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A SAT-based Public Key Cryptography Scheme
Sebastian E. Schmittner

Abstract

A homomorphic public key cryptography scheme based on the Boolean Satisfiability Problem (SAT) is proposed. The
public key is a SAT formula satisfied by the private key. The probabilistic encryption algorithm generates random Boolean
functions, which are implied to be false by the public key. Adding the message bits to them yields the cipher functions.
A variant of Blum’s Hamilton cycle zero-knowledge proof, adapted to SAT, is used to provide an identification and, via a
Fiat-Shamir heuristic, a signature scheme. These are conceptually independent from the encryption scheme.
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1 INTRODUCTION

It is well known that the asymmetric cryptography schemes predominantly used today are vulnerable (at least) to attacks
from quantum computers using Shor’s algorithm. Assuming P6=NP and that NP-hard problems can not be solved
efficiently, not even on a quantum computer, cryptography based on NP-hard problems is dubbed “post-quantum”.
Daniel Bernstein [1] lists Hash-based, Code-based, Lattice-based, and Multivariate-quadratic-equations cryptography as
the existing post-quantum algorithms. The aim of this paper is to introduce a different crypto-system based on the
Boolean Satisfiability Problem (SAT). This problem of finding a pre-image of 1 under a Boolean function given in a certain
conjunctive form (see Section 2) is well known to be NP-complete. Although a SAT instance can, from a certain angle, be
viewed as a multivariate-equation, our encryption scheme is different from the systems mentioned above. In particular, we
use a fulfilling assignment as the secret key rather than a trap door.

Using SAT to provide a post-quantum key pair is not a far-fetched idea. The main point of this paper is how to use
them to encrypt and decrypt. To this end, we randomly produce Boolean functions which are implied to be false by the
public key and hence evaluate to 0 on the private key. These functions ⊕ the message bits form the cipher.

The paper is organised as follows: We illustrate the main point of using randomness for encryption in a (somewhat
over simplified) picture in Figure 1. The guiding example in Section 1.1 illustrates the main ideas more accurately. In
Section 2, we describe and discuss our algorithms in detail. The probabilistic scheme introduced there is vulnerable to an
oracle attack, which is discussed in Section 3, as well as some other attacks. In this section we also compute bounds for
the parameters of the encryption to resist all mentioned attacks and also explain how the oracle attack can be countered.
In Section 4 we introduce an identification and signature scheme, which is independent from the encryption scheme. We
conclude in Section 5.

1.1 Example
Before explaining the key generation and encryption algorithm in detail, we start with a simple toy example to guide the
readers intuition. A possible1 private/public key pair for Alice is:

priv = (1, 1, 0, 0, 1, 0, 0) (1)
pub = (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x4 ∨ x5) ∧ (x1 ∨ x6 ∨ x7) (2)

since pub(priv) = 1. Bob wants to send a bit y ∈ B to Alice. He rewrites

c̄1 = x1x2x3 (3)
c̄2 = x1 ⊕ x1x4 ⊕ x1x5 ⊕ x1x4x5 (4)
c̄3 = 1⊕ x1 ⊕ x6 ⊕ x7 ⊕ x1x6 ⊕ x1x7 ⊕ x6x7 ⊕ x1x6x7 (5)
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1. Of course, the ratio of clauses to variables in realistic keys needs to be much larger (see Appendix E) and also the key length needs to be
much longer.
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Figure 1. Encryption (top): The text is hidden in random noise patterns generated from the public key pub. Subsequent additions hide the structure
of the noise patterns to make it harder to subtract the noise.
Decryption (bottom): Via the private key, every noise pattern generated from pub is “switched off” and hence the clear text is revealed from the sum.

and randomly generates

R2,3 = x4 ⊕ x5 ⊕ x6 ⊕ x4x5 ⊕ x4x6x7 ⊕ x5x6x7 ⊕ x4x5x6x7 (6)
R1,3 = 1⊕ x2x3 ⊕ x6x7 ⊕ x2x3x6x7 (7)
R1,2 = 1⊕ x4 ⊕ x5 ⊕ x2x3 ⊕ x4x5 . (8)

The cipher is

g = c̄1R2,3 ⊕ c̄2R1,3 ⊕ c̄3R1,2 (9a)
= y ⊕ 1⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x1x6 ⊕ x1x7 ⊕ x2x3 ⊕ x4x5 ⊕ x4x6 ⊕ x4x7 ⊕ x5x6 ⊕ x5x7 ⊕ x6x7 ⊕ x1x4x6 (9b)
⊕ x1x4x7 ⊕ x1x5x6 ⊕ x1x5x7 ⊕ x2x3x6 ⊕ x2x3x7 ⊕ x4x5x6 ⊕ x4x5x7 ⊕ x4x6x7 ⊕ x5x6x7 ⊕ x1x2x3x7 (9c)
⊕ x1x4x5x6 ⊕ x1x4x5x7 ⊕ x2x3x6x7 ⊕ x4x5x6x7 (9d)

Bob sends the cipher g for the clear text y to Alice, who decodes g(priv) = y.
Mallet can attack the scheme above by replacing a literal in g by a truth value, say x3 7→ 1. He sends the modified

cipher to Alice and from Alice’s reply, he will notice whether Alice received the correct bit or not. Hence he concludes that
x3 = 0 in the private key. Alice might notice the attack by a suitable syntax check on the decoded text (containing more
than one bit), but the security of the key pair is lost anyway.

This attack can be countered as follows. Bob seeds his random number generator, which chooses the clauses and
generates the random functions Ri, with a hash of the salted clear text. He then sends the salt together with the encrypted
message. If the clear text was long enough, it would take Mallet very long to guess the right seed from the salt alone (hence
decoding the message). But knowing the salt and the clear text, Alice can easily re-encrypt the message after decryption
and check whether the cipher has been altered by Mallet. She rejects any faulty message, regardless of the private key,
hence not revealing any information.

2 ALGORITHMS

In this section we specify the algorithms for key generation and encryption. The public key, pub , is a “planted” random
k-SAT instance for k ∈ N with k > 2. This is a Boolean function in n ∈ N variables, pub : Bn → B, which is given as a
conjunction of m ∈ N many k-clauses, cj : Bk ⊂ Bn → B, together with a truth assignment, the private key priv ∈ pub−1(1).
In summary

pub : x 7→
m∧
j=1

cj(x) , cj : x 7→
k∨
i=1

(xI(i,j) ⊕ s(i, j)) , (10)

where the signs s(i, j) ∈ B determine wether the literal xI is negated. To discuss the complexity of the algorithms, we use
the notation

O(f) :=

{
g : N→ R

∣∣ lim sup
n→∞

|g(n)|
f(n)

<∞
}
, o(f) :=

{
g : N→ R

∣∣ lim sup
n→∞

|g(n)|
f(n)

= 0

}
, (11)

and Θ(f) := O(f) \ o(f) for f : N→ R+.
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2.1 Key Generation
A key pair is generated as follows:

1) Choose the private key priv ∈ Bn at random (equidistributed).
2) Generate the clause cj by randomly choosing k distinct integers Ij,i ∈ {1, . . . , n} and “signs” si ∈ B.
3) If cj(priv) accept the clause, otherwise reject it.2

4) Repeat until m clauses have been generated.

In other words, the data to be generated and stored for the each key pair is

I : {1, . . . ,m} × {1, . . . , k} → {1, . . . , n} and s : {1, . . . ,m} × {1, . . . , k} → B , (12)

hence the length of the public key is in Θ(mk(log(n) + 1)). The run time is proportional to the public key length3.
It is very important to generate hard instances as public keys. Therefore we must ensure that priv is (almost surely)

the unique solution, i.e. m needs to be larger than the critical value, m > mc = αc(k)n for some αc(k) ∈ Θ(1), see [4].
Choosing m rather close to mc yields the most difficult instance. This is well known in similar setups, see Appendix E for
some of our own benchmarks. Choosing m ∝ n for fixed k leads to a public key length of Θ(n log(n)). A different scaling
of m with n is not recommended, since the resulting SAT instances then become much easier to solve.

2.2 Encryption and Decryption
We fix parameters α, β ∈ N with 2 ≤ β � α to tune the run time and security of the encryption.

1) Choose α many tuples of β many distinct clauses at random, J : {1, . . . , α} × {1, . . . , β} → {1, . . . ,m} such that
J(i, a) 6= J(i, b) for all a 6= b.

a) To counter attacks discussed in Section 3.1.2, it is preferable if the clauses within one tuple share variables.
This is particularly important if one of the clauses does not contain negations, i.e. s(i, 1) = . . . = s(i, k) = 0.

b) We have to ensure that each tuple shares at least one clause with another tuple to counter the attack
discussed in Section 3.2.

c) Each clause of pub is to appear in some tuple as discussed in Section 3.3.

2) The cipher encoding y ∈ B is the algebraic normal form (ANF) of

g = y ⊕
α⊕
i=1

β⊕
a=1

c̄J(i,a) ∧Ri,a . (13)

Here Ri,a is a random function. It depends on the same set of variables as the clauses {cJ(i,b)|b 6= a} and is
generated in ANF where each possible term occurs with probability 1/2.

3) The decryption “algorithm” is g(priv) = y.

We can ensure (1b) and (1c) by choosing J as follows: First choose a permutation σ ∈ Sm at random. Then set
J(i, a) = σ(i+ a− 1), where the indices are understood modulo m. In this scheme α = m. To also ensure (1a) one should
enhance the probability of neighbouring clauses, cσ(j) and cσ(j)+1, to have variables in common when generating σ.

To turn the negated clauses in (13) into ANF, one can use various identities, such as x∨ y = x⊕ y⊕ xy, but x ∨ y = x̄ȳ
is the most efficient one here. It leads to

1⊕ (x1 ⊕ s1) ∨ . . . ∨ (xk ⊕ sk) = (x1 ⊕ s1 ⊕ 1) ∧ . . . ∧ (xk ⊕ sk ⊕ 1) . (14)

The resulting ANF (obtained by distributing ∧ over ⊕) is of length ≤ 2k. The run time to compute the cipher in (13) as well
as the length of the resulting cipher are in O(α2βk). Consequently, we need to choose β ∈ O(log(m)) in order for the run
time to be polynomial. The length can be expected to be shorter than the run time by a factor > 2 due to the cancellation
of terms in the sum and due to Ri,a only containing 2(β−1)k−1 terms on average. If we choose β = log2(m)/k and α ∝ m,
we have α2βk ∝ m2. For β ∈ Θ(1), run time and cipher length formally only scale with m, but for m ≈ 210 and β = k = 3
the pre-factor is still comparable to m. In short, encryption with this setup has complexity O(m2).

3 KNOWN ATTACKS AND IMPROVED SCHEMES

Denote by Gb = Gb(pub) the set of all possible ciphers encoding b ∈ B and by G = G1 ∪ G0 the set of all ciphers. Since
the problem of deriving the private from the public key is known to be hard, we will focus on attacks on the cipher. We
will refer to the problem of deciding for g ∈ G whether g ∈ G0 or g ∈ G1 as the decoding problem. We do not have a
proof that this is a hard problem, although some related problems are (see Appendix A). In this section we focus on some
particular attacks, i.e. algorithms that solve the decoding problem and show that all of them have exponential run time, if
the parameters of the encryption algorithm are chosen suitably.

2. If the algorithm is to have finite worst case run time, one should modify the clause instead of generating a new one at random. Notice,
however, that the number of signs to flip has to be chosen carefully if the resulting distribution of public keys is to be unchanged. See e.g. [5].

3. If clauses are rejected this is tha case with probability exponentially close to 1.
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3.1 Simple Attacks
3.1.1 Enumeration of Ciphers Attack
Since the set of all possible ciphers for a given public key is finite, a trivial brute force attack is to just enumerate it. In order
to prevent this attack, the encryption parameters α and β need to be large enough. More precisely, the number of possible
ciphers is roughly (

m

β

)α
2αβ((β−1)k) . (15)

We can ensure this number to be (super) exponentially large by choosing

n ∈ O(αβ) . (16)

Further we should apply some fixed invertible linear transformation to the message bit vector before encoding. This way,
decoding a few of the cipher bits does not reveal any clear text bits.

3.1.2 Constant Term Probability Attack
Another rather trivial attack is to determine g(0, . . . , 0) for a cipher g ∈ G. This is just the presence or absence of the
constant 1 in the ANF, which is where the message bit enters. Hence this property must not distinguish G0 from G1.

The ANF of a random clause of length k contains a constant 1 with probability 1− 2−k, hence the probability for each
summand in (13) to contain the constant 1 is 2−k−1. This is rather small, but a variant of the central limit theorem is in this
case on our side, see Appendix B. As a consequence, the probability for g(0, . . . , 0) = 1 tends to 1/2 exponentially quickly
with αβ at the scale of

αβ � 2k . (17)

Considering the enumeration attack from Section 3.1.1, the bound established in (16) is much stronger than (17). In other
words, the encryption resists the constant term attack if parameters are chosen such that it resists the enumeration attack.

A more refined version of this attack focuses on those clauses which can contribute a summand 1, namely those ci
which do not contain any negation. For those,

c̄i = (xi1 ⊕ 1) . . . (xik ⊕ 1) = 1⊕ xi1 ⊕ . . .⊕ xi1xi2 . . . xik (18)

contributes a constant to the cipher sum iff the corresponding Ri also contains the constant 1. An attacker can try to judge
wether the latter is the case by looking for the order k term, xi1xi2 . . . xik , in the cipher sum. The same term could be
caused by another clause depending on the same variables, but such a clause is part of pub with vanishing probability for
large m ∝ n. Hence we need to ensure that ci shares at least one variable with another clause in the same tuple or that
another clause in the same tuple contains no negated literals. Both of these can lead to the appearance of the same order k
term, see the example in Section 1.1.

3.1.3 Cipher Value Probability Attack
An attacker can try to estimate |{g−1(1)}| for any g ∈ G by evaluating g on a random set of trial inputs. Hence this value
must not distinguish G1 from G0. This attack is structurally very similar to the constant term attack (Section 3.1.2). For
each clause c of length k, the number of inputs on which c is 1 is |{c−1(1)}| = 2k − 1. The probability of all summands
in the cipher g in Equation (13) evaluating to 1 on a random input is the same as for none of the summands to contain a
constant 1, if R = 1 with probability 1/2. Even if the Rs are chosen such that they evaluates to 1 only on ∝ 2−βk many
inputs, choosing

α� k (19)

still ensures that the probability for g(1) = 1 is exponentially close to 1/2 according to Appendix B. Since β ∈ O(log(m))
for run time reasons, condition (19) is again ensured by (16).

3.2 Decoding Attack
More sophisticated attacks exploit the structure of the encoding algorithm. Any function in g ∈ G is necessarily of the form

g = y ⊕
m⊕
i=1

c̄iRi

for some functions Ri (see Appendix C). A crucial point of our whole scheme is that polynomial long division does
not work over finite fields such as B, because the degree is not well behaved under addition and multiplication in the
polynomial ring. This can be seen in the Example 1.1. A simpler example is xn+1 = x and hence e.g. x2y ⊕ y2x5 = 0. Such
“collisions” are sufficiently likely to secure our ciphers, if the random functions RI are chosen in a good way.
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Attacks on the structure of the encoding algorithm start with the following observation. The set of all clauses which
depend only on literals in a small set {xi1 , . . . , xiM } has an expected size of(

M

k

)
m

nk
, (20)

which is exponentially small for M ∈ o(m). In other words, a small set of clauses C is most likely uniquely determined by
D(C) :=

⋃
ci∈C D(ci) where D(c(x1, . . . , xk)) = {x1, . . . , xk} denotes the variables on which c depends. This means that

most likely all tuples J(i, 1), . . . , J(i, β) used to generate our cipher g in Section 2.2 can be identified from the ANF of g.
For a given tuple, this leaves 2β(β−1)k choices for the random functions associated with it. If we choose β = log2(m)/k
(see Section 2.2) then 2β(β−1)k ≈ mlog(m). This is super polynomial in m, but, for reasonable values of m, an attacker
can still produce all possible summands associated with this tuple and try to add them to g. He can check whether all
terms involving variables from this tuple cancel. However, the same variables will occur also in other tuples. In fact, we
should ensure that also some of the clauses from this tuple appear in other tuples. This will leave the attacker with a few
possibilities for the random function, which can only be decided once the touples sharing clauses are decided as well. But
since all tuples are connected (indirectly) by sharing clauses, the run time of this attack is exponential in α which we chose
to be of the order of m.

3.3 Reduced SAT Problem Attack
If an attacker can learn that only a certain set of clauses was used to produce a cipher, he can try to solve the SAT problem
given by the conjunction of only those clauses that were used. If the ratio of used clauses to variables appearing in those
clauses is small enough, the SAT problem is easily solvable and any solution can be used to decode the cipher.

To resist this attack, care is to be taken in Step (1) of the encryption (Section 2.2). The set of all clauses used, C =⋃α
i=1

⋃β
a=1{cJ(i,a)} should not depend on more than |C|n/m many different variables. Furthermore, reducing the number

of clauses used, even at constant clauses to variables ratio, effectively reduces the key length. Overall, we should ensure
that (almost) all clauses are used to generate the cipher.

3.4 Oracle Attack
The communication according to the algorithms from Section 2.2 is vulnerable to the following attack: If the recipient is
expected to send a reply to an encrypted message, an attacker can fake a cipher by replacing a literal with a guessed truth
value. If he can learn from the reply whether the cipher was correctly decoded, he gets a strong hint, or even evidence,
for the assignment of this literal in the private key. Repeating the attack in a suitable scheme will reveal the full private
key. This is a severe attack which limits the scope of application of the random encryption algorithm to such cases where
replies are only send to authenticated communication partners. Post-quantum authentication could be provided by e.g. a
hash-based scheme, see [1, Hash-based Digital Signature Schemes]), or by our identification scheme introduced in Section 4.
One could also use only one-time key pairs for encryption, again with the problem of authenticating the new keys.

Instead, we have developed two improved version of our scheme. The one which we consider superior resist the oracle
attack completely and is described in Section 3.4.1. In special circumstances, also the version described in Appendix D
might be useful. The latter makes the oracle attack substantially more difficult and preserves the probabilistic nature of the
encryption.

3.4.1 Proof of Honest Encryption
The version of the encryption/decryption scheme described here prevents the oracle attack completely without increasing
the complexity of the encryption algorithm. Key generation is unchanged, but decryption becomes as complex as encryption
and the feature of stochastic ciphers is lost. More precisely, using the encryption discussed in Section 2.2, the cipher is not
a function of the public key and clear text. In particular, even if Bob encodes the same clear text twice, he will get different
ciphers. This makes repetition-attacks impossible and the algorithm is very resistant against rainbow table type attacks. It
is, of course, only pseudo random. In other words, the cipher is a function of public key, clear text and the seed of the pseudo
random number generator (PRNG), implicitly used to make the random choices. This can be used to verify that the cipher
was not tempered with in order to oracle the private key, at the cost of loosing the rainbow-resistance. The latter can then
be restored in the usual way by salting.

Concretely, key generation as described in Section 2.1 stays untouched and also encryption is done as explained in
Section 2.2, but the sender starts by seeding the PRNG with a specific seed, computed from clear text and a salt. The salt is
then to be part of the cipher. After decryption of the cipher (applying it to the private key), the recipient computes the seed
from the clear text and the salt. He then checks that the received cipher text matches that one that is computed from the
public key, the clear text, and the seed according to the fixed encryption algorithm. This way, oracle attacks can be detected
without revealing any information.

The cost to pay is that the implementation of the PRNG and the encryption algorithm on the sender and receiver side
have to match and that the receiver has to re-do the most time consuming part of the whole scheme, the encryption. Further
more, the clear text needs to be long enough (of order n) in order to prevent a brute force attack on the seed. Notice that
the seed, as computed from the salt and clear text, is to be considered as a key for decoding the particular message. If an
attacker can find the seed he can decode the cipher without the private key.
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4 IDENTIFICATION AND SIGNATURES

In this sections we introduce a zero-knowledge proof for our key pairs. This leads to an identification and signature scheme,
which is independent from the encryption scheme discussed above, apart from sharing the same type of public/private
key pairs. In fact, the scheme proposed here is a variant of the one by Blum based on the Hamitlon cycle problem [2]. The
latter is NP-complete, hence polynomial-time equivalent to SAT, but one can apply the ideas more directly.

4.1 Zero-Knowledge Proof/Identification
Let pub again be a k-SAT instance in n boolean variables and priv ∈ pub−1(1) a solution only known to Alice. The
zero-knowledge proof consists of K rounds, each of which proceeds as follows:

1) Alice chooses a random invertible function f : Bn → Bn and commits to f∗(pub) = pub ◦ f and to f−1(priv). More
precisely, the commitment to f∗(pub) is to be in the form of committing to each literal in the pull back of the form,
i.e. to each f∗(xI(1, 1)), f∗(xI(1, 2)), . . . , f∗(xI(m, k)).

2) Bob chooses (randomly) whether Alice should reveal either

a) all of f∗(pub) or
b) f−1(priv) together with

{
f∗(xI(i,ai))|i ∈ {1, . . . ,m}

}
, where Alice randomly chooses the ai ∈ {1, . . . , k}

such that f∗(xI(i,ai))
(
f−1(priv)

)
= 1 for all i.

In this scheme Bob either verifies that Alice did not cheat when generating f∗(pub) or that she indeed knows a solution.
Fake proofs will hence be discovered with probability 1/2 each round and the probability to get through all rounds is 2−K .

The run time of the above scheme depends on what kind of functions we allow for f . If we only use permutations4, the
run time for generating the permutation, its inverse and reshuffling priv is O(n) and O(m) for re-labelling pub . However,
in this case the number of 1s and 0s in the public key is leaked by revealing f−1(priv). To avoid this, we should at least
add a random affine shift s ∈ Bn to the permutation, i.e. f(x) = σ(x) + s.

4.2 Signatures
By a Fiat-Shamir heuristic we can convert the above interactive identification into a signature scheme. To this end, let
h : B∗ → BK be a cryptographic hash function. To sign a document:

1) Alice generates K random functions, f1, . . . , fk, as in Section 4.1 and commits to all of the f−1
i (priv) and f∗(pub).

2) She then computes a hash of the document to be signed, concatenated with (a suitable encoding of) her commit-
ments. Denote the latter by C .

3) She reveals the information as in Step 2 of Section 4.1, choosing 2a or 2b according to the obtained hash. Denote
this revealed information by R.

The signature consists of C and R. It is verified by Bob by checking that the correct information was revealed by re-
computing the hash. He also checks that the revealed information is valid as in Section 4.1, of course.

To fake this signature, Alice could fake the zero-knowledge proofs and generate signatures until, by chance, a valid
one is generated. However, the probability for this to happen is as small as cheating in the identification scheme, i.e.
exponentially small in the number of rounds.

5 CONCLUSION

We have introduced a public key crypto-scheme based on the Boolean Satisfiability Problem. The motivation for developing
such an algorithm is to fill the arsenal of post-quantum cryptography with some fresh ammunition. The simplicity of the
scheme developed in this paper might be an advantage over the well known post-quantum schemes. More conceptually,
we are not aware of any scheme which uses random ciphers in a similar way (compare to Figure 1). Furthermore, there
is quite some freedom in the details of the encryption algorithm, in particular in choosing probability distributions for
the random functions RI . This makes it possible to adapt the algorithm, if more sophisticated attacks are discovered in
the future. The encryption presented in Section 2.2 has undergone some evolution to resist all attacks which came to our
mind. The version using a proof honest encryption has no vulnerabilities currently known to us, but of course much more
crypto-analysis is needed and the reader is invited to devise stronger attacks to challenge and improve the algorithm.
In particular, we have not proven that it is (NP-)hard to decipher a message without knowledge of the private key. It is
the problem of deducing the private from the public key that is NP-hard, i.e. “post-quantum”, by construction. Another
notable feature of our encryption is that it is (perfectly) homomorpic, i.e. applying any boolean function to the cipher bit
vector and then decoding yields the same result as decoding and then applying the function.

The oracle attack mentioned in Section 3.4 is a severe generic attack on any cipher consisting of Boolean functions.
Enforcing honest encryption as explained in Section 3.4.1 is a generic counter. The multi-key version of our scheme
described in Appendix D is another (generic) work around. However, this one is not completely resistant against oracle

4. Here the permutation acts on Bn by permuting the coefficients with respect to the fixed base and correspondingly on formulas by permuting
the indices of the variables.
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attacks. Although it only reveals much less information, the key pairs still need to be changed regularly in the multi-key
scenario. As opposed to the simple version, here this could here be feasible. In some special situations, the multi-key
version might still be preferable, since encryption is considerably more complex than key generation and decryption which
in particular yields some protection against DOS attacks for multi-key schemes.

The length of the public key and the run time of the key generation algorithm scale as O(n log n) with the length of the
private key n. The length of the cipher and the run time of the encryption algorithm per bit of clear text scale as O(m1+ε)
with ε ≥ 0 and we have identified 2αc(k)n > m > αc(k)n as the relevant parameter range for hard planted SAT instances
(see Appendix E). The crucial question is how big n should be in practice today. At the SAT Competition 20145, random
3-SAT instances of size n ≈ 104 have been solved for m ≈ mc in less than one hour.6 These instances were selected in
order to be solvable within that time, but still they are randomly generated with non-negligible probability. For m < mc

even instances with n ≈ 106 have been solved, but these instances have most likely very many solutions and are hence
much easier than our public keys. Our own benchmarks (Appendix E) show that the MiniSat solver [3] can not break keys
of length n > 210 ≈ 103 on a modern PC using one thread. Taking large scale parallelisation into account and in view of
the SAT Competition results, one should choose n > 223 ≈ 107.

Key generation is very fast and choosing n > 107 is not a problem here. However, encryption with our not very much
optimised proof of concept implementation [6] already takes time of the order of few seconds per bit of clear text to encode
with α = m = 5n = 5 × 210 and β = 3 and still tenth of seconds per bit for β = 2 and the other parameters as before.
Although there is certainly room for improving the implementation, the constraint β ≥ 2 means that the run time of the
encryption algorithm is in O(m1+ε) with ε ≥ 3/5 for m ≈ 210. These run times are not yet very well suited for practical
applications. However, the situation could be improved by advancing away from bit-wise encryption. Encoding longer
messages at once is an interesting topic for future research. If one can counter the attack from Section 3.3 by other means
than using all clauses, smaller α would also lead to a substantial speed up. Anyway, before more research builds on the
ideas presented here, we would like our algorithm to be challenged by more advanced attacks in order to improve it.
Furthermore, the problems which we have proven to be NP-hard (see Appendix A) are still not very close to the decoding
problem. To build faith in this encryption really being post-quantum secure, more research in this direction is in order.

The signature scheme presented in Section 4.2 is independent of our encryption scheme. It is rather close to Blum’s well
known scheme [2], but adapted to our SAT scenario and post-quantum secure by construction.
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APPENDIX A
SOME HARD PROBLEMS

In this section, we establish that some problems related to the decoding problem (see Section 3) are hard. To this end, fix a
public key pub and assume that pub−1(1) = {priv}. The partitioning of ciphers G = G0 ∪G1 is characterised by

G1 = {g ∈ G | pub ⇒ g} (21)
G0 = {g ∈ G | pub ⇒ ḡ} . (22)

Deriving the private key is harder than decoding, since ∀g ∈ G : g ∈ Gg(priv). Assuming that all g ∈ G are given in such
a form that evaluating g(priv) is possible in polynomial time, the decoding problem is in NP.

If G would contain the elementary functions X := {x 7→ xi} then the decoding problem would be (polynomial time)
equivalent to deriving the private key, hence solving the SAT problem. A set of functions Y of polynomials size will be
called “hard to decode”, if solving the decoding problem for each f ∈ Y determines (by a polynomial time algorithm) the
solution of the SAT problem. The following sets of functions are hard to decode:

1) The elementary functions X
2) Any set of functions containing a subset that is hard to decode
3) {f ⊕ sf |f ∈ Y } where sf ∈ B are known and Y is hard to decode
4) {f ⊕ g|f ∈ Y } where Y is hard to decode and g is any Boolean function
5) {f ∧ g|f ∈ Y } ∪ {f ∧ ḡ|f ∈ Y } with Y , g as above
6) {xi ∧ f |f ∈ Y, xi ∈ X} with X , Y as above
7) {xi ∨ f |f ∈ Y, xi ∈ X} with X , Y as above

(3) is hard to decode since f ⊕ s ∈ Gb ↔ f ∈ Gb⊕s. (4) is hard to decode since we can decide for each f ⊕ g whether or
not it is implied by pub , then assume that g(priv) = 0 and use that Y is hard to decode to produce a trial solution priv ′. If
pub(priv ′) 6= 1 then g(priv) = 1 and we can use (3). (5) is hard to decide since one of the two sets evaluates to {0} on priv .
Since there are only two possibilities for g(priv) one can check both in polynomial time, similar to (4). In (6) (and similarly
in (7)) we can decide {x1 ∧ f}. If this turns out to be a subset of G0 then we likely have x1(priv) = 0 and we proceed
deciding {x2 ∧ f}. After polynomial time we either arrive at some xi(priv) = 1 and can hence derive priv or conclude that
priv = (0, . . . , 0).

The above construction shows that some generic problems similar to the decoding problem are hard to decide. Notice,
however, that the sender can not (on purpose) encode a message of polynomial length into a hard to encode set of functions
in polynomial time, or else he would solve the SAT problem.

APPENDIX B
BOOLEAN CENTRAL LIMIT THEOREM

Consider a set of i.i.d. Boolean variables xi, with p1 := prob(xi = 1). Then

p⊕0 := prob

(
M⊕
i=1

xi = 0

)
=

bM/2c∑
j=0

(
M

2j

)
p2j

1 (1− p1)M−2j (23)

p⊕1 := prob

(
M⊕
i=1

xi = 1

)
=

dM/2e−1∑
j=0

(
M

2j + 1

)
p2j+1

1 (1− p1)M−2j−1 (24)

and hence |p⊕0 − p
⊕
1 | = |1 − 2p1|M converges to 0 for any 0 < p1 < 1 and M → ∞ at exponential speed. In other words,

for large enough M we have p⊕1 ≈ 1/2 irrespective of p1. Large enough here means M � −1/ log |1− 2p1|, which means
M � p−1

1 /2 for small p1 � 1/2.

APPENDIX C
STRUCTURE OF CIPHERS

In this section we discuss which functions g can, in principle, be constructed from the public key pub without knowledge
of the private key, such that pub ⇒ g, i.e. g ∈ G1. We will therefore assume that only the clauses ci of pub =

∧m
i=1 ci can be

used as the elementary building blocks for which pub ⇒ ci is known.
Any encryption algorithm of the type discussed in this paper will lead to sets of ciphers G and Gb which are contained

in the sets G̃ and G̃b, respectively. The latter are constructed as follows

1) 1 ∈ G̃1 and ci ∈ G̃1 for i ∈ {1, . . . ,m}.
2) f ∈ G̃a, g ∈ G̃b ⇒ f ⊕ g ∈ G̃a⊕b, f ∧ g ∈ G̃a∧b and f ∨ g ∈ G̃a∨b. In particular, ḡ = 1⊕ g ∈ G̃b̄.
3) f ∈ G̃1, g arbitrary⇒ f ∨ g ∈ G̃1 and f̄ ∧ g ∈ G̃0.
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The sets that can be constructed from (1) using (2) and (3) are

G̃0 =

{
m∧
i=1

c̄ifi | fi : Bn → B

}
(25)

G̃1 = {1⊕ f | f ∈ G0} . (26)

These are stable under (2), since f ∨ g = 1⊕ f̄ ḡ = f ⊕ g ⊕ fg and f = 1⊕ f̄ . Further, the set of Boolean functions used in
(2) is complete.

APPENDIX D
MULTI-KEY CHAINS

In some situations, the proof of honest encryption method laid out in Section 3.4 might not be favourable, for example if
the feature of (pseudo) random ciphers is crucial or re-computing the encryption on the receiver side is to costly. In such
cases, we can still substantially weaken the oracle attack. The key idea here is to introduce redundancy, which increases
key length and all run times by a constant factor.

The private/public key chain now consists of γ ∈ N different private/public key pairs. To encrypt a message, each bit
is to be encrypted with each of the public keys, i.e. the cipher for one bit now consists of γ many Boolean functions in ANF.
In a valid cipher, all of these functions evaluate to the same value upon inserting the respective private keys.

After decoding, the recipient has to decide whether or not to accept the message (bit), if the cipher is invalid. Rejecting
all invalid ciphers would reveal as much information about the private key as the simple version of Section 2. Therefore
we fix a threshold t ∈ {2, . . . , γ/2} and accept the bit with value given by the majority, if the minority is smaller than t. To
properly choose t, we consider the two possible outcomes of the attack:

1) If the message is rejected, the attacker learns that more than the (known) threshold t of the bits he guessed did not
match the private keys.

2) If the message is accepted, the attacker will learn whether or not he guessed the majority of bits right (from the
reply of the receiver).

To keep the information leakage about the private key as small as possible, we should choose t large in order to make
(1) unlikely. More precisely, if f ∈ {0. . . . , γ} of the encoded versions of the bit are manipulated by replacing one variable
with a guessed value (such that the change in the function influences its value), the probability of rejection is

probr(t, f) =
1

2f

∑
t≤T≤f

(
f

T

)
, (27)

which can be expressed through the error function for large f . If f is close or even equal to t, the attacker gains substantial
information, but for this attack, the success probability is exponentially small in t.

In the opposite case of choosing f close to γ, the attack is most likely detected if t is small enough. Concretely choosing
e.g.

t =
γ

2
− c

2

√
γ (28)

with c = 3 means that more than 99.7% (for large γ) of the attacks will be detected with hardly any information gain for
the attacker. More precisely, the probability of a successfully attack of this type scales down super exponentially (with the
complementary error function) and is below 10−8 already for c = 6. In practice, choosing t ∝ γ with a proportionality
factor slightly smaller than 1/2 should be most reasonable.

The attacker gains most information from an attack with probr(t, f) ≈ 1/2, i.e. f ≈ 2t. This attack being rejected or not
indicates that more or less than half of the private key bits were guessed correctly. Gathering this knowledge from O(γ2)
attacks in a suitable scheme will reveal the value of all γ bits of the keys with a high confidence level on the attackers
side. Hence the multi-key hardened version is not fully resistant against the oracle attack, but the attack will almost surely
be noticed before substantial information is leaked. This invalidates the authenticity of the attacker in an authenticated
communication. Even if information was leaked, not all keys in the chain have to be replaced, which limits the damage of
a successful attack.

One can improve the scheme a little more by also choosing γ at random for each decryption, but still statistical analysis
will eventually reveal the private key bits. Hence the proof of honest encryption scheme introduced in Section 3.4.1 is
certainly more secure than the multi-key scheme.

APPENDIX E
BENCHMARKS

We have conducted some simple bench marks for breaking the public key, i.e. solving the SAT instance, using MiniSat [3].
It is well known that random instances are the hardest for m ≈ mc = αc(k)n. For the planted instances that we use as
public keys, it turns out that the hardest instances have slightly more clauses.
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E.1 3-SAT
For k = 3 we find (see Figure 7 to 2) that the hardest instance have m ≈ 5n where mc ≈ 4.2n [4]. In Figure 2 we show the
run time of MiniSat for various random instances generated by our key generator as a function of the number of variables
for fixed m/n = 4.3. This is very close to the critical ratio. Fitting an exponential function to the minimal run times, we
extrapolate that one should choose n100 ≈ 1500 to ensure that the MiniSat solver would take at least 100 years to break
the public key. For m/n = 4.5, as displayed in Figure 3, we find the same n100 within the error of our approximation,
but for m/n = 5 (Figure 4) n100 < 1000 is significantly smaller. Increasing m/n further leads to an increases in n100

which again reaches n100 ≈ 1500 for m/n = 8. Consequently, we choose m/n = 5 and a private key length n = 210

for k = 3 as the default values for the proof-of-concept implementation [6]. This leads to a public key length of about
k ∗m ∗ (log2(n) + 1) ≈ 165 kbit. Notice that the keys generated with these parameters can be considered “PC-secure” but
securing the keys against more sophisticated massively parallel solvers rather requires n & 211.

E.2 4-SAT
For k = 4 the critical ratio of clauses to variables is about mc = 9.8n. Using m/n = 10 our MiniSat benchmarks indicate
n100 ≈ 350. So the private key size can be reduced significantly by using higher k. However, the public key size for these
parameters (≈ 133 kbit) is comparable to the one for k = 3. This means that the run time for encryption with higher k is
significantly longer (exponential in k, see Section 2.2). Overall, it does not pay off to use higher values of k.
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Figure 2. MiniSat run times for m/n = 4.3.
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Figure 4. MiniSat run times for m/n = 5.
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Figure 5. MiniSat run times for m/n = 6.
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Figure 6. MiniSat run times for m/n = 7.
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