit ← sksan;

(EK2,EK3)← pparam;

cpk ← FE.Enc(EK2, pksig);

cmod ← FE.Enc(EK3,mod);

(m′, σ′)← FE.Dec(skSanit, c(m,σ), cpk, cmod);

return (m′, σ′).

Verify. Upon input of a (possibly encrypted) message-signature pair m̃σ, public keys of both signer
pksig and sanitizer pksan, as well as public parameters pparam, for an unencrypted message-signature
pair the algorithm Verify calls upon S.Verify to output a bit b indicating if the pair is valid or not.4
For an encrypted pair, it calls FE.Dec with skVf to output its decision (or ⊥ in case of another error).

Verify(m̃σ, pksig, pksan, pparam) :

if S.Verify(m̃σ, pksig, pksan) == 1 then
return 1.

else
(skVf ,EK2,EK3)← pparam;
cpksig ← FE.Enc(EK2, pksig);
cpksan ← FE.Enc(EK3, pksan);
if FE.Dec(skVf , m̃σ, cpksig , cpksan) == 1 then

return 1.
else return 0.

Proof. The Proof algorithm always returns an empty proof ⊥.

Proof(sksig, m̃σ, {m̃1σ1, . . . , m̃tσt}, pksan, pparam) :

return ⊥ .

Judge. Upon input of a (possibly encrypted) message-signature pair m̃σ, public keys of both signer
pksig and sanitizer pksan, a string π ∈ {0, 1}∗ ∪ {⊥}, as well as public parameters pparam, the
algorithm Judge calls upon S.Judge, resp. FE.Dec with skJ in case the pair is encrypted, to output a
bit d indicating which party has generated the given pair (or ⊥ in case of an error).

4For simplicity and correctness, we assume that message space and ciphertext space are disjoint and S.Verify will always
return ⊥ upon an encrypted tuple. This is easily achievable, for example, by prepending 1 to any ciphertext and 0 for each
plaintext.
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Judge(m̃σ, pksig, pksan, π, pparam) :

if S.Judge(m̃σ, pksig, pksan, π) == 0 then
return 0.

else if S.Judge(m̃σ, pksig, pksan, π) == 1 then
return 1.

else
(skJ,EK2,EK3,EK4)← pparam;
cpksig ← FE.Enc(EK2, pksig);
cpksan ← FE.Enc(EK3, pksan);
cπ ← FE.Enc(EK4, π);
if FE.Dec(skJ, m̃σ, cpksig , cpksan , cπ) == 1 then

return 1.
else if FE.Dec(skJ, m̃σ, cpksig , cpksan , cπ) == 0 then

return 0.
else return ⊥ .

It can be easily formally verified that sOSSC is indeed a semi-oblivious sanitizable signcryption scheme.
A couple of remarks are in place. Firstly, the definition of KeyGensig may at first seem unusual since

a universal decryption key skID is part of the output. The reason is that we want the signing party to be
able to decrypt any signcrypted messages at a later point in time. For example, if the scheme is being
used for storing files on a server, the file owners might want to perform modifications or review these files,
especially the original versions before sanitization.

A second point is that we hard-coded sk′san directly into the Sanit circuit when generating the decryption
key skSanit. This yields a unique decryption key per sanitizer. It would have been possible to generate
a more general decryption key skSanit in the Setup procedure and to slim the KeyGensan algorithm down
to the one of the underlying sanitizable signature scheme. Note that this does not necessarily hide sksan
from the sanitizer (which is not necessary, but would be possible if the functional encryption scheme was
function private). Hard-coding the key into the circuit limits adversaries in testing different keys for the
Sanit circuit.

Recall that as mentioned earlier we wish to achieve non-interactive accountability [BPS12] and therefore
manage with a Proof algorithm which solely returns ⊥.

Finally, a small remark about the amount of distinct decryption keys used in the scheme. In a multi-
input functional encryption scheme, we have distinct encryption keys for each position of the input, i.e., we
use EK1 for encrypting a value which is passed as first input, EK2 for the second input, and so on. In our
construction, we utilize circuits with at most four distinct inputs. Therefore, FE.Setup is initialized with
parameter 4. Occasionally, however, we require circuits with less inputs. This problem is not specifically
addressed in [GGG+14]. One way to avoid this formality, and this is also implicitly assumed here, is to
“stretch” every circuit to have four input wires in a way that it will ignore all which are not needed when
evaluated. An alternative would be to instantiate different encryption key lists.

3.3 Security Properties

Since both sanitizable signatures and sanitizable signcryption share motivation, goal, and functionality,
we can transfer (almost) all properties to our new primitive as well. Only minor modifications due to the
slightly different structure are necessary. Since the definitions match the previous ones in the literature

14



closely, we give the concrete definitions for (strong) unforgeability, immutability, (strong) privacy, strength-
ened unlinkability, and accountability in Appendix A. Note that transparency is not listed here since we
can argue that it is not achievable for any semi-oblivious sanitizable signcryption.

Furthermore, as we extend sanitizable signatures to signcryption schemes, we need to consider further
confidentiality properties. Analogously to any encryption scheme, this boils down to derive a suitable
notion of indistinguishability. Since the main goal of a semi-oblivious sanitizable signcryption scheme is to
protect the classified data of the original document, both from the sanitizing party as well as from everyone
not holding a valid decryption key and we gain a stronger version when defining indistinguishability against
an adversary holding the sanitizer’s key, we introduce the notion of IND-CCAsan and remark that it implies
security against the case that the adversary only has access to a decryption oracle SanDec compliant with
the notion of IND-CCA security.

Since the malicious sanitizer can, with the help of its sanitization key, trivially compute sanitized
cleartext versions of the challenge ciphertexts, we require that the message pairs forwarded to the left-or-
right oracle only yield identical modifications on all admissible mod to prevent trivial leakage. The same
would be required if an outsider would have (only) access to a SanDec oracle.

Definition 3.3 Let sOSSC = (Setup, KeyGensig, KeyGensan, SignEnc, SanDec, Verify, Proof, Judge) be a
semi-oblivious sanitizable signcryption scheme. We say that sOSSC is IND-CCAsan-secure if for all ppt
adversaries A there exists a negligible function negl such that

Pr
[
ExpIND-CCAsan

A,sOSSC (λ) = 1
]
≤ 1

2 + negl(λ),

where the probability is taken over the random coins of the IND-CCAsan experiment:

ExpIND-CCAsan
A,sOSSC (λ)

(Msk, pparam)← Setup(1λ);
(pksig, sksig)← KeyGensig(Msk);
(pksan, sksan)← KeyGensan(Msk);
b← {0, 1};
b′ ← ASignEnc(·,·,sksig,·,pparam),LoREncSign(·,·,sksig,pksan,b,pparam)(pksig, sksan, pparam);
if b = b′ then

return 1.
else return 0.

LoREncSign((m0,m1),adm, sksig, pksan, b, pparam)

if |m0| 6= |m1| then

return ⊥ .

else

c(mb,σb) ← SignEnc(mb,adm, sksig,pksan, pparam);

return c(mb,σb).

We require that for any ((m0,m1),adm) queried to the LoREncSign oracle, we have that for all admissible
modifications mod with adm(mod) = 1 it holds that mod(m0) = mod(m1).
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3.4 Security of Our Construction

Our generic construction naturally inherits most security properties from its underlying building blocks.
This is summarized in the following proposition. Since the formal proof is a collection of standard reduction
and its formal exhibition is rather lengthy and tedious, we will only provide some intuition after the formal
statement and leave the full proof to be found in Appendix B.

We remark, however, that we need a strong requirement on the privacy of the underlying sanitizable
schemes. That is, since security of the multi-input functional encryption scheme only holds as long as the
available functions agree on the (partially replaced) answers of the challenge oracle (“compatibility”), we
require that the output of the LoREncSign oracle in the IND-CCAsan experiment does not split under the
sanitizer’s functionality. Since the output corresponds to sanitized pairs (m′, σ′) of either the left or right
input, we need that the pairs agree in both cases. This is true by construction for m′, because A can
only make queries which yield the same modified message. It then follows for the signature part as well, if
we presume perfect privacy of the sanitizable scheme, saying that sanitized signatures are independently
distributed from the original message. An example of such a sanitizable scheme is the one by Brzuska et
al. [BFLS10] based on group signatures, where the sanitizer signs the modified part with a fresh group
signature.

Theorem 3.4 Let FE be a miIND-secure multi-input functional encryption scheme and S be an unforge-
able, immutable, perfectly private, unlinkable, non-interactive publicly accountable, and length-invariant
sanitizable signature scheme. Then sOSSC, given in Construction 3.2, achieves unforgeability, immutabil-
ity, perfect privacy, unlinkability, non-interactive public accountability, and IND-CCAsan security. It does
not achieve transparency.

The idea of the proof is as follows. Since our scheme is a generic composition of a signature scheme
and an encryption using the “sign-then-encrypt” approach, it is natural that most security properties
for sanitizable schemes will remain intact. That is, the outer encryption scheme does not invalidate
most properties of signature schemes. In addition, the security of the encryption scheme guarantees the
indistinguishability notion (against the sanitizer, too), since functional encryption ensures that only the
function’s output —here, the sanitized version— is revealed. By stipulation, any challenge message pair,
however, must yield the same sanitized versions, independently of the modification and due to perfect
privacy of the underlying sanitizable scheme the adversary cannot deduce anything further about the
challenge bit.

The only problem we might encounter is that the composition itself might reveal some information
which should remain unknown. This is the case for transparency. Since, by definition of semi-oblivious
sanitizable signcryption, any message-signature pair created by the signer will be encrypted, and any pair
originating from the sanitizer will be in clear, we cannot hope to hide the information if a message was
sanitized or not. All other properties, however, can be verified by a reduction to the corresponding property
of the underlying sanitizable signature or multi-input functional encryption scheme.

4 (Fully) Oblivious Sanitizable Signcryption
The second scenario for sanitizable signcryption addresses the case when the sanitized pair should remain
hidden from the sanitizer, too. Here, we will give the details of primitive, security properties, and our
construction from fully homomorphic encryption.

This requires the message-signature pair to be encrypted until it reaches its final destination. In this
section, we will give two approaches to build fully oblivious sanitizable signcryption. The first construc-
tion is an extension of Construction 3.2 for semi-oblivious sanitizable signcryption, where we update the
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decryption key to re-encrypt the sanitized message under the receiver’s key, while the second construction
uses fully homomorphic encryption to operate directly on the ciphertext. Sadly, achieving security for the
first construction is not straight-forwardly possible. We will elaborate on this further in the following.

There are two cases to consider here concerning the signer’s a-priori knowledge about the receiver’s
identity. For this work, we only consider the setting where the identity of the potential receiver is known
during signcryption, and that there is only a single receiver in the system. For the more general case, one
needs to add some mechanisms that enable to specify legitimate receivers, say, via certified keys, or else
the sanitizer itself may be able to recover the sanitized data by acting as a receiver.

4.1 The Primitive

In contrast to semi-oblivious sanitizable signcryption, we need to split sanitization from decryption and,
hence, need two separate algorithms for handling these.

Definition 4.1 An oblivious sanitizable signcryption scheme is a tuple of ppt algorithms OSSC = (Setup,
KeyGen, Signcrypt, Sanit, Unsigncrypt, Verify, Proof, Judge) such that

Setup. Upon input of the security parameter 1λ, the algorithm outputs a master secret key Msk as
well as public parameters pparam, i.e., (Msk, pparam)← Setup(1λ).

Key Generation. The algorithm KeyGen takes as input an index i ∈ {sig, san, rec} as well as the
master secret key Msk, and outputs a pair of public and secret key, i.e., (pki, ski)← KeyGen(i,Msk).

Signcryption. Upon input of a message m, a description adm, a signer’s secret key sksig, a san-
itizer’s public key pksan, a receiver’s public key pkrcv, as well as public parameters pparam, the al-
gorithm Signcrypt outputs an encrypted message-signature tuple (or ⊥ in case of an error), i.e.,
c(m,σ) ← Signcrypt(m,adm, sksig, pksan, pkrcv, pparam).

Sanitization. Upon input of an encrypted message-signature pair c(m,σ), a description of desired
modifications mod, a sanitizer’s secret key sksan, a signer’s public key pksig, a receiver’s public key
pkrcv, and public parameters pparam, the algorithm Sanit outputs a sanitized and still encrypted ver-
sion of the message-signature pair (or ⊥ in case of an error), i.e., c(m′,σ′) ← Sanit(c(m,σ),mod, sksan,
pksig, pkrcv, pparam).

Unsigncryption. Upon input of an encrypted message-signature pair c(m,σ), a receiver’s secret key
skrcv, public keys of both signer pksig and sanitizer pksan, and public parameters pparam, the algorithm
Unsigncrypt outputs a decrypted and sanitized version of the message-signature pair if it verifies under
the given public keys (or ⊥ in case of an error), i.e., (m,σ) ← Unsigncrypt(c(m,σ), skrcv, pksig, pksan,
pparam).

Verify. Upon input of a (possibly encrypted) message-signature pair m̃σ, public keys of both signer
pksig and sanitizer pksan, as well as public parameters pparam, the algorithm Verify returns a bit b
indicating whether the (encrypted) message-signature pair is valid or not. We require Verify to be
deterministic and, hence, write Verify(m̃σ, pksig, pksan, pparam) = b.

Proof. Upon input of a signer’s secret key sksig, a (possibly encrypted) message-signature pair m̃σ, a
possibly empty list of (encrypted) message-signature pairs {m̃1σ1, . . . , m̃tσt}, a sanitizer’s public key
pksan, and public parameters pparam, the algorithm Proof outputs a string π ∈ {0, 1}∗ ∪ {⊥}, i.e.,
π ← Proof(sksig, m̃σ, {m̃1σ1, . . . , m̃tσt}, pksan, pparam).
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Judge. Upon input of a (possibly encrypted) message-signature pair m̃σ, public keys of both signer
pksig and sanitizer pksan, a string π ∈ {0, 1}∗∪ {⊥}, as well as public parameters pparam, the al-
gorithm Judge outputs a bit d indicating which party has generated the given pair (or ⊥ in case of
an error). Here, d = 1 refers to the signer and d = 0 to the sanitizer. We require Judge to be
deterministic and write Judge((m̃, σ̃), pksig, pksan, π, pparam) = d.

We expect a oblivious sanitizable signcryption scheme to have the following correctness properties:

Perfect correctness. For all security parameters λ ∈ N, all system instantiations (Msk, pparam) ←
Setup(1λ), all signer’s key pairs (pksig, sksig) ← KeyGen(sig,Msk), all sanitizer’s key pairs (pksan, sksan) ←
KeyGen(san,Msk), all receiver’s key pairs (pkrcv, skrcv) ← KeyGen(rec,Msk), all messages m ∈ M, all
descriptions adm ∈ {0, 1}∗, all encrypted signatures c(m,σ) ← Signcrypt(m,adm, sksig, pksan, pkrcv, pparam),
all descriptions mod ∈ {0, 1}∗ which match adm, all encrypted derived signatures c(m′,σ′) ← Sanit(c(m,σ),
mod, sksan, pksig, pkrcv, pparam) with mod(m) = m′, and all decrypted tuple (m′, σ′)← Unsigncrypt(c(m′,σ′),
skrcv, pksig, pksan, pparam) we have

Verify((m′, σ′), pksig, pksan, pparam) = 1 .

Perfect proof correctness. For all security parameters λ ∈ N, all system instantiations (Msk, pparam)
← Setup(1λ), all signer’s key pairs (pksig, sksig)← KeyGen(sig,Msk), all sanitizer’s key pairs (pksan, sksan)←
KeyGen(san,Msk), all receiver’s key pairs (pkrcv, skrcv) ← KeyGen(rec,Msk), all messages m ∈ M, all de-
scriptions adm ∈ {0, 1}∗, all encrypted signatures c(m,σ) ← Signcrypt(m,adm, sksig, pksan, pkrcv, pparam),
all descriptions mod ∈ {0, 1}∗ which match adm, all encrypted derived signatures c(m′,σ′) ← Sanit(c(m,σ),
mod, sksan, pksig, pkrcv, pparam) where mod(m) = m′, all decrypted tuple (m′, σ′) ← Unsigncrypt(c(m′,σ′),
skrcv, pksig, pksan, pparam), any (polynomially many) valid, possibly encrypted, message-signature pairs
m̃1σ1, . . . , m̃tσt such that c(m,σ) = m̃iσi holds for some i ∈ {1, . . . , t}, any any proof π ← Proof(sksig, (m′, σ′),
{m̃1σ1, . . . , m̃tσt}, pksan, pparam) we have

Judge((m′, σ′), pksig, pksan, π, pparam) = 0 .

4.2 Security Properties

The basic security properties remain unchanged, only that the adversary now gets the receiver’s secret key
as additional input. Recall that the basic properties of sanitizable schemes, such as privacy of the original
data, should still hold against malicious receivers.

As for confidentiality, we now aim at hiding any information about the sanitized message, too. To this
end, starting with the semi-oblivious sanitizable signcryption experiment IND-CCAsan , we relax the require-
ment on the queries to the challenge oracle LoREncSign that mod(m0) = mod(m1) for any admissible
modification. Instead we now only require that |mod(m0)| = |mod(m1)| for any admissible modification
(such that the adversary cannot infer anything about the original message from the ciphertext length).
We further augment the IND-CCAsan scenario by also giving the adversary access to an Unsigncrypt oracle
now, allowing the adversary to ask for decryptions at will. There is only one restriction: if the adversary
asks Unsigncrypt about a ciphertext returned by the challenge oracle LoREncSign, then the corresponding
query must again have mod(m0) = mod(m1) for any admissible modification. We could not pose this
restriction if we gave the adversary the receiver’s secret key here. The above somehow resurrects the
IND-CCAsan security and, at the same time, prevents trivial attacks. We call the security property where
an adversary can ask for arbitrary decryptions, except for challenge ciphertexts, of course, IND-CCArcv as
confidentiality should be provided all the way to the receiver. If we drop the Unsigncrypt oracle, we speak
of IND-CPArcv security.
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Definition 4.2 Let OSSC = (Setup, KeyGen, Signcrypt, Sanit, Unsigncrypt, Verify, Proof, Judge) be a obliv-
ious sanitizable signcryption scheme. We say that OSSC is IND-CCArcv-secure if for all ppt adversaries A
there exists a negligible function negl such that

Pr
[
ExpIND-CCArcv

A,OSSC (λ) = 1
]
≤ 1

2 + negl(λ),

where the probability is taken over the random coins A and the IND-CCArcv experiment below:

ExpIND-CCArcv
A,OSSC (λ)

(Msk, pparam)← Setup(1λ);
(pksig, sksig)← KeyGen(sig,Msk);
(pksan, sksan)← KeyGen(san,Msk);
(pkrcv, skrcv)← KeyGen(rcv,Msk);
b← {0, 1};
b′ ← ASigncrypt(·,·,sksig,pksan,pkrcv,pparam),LoREncSign(·,·,sksig,pksan,pkrcv,b,pparam),Unsigncrypt(·,skrcv,pksig,pksan,pparam)(pksig, sksan, pparam);
if b = b′ then

return 1.
else return 0.

LoREncSign((m0,m1),adm, sksig, pksan, pkrcv, b, pparam)

if |m0| 6= |m1| ∨ |mod(m0)| 6= |mod(m1)| for any mod with adm(mod) = 1 then
return ⊥ .

else
c(mb,σb) ← Signcrypt(mb,adm, sksig,pksan,pkrcv, pparam);

return c(mb,σb).

We require that for any c(m,σ) returned by the LoREncSign oracle upon query ((m0,m1),adm), A only askes
the Unsigncrypt oracle for a decryption of c(m,σ) if for all admissible modifications mod with adm(mod) =
1 it holds that mod(m0) = mod(m1).

If no Unsigncrypt oracle exists we obtain the corresponding IND-CPArcv-security notion.

4.3 On the Hardness of Extending Construction 3.2

Let us first explain why we cannot achieve IND-CCArcv-security by simply extending Construction 3.2.
Assume that, instead of holding a key skSanit for the S.Sanit(·, ·, sksan, ·) circuit, the sanitizer will now be
given a key for the

sksan = Enc(·, S.Sanit(·, ·, sksan, ·))

circuit which eventually encrypts the result under the receiver’s key using any traditional public key
encryption scheme. Intuitively, decrypting a ciphertext with the above multi-input functional decryption
key will result in evaluating the above circuit upon the underlying plaintexts.

While this construction is functionally sound, we cannot transfer the security proof, not even to the
IND-CPArcv setting. The reason is that in the proof for the semi-oblivious sanitizable signcryption case
we have used the fact that the adversary’s queries to the LoREncSign challenge oracle satisfy mod(m0) =
mod(m1) for all admissible modifications. In combination with perfect privacy of the sanitizable signature
scheme, this guaranteed the necessary compatibility for the reduction to the miIND-security, saying that

19



the messages in the challenge queries cannot be split by the santizer’s key skSanit. Here, in the IND-CPArcv

setting, the adversary may now ask arbitrary messages with different sanitized versions, such that we cannot
reproduce the reduction. More concretely, for reproducing the reduction we would need to have that all
sanitation outputs for any combinations of inputs yield the same result independent of whether m0 or m1
was chosen. As for the semi-oblivious case, we could add the extra requirement that mod(m0) = mod(m1)
holds for any admissible modification and, hence, gain a notion of indistinguishability given perfect privacy,
however, since our goal is to protect the sanitized message it would not be very useful to utilize a security
definition which de facto only permits equal sanitizations.

4.4 A Construction from FHE

Now, we present a construction from fully homomorphic encryption.

Construction 4.3 Assume a sanitizable signature scheme S = (S.KeyGensig, S.KeyGensan, S.Sign, S.Sanit,
S.Verify, S.Proof, S.Judge) and a fully homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval). Then we define OSSC = (Setup, KeyGen, Signcrypt, Sanit, Unsigncrypt, Verify, Proof,
Judge) as follows.

Setup. Since this algorithm is not needed for this construction the procedure returns ⊥.

Setup(1λ) :

Msk←⊥;
pparam←⊥;
return (Msk, pparam).

Key Generation. The algorithm KeyGen takes as input an index i ∈ {sig, san, rec} as well as the
master secret key Msk. If i = sig, it generates a signer’s key pair (pksig, sksig) for S and outputs it.
If i = san, generates a sanitizer’s key pair for S and outputs it. Finally, if i = rec, it generates a key
pair (skrcv, pkrcv) for FHE and outputs it.

KeyGen(i,Msk) :

if i == sig then
(pksig, sksig)← S.KeyGensig(1λ);
return (pksig, sksig).

else if i == san then
(pksan, sksan)← S.KeyGensan(1λ);
return (pksan, sksan).

else if i == rec then
(pkrcv, skrcv)← FHE.KeyGen(1λ);
return (pkrcv, skrcv).

else return ⊥ .

Signcryption. Upon input of a message m, a description adm of admissible parts, a signer’s secret
key sksig, a sanitizer’s public key pksan, a receiver’s public key pkrcv, as well as public parameters
pparam, the algorithm Signcrypt uses the sanitizable signature scheme to compute a signature σ on
m with adm under sksig and pksan, encrypts both message and signature to c(m,σ) under pkrcv, and
returns this value (or ⊥ in case of an error).
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Signcrypt(m,adm, sksig, pksan, pkrcv, pparam) :

(m,σ)← S.Sign(m, sksig, pksan,adm);

c(m,σ) ← FHE.Enc(pkrcv, (m,σ));

return c(m,σ).

Sanitization. Upon input of an encrypted message-signature pair c(m,σ), a description of desired
modifications mod, a sanitizer’s secret key sksan, a signer’s public key pksig, a receiver’s public key
pkrcv, and public parameters pparam, the algorithm Sanit encrypts pksig and mod under pkrcv, runs
FHE.Eval on the S.Sanit circuit with inputs c(m,σ), cpksig , and cmod to get c(m′,σ′), which it outputs.

Sanit(c(m,σ),mod, sksan, pksig, pkrcv, pparam) :

cpksig ← FHE.Enc(pkrcv, pksig);

cmod ← FHE.Enc(pkrcv,mod);

c(m′,σ′) ← FHE.Eval(S.Sanit(·, ·, sksan, ·), c(m,σ), cpksig , cmod);

return c(m′,σ′).

Unsigncryption. Upon input of an encrypted message-signature pair c(m,σ), a receiver’s secret key
skrcv, public keys of both signer pksig and sanitizer pksan, and public parameters pparam, the algorithm
Unsigncrypt decrypts the pair using FHE.Dec with skrcv, then runs S.Verify upon the decrypted values,
and outputs them if the signature was found valid (or ⊥ in case of an error).

Unsigncrypt(c(m,σ), skrcv, pksig, pksan, pparam) :

(m,σ)← FHE.Dec(skrcv, c(m,σ));
if S.Verify((m,σ), pksig, pksan) == 1 then

return (m,σ).
else return ⊥ .

Verify. Upon input of a (encrypted) message-signature pair m̃σ, public keys of both signer pksig and
sanitizer pksan, as well as public parameters pparam, the algorithm Verify outputs the value S.Verify
returns which is assumed to return ⊥ upon an encrypted input4.

Verify(m̃σ, pksig, pksan, pparam) :

return S.Verify((m,σ), pksig, pksan).

Proof. The algorithm Proof always outputs an empty proof ⊥.

Proof(sksig, m̃σ, {m̃1σ1, . . . , m̃tσt}, pksan, pparam) :

return ⊥ .

Judge. Upon input of a (encrypted) message-signature pair m̃σ, public keys of both signer pksig and
sanitizer pksan, a string π ∈ {0, 1}∗ ∪ {⊥}, as well as public parameters pparam, the algorithm Judge
outputs the value of S.Judge which is assumed to return ⊥ upon an encrypted input.

Judge(m̃σ, pksig, pksan, π, pparam) :

return S.Judge((m,σ), pksig, pksan, π).
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Note that achieving IND-CCArcv security with a decryption oracle under the receiver’s key is infeasible,
as the FHE schemes usually do not achieve full chosen-ciphertext security. This is why we revert to
IND-CPArcv security For showing the other properties of sanitizable schemes it suffices to prove them when
holding the decryption key of the FHE scheme.

Theorem 4.4 Let FHE be an IND-CPA-secure fully homomorphic encryption scheme, and S be an un-
forgeable, immutable, private, unlinkable, non-interactive publicly accountable, and length-invariant sani-
tizable signature scheme. Then the oblivious sanitizable signcryption scheme given in Construction 4.3
achieves unforgeability, immutability, privacy, unlinkability, non-interactive public accountability, and
IND-CPArcv security. It does not achieve transparency.

The proof of the IND-CPArcv property is straightforward, and follows from a reduction to the IND-CPA
security of the underlying fully homomorphic encryption scheme, analogously to the case for multi-input
functional encryption. For the other properties, note that playing against the underlying sanitizable
signature scheme, the reduction would generate the keys for the FHE scheme and can thus always “peel
off” the outer encryption and interact with the corresponding interfaces of the sanitizable schemes.

It is easy to see that Construction 4.3 cannot achieve transparency. Unlike for the semi-oblivious
sanitizable signcryption case, the reason does lie within the structure of the primitive but rather in the
nature of its security properties. Since we aim to achieve non-interactive public accountability any party,
thus also the adversary holding the receiver’s secret key, can evaluate the Judge algorithm and directly
learn which party is accountable, hence, if the tuple was sanitized or not. One option to circumvent this
trivial distinction is to disallow the adversary to decrypt, i.e., to deny him access to the receiver’s secret
key, and thereby restricting the property. If the underlying fully homomorphic encryption scheme is circuit
private then it implicitly hides whether an evaluation, in our case sanitation, has taken place. Nevertheless,
we omit this weaker version since we wish to achieve insider5 security notions for our primitive to capture
malicious receivers who might very well have the highest interest in knowing whether or not they face a
modified document or the original one.

5 Conclusion
We have raised the issue of sanitization over encrypted data and given a feasibility result that it is possible
to build such signature schemes. In the case of oblivious sanitizable signcryption schemes and strong
security guarantees, it remains open to derive schemes which provide IND-CCArcv-security, ideally together
with public verifiability. Even our IND-CPArcv-solution based on FHE does not achieve public verifiability.

Despite the theoretical appeal, the involved primitives in our constructions are far from being practical.
Even more, it remains to be shown that an efficient multi-input functional encryption scheme exists. So far,
all existing constructions rely on obfuscation and non-interactive zero-knowledge proofs for all efficiently
computable (deterministic) functions [GGG+14], multi-linear maps [BLR+14], or weaker assumptions un-
der certain restrictions [BKS15]. One direction would be to come up with an efficient functional encryption
scheme which would match our needs. Alternatively, one can try to solve the problem in question directly,
with a tailored, non-generic solution to satisfy sanitizable signcryption. In any case, achieving a practi-
cal solution remains an interesting open problem. Here, signcryption with its original intent to combine
encryption and signatures with improved efficiency and functionality may be a promising direction to
follow.

5Insider-version refers to the fact that also entities inside the system may be regarded as adversaries, like sanitizers in our
case.
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For some applications of fully oblivious sanitizable signcryption, it may be the case that the receiver is
not known at signature creation.6 This is currently not covered by the solution based on fully homomorphic
encryption. For specifying a receiver later on, a potential fix is to use a key-switching mechanism [BV11,
CCL+14] which allows for a user, here the signer, to derive a so-called switch-key using his secret key,
allowing any party to change a ciphertext under his own public key to an encryption under the public key
specified in the switch-key. This remains yet to be explored.
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A Security Properties for Semi-Oblivious Sanitizable Signcryption
Here, we will formally describe the security notions for semi-oblivious sanitizable signcryption which can
be inherited from sanitizable signatures, namely, (strong) unforgeability, immutability, (strong) privacy,
strengthened unlinkability, and non-interactive public accountability.
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The most basic notion every signature or signcryption scheme should fulfill is unforgeability. Intuitively,
it requires that nobody should be able to derive a valid message-signature pair without knowledge of the
secret key. In our case, this includes knowledge of either the signer’s secret key sksig or the sanitizer’s
secret key sksan (the later covered by immutability). Note that a signature is a forgery as soon as the Verify
algorithm accepts the input. In contrast to normal signatures, our semi-oblivious sanitizable signcryption
scheme gains an extra feature, namely, that a message-signature pair can be valid either in encrypted or
decrypted form. Since the Verify algorithm works for both kinds of inputs, a forgery can also either be
either an encrypted or decrypted pair.

Definition A.1 A semi-oblivious sanitizable signcryption scheme sOSSC = (Setup, KeyGensig, KeyGensan,
SignEnc, SanDec, Verify, Proof, Judge) is strongly unforgeable if for every ppt adversary A there exists a
negligible function negl such that

Pr
[
ExpSUnforgeability

A,sOSSC (λ) = 1
]
≤ negl(λ) ,

where the probability is taken over the random coins of A and the SUnforgeability experiment which is
defined as follows:

ExpSUnforgeability
A,sOSSC (λ)

(Msk, pparam)← Setup(1λ);
(pksig, sksig)← KeyGensig(Msk);
(pksan, sksan)← KeyGensan(Msk);

m̃∗σ∗ ← ASignEnc(·,·,sksig,·,pparam),SanDec(·,·,sksan,·,pparam),Proof(sksig,·,·,·)(pksig, pksan, pparam);

if (Verify(m̃∗σ∗, pksig, pksan) = 1
∧ “SignEnc(·, ·, sksig, ·, pparam) was not queried for m∗,adm∗,pksan where adm∗ is recoverable from σ∗”

∧ “SanDec(c(m,σ),mod,pksig, sksan, pparam) did not return m̃∗σ∗ for any query”
return 1.

else return 0.

Recall that the notion of immutability intuitively says that it should not be feasible to modify blocks
which are not designated in the description of admissible parts. In other words, malicious sanitizers should
not be able to change unintended portions of the message and still derive a valid signature. We stress
again, that the inability to derive valid message-signature pairs in a manner outside of what is allowed by
adm also means and implies, that a corrupted sanitizer can also not forge any signatures which are not
derivable.

Definition A.2 A semi-oblivious sanitizable signcryption scheme sOSSC = (Setup, KeyGensig, KeyGensan,
SignEnc, SanDec, Verify, Proof, Judge) is immutable if for every ppt adversary A there exists a negligible
function negl such that

Pr
[
ExpImmutability

A,sOSSC (λ) = 1
]
≤ negl(λ) ,

where the probability is taken over the random coins of A and the Immutability experiment which is defined
as follows:
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ExpImmutability
A,sOSSC (λ)

(Msk, pparam)← Setup(1λ);
(pksig, sksig)← KeyGensig(Msk);

(pk∗san, m̃∗σ∗)← ASignEnc(·,·,sksig,·,pparam),Proof(sksig,·,·,·)(pksig, pparam);

if (Verify(m̃∗σ∗, pksig, pk∗san) = 1 ∧ “m̃∗σ∗ is not derivable”

∧ “m̃∗σ∗ ← SignEnc(m,adm∗, sksig,pk∗san, pparam) was not queried for any m and adm∗
where adm∗ is recoverable from σ∗”) then

return 1.
else return 0.

Here, “m̃∗σ∗ is not derivable” means that SanDec(c(m,σ),mod, pksig, sk∗san, pparam) does not yield the sig-
nature m̃∗σ∗ for any mod and any c(m,σ) under sksig and pk∗san where sk∗san is the secret key corresponding
to pk∗san.

Privacy is probably the most important goal for a sanitizable scheme. If data is sanitized, we want to
be sure that this data cannot be recovered in any efficient way. For a signature scheme it is formalized
by requiring that given two messages m0 and m1, as well as a description of admissible parts adm, and
modifications mod0 and mod1, respectively, we demand that it is infeasible to distinguish which message
was sanitized given (mb, σb) whenever mod0(m0) = mod1(m1). In the strong version, the adversary
receives the sanitizer’s public key as additional input yielding an “insider-version5” of the property. If we
encrypt message-signature pairs in the first step of the sanitization process (from signer to sanitizer) we
still have the same security requirements: data which was deleted in the sanitization process should remain
unrecoverable from the derived message-signature pair (apart from what is derivable from the context, of
course).

Definition A.3 A semi-oblivious sanitizable signcryption scheme sOSSC = (Setup, KeyGensig, KeyGensan,
SignEnc, SanDec, Verify, Proof, Judge) is strongly private if for every ppt adversary A there exists a neg-
ligible function negl such that

Pr
[
ExpSPrivacy

A,sOSSC(λ) = 1
]
≤ 1

2 + negl(λ) ,

where the probability is taken over the random coins of A and the SPrivacy experiment which is defined as
follows:

ExpSPrivacy
A,sOSSC(λ)

(Msk, pparam)← Setup(1λ);
(pksig, sksig)← KeyGensig(Msk);
(pksan, sksan)← KeyGensan(Msk);
b← {0, 1};
b′ ← ASignEnc(·,·,sksig,·,pparam),Proof(sksig,·,·,·),LoRSSanit(·,·,sksig,sksan,·,b,pparam)(pksig, sksan, pparam);
if b = b′ then

return 1.
else return 0.
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LoRSSanit((m0,m1),adm, sksig, sksan, (mod0,mod1), b, pparam)

if (adm(mod0) 6= 1 ∨ adm(mod1) 6= 1 ∨mod0(m0) 6= mod1(m1)) then

return ⊥ .

else

c(mb,σb) ← SignEnc(mb,adm, sksig,pksan, pparam);

(m′b, σ′b)← SanDec(c(mb,σb),modb, sksan,pksig, pparam);

return (m′b, σ′b).

For our purpose, we require perfect privacy. For this, we require aditionally that sanitized signatures
are independently distributed from the original message.

Recall that unlinkability ensures that a sanitized message-signature pair cannot be linked to its originat-
ing document. Likewise, such a notion is desirable in the context of semi-oblivious sanitizable signcryption
schemes. As for privacy, we focus on the stronger version, namely strengthened unlinkability, and the
regular version can be easily derived by designating a fixed key pair for the signer and giving pksig to the
adversary as additional input.

Definition A.4 A semi-oblivious sanitizable signcryption scheme sOSSC = (Setup, KeyGensig, KeyGensan,
SignEnc, SanDec, Verify, Proof, Judge) is strongly unlinkable if for every ppt adversary A there exists a
negligible function negl such that

Pr
[
ExpSUnlinkability

A,sOSSC (λ) = 1
]
≤ 1

2 + negl(λ) ,

where the probability is taken over the random coins of A and the SUnlinkability experiment which is defined
as follows:

ExpSUnlinkability
A,sOSSC (λ)

(Msk, pparam)← Setup(1λ);
(pksan, sksan)← KeyGensan(Msk);
b← {0, 1};
b′ ← ASanDec(·,·,sksan,·,pparam),LoRSanDec(·,·,sksan,·,b,pparam)(pksan, pparam);
if b = b′ then

return 1.
else return 0.

LoRSanDec(c(m0,σ0), c(m1,σ1), pksig, sksan, (mod0,mod1), b, pparam)

if mod0(m0) 6= mod1(m1) then

return ⊥ .

else

(m′0, σ′0)← SanDec(c(m0,σ0),mod0, sksan,pksig, pparam);

(m′1, σ′1)← SanDec(c(m1,σ1),mod1, sksan,pksig, pparam);

return (m′b, σ′b).
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Note that LoRSanDec will sanitize both messages to check if the description of admissible parts recovered
from both signatures matches the respective modification. If this is not the case then SanDec, thus also
LoRSanDec, returns an error.

The last security property inherent to sanitizable signatures, we have not yet considered, is account-
ability which says that is is desirable to be able to determine which party generated the given signature.
More precisely, accountability ensures that a malicious party (signer or sanitizer) cannot accuse the other
party of being responsible for a message he created.

If we think of the primitive of semi-oblivious sanitizable signcryption, we might ask ourselves why
we need a notion of accountability, since commonly it is easy to distinguish between an encrypted and
a decrypted message-signature tuple. If all parties behaved honestly signers are only able to generate
encrypted tuple, as their signing procedure is chained to an encryption process, whereas honest sanitizers
can only produce decrypted pairs, since the sanitization procedure is linked to a decryption key. However,
when we think of security properties, we have to assume that parties will exploit whatever possibilities
they are given. For example, in our generic construction, a malicious signer, being in possession of the
decryption key skID can always decrypt a tuple he created and accuse the sanitizer. On the other hand, a
sanitizer can retrieve the encryption key EK1 from pparam and re-encrypt the derived pair in order to blame
the signer. This should convince the reader that the nature of a semi-oblivious sanitizable signcryption
scheme does not alone suffice to provide accountability.

Definition A.5 A semi-oblivious sanitizable signcryption scheme sOSSC = (Setup, KeyGensig, KeyGensan,
SignEnc, SanDec, Verify, Proof, Judge) is non-interactive publicly accountable if the Proof algorithm always
returns ⊥ and for every ppt adversary A there exists a negligible function negl such that

Pr
[
ExpPubAccountability

A,sOSSC (λ) = 1
]
≤ negl(λ) ,

where the probability is taken over the random coins of A and the PubAccountability experiment which is
defined as follows:

ExpPubAccountability
A,sOSSC (λ)

(Msk, pparam)← Setup(1λ);
(pksig, sksig)← KeyGensig(Msk);
(pksan, sksan)← KeyGensan(Msk);

(pk∗, m̃∗σ∗)← ASignEnc(·,·,sksig,·,pparam),SanDec(·,·,sksan,·,pparam)(pksig, pksan, pparam);

if (Verify(m̃∗σ∗, pksig, pk∗, pparam) = 1 ∧ Judge(m̃∗σ∗, pksig, pk∗,⊥, pparam) = 1

∧ “no oracle query of the form m̃∗σ∗ ← SignEnc(m,adm, sksig,pk∗, pparam)

was made for any m and adm”) then
return 1.

else if (Verify(m̃∗σ∗, pk∗, pksan, pparam) = 1 ∧ Judge(m̃∗σ∗, pk∗, pksan,⊥, pparam) = 0

∧ “no oracle query of the form m̃∗σ∗ ← SanDec(c(m,σ),mod, sksan,pk∗, pparam)

was made for any c(m,σ) and mod”) then
return 1.

else return 0.
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B Proof of Theorem 3.4 (Security of Our Semi-Oblivious Sanitizable
Signcryption Scheme)

By definition of a semi-oblivious sanitizable signcryption, sOSSC, given in Construction 3.2, cannot ful-
fill transparency. The reason is simply because signatures honestly created by a signer will always be
encrypted, whereas any honestly derived signature will appear in the clear. This is due to the specific
structure of the primitive: in a semi-oblivious sanitizable signcryption scheme there only exists a combined
signing and encryption algorithm, namely SignEnc. No distinct signing algorithm is specified. Likewise, a
sanitizer can only make use of SanDec to scrutinize a message. He cannot solely decrypt or sanitize. We
would like to stress that for Construction 3.2 we do have distinct algorithms for each of the aforementioned
procedures if we look at the underlying S and FE schemes. However, the adversary would always win the
experiment as any challenge is honestly generated.

For the rest of the security properties, we can show consecutively that each is implied by one of the
properties of the underlying schemes.

Claim B.1 The semi-oblivious sanitizable signcryption scheme sOSSC in Construction 3.2 is (strongly)
unforgeable if the underlying sanitizable signature scheme S used is (strongly) unforgeable.
Proof. Assume that the scheme sOSSC from Construction 3.2 is not unforgeable. Then there exists an
efficient adversary A which has a non-negligible advantage of winning the SUnforgeability experiment
described in Definition A.1. Using A as a subroutine, we can construct an adversary B against the (strong)
unforgeability of the underlying sanitizable signature scheme S as follows: upon input of a signer’s and a
sanitizer’s public key pksig and pksan, the adversary B chooses a multi-input functional encryption scheme
FE, runs its FE.Setup algorithm on integer 4 to receive a master secret key Msk as well as encryption keys
EK = (EK1, . . . ,EK4), generates decryption keys skVf and skJ by calling FE.KeyGen with input Msk and
the respective circuit S.Verify(·, ·, ·) and S.Judge(·, ·, ·, ·), which can easily be done as the description of the
algorithms of S are public, and combines these values to derive public parameters pparam. Separately,
B also uses Msk to derive a general decryption key skID for the circuit ID(·) capable of decrypting any
ciphertext. Now, the adversary B initializes A on input pksig, pksan, and pparam. Queries from A are
handled as follows:

SignEnc Queries. For every query of the form (m,adm, pk′san) to A’s SignEnc oracle, B forwards
the query unchanged to his own Sign oracle and receives a message-signature pair (m,σ). Then,
he retrieves encryption key EK1 from pparam and encrypts the two values using FE.Enc to obtain
c(m,σ) ← FE.Enc(EK1, σ). The value c(m,σ) is returned to A.

SanDec Queries. For every query of the form (c(m,σ),mod, pk′sig) to A’s SanDec oracle, B first
decrypts the pair c(m,σ) using the previously generated skID to retrieve (m,σ), then forwards ((m,σ),
mod, pk′sig) to his Sanit oracle, and finally returns the answer (m′, σ′) unmodified to A.

Proof Queries. Every query (m̃σ, {m̃iσi}i∈{1,...,t}, pk′san) to A’s Proof oracle is answered by returning
⊥ to A. The adversaries Proof oracle is not needed for generating the response, since the Proof
algorithm of Construction 3.2 always returns the empty string.

Finally, A outputs a tuple m̃∗σ∗. Now, B checks if S.Verify(m̃∗σ∗, pksig, pksan) returns true. If so, he outputs
m̃∗σ∗. Else, he decrypts the tuple using skID and returns the decrypted pair.

Obviously, B is efficient since A is efficient by assumption, oracle queries can be done in constant
time, and all procedures of FE are ppt. Furthermore, he simulates all oracles for A perfectly7 resulting in

7Note that the simulation is only perfect if the underlying functional encryption scheme is perfectly correct. If we allowed a
functional encryption scheme to have a negligible error when decrypting, we would obtain a chance of an incorrect simulation.
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A outputting a valid forgery for sOSSC with non-negligible probability. Since the structure of the Verify
algorithm of sOSSC permits two possibilities for the structure of m̃∗σ∗ to return 1, namely, either if S.Verify
will accept the pair, or if the decryption under skVf , which represents the output of S.Verify on input the
decrypted version, (m∗, σ∗), returns true on the tuple, A can either return an encrypted tuple of a valid
signature pair, or a decrypted one to win the game. In the later case, the S.Verify algorithm will directly
return 1 upon input of this tuple, and B will thus have found a valid forgery for S. If m̃∗σ∗ is indeed
encrypted, then by decrypting it with skID, B receives a message-signature pair which will evaluate S.Verify
to true due to the structure of Verify.

To win, A did not ask for any SignEnc query which returned (m̃∗σ∗,adm∗). This means that also B will
not have made a query of the form (m∗,adm∗) to get σ∗ ← Sign(1λ,m∗, sksig, pksan,adm∗). Furthermore,
A did not ask for any SanDec query which returned m̃∗σ∗ which in turn implies that also B did not query
his Sanit oracle a query yielding this pair. Hence, all conditions are fulfilled and B wins ExpSUnforgeability

A,S (λ)
if and only if A wins ExpSUnforgeability

A,sOSSC (λ), i.e., the probability that B wins is equivalent to the probability of
A winning and, therefore, not negligible either. This is a contradiction to S being (strongly) unforgeable,
meaning that the assumption that sOSSC is not (strongly) unforgeable must have been false. The claim
equally holds if we only consider regular unforgeability.

Claim B.2 The semi-oblivious sanitizable signcryption sOSSC in Construction 3.2 is immutable if the
underlying sanitizable signature scheme S used is immutable.
Proof. The proof is analogous to the above treating unforgeability. The only difference is that we do not
have a SanDec or Sanit oracle, and therefore, do not need to simulate these.

Claim B.3 The semi-oblivious sanitizable signcryption sOSSC in Construction 3.2 is (strongly) private if
the underlying sanitizable signature scheme S used is (strongly) private.
Proof. Assume that the scheme sOSSC from Construction 3.2 is not (strongly) private. Then there exists an
efficient adversary A which has a non-negligible advantage of winning the SPrivacy experiment described
in Definition A.3. Using A as a subroutine, we can construct an adversary B against the (strong) privacy
property of the underlying sanitizable signature scheme S as follows: upon input of a signer’s public key
pksig, and a sanitizer’s key pair (pksan, sksan), the adversary B chooses a multi-input functional encryption
scheme FE, runs its FE.Setup algorithm on integer 4 to receive a master secret key Msk as well as encryption
keys EK = (EK1, . . . ,EK4), generates decryption keys skVf , skJ by calling FE.KeyGen with input Msk
and the respective circuit S.Verify(·, ·, ·) and S.Judge(·, ·, ·, ·), and combines these values to derive public
parameters pparam. Furthermore, he calls FE.KeyGen with input Msk and the sanitization circuit in which
he first hard-codes the sanitizer’s secret key to derive a sanitizer’s secret decryption key, i.e., skSanit ←
FE.KeyGen(Msk,S.Sanit(·, ·, sksan, ·)). Separately, B also uses Msk to derive a general decryption key skID
for the circuit ID(·) capable of decrypting any ciphertext. Now, adversary B initializes A on input pksig,
(pksan,skSanit), and pparam. Queries from A are handled as follows:

SignEnc Queries. For every query of the form (m,adm, pk′san) to A’s SignEnc oracle, B forwards
the query unchanged to his own Sign oracle and receives a message-signature pair (m,σ). Then, he
retrieves encryption key EK1 from pparam and encrypts the value using FE.Enc to obtain c(m,σ) ←
FE.Enc(EK1, (m,σ)). The value c(m,σ) is returned to A.

Proof Queries. Every query (m̃σ, {m̃iσi}i∈{1,...,t}, pk′san) to A’s Proof oracle is answered by returning
⊥ to A. The adversaries Proof oracle is not needed.

Hence, also the resulting success probability of B would be slightly less then if the scheme were perfectly correct. However,
since this loss is only negligible we would still achieve the same results.
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Challenge Queries. Every query ((m0,m1),adm, (mod0,mod1)) to A’s LoRSSanit oracle is directly
forwarded to B’s LoRSSanit oracle. The answer (m′b, σ′b) is forwarded unmodified to A.

Finally, A outputs a bit b′ representing his decision which message was sanitized. The adversary B returns
the same value b′. Obviously, B is efficient since A is efficient by assumption, oracle queries can be done
in constant time, and all procedures of FE are ppt. Furthermore, he perfectly simulates all oracles for A
resulting in A outputting the correct decision, i.e., if b′ = b, with non-negligible probability. We see that B
wins the SPrivacy experiment for semi-oblivious sanitizable signcryption schemes if and only if A wins the
sanitizable signature scheme version of the (strong) privacy experiment, since B will not have asked any
unauthorized queries unless A has asked such. Hence, the success probability of B is equal to the success
probability of A and, therefore, not negligible either which contradicts the assumption that S is (strongly)
private. Thus, the assumption must have been wrong and sOSSC is (strongly) private. The claim holds
equally if we only consider regular privacy.

Claim B.4 The semi-oblivious sanitizable signcryption sOSSC in Construction 3.2 is (strongly) unlinkable
if the underlying sanitizable signature scheme S used is (strongly) unlinkable.
Proof. Assume that the scheme sOSSC from Construction 3.2 is not (strongly) unlinkable. Then there exists
an efficient adversary A which has a non-negligible advantage of winning the SUnlinkability experiment
described in Definition A.4. Using A as a subroutine, we can construct an adversary B against the
strengthened unlinkability property of the underlying sanitizable signature scheme S as follows: upon
input of a sanitizer’s public key pksan, the adversary B chooses a multi-input functional encryption scheme
FE, runs its FE.Setup algorithm on integer 4 to receive a master secret key Msk as well as encryption
keys EK = (EK1, . . . ,EK4), generates decryption keys skVf and skJ by calling FE.KeyGen with input Msk
and the respective circuit S.Verify(·, ·, ·) and S.Judge(·, ·, ·, ·), and combines these values to derive public
parameters pparam. Separately, B also uses Msk to derive a general decryption key skID for the circuit
ID(·) capable of decrypting any ciphertext. Now, the adversary B initializes A on input pksan and pparam.
Queries from A are handled as follows:

SignEnc Queries. For every query of the form (m,adm, pk′san) to A’s SignEnc oracle, B forwards
the query unchanged to his own Sign oracle and receives a message-signature pair (m,σ). Then, he
retrieves encryption key EK1 from pparam and encrypts the value using FE.Enc to obtain c(m,σ) ←
FE.Enc(EK1, (m,σ)). The value c(m,σ) is returned to A.

SanDec Queries. For every query of the form (c(m,σ),mod, pksig) to A’s SanDec oracle, B first uses
his decryption key skID to decrypt the values and retrieve (m,σ). He forwards this tuple with mod
and pksig to his Sanit oracle. The oracle returns a derived message-signature pair (m′, σ′) which is
passed on to A.

Finally, A outputs a bit b′ representing his decision which message was sanitized which B outputs, too.
Obviously, B is efficient since A is efficient by assumption, oracle queries can be done in constant time,
and all procedures of FE are ppt. Furthermore, he perfectly simulates all oracles for A resulting in A
outputting the correct decision, i.e., if b′ = b, with non-negligible probability.We see that B wins the
SUnlinkability experiment for semi-oblivious sanitizable signcryption schemes if and only if A wins the
sanitizable signature scheme version of the strengthened unlinkability experiment, since B will not have
asked any unauthorized queries unless A has asked such. Hence, the success probability of B is equal to
the success probability of A, and therefore not negligible either, which contradicts the assumption that S
is (strongly) unlinkable. Thus, the assumption must have been wrong and sOSSC is (strongly) unlinkable.
The claim holds equally if we only consider regular unlinkability.

33



Claim B.5 The semi-oblivious sanitizable signcryption scheme sOSSC in Construction 3.2 is non-interac-
tive publicly accountable if the underlying sanitizable signature scheme S used is non-interactive publicly
accountable.
Proof. Assume that the scheme sOSSC from Construction 3.2 is not non-interactive publicly account-
able. Then there exists an efficient adversary A which has a non-negligible advantage of winning the
PubAccountability experiment described in Definition A.5. Using A as a subroutine, we can construct an
adversary B against the non-interactive public accountability property of the underlying sanitizable signa-
ture scheme S as follows: upon input of a signer’s and sanitizer’s public key pksig and pksan, the adversary B
chooses a multi-input functional encryption scheme FE, runs its FE.Setup algorithm on integer 4 to receive
a master secret key Msk as well as encryption keys EK = (EK1, . . . ,EK4), generates decryption keys skVf
and skJ, by calling FE.KeyGen with input Msk and the respective circuit S.Verify(·, ·, ·) and S.Judge(·, ·, ·, ·),
and combines these values to derive public parameters pparam. Separately, B also uses Msk to derive a
general decryption key skID for the circuit ID(·) capable of decrypting any ciphertext. Now, the adversary
B initializes A on input pksig, pksan, and pparam. Queries from A are handled as follows:

SignEnc Queries. For every query of the form (m,adm, pk′san) to A’s SignEnc oracle, B forwards
the query unchanged to his own Sign oracle and receives a message-signature pair (m,σ). Then, he
retrieves encryption key EK1 from pparam and encrypts the value using FE.Enc to obtain c(m,σ) ←
FE.Enc(EK1, (m,σ)). The value c(m,σ) is returned to A.

SanDec Queries. For every query of the form (c(m,σ),mod, pksig) to A’s SanDec oracle, B first uses
his decryption key skID to decrypt the values and retrieve (m,σ). He forwards this tuple with mod
and pksig to his Sanit oracle. The oracle returns a derived message-signature pair (m′b, σ′b) which is
passed on to A.

Finally, A outputs a tuple (pk∗, m̃∗σ∗). Now, B checks if either S.Verify(m̃∗σ∗, pksig, pk∗) or S.Verify(m̃∗σ∗,
pk∗, pksan) returns true. If so, he outputs (pk∗, m̃∗σ∗). Else, he decrypts the tuple using skID and returns
the decrypted pair together with the target public key pk∗. Obviously, B is efficient since A is efficient by
assumption, oracle queries can be done in constant time, and all procedures of FE are ppt. Furthermore, he
perfectly simulates all oracles forA resulting inA outputting a tuple which wins the BlockPubAccountability
experiment with non negligible probability.

Now, we will take a look at the success probability of B. Observe that, whenever A wins the game,
either he returns a tuple which blames the signer for creating a signature which was actually created by
the sanitizer, i.e., Verify(m̃∗σ∗, pksig, pk∗, pparam) = 1 ∧ Judge(m̃∗σ∗, pksig, pk∗,⊥, pparam) = 1 ∧ “no oracle
query of the form m̃∗σ∗ ← SignEnc(m,adm, sksig, pksan pparam) was made for any m and adm”) holds,
or he returns a tuple which blames the sanitizer even though the signer is accountable, i.e., we have
Verify(m̃∗σ∗, pk∗, pksan, pparam) = 1∧ Judge(m̃∗σ∗, pk∗, pksan,⊥, pparam) = 0∧ “no oracle query of the form
m̃∗σ∗ ← SanDec(c(m,σ),mod, sksan, pk∗, pparam) was made for any c(m,σ), and mod”). We see that these
constraints translate directly to the case of S, since if the pair m̃∗σ∗ is not encrypted, then S.Verify will
accept it under pk∗ and the corresponding signer’s or sanitizer’s public key. B performs both checks on
S.Verify since he might not know whether or not the pair is encrypted and to which party the target public
key belongs8. In order for B to win his own experiment, he needs to output a valid signature such that
S.Judge will accuse the wrong party. Whenever A wins his game, S.Judge will do so since the decision
of Judge basically forwards the decision of S.Judge by definition, and finally, no illegitimate queries will
have been posed since the restriction on forbidden queries is the same for both games when regarding
respected oracles. Thus, B always wins, whenever A wins and, hence, has the same non-negligible success

8If the adversary can determine if the tuple is encrypted or not, he could omit the last checks and either return it directly
or decipher it (using skID) and return the tuple.
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probability, which contradicts the assumption that S is non-interactive publicly accountable, meaning, the
assumption must have been wrong and sOSSC is non-interactive publicly accountable.

Claim B.6 The semi-oblivious sanitizable signcryption scheme sOSSC in Construction 3.2 is IND-CCAsan-
secure if the underlying multi-input functional encryption scheme FE used is miIND-secure and the under-
lying sanitizable scheme S is perfectly private.
Proof. Assume that the scheme sOSSC from Construction 3.2 is not IND-CCAsan-secure with respect to
Definition 3.3. Then there exists an efficient adversary A which has a non-negligible advantage of win-
ning the IND-CCAsan experiment. Using A as a subroutine, we can construct an adversary B against the
miIND security of the underlying multi-input functional encryption scheme FE as follows: upon input of
security parameter 1λ, the adversary B first outputs the set I = {1, . . . , 4} to receive a set of decryption
keys EK = (EK1, . . . ,EK4). He instantiates a sanitizable signature scheme S and runs the key generation
algorithms to generate (pksig, sksig) and (pksan, sksan). Then, he uses his FE.KeyGen oracle to create de-
cryption keys skVf , skJ, and using sksan hard-coded into the S.Sanit circuit to get skSanit. Finally, B derives
public parameters pparam and initializes A by inputting a signer’s public key pksig, a sanitizer’s key pair
(pksig, skSanit), as well as pparam. All emerging queries are handled in the following way.

SignEnc Queries. For every query of the form (m,adm, pksan) to A’s SignEnc oracle, B uses S.Sign
to retrieve (m,σ) ← S.Sign(m, sksig, pksan,adm), then uses encryption key EK1 to encrypt message
and signature, respectively, and returns c(m,σ) to A.

Challenge Queries. For every query of the form ((m0,m1),adm) to A’s LoREncSign oracle, B
first signs both messages using S.Sign with sksig and retrieves (m0, σ0) and (m1, σ1). He sends
((m0, σ0), (m1, σ1)) to his LoREnc oracle to receive c(mb,σb) and forwards the tuple to A.

Finally, A will terminate and output a decision b′ which is equally output by B.
We see that B is efficient since A is efficient, oracle queries can be done in constant time, and both

sampling a sanitizable signature scheme and evaluating its algorithms can be conducted in polynomial
time. Furthermore, being in possession of the signer’s secret key as well as all relevant encryption keys, B
can perfectly simulate all oracle queries for A.

At last, note that for A to win the IND-CCAsan game, he is restricted in the queries he is allowed to pose
to the LoREncSign oracle. More precisely, any query must fulfill that there is no “splitting” modification,
meaning that any possible modification which is admitted needs to yield the same message m′ for the two
inputs. Given this, it follows from the perfect privacy of the sanitizable scheme that also the signature part
σ′ to m′ contained in reply of the oracle is equally distributed (or, if the scheme has been derandomized,
identical). It follows that in B’s experiment the key skSanit does not split the inputs to the LoREnc oracle,
where the second to fourth input is taken from a singleton. This is also true for the verification and judge
keys, skVf and skJ, since these keys cannot split such pairs because any pair is a valid signature, and created
by the signer.

Therefore, B win the miIND game if and only if A wins in the IND-CCAsan experiment. Thus, their
success probabilities are equal and so not negligible which is a contradiction to FE being miIND which
concludes our proof.

35


	Introduction
	Sanitization over Encrypted Data
	Constructing Sanitizable Signcryption Schemes
	Related Work

	Preliminaries
	Notation and Syntax
	Sanitizable Signatures
	Multi-input Functional Encryption
	Fully Homomorphic Encryption

	Semi-Oblivious Sanitizable Signcryption
	The Primitive
	The Construction
	Security Properties
	Security of Our Construction

	(Fully) Oblivious Sanitizable Signcryption
	The Primitive
	Security Properties
	On the Hardness of Extending Construction 3.2
	A Construction from FHE

	Conclusion
	Security Properties for Semi-Oblivious Sanitizable Signcryption
	Proof of Theorem 3.4 (Security of Our Semi-Oblivious Sanitizable Signcryption Scheme)

