
Cryptanalysis of the
Authenticated Encryption Algorithm

COFFE

Ivan Tjuawinata, Tao Huang, Hongjun Wu

Division of Mathematical Sciences
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

S120015@e.ntu.edu.sg

huangtao@ntu.edu.sg

wuhj@ntu.edu.sg

Abstract. COFFE is a hash-based authenticated encryption scheme. In the original paper,
it was claimed to have IND-CPA security and also ciphertext integrity even in nonce-misuse
scenario. In this paper, we analyse the security of COFFE. Our attack shows that even under
the assumption that the primitive hash function is ideal, a valid ciphertext can be forged
with 2 enquiries with success probability close to 1. The motivation of the attack is to find a
collision on the input of each of the hash calls in the COFFE instantiation. It can be done in
two ways.
The first way is by modifying nonce and last message block size. Chosen appropriately, we can
ensure two COFFE instantiations with different nonce and different last message block size
can have exactly the same intermediate state value. This hence leads to a valid ciphertext to
be generated. Another way is by considering two different COFFE instantiations with different
message block size despite same key. In this case, we will use the existence of consecutive zero
in the binary representation of π to achieve identical intermediate state value on two different
COFFE instantiations. Having the state collisions, the forgery attack is then conducted by
choosing two different plaintexts with appropriate nonce and tag size to query. Having this
fact, without knowing the secret key, we can then validly encrypt another plaintext with
probability equal to 1.

Key words: COFFE, Authenticated cipher, Forgery Attack

1 Introduction

Authenticated encryption is a symmetric encryption scheme aiming to provide authenticity at the
same time as confidentiality to the message. Initially, Bellare and Namprempre proposed the au-
thenticated encryption(AE) schemes by integrating an encryption scheme with an authentication
scheme in 2000, [1]. In 2001, Krawczyk published a paper [8] that studies the possibility to solve this
problem by applying the existing symmetric key cryptosystem and hash function one after another.

The difficulty of the general composition approach is although the security of the parts individu-
ally is well-studied, the application of one function may affect the security of the other. Furthermore,
in implementation point of view, it is not very efficient and error-prone considering it is required to
have two different primitives, one for encryption, one for plaintext integrity.

To tackle the first difficulty, a lot of dedicated designs to simultaneously encrypt and authenticate
the message have been proposed, among which the authenticated encryption mode is a commonly
used design approach. Some examples of these mode of operations are IAPM [7], OCB [11], Jambu
[12], GCM [5], CCM [4] and ELmD [3].

The consideration for the efficiency comes from the fact that encryption and authentication
is done independently with each of their own primitive. So one way to solve this is to consider
using the same primitive for both purpose. The initial direction that research goes was to construct
a block-cipher based hash function for the authentication purpose such as the ones found in [9]
and [10].

2 Ivan Tjuawinata, Tao Huang, Hongjun Wu

Another way to solve this problem is to purely use a hash function for both encryption and
authentication purposes. Some of AE modes that is based on hash functions are OMD [2] and
COFFE [6].

COFFE is a hash-function-based authenticated encryption scheme designed by Forler et al. .
It was published in ESC 2013 [6]. COFFE is designed to be secure for computationally constraint
environment. As mentioned above, COFFE utilises a hash function for both encryption and authen-
tication without introducing any block cipher primitive. According to [6], COFFE is one of the first
authenticated encryption that is purely based on hash function. This alternative direction of con-
structing an authenticated encryption system is interesting for constructing a secure authenticated
encryption.

The designers claim that COFFE is secure against chosen plaintext attack in nonce-respecting
scenario. It is also claimed to have ciphertext-integrity even in nonce-misuse scenario. In particular,
it is claimed that the ciphertext integrity of COFFE is at least strong as the indistinguishability of
the hash function used. That is, forging a ciphertext with a valid tag should be as hard as finding
collision in the underlying hash function. Furthermore, it also provides additional features. Firstly,
it provides failure-friendly authenticity, that is, COFFE provides reasonable authenticity in the
case of weaker underlying hash function. Secondly, it also provides side channel resistance under
nonce-respecting scenario.

In this paper, we first analyse the design of COFFE. During the analysis we consider the scheme
firstly under the nonce-repeating scenario. Instead of using any specific hash function for the un-
derlying primitive, we analyse it on the generic construction case with an ideal underlying hash
function. We show that under these settings, some instances of COFFE with particular parameters
are vulnerable to distinguishing attack, ciphertext forgery attack, or related key recovery attack.
Thus, the security claim of COFFE for these parameters does not hold.

The attacks come from the consideration that intermediate state values of two different COFFE
instantiations can be made the same while having different inputs. The vulnerability comes from the
fact that having most of the parameters to be variables, different set of parameters can be chosen
and combined to create the collision. The attack starts by first trying to find a specific value for
the parameters where this can happen. Having found these parameters, different approaches are
made to exploit this discovery to launch either distinguishing attack, forgery attack, or key recovery
attack. In this paper, we found that for the distinguishing and forgery attack, if we use the same
secret key for all the instantiations, the success probability is close to 1.

The rest of this paper is structured as follows: The generic specification of COFFE is given in
Section 2. Section 3 provides some analysis and observation of COFFE. Section 4 introduces the
distinguishing attack. Section 5 provides two variants of ciphertext forgery attack. We proposed a
related key recovery attack on section 6. Lastly, section 7 concludes the paper.

2 The COFFE Authenticated Cipher

The COFFE family of authenticated ciphers uses six parameters: key length, nonce length, block
size, hash function input and output size, and tag length. We will briefly describe the specification
of COFFE authenticated cipher. The full specification can be found in [6]. An overview of COFFE
is provided in Figure 1.

2.1 Notations

Throughout this paper, we will be using the following notations:

– F : Underlying Hash function
• γ: Input size for F assuming “one compression function invocation per hash function call”
• δ: Output size for F

– LK : Secret key length expressed in bits. The length of this string should be a multiple of a byte
– LV : Nonce length expressed in bits. The length of this string should be a multiple of a byte
– LT : Tag length expressed in bits. The length of this string should be a multiple of a byte,
LT ≤ δ

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 3

Fig. 1. General scheme of COFFE encryption and authentication (Fig. 2 of [6])

– α: Message block size
– β : Last message block size, β ≤ α ≤ δ
– x : Bits for domain value. The string length will follow the number of bytes needed to express
β + 5 in bits.

– Let v be a binary string and b be a positive integer.
• |v| : The length of v in bits.
• |v|b : A b−bit binary representation of v.
• [v] : The length of v in byte.
• [v]b : A b−byte binary representation of v.
• b : [β + 5].

– S1||S2: Concatenation of string S1 followed by S2.
– S1

⊕
` S2 : The `- bit strings obtained by XOR-ing the ` least significant bits of S1 and S2.

• S1 =b S2: The last b bits of both S1 and S2 is the same.
– S1||0?||S2: When clear the total length should be, say a bits, concatenate S1 with 0-bits then

with S2 with the number of 0-bits being the difference between a and the total length of S1 and
S2.

– K : Secret key string
– V : Nonce
– L : The number of message blocks for the encryption
– S: Session Key with length δ bits
– H: Associated Data
– M[i], 1 ≤ i ≤ L : The i-th message block, an α bit string except forM[L] having length β bits.
– C[0] : The initial vector
– C[i], 1 ≤ i ≤ L : The i-th ciphertext block with the same length as M[i]
– T [i], 0 ≤ i ≤ L : Chaining values for the scheme each of which having length δ bits
– T : Message Tag.

2.2 Associated Data Processing

The method of processing the associated data, H, can be divided into three cases based on the
length of the associated data.

– If the length of H is less than δ bits, it is appended by 1 followed by appropriate number of
zeros to reach δ bits. This is defined as T [0] and a domain value x is defined to be 1.

– If the length of H is exactly δ bits, this is directly defined as T [0] while the domain value x is
set to be 2.

– If the length of H is more than δ bits, feed H to F and the resulting hash output is used as the
value of T [0] and x is defined as 3.

4 Ivan Tjuawinata, Tao Huang, Hongjun Wu

2.3 Initialization

There are two values that need to be computed in the initialization phase, S and C[0]. Firstly,
the session key, S which is defined based on K,V,LK ,LV , and b. The value of S is defined to be
F(K||V||0?||LK ||LV ||[0]b). Note that here 0? is used to pad the string to make the length equals to
γ.

Next, the constant C[0] which depends only on the message block size α. C[0] is defined to be
the first α

4 post-decimal values of π interpreted as a hexadecimal string. So for example, since the
decimal values of π is .14159 . . . , if α = 16, Then C[0] = 0x1415 = 0001010000010101.

2.4 Processing plaintext

Plaintext is encrypted to obtain the ciphertext after the generation of session key S, the initialization
vector C[0], initial chain value T [0] and the domain value, x. The plaintext blocks are processed as
follow:

T [1] = F((S
⊕
T [0]) || C[0] || 0? || [x]b)

C[1] =M[1]
⊕

α T [1]

for all blocks M[i], 2 ≤ i ≤ L− 1{
T [i] = F((S

⊕
T [i− 1]) || C[i− 1] || 0? || [4]b)

C[i] =M[i]
⊕

α T [i]
}

T [L] = F((S
⊕
T [L − 1]) || C[L − 1] || 0? || [4]b)

C[L] =M[L]
⊕

β T [L].

2.5 Tag generation

After the associated data and plaintext are processed, the LT -bit tag T is derived:

T = F((S
⊕
T [L]) || C[L] || 0? || LT || β + 5)

The decryption is trivial and we omit it here. For the verification, only the LT least significant
bits of the tags are checked.

2.6 Security goals of COFFE

COFFE is claimed to have the INT-CTXT (ciphertext integrity) and IND-CPA(indistinguishable
under chosen plaintext attack) property under nonce-respecting scenario.

In particular, in lemma 1 of [6], we have:

Lemma 1. Let Π be a COFFE scheme as defined above with F as its underlying hash function.
Then the advantage of adversary A under nonce-respecting scenario with q queries and ` message
blocks to the encryption oracle with time bounded by t can be upper bounded by:

AdvCPA
Π (q, `, t) ≤ 8`2 + 3q2

2n
+ 2.AdvPRF-XRK

F (q, `, t).

In other words, distinguishing COFFE from a random function with chosen input under the
bound of (q, `, t) should be at least as hard as distinguishing F from a random function $: {0, 1}γ ⇒
{0, 1}δ.

Additionally, COFFE has some other security claim under different circumstances. Firstly, under
the nonce-misuse scenario, it claimed that

– “..., the integrity of the ciphertext does not depend on a nonce, but only on the security of F”.

In particular, in lemma 2 of [6], we have:

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 5

Lemma 2. Let Π be a COFFE scheme as defined above with F as its underlying hash function.
Then in the nonce-ignoring adversary scenario with q queries for ` message blocks and t times, we
have

AdvINT-CTXT
Π (q, `, t) ≤ 3`2 + 2q2

2δ
+

q

2LT
+ AdvPRF

F (q + `, O(t)).

This implies that the hardness of forging a ciphertext with a valid tag should be at least as hard as
distinguishing F from a random function from {0, 1}γ to {0, 1}δ.

Secondly, COFFE also provides a failure-friendly authenticity. That is, under a weaker assump-
tion on the security of the underlying hash function F , the authenticity of the message is still
kept.

Lastly, COFFE also provides a reasonable resistance against side channel attack. This is so
because “for each encryption process, a new short term key is derived from a nonce and the long
term key” [6].

3 Analysis on the COFFE scheme

In our analysis, we will assume F : {0, 1}? ⇒ {0, 1}δ to be an arbitrary ideal hash function with γ
being the largest possible length of the input to ensure exactly one compression function invocation
per hash function call. Here we are assuming the possibility of the parameters to have length more
than 255 bits. In other words, it is possible that it requires more than 1 byte to represent LK ,LV ,LT
in their binary format.

The first observation is about the input for the hash function call. Note that since we are only
considering concatenation, there is not always a way, given the concatenated string, to uniquely
determine the value for each strings before the concatenation. For example, if a||b = 11011, it is
possible for a = 110, b = 11 or a = 1, b = 1011. This leads to the possibility that two different sets
of strings to be concatenated to the same string.

Observation 1 For the input of any hash function call, due to the absence of separator between
substrings and changeable elements lengths, it is possible to have two different sets of strings to be
concatenated to the same string.

On the following subsections, we analyse this observation further to find whether it is possible
to utilise this to cause a collision in the intermediate state value of the COFFE. We first consider
the case when we fix the message block size while allowing two different last message block sizes,
β1 and β2, to be used. The analysis is focused on the case when |β1 − β2| is a multiple of 256. The
analysis on this can be found on section 3.1. Next we also consider the possibility of having identical
intermediate state values when we change the message block size, α, while keeping β fixed. The
analysis is focused on how α should be chosen in such a way for the first message block encryption
of both instantiations to have identical hash value output. This is discussed in section 3.2.

3.1 Modification of β

We fix α and consider different values of β. In our next observation, with large enough α, it is
possible to have β1 < β2 ≤ α such that β2 − β1 is a multiple of 256. This implies that the last byte
of the input of F in the tag generation for the two different plaintexts can be the same. As discussed
above, however, we want the collision to happen in the whole input string for any F input. If both
β1 + 5 and β2 + 5 require 2 bytes to represent in binary format, the second to last byte will never
agree. So for collision to happen, we need β1 + 5 < 256, 256 ≤ β2 + 5 < 65536 and β2 = β1 + 256ρ
for some integer 1 ≤ ρ ≤ 255.

To further analyse this observation, we consider the note by the designers regarding the increase
of number of byte required for the binary representations of the domain. In [6], it is stated that
if β + 5 exceeds one byte, all domain representations in the current COFFE will be encoded as
two-byte values instead of one. So this is important in our analysis on the possibility of exploring
this observation to introduce a successful attack.

6 Ivan Tjuawinata, Tao Huang, Hongjun Wu

Note that in the message processing, assuming that γ is big enough, there are enough bits of the
zero padding between C[i] and the domain values for the encryption to absorb the additional byte
for the domain values in case β + 5 is increased from one byte to two bytes value. So the parts that
need to be taken care of for this to happen are the session key generation and tag generation.

In the session key generation, we consider the last several bytes of the input of F . Here we have
the input to be . . . || a || LK || LV || 0. Note that when we expand the domain value from 1- to
2-byte value, the domain value should still have the same value. So the second to last byte for the
input must be 0. This gives us our next observation.

Observation 2 To ensure that collision can occur when extending the domain from 1- to 2-byte
value, the initial value of LV must be a multiple of 256. This means that if the initial LV is a 1-byte
value, it must be 0, that is, no nonce in the first instance.

Our primary goal in this section is to investigate the possibilities to have two different (key,
nonce) pairs, (K1,V1) and (K2,V2) with lengths LK1 ,LV1 ,LK2 ,LV2 respectively such that

(K1 || V1 || 0? || LK1 || LV1 || [0]1) = (K2 || V2 || 0? || LK2 || LV2 || [0]2).

For simplicity, let

S1 = (K1 || V1 || 0? || LK1 || LV1 || [0]1),

S2 = (K2 || V2 || 0? || LK2
|| LV2

|| [0]2).

Here, we note that collision is indeed possible as illustrated by the following example: Let SHA-
512 be our hash function. We can choose any 256-bit string, say K, and set K1 = K2 = K. Now we
use any one bit value (0 or 1) as our V2 while V1 is set to be V2 appended by 255 zeros. Now if we
use 472 zero paddings on the first string while using 727 bits for the second string we will have

S1 = S2 = (K || 1 || 0255 || 0472 || [1]1 || [0]1 || [1]1 || [0]1 || [0]1).

In the remaining of this section, we will try to analyse whether such collision is possible for other
instances of COFFE. Here we analyse different cases of S1 on the possibility of having S1 = S2. The
factors that we need to consider are the number of bytes required for LKi

,LVi
and whether there

is any zero paddings required. Note that if LKi
or LVi

is a 3-byte value, the value will be at least
65536 which is too big. To simplify our discussion, for this paper, we will only consider the key and
nonce to have length whose binary format can be represented as at most a 2-byte value. Due to the
big number of cases we need to consider and the similarity of the cases, we will just discuss one case
as example and a full analysis of the other cases can be found in the appendix while the Table 1
containing the conclusion is provided for reference.

I.3.c Case I.3.c.: S1 has no zero paddings, [LK1] = 1, [LV1] = 2, [LK2] = 1, [LV2] = 2.
By observation 2, LV1

= 256b and LK1
= a where 1 ≤ a,b ≤ 255. Both a and b are nonzero

because of the following reasons. First of all, since LK1
= a, if a = 0, then there is no secret key,

in which case, no confidentiality for the message. So we can disregard the case when LK = 0.
Next, since [LV1

] = 2, this should mean that LV1
≥ 256 since otherwise, [LV1

] = 1. So if b = 0,
this implies LV1 = 0 which violates the requirement LV1 ≥ 256. Hence

S1 = (K1 || V1 || a || b || [0]2).

Let V1 = V ′1 || d where d is the last byte of V1. So

S1 = (K1 || V ′1 || d || a || b || [0]2).

Consider the alternative string S2. Recall that here we want S1 = S2 where S2 has its domain
value represented as a 2-bytes value. This implies that the [0]2 in the last 2 bytes of S1 must
appear as the domain for S2. So this implies that LK2

= d and LV2
= 256a + b. Let t′ be the

number of zero padding in S2 where t′ ≥ 0. Equating S1 with S2, we have K1 || V ′1 = K2 || V2 || 0t
′
.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 7

Now comparing the length of these substrings, we have a + 256b − 8 = d + 256a + b + t′ or
equivalently, 255(b− a) = d + 8 + t′. Consider the family:

F(1,2),(1,2) = {(a,b,d, t′) : 1 ≤ a,b,d ≤ 255, t′ ≥ 0, 255(b− a) = d + 8 + t′}.

Now we consider the feasibility of each element of F(1,2),(1,2). Feasibility here means the possi-
bilities of using these values as the parameters to have the collision. Let (a,b,d, t′) ∈ F(1,2),(1,2).
Note that the collision may not happen with probability 1 due to the case when K1 6= K2. Note
that since key is the first part of the collided string, this can only happen when LK1

6= LK2
.

Before going on to the analysis, we have an assumption first. Suppose that LK1 > LK2 . Since
K1 is the first LK1

bits of S1,K2 is the first LK2
bits of S2 and we need S1 = S2, the first LK2

bits of K1 must be K2. Instead of assuming that this happens by chance, we will assume the
following: The user has 2 different instantiations of COFFE scheme with different parameter
and different key length. However, the keys chosen by the user are not independent. The longer
key is an extension of the shorter key by a random secret string. We note that this assumption
is only made for the related key setting attack and not for the general attack.
Based on this assumption, we then have the probability of K1 to have its first LK2

bits to be
the same as K2 is exactly 1.
Now back to our case, we have that LK1

= a and LK2
= d. So the length difference of the two

keys is |a− d| bits. Now if a = d, then we have K1 = K2. Now the rest of the two strings are
V ′1 || d || a || b || [0]2 and V2 || 0t

′ || d || a || b || [0]2. So we have V1 = V2 || 0t
′ || d. Now since

V1 can be controlled by the attacker, we can easily set this to be true. So the probability of the
two strings to collide is 1 if a = d.
Now consider when a 6= d, specifically, a > d. The other case can be analysed using ex-
actly the same way. Now let K1 = K2 || K′1 where K′1 is the last a − d bits of K1. We
have K′1 || V ′1 || d || a || b || [0]2 and V2 || 0t

′ || d || a || b || [0]2 as the remaining part
of the two strings truncating the first d bits. Thus, K′1 || V ′1 = V2 || 0t

′
. Note that since

1 ≤ a,d ≤ 255,a − d ≤ 255,V2 has length 256a + b ≥ 256. So the entire K′1 is in V2. In
other words, for the two strings to collide, we need the last a − d bits of V2 must be equal to
K′1. Since K′1 is supposed to be unknown, the probability of this collision is 2a−d. It is easy to
see that the remaining substring can be set to collide with probability 1. So the probability of
collision to happen is 2−(a−d). Using exactly the same analysis, we will see that when d > a,
the probability of collision to happen is 2−(d−a).Hence, for any non-negative integer k, we can
define a subfamily of F(1,2),(1,2),

F(1,2),(1,2),k = {(a,b,d, t′) ∈ F(1,2),(1,2) : |a− d| ≤ k}.

Then for any quadruplet (a,b,d, t′) ∈ F(1,2),(1,2),k we take as parameter, the collision probability

is at least 2−k.
We remark that this probability is applicable for any choices of K1 and K2. This observation
is essential in our attacks later to decide whether the attacks are only applicable to a family of
key to any value of key with the given length.

We include in Table 1 the full list of conclusion of the session key generation analysis. Here we
will use t to represent the zero padding for S1 and t′ for S2. In the Collision column, No means
a collision in this case is impossible, yes means a collision will always happen on any choices of
the parameter values (with appropriate choice of key and nonce). Lastly, F(a,b),(c,d) or Fp,(a,b),(c,d)

is the family of parameter values that belongs to the respected case that collision is possible. The
definition of each of the family can be found in the complete analysis of each case that is either can
be found above or in the appendix.

Recall that in the tag generation, given T [L],S, and C[L], the input of F is((
S
⊕
T [L]

)
|| C[L] || 0? || LT || β + 5

)
.

We note here that here we do not use the byte-aligned assumption in our analysis. The analysis
can be restricted to a byte-aligned one by adding a restriction on the families to have some of the

8 Ivan Tjuawinata, Tao Huang, Hongjun Wu

[LK1] [LV1] t [LK2] [LV2] t′ Collision? Probability Key restriction

1 1 Any Any Any Any No 0 Not Applicable

2 1 Any 1 1 Any No ≈ 0 Not Applicable

2 1 0 2 1 Any F(2,1),(2,1) 2−(LK1
−LK2

) K1 =(t′+8) 0t′ || bLK2
256
c

2 1 0 < t < 8 2 1 Any Fp,(2,1),(2,1) 2−(LK1
−LK2

) K1 =(t′+8−t) 0t′ || bLK2
28+t c

2 1 Any Any 2 Any No 0 Not Applicable

1 2 Any 1 1 255LV2 + t Yes 1 No
1 2 Any 2 1 Any No ≈ 0 Not Applicable

1 2 0 1 2 Any F(1,2),(1,2) 2−|LK1
−LK2 | No

1 2 0 < t < 8 1 2 Any Fp,(1,2),(1,2) 2−|LK1
−LK2 | No

1 2 0 2 2 Any F(1,2),(2,2) 2−(LK2
−LK1) No

1 2 0 < t < 16 2 2 Any Fp,(1,2),(2,2) 2−(LK2
−LK1

) No

2 2 Any 1 1 Any No 0 Not Applicable
2 2 Any 2 1 255LV2 + t Yes 1 No
2 2 Any 1 2 Any No ≈ 0 Not Applicable

2 2 0 2 2 Any F(2,2),(2,2) 2−|LK1
−LK2 | K1 =max(0,t′−(LV1

−8)) 0

2 2 0 < t < 8 2 2 Any Fp,(2,2),(2,2) 2−|LK1
−LK2 | K1 =max(0,t′−(LV1

−(8−t))) 0

Table 1. Session Key Generation Input Collision

values to be divisible by 8. Here the values that are related to the remainder of any value divided
by 256 must be divisible by 8. So for example, in the case when [LK] = 2, if LK = (a || b), then
we do not need a to be divisible by 8. We just need b to be divisible by 8. This will not change
the existence of any of the families. However, it will certainly requires a bigger parameter value.
For example, for the case when [LK1] = [LV1] = [LK2] = 2 and [LV2] = 1, if we want all the values
to be byte aligned, the smallest parameters we can use is when LK1

= LK2
= 256,LV2

= 8, and
LV1

= 2048. This leads to the input size for the hash function to be at least 2048+256+5×8 = 2394
bits. Here we set V2 = 128 and V1 = V2 || 02040 and the other settings to be the same as the previous
example.

We move on to the tag generation when β + 5 changes from 1-byte value to 2-byte value. Note
that the only possible source of this 1-byte value is from LT . So, in the second instantiation where
β + 5 is changed to a 2-byte value, the tag length will be different from the initial one. In fact, the
first tag length needs to be a 2-bytes value, say a || b and the second tag length needs to be a while
the difference between the two βs needs to be 256× b.

3.2 Modification of α

This section discusses a special case of the analysis in which the user has at least two instantiations
of COFFE where they have different message block sizes but the same (or related) key. Since we are
considering changing α, the one we really need to take care of is just the generation of C[0]. This
is because for any other place where α affects the system, it is generated by the previous chain in
which we can truncate easily.

Recall that C[0] is the first α
4 post decimal values of π interpreted as hexadecimal values. Suppose

that we want the difference of the two block sizes, α1 and α2, to be k with α2 being the larger value.
Since we are assuming the ideality of F , we want the input of F in this point for both instantiation
to coincide. So in other words, if the initial vector of the first instantiation is the α1 bit C1 and the
second one to be the α2 bit C2, the additional k bits of α2 should be absorbed by the next substring
of the input, which is the zero padding. Hence, the last k bits of C2 should all be zeros. In other
words, the value of α1 so that it can coincide with the positions in the post decimal values of π to
have a consecutive 0k bits. So for example, if we want α2 = α1 + 8, and α1 and α2 to be a multiple
of 8, then we will need to wait until the 306-th decimal place to get the 8 bits of consecutive zeros.
In this case, α1 = 1224 and α2 = 1232. The requirement that α1 and α2 are divisible by 8 comes
if we are assuming that the design is byte-aligned. Note that different αs can be found along the
places where we can find k consecutive zeros in the binary representation of π.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 9

4 Distinguishing Attack

In this section, to form a distinguishing attack, we use the session key collision discussed in the
previous section and the appendix. Assuming that we have the same secret key, different nonce, and
different number of byte of domain value but the same session key, as before, we assume that now
the session key for each instantiation is the same, each uses the proper number of byte of domain
value.

We set the parameters α, β1, β2,LT1
and LT2

as follows:

1. β1 + 5 < 256 < β2 + 5 ≤ α+ 5 ≤ δ + 5
2. β2 − β1 = 256ρ for some positive integer ρ
3. LT1 < 256 ≤ LT2 where LT2 = 256LT1 + ρ.

Set the first plaintext to be a two-blocks message, M1 = (MB1 || MB2) such that MB1 has α
bits and M2 has β1 bits with tag length set to be LT2

. Assume the ciphertext is C1 = (CB1 || CB2)
with T1 as the tag.

The second message block, is then chosen to be M2 = (MB1 || MB′2) such that MB′2 has β2
bits. Here we will use the tag length to be LT1

. We also assume the ciphertext is C2 = (CB′1 || CB
′
2)

with T2 as the tag.
As discussed above, since the first block of both message are the same, MB1, we should have

CB1 = CB′1 and T [1] and T [2] should also be the same. Now remember that MB2
⊕
CB2 and

MB′2
⊕
CB′2 tells us the last β1 and β2 bits of T [2] respectively. So if C1 and C2 are both from

COFFE instantiation, we must have CB1 = CB′1 and the last β1 bits of CB2 and the last β1 bits of
CB′2 should agree. So we will guess that it is a COFFE instantiation instead of a random function
if these requirements are met. Note that this can happen if it is a random function with probability
2−(α+β1).

Recall that a distinguishing attack works as follows. An oracle randomly chooses whether it uses
a random function or a COFFE instantiation with the given parameter. Then as an attacker, we can
request for encryption for some plaintext. Then an adversary tries to decide whether the oracle uses
a random function or a COFFE instantiation. The distinguishing attack described above has error
probability 0 if we conclude that the oracle uses a random function. However, if we guess that the
oracle uses a COFFE instantiation, there is a probability of 2−(α+β1) of the function is actually a
random function instead of COFFE. Note that since α ≥ 256 in our attack, the failure probability is
at most 2−256 which is very small. Therefore, with 2 enquiries to the oracle with 4 message blocks ,
COFFE with ideal underlying hash function in nonce-respecting scenario can be distinguished with
probability close to 1. So in these instantiations of COFFE, the security claim given in Lemma 1 is
not satisfied.

5 Ciphertext Forgery Attack

In this section, we will propose two different ciphertext forgery attacks. The first attack is based
on the observation on subsection 3.1. It exploits the possibility of having an identical intermediate
state value for two different instantiations when we fix α while using different values of β. The
detail of the attack can be found in section 5.1. Similarly, Section 5.2. discusses the forgery attack
based on the discussion on subsection 3.2. Here we try to forge a valid ciphertext in the case when
there exists two different COFFE instantiations with same key for different message block size. Here
both attacks require 2 enquiries and can forge a valid ciphertext with probability one. The success
probability 1 is applicable whenever we assume for both instantiations, the secret key used is the
same instead of one key being an extension of the other. Lastly, we will also discuss the possibility
of combining the two forgery attacks. This can be found in subsection 5.3

5.1 Forgery Attack with Constant Message Block Size

Take any (K1,V1), (K2,V2) (key, nonce) pairs from the discussion session such that they generate
the same session key, one with 1-byte domain value, the other with two. Let S1 be the input for

10 Ivan Tjuawinata, Tao Huang, Hongjun Wu

session key generation with 1-byte domain value and S2 be the input for the session key generation
with 2−bytes domain value. Here we assume that the input for session key generation is chosen
accordingly based on the number of bytes of domain value. Hence, after this point, we can ignore
the secret key and nonce and we can just assume that for each instantiation, we are using the same
session key and associated data.

Note that any full block plaintext-ciphertext pair leaks α least significant bits of the output of
the hash function for a fixed input, while any β-bit block plaintext-ciphertext pair leaks only β least
significant bits of it. So since β ≤ α, it is always more desirable to get a full-block plaintext-ciphertext
pairs since they leak the output value more.

Here we set the parameters α, β1, β2,LT1
and LT2

as described before in Section 4.

Next we define the first message M1, a 3−block message (MB1 || MB2 || MB3) such that
|MB1| = |MB2| = α, |MB3| = β2. Let the ciphertext of this message be C1 = (CB1 || CB2 || CB3)
with tag T1 with LT set to any value. Here we can compute the values of CB1 and CB2 since
MB1

⊕
CB1 gives us the last α bits of T [1] andM2

⊕
C2 gives us the last α bits of T [2] which are

essential in the attack.

We define our second message M2, a 2−block message (MB1 || MB′2) with the length of MB′2
to be β1 bits and tag length to be LT2

. The first block is chosen to be exactly the same as before
to ensure the value of T [1] and T [2] can be kept constant. Based on the previous message, the least
α bits of both values are known. Suppose that the ciphertext of this plaintext is C2 = (CB1 || CB′2)
with tag T2.

Using the information we obtain, we generate the following valid ciphertext. Define another 2-
block message M3 = (MB1 || MB′′2). Here we set MB1 to be the same as the first block from the
previous message blocks. This is again to ensure the value of T [1] and T [2] can be kept constant.
We let the length ofMB′′2 to be β2 and chooseMB′′2 such thatMB′′2

⊕
β2
T [2] = C2 || 0β2−β1 . Here,

MB′′2 can be calculated since we know the last α bits of T [2] and α > β2. Using this message, it is
easy to see that the tag generation will have the same input as before, although LT is now LT1

. So
the tag for this ciphertext will be the last β1 bits of T2.

This attack has success probability equal to the probability of the two strings used as the input
session key generation to be the same. As we have discussed before, for some parameters such as
the ones in case I.3 and case II.3, this can even be 1. In other words, in the case when the success
probability is one, the attack above proves that the ciphertext integrity of this cipher does not satisfy
the bound given in lemma 2 even in an ideal hash function situation.

Note that here we use three COFFE instantiations for each attack (2 for enquiry and 1 for the
guess), while in our discussion on session key generation collision, we only consider the collision for
two (key, nonce) pairs. So the same attack cannot directly work for nonce-respecting scenario unless
we can find three (key, nonce) pairs that collide to the same session key.

5.2 Forgery Attack with Dynamic Message Block Size

In this section, we are assuming the existence of two different instantiations of COFFE with different
message block size but the same secret key and constant last message block size β. Now we pick
α1 < α2 such that α2 − α1 = k. Next we find the valid size of α1 and α2 based on our discussion in
the discussion section. Here since we assume constant last message block size, β, we assume β ≤ α1.
Since we are using constant last message block size, to get the same session key, we can consider the
nonce-misuse scenario where we use the same key and nonce for both instantiations. Note that this
means the tag length should still be kept the same.

First, we generate message, M1 = (MB1 || MB2) with |MB1| = α2 and |MB2| = β. Now
assume that we get the ciphertext C1 = (CB1, CB2) with tag T1. In this pair, our objective is to find
the last α2 bits of T [1] which can be obtained by calculating MB1

⊕
CB1.

We then consider the following message:M2 = (MB′1 || MB
′
2) with |MB′1| = α2 and |MB′2| = β.

We further require the last k bits ofMB′2
⊕

α1
T [1] are all zeros. Note thatMB′2 can be generated

easily with the knowledge of the last α1 bits of T [1]. Assume that the ciphertext is C2 = (CB′1 || CB
′
2)

with tag T2. Here the last k bits of CB′1 are all zero and CB′2
⊕
MB′2 tells us the last β bits of T [2]

when the first block of the message is MB′1.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 11

Now having this information, we will proceed to our forgery attack. The message block that we
will use is M3 = (MB′′1 || MB

′
2). Here we have |MB′′1 | = α1 and MB′′1 is chosen such that(
MB′′1

⊕
α1 T [1]

)
|| 0k = CB′1.

We also note that the second block is exactly the same used in M2. Then it is easy to see that the
ciphertext is C3 = (CB′′1 || CB

′
2) where CB′′1 =MB′′1

⊕
α1
T [1]. Furthermore, the tag is exactly T2.

This forgery attack requires 2 enquiries to the oracle with 4 message blocks. So this attack
provides a family of instances of COFFE that cannot provide ciphertext integrity as claimed in
Lemma 2 under nonce-misuse scenario.

5.3 Combination of the Existing Attacks

In our previous two subsections, we change one of the parameters (α, β) while letting the other
constant. This is done to simplify the analysis. However, it is possible for us to combine both attacks
to generate new attack, that is, we change α and β in the same time. Notice that by combining the
two attacks, the “nonce-misuse” requirement is not a must anymore. As discussed in the constant
message block size subsection, as long as we can find a triple of (key,nonce) pairs that generate the
same session key, we can launch the attack in the nonce-respecting scenario.

6 Related Key Recovery Attack

Note that, in most of the attacks we have mentioned, we are assuming same secret key. In this
section, we will discuss the case with two different instances of COFFE with different key length. As
discussed in our observations, in this case we assume that the longer key is obtained by extending
the shorter key with secret string. As we have discussed in the appendix, there are (K1,V1), (K2,V2)
pairs that leads to the same session key (with one of them using one-byte domain value while the
other using two-byte value) with different key length. Here we will use the pairs with k-bits key
length difference and all of the difference are all in the nonce of the corresponding shorter length
key. Now assume that |LK1

| > |LK2
|.

We again choose the parameters α, β1, β2,LT1 , and LT2 as in Section 4. The attack here is an
adaptation of the distinguishing attack we proposed earlier. We use the two messages M1 and M2

as described in section 4. The difference here is that for M2 with two bytes domain value and
shorter key length, we will enquire 2k different blocks of it with different k most significant bits
of V2. Note that if the k most significant bits of V2 coincide with the k-bit extension of the secret
key, then CB1 = CB′1 and the last β1 bits of CB2 and the last β1 bits of CB′2 should agree. So by
using this approach, we can guess the k-bits extension of the secret key with the same complexity
as exhaustive search for a k-bits secret key.

As discussed in the distinguishing attack section, when we decide that the guessed k-bits is
wrong, the probability that the k-bits is actually the correct extension key is 0. So there will not be
a false negative. However, when the k-bits we guess is wrong, the probability of false positive is, as
discussed in the distinguishing attack, 2α+β1 which is at least 2−255 which is negligible.

So for the related key recovery attack, to recover the k-bit extension of the secret key in nonce-
respecting scenario, we will need 2k + 1 plaintext-ciphertext pairs with success probability approxi-
mately 1. Note that the exact same attack can be adapted to the case when |K1| < |K2|.

7 Conclusion

7.1 Attack Summary

From the discussion above, we see that the security claim for the nonce-misusing scenario is not met
for many different parameters. The same attack can be adapted to give a distinguishing attack for
the nonce-respecting scenario for some subfamilies of the parameters mentioned above.

Lastly, having two different instances of COFFE with different key length with the longer key
being the extension of the shorter key may not be a good idea. This is because if the parameter

12 Ivan Tjuawinata, Tao Huang, Hongjun Wu

used belongs to the family we have found earlier, the extension of the key can be recovered with
exhaustive search in the same way as if the secret key is just k bits.

In conclusion, COFFE does not satisfy any of the two security claims for some of the parameters
that we have discussed before. The problem arises from the fact that concatenation of strings
cannot be inverted uniquely and hence giving the opportunity of having two different set of strings
concatenated to the same resulting strings.

7.2 Lesson Learned

Here we see that the the forgery and distinguishing attacks are feasible due to the possibility to
have different (key,nonce) pairs to generate the same session key. This can be fixed by fixing the
space for every given parameters. If some parameters are variables (such as the message blck size in
COFFE), we should ensure that the values of the variables get authenticated so as to prevent the
forgery attack.

References

1. M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among Notions and Analysis of
the Generic Composition Paradigm. Extended Abstract in Advances in Cryptology: Asiacrypt 2000
Proceedings, Lecture Notes in Computer Science (Springer-Verlag) 1976: 531-545.

2. S. Cogliani, D.S. Maimut, D. Naccache, R.P. do Canto, R Reyhanitabar, S. Vaudenay, D. Viz/’ar. Offset
Merkle-Damg̊ard (OMD) version 1.0 A CAESAR Proposal. Submission to CAESAR. Available from:
http://competitions.cr.yp.to/caesar-submissions.html. 2014.

3. N. Datta and M. Nandi. ELmD v1.0. Submission to CAESAR. Available from: http://competitions.
cr.yp.to/caesar-submissions.html. 2014.

4. M. DworkinRecommendation for BlockCipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality. NIST Special Publication 800-38C. May, 2004.

5. M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode(GCM) and
GMAC. NIST Special Publication 800-38D. November, 2007.

6. C. Forler, D. McGrew, S. Lucks, J. Wenzel. COFFE: Ciphertext Output Feedback Faithful Encryption
Authenticated Encryption Without a Block Cipher. Early Symmetric Crypto ESC, 2013. Also accessible
from https://eprint.iacr.org/2014/1003.pdf

7. C.S. Jutla. Encryption Modes with Almost Free Message Integrity. Advances in Cryptology - EURO-
CRYPT 2001 (Springer): 529-544

8. H. Krawczyk. The Order of Encryption and Authentication for Protecting Communications (or: How
Secure Is SSL?). CRYPTO 2001 Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology (Springer-Verlag): 310-331

9. C. Meyer and S. Matyas. Secure Program Load with Manipulation Detection Code, 1988.
10. B. Preneel, R. Govaerts, J. Vandewalle. Hash Functions Based on Block Ciphers: A Synthetic Approach.

CRYPTO, Lecture Notes in Computer Science (Springer), 1993. 773: 368-378.
11. P.Rogaway, M. Bellare, J. Black, T. Krovetz. OCB: A Block-Cipher Mode of Operation for Efficient

Authenticated Encryption. Proceedings of the 8th ACM conference on Computer and Communications
Security. 2001: 196-205.

12. H. Wu and T. Huang. JAMBU Lightweight Authenticated Encryption Mode and AES-JAMBU. Submis-
sion to CAESAR. Available from: http://competitions.cr.yp.to/caesar-submissions.html. 2014.

Appendix

Session Key Generation Analysis

Recall that here we are trying to investigate the session key generation step whether we can introduce
a collision between two valid input such that one has 1− byte value for the domain value, named
S1, and another with 2− bytes value for the domain value, S2. Here we need to consider the number
of bytes for LK1

,LV1
, and whether zero padding exists in S1. We will assume that if a string has

length that needs to be expressed as a 2-bytes value, 256a + b, then a 6= 0 since otherwise it is
not necessary to express the length as a 2-bytes value. We also can assume that for any secret keys
considered, it cannot have length 0 since otherwise, there is no need to perform any attack here.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 13

I. S1 has no zero padding. Let S1 = (K1 || V1 || LK1
|| LV1

|| [0]1). We will divide this case into
smaller sub-cases to handle independently.

I.1. Case I.1. [LK1] = [LV1] = 1. By observation 2, we have that LV1 = 0. Let 1 ≤ a ≤ 255 such
that LK1 = a. Then we have:

S1 = (K1 || a || [0]2).

Now we consider the second string S2 with the domain value being expressed by 2-bytes
string. Then we have LV2 ≥ a. Since we need at least 1 byte to represent LK2 and a non-
empty string of K2, we need at least a+2 bits in the remaining unused string in S2. However,
since we want S1 = S2, we only have a bits left that is unused. Hence if [LK1

] = [LV1
] = 1,

it is impossible for us to have a collision between S1 and S2.
I.2. Case I.2. [LK1

] = 2 and [LV1
] = 1. Observation 2 implies that LV1

= 0. Let LK1
= 256a + b

for some 0 ≤ a,b ≤ 255 where a 6= 0. So we have:

S1 = (K1 || a || b || [0]2).

Now we consider the second string S2. We have different cases depending on the number of
bytes for LK2 and LV2 .

– Case I.2.a. [LK2
] = [LV2

] = 1. Then we have that LK2
= a and LV2

= b. Now if S2
has no zero padding, then we have that 256a + b = a + b which implies that a = 0
which contradicts the fact that LK1 needing to be expressed as a 2-bytes value. So S2
must have zero padding. A simple comparison tells us that there will be 255a bits of
zero paddings in S2. However, remember that this zero padding comes from K1 which is
not controllable by us the attacker. Hence we can just hope this is true with probability
2−255a. Since a ≥ 1, this probability is too small to be feasible. So this case can be
discarded from the possible S1 collision with S2.

– Case I.2.b. [LK2] = 2, [LV2] = 1. For simplicity, let K1 = K′1 || c where c is the last 8 bits
of K1. Then LK2

= 256c + a and LV2
= b. Let t′ be the number of bits of zero padding

in S2. Then equating the length of S1 and S2, we get 256a + b = 256c + a + b + t′ + 8
where the 8 comes from c being a part of K1 despite it not being a part of K2 || V2 || 0t

′
.

This can be simplified to 255a = 256c + t′ + 8. So we define

F(2,1),(2,1) = {(a,b, c, t′) : 0 ≤ a,b, c ≤ 255, t′ ≥ 0,a, c 6= 0, 255a = 256c + t′ + 8} .

Now we consider the feasibility of each quadruple (a,b, c, t′) ∈ F(2,1),(2,1).

Let (a,b, c, t′) ∈ F(2,1),(2,1). Since we have K′1 = K2 || V2 || 0t
′
, it is clear that |K1| > |K2|.

Then we have 256a + b − (256c + a) = 255a + b − 256c bits of K1 which needs to be
known or fixed. Like before, we assume the bits of K1 which is in K2 coincide with
probability one since we assume that K1 is the extension of K2 by appending it with
some bits. So the probability of this happening is 2−(255a+b−256c). A simple calculation
tells us that we can set 255a + b− 256c to be as low as 8. Now for any integer k ≥ 8, we
define F(2,1),(2,1),k = {(a,b, c, t′) ∈ F(2,1),(2,1), 255a+b−256c ≥ k}. Then if we take the
quadruple (a,b, c, t′) ∈ F(2,1),(2,1),k, we know that the probability of collision to happen

is at least 2−k. We also need to note that since K1 = K2 || V2 || 0t
′ ||c, we must have

the last t′ + 8 bits of K1 to be 0t
′ || c. So any collision we derive from this family, K1

cannot be chosen to be any keys. The collision will only happen in the subfamily of the
256a + b-bits string such that the last t′ + 8 bits must be 0t

′ || c.
– Case I.2.c. [LV2

] = 2. Then LV2
= 256a + b. Note that here we again have K′1 =

K2 || V2 || 0t where K′1 is a 256a + b− 8 bits binary string. However, this is impossible
since V2 itself should have 256a + b bits by itself. So this case is again impossible.

I.3. Case I.3. [LK1
] = 1, [LV1

] = 2. By observation 2, LV1
is a multiple of 256. Let 1 ≤ a,b ≤ 255

such that LK1
= a and LV1

= 256b. Then we have

S1 = (K1 || V1 || a || b || [0]2) .

Now we consider the possibilities of S2.

14 Ivan Tjuawinata, Tao Huang, Hongjun Wu

– Case I.3.a [LK2
] = [LV2

] = 1. Then LK2
= a and LV2

= b. Then certainly S2 must
have zero paddings. More precisely, we must have K1 = K2 and V1 = V2 || 0255b. So for
any choice of key and nonce, we must have the collision with probability one as long as
V1 = V2 || 0255b.

– Case I.3.b [LK2] = 2, [LV2] = 1. Let V1 = V ′1 || c. Then we have LK2 = 256c + a and
LV2 = b. Now let S2 to have t′-bits zero padding. Then equating the length of S1 and
S2, we have K1 || V1 = K2 || V2 || 0t

′ || c. So we have a + 256b = 256c + a + b + t′ + 8.
Then we have 255b = 256c + 8 + t′. As before, we define a family

F(1,2),(2,1) = {(a,b, c, t′) : 1 ≤ a,b, c ≤ 255, t ≥ 0, 255b = 256c + 8 + t′}.

Now we consider the feasibility of each quadruple (a,b, c, t′) ∈ F(1,2),(2,1).
Let (a,b, c, t′) ∈ F(1,2),(2,1). Then the length of the bits that is in K2 but not in K1 is
256c Now remember that since LK2

= 256c + a, c 6= 0. So the probability of collision to
happen is at most 2−256 which is infeasible. So we can disregard this case.

– Case I.3.c [LK2
] = 1, [LV2

] = 2. This case has been discussed in detail in the main
section. So we will skip the discussion of this case here.

– Case I.3.d [LK2] = [LV2] = 2. Let V1 = V ′′1 || d || c where d || c is the last 2-bytes of V1. So
LK2

= 256d + c and LV2
= 256a + b. Similar as before, we let S2 to have t′−bits of zero

padding. Now equating the length of S1 and S2, we have K1 || V ′′1 = K2 || V2 || 0t
′ || LK2

.
In other words, a + 256b = 256d + c + 256a + b + t′ + 16 or equivalently

255(b− a) = 256d + c + t′ + 16.

Let F(1,2),(2,2) be the family:

F(1,2),(2,2) = {(a,b, c,d, t′) : 1 ≤ a,b,d ≤ 255, 0 ≤ c ≤ 255, t′ ≥ 0,

255(b− a) = 256d + c + t′ + 16}.

Now we investigate each quintuple in this family. Let (a,b, c,d, t′) ∈ F(1,2),(2,2). Obvi-
ously, since [K2] = 2 and [K1] = 1, |K2| > |K1|. Note that the number of bits that is
in K2 but not in K1, and hence needs to be guessed, is 256d + c− a. This gives us the
success probability of the collision to be 2a−256d−c. A simple calculation tells us that
this can be as small as 3, for example when a = 253,b = 255, c = 0,d = 1, t′ = 238.
Now as before, for any integer k ≥ 3, we define a subclass F(1,2),(2,2),k of F(1,2),(2,2) such
that F(1,2),(2,2),k = {(a,b, c,d, t) ∈ F(1,2),(2,2) : 256d + c− a ≥ k}. Note that here since

K2 is the longer key and K1 || V ′′1 = K2 || V2 || 0t
′ || LK2

, the extension of the K2 but
not in K1 must be in V ′′1 which is controllable. So any choice of K2 is vulnerable to the
collision.

I.4. Case I.4. [LK1] = [LV1] = 2. By observation 2, we have LV1 is a multiple of 256. Let
1 ≤ a, c ≤ 255, 0 ≤ b ≤ 255 such that LK1

= 256a + b and LV1
= 256c. Then we have:

S1 = (K1 || V1 || a || b || c || [0]2) .

Dividing the case further based on S2, we have the following cases:

– Case I.4.a [LK2] = [LV2] = 1. Then LK2 = b and LV2 = c. Now let S2 to have t′ bits of
zero padding. Now equating the length of S1 and S2, we have K1 || V1 || a = K2 || V2 || 0t

′
.

So we have 256a+b+256c+8 = b+c+t′. So we have t′ = 256a+255c+8.Now considering
the string K1 || V1 || a = K2 || V2 || 0t

′
from the right, we have that since a 6= 0, we

must have t′ ≤ 7 Since otherwise, this will force a = 0. So we have 256a + 255c + 8 ≤ 7.
However, this is clearly impossible since 1 ≤ a, c. So we can disregard this case.

– Case I.4.b [LK2] = 2, [LV2] = 1. Then LK2 = 256a + b and LV2 = c. Letting S2 to have
t−bits of zero padding, equating S1 to S2, we have K1 || V1 = K2 || V2 || 0t. Now since
LK1

= LK2
, we must have K1 = K2. So this leaves us with V1 = V2 || 0t which implies

t = 255c.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 15

– Case I.4.c [LK2
] = 1, [LV2

] = 2. Then we have LK2
= a and LV2

= 256b + c. Now
inspecting the first part of both S1 and S2, we must have at least 255a + b bits of
K1 that is not in K2 which means it must be guessed. Now since a 6= 0, we have the
probability of success to be at most 2−255 which is already infeasible. So we can disregard
this case.

– Case I.4.d [LK2] = [LV2] = 2. For this, we let V1 = V ′1 || d where d is the last byte
of V1. Then we have LK2

= 256d + a and LV2
= 256b + c. Let S2 have t−bits of

zero padding. Then equating S1 to S2, we have K1 || V ′1 = K2 || V2 || 0t
′
. So we have

256a + b + 256c− 8 = 256d + a + 256b + c + t′. Equivalently, we have

255(a− b + c) = 256d + t′ + 8.

Let F(2,2),(2,2) be the family:

F(2,2),(2,2) = {(a,b, c,d, t′) : 1 ≤ a,b, c,d ≤ 255, t′ ≥ 0,

255(a− b + c) = 256d + t′ + 8}.

Now we investigate the feasibility of each quintuple in the family. Let (a,b, c,d, t′)
∈ F(2,2),(2,2). Note that there are |256a + b− (256d + a)| = |255a + b− 256d| bit-
s that is in one but not both secret keys. This means that the probability of suc-
cess is at most 2−|255a+b−256d|. We can perform a simple calculation to discover that
the value |255a + b− 256d| can be made to be 0, for example, when (a,b, c,d, t′) =
(1, 1, 2, 1, 246). For this purpose, for any non-negative integers k, we define a sub-
class F(2,2),(2,2),k of F(2,2),(2,2) such that F(2,2),(2,2),k = {(a,b, c,d, t) ∈ F(2,2),(2,2) :
|255a + b− 256d| ≤ k}. So for any quintuple extracted from F(2,2),(2,2),k, it can be used
to guess the extension of at most k bits of the secret key with the success probability
being at least 2−k.
Now we need to investigate the extension of the secret key. Recall that K1 || V ′1 =
K2 || V2 || 0t

′
. Now if K2 is longer, then the extension will all be in V ′1 considering

the left term only has V ′1 in addition to K1. So for this case, there is no restriction for
either key. Now we check the case when K1 is longer. Note that if K1 is longer, then the
extension is from V2 || 0t

′
. Now if V ′1 is longer than t′, then since the two strings are equal,

no bits from the extension of K1 can be from the zero padding. So if t′ < LV ′
1

= LV1
−8,

then there are no restriction to K1. On the other hand, if t′ > LV1
− 8, then the last

t′ − (LV1
− 8) bits of K1 must be zero. So in other words, when K1 is longer, the last

max(0, t′ − (LV1 − 8)) bits of it must be 0.
II. S1 has a t−bits zero padding. So now we have S1 = (K1 || V1 || 0t || LK1

|| LV1
|| [0]1). We will

again consider some small sub-cases to analyse.
II.1. Case II.1. [LK1

] = [LV1
] = 1 As before, Observation 2 tells us that LV1

= 0. Let 1 ≤ a ≤ 255
such that LK1

= a. Then we have:

S1 = (K1 || 0t || a || [0]2).

Now we consider the second string S2. Note that here LV2
≥ a. So we will divide this to two

cases:
– Case II.1.a. LV2

= a. We also have that K1 || 0t = K2 || V2 ||0t
′ ||LK2

where t′ is the
length of the zero padding of S2. Now since we need the next 1 or 2 bytes in the left
of LV2 to be LK2 and it cannot be 0, it implies that t < 8 if [LK2] = 1 and t < 16 if
[LK2

] = 2. Now note that here K1 has the same length as V2. So for the two strings
to be the same, we need the sum of the length of K2, 0

t′ , and LK2
must be equal to t,

which must be strictly less than 16. This tells us that LK2
cannot be a 2-bytes value.

So this gives us that [LK2
] = 1 and t < 8. Let b be the last 8− t bits of K1 which must

satisfy b 6= 0. Then we have LK2 = b.2t. So equating the length here, we have that
a + t = b.2t + a + t′ + 8 or equivalently, (t − 8) − b.2t = t − b.2t − 8 = t′ ≥ 0. Now
remember that t − 8 < 0 and −b.2t < 0. The sum of two negative numbers cannot be
non-negative. So this case can be discarded.

16 Ivan Tjuawinata, Tao Huang, Hongjun Wu

– Case II.1.b. LV2
> a. So [LV2

] = 2. Now if t > 8, we will have that the most significant
byte of LV2

is zero, which cannot be by the observation we made in the very beginning
of this section. So we have t < 8. We again let b to be the last 8− t bits of K1 and b 6= 0.
Then we have LV2

= b.2t+8 + a and the remaining string to be K′1. Assuming S2 has
t′-bits of zero padding, equating the strings, we have K′1 = K2 || V2 || 0t

′ || LK1 . Recall
that here K′1 must have length strictly less than 256 bits since [LK1] = 1 and it has been
truncated by 8− t bits. However, by assumption, we must already have V2 itself to have
length more than 256 bits. Obviously, this is impossible. So we can disregard this case.

II.2. Case II.2. [LK1
] = 2, [LV1

] = 1. By Observation 2, we have LV1
= 0. Let 0 ≤ a,b ≤ 255,a 6= 0

such that LK1 = 256a + b. Then we have

S1 = (K1 || 0t || a || b || [0]2).

Here, considering S2, we again have two cases:
– Case II.2.a LV2 = 256a + b. Then equating the length of the two strings, we must have
K1 || 0t = K2 || V2 || 0t

′ || LK2 where t′ is the length of zero padding of S2. Now since the
length of K1 and V2 are the same, we must have the sum of the lengths of K2, 0

t′ , and
LK2

to be equal to t. Now note that by the same argument as before, t must be less than
8 if [LK2

] = 1 and t < 16 if [LK2
] = 2. Now if LK2

is a 2-byte string, the length of the
string in the right hand side must exceed 256 bits. However, the one on the left cannot
even exceed 16. So we cannot have LK2 to be a 2-byte string. So we have [LK2] = 1.
So we have t < 8. Furthermore, we have that t = LK2

+ t′ + 8 where the addition by 8
comes from the fact that LK2

is an 8-bit string. However, this is impossible since all the
terms here are non-negative and this causes the left hand side to be strictly less than 8
while the right hand side is at least 8. So we can again disregard this case.

– Case II.2.b. LV2 = b. For this, we further can divide the case into two depending on
[LK2]. First of all, if LK2 is a 1-byte value, then we have LK2 = a. From here we see that
there must be 255a + b bits that can be found in K1 but not in K2. Now since a 6= 0,
this means at least 255-bits of secret string that we need to guess. This implies that the
success probability of this case is at most 2−255 which is already infeasible. So we need
[LK2

] = 2. By the same observation as before, t < 8. Let K1 = K′1 || c where c is the
last 8− t bits of K1. Then we have that LK2 = c.28+t + a. Now we let S2 have t′-bits of
zero padding. Then we have K′1 = K2 || V2 ||0t

′
. So equating the length, we have that

256a + b− (8− t) = c.28+t + a + b + t′. Equivalently, we have that

255a = c.28+t + t′ + 8− t.

Note that this also tells us that LK1
≥ LK2

. As before, we define a family:

Fp,(2,1),(2,1) = {(a,b, c, t, t′) : 1 ≤ a,b ≤ 255, 1 ≤ t < 8, 1 ≤ c ≤ 28−t − 1

t′ ≥ 0, 255a = c.28+t + t′ + 8− t}.

Now we consider the feasibility of each quadruple in the family.
Let (a,b, c, t, t′) ∈ Fp,(2,1),(2,1). Then the length of the bits in K1 but not in K2 is
256a+b−(c.28+t+a) = 255a+b−(c.28+t). Now a simple enumeration of the cases tells
us that this value can be kept as low as 8. An example of such quintuple is (a,b, c, t, t′) =
(249, 1, 124, 1, 14).
One more thing to note here is that since K1 = K2 ||V2 || 0t

′ || c, we have that the last
t′ + 8− t bits of K1 is fixed to be 0t

′ ||c. So here we have a restriction of the K1 that is
vulnerable to the collision. The secret string must have its last t′+8−t bits to be 0t

′ || c.
For any integers k ≥ 8, we define a subfamily Fp,(2,1),(2,1),k of Fp,(2,1),(2,1) satisfying:

Fp,(2,1),(2,1),k = {(a,b, c, t, t′) ∈ Fp,(2,1),(2,1) : 255a + b− (c.28+t) ≤ k}.

Taking any quintuple of Fp,(2,1),(2,1),k, we can use this to guess at most k−bits of key

extension with success probability at least 2−k.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 17

II.3. Case II.3. [LK1
] = 1, [LV1

] = 2. By observation 2, we must have LV1
to be divisible by 256.

So we let 1 ≤ a,b ≤ 255 such that LK1
= a and LV1

= 256b. Then we have:

S1 = (K1 || V1 || 0t || a || b || [0]2).

Now as before, we consider the number of bytes of LK2
and LV2

.
– Case II.3.a. [LK2] = [LV2] = 1. Then LK2 = a and LV2 = b. Now LK1 = LK2 and they

are the first a bits of the strings S1 = S2. So K1 = K2. This implies that V2 should be
the first b bits of V1 and the next 255b bits of V1 should be the zero padding so that it
can be absorbed by the zero padding of S2.

– Case II.3.b. [LK2
] = 2, [LV2

] = 1. Using the same analysis as before, we have t < 8 and
we can let V1 = V ′1 || c where c is the last 8−t bits of V1. Then we have LK2 = c.28+t+a
and LV2 = b. Now this means that we have c.28+t bits that is in K2 but not in K1. Now
since we have t > 0 and c 6= 0, the success probability of the collision is at most 2−256

which is infeasible. So we can disregard this case.
– Case II.3.c. [LK2

] = 1, [LV2
] = 2. By the same analysis as before, we get that t < 8 and

we can let V1 = V ′1 || c where c is the last 8−t bits of V1. So we have LV2
= 256a+b and

LK2 = c.2t. Assuming S2 to have t′ bits of zero padding, we have K1 || V ′1 = K2 || V2 || 0t
′
.

So we have a + 256b− (8− t) = c.2t + 256a + b + t′. Simplifying this, we get:

255(b− a) = c.2t + 8− t+ t′.

So we can consider the family:

Fp,(1,2),(1,2) = {(a,b, c, t, t′) : 1 ≤ a,b ≤ 255, 0 < t < 8, 1 ≤ c ≤ 2(8−t) − 1, t′ ≥ 0,

255(b− a) = c.2t + 8− t+ t′}.

Now we discuss the feasibility of each quintuple in this family. Let (a,b, c, t, t′) ∈
Fp,(1,2),(1,2). So there will be |a− c.2t|-bits of secret string that is in one but not in
both of the secret keys. In other words, we will need to guess these bits. A simple calcu-
lation reveals that this value can be kept as low as 0. A really small example would be
to set (a,b, c, t, t′) = (2, 3, 1, 1, 260). For any non-negative integer k, we then can define
a non-empty subfamily Fp,(1,2),(1,2),k such that:

Fp,(1,2),(1,2),k = {(a,b, c, t, t′) ∈ Fp,(1,2),(1,2) :
∣∣a− c.2t

∣∣ ≤ k}.
Having these subfamilies, we know that if we take a quintuple from Fp,(1,2),(1,2),k, then
it can help us in guessing the extension of at most k−bits of secret key with success
probability at least 2−k. Now we also still need to investigate the extension secret string.
We again equate the two strings to get K1 || V ′1 = K2 || V2 || 0t

′
. Now if K2 is the longer

one, since the left term contains only K1 and V ′1, the extension can only come from V ′1.
So if K2 is longer, we have no restriction on either K1 or K2. On the other hand, if
K1 is the longer one, the same argument cannot be used since the right term contains
0t

′
. However, we again notice that [LK1

] = [LK2
] = 1. So [LK1

− LK2
] = 1. Now since

[LV2
] = 2, certainly LK1

− LK2
< LV2

. So again, all the extension can only come from
the controllable nonce.
So we proved that in either case, we have no restriction on the choice of the secret key. So
any choice of key following the parameters in Fp,(1,2),(1,2) is vulnerable to the collision.

– Case II.3.d. [LK2
] = [LV2

] = 2. Then we have that LV2
= 256a + b. Furthermore, by

the same analysis as before, we have t < 16 and we can let V1 = V ′1 || c where c is
the last 16 − t−bits of V1. We also have that if t < 8, we need c ≥ 28−t to ensure
LK2 to be a 2-bytes value. Then we have LK2 = c.2t. Note that this gives us that
LK1 = a < 256 ≤ c.2t = LK2 . So LK1 < LK2 . Now we have K1 || V ′1 = K2 || V2 || 0t

′

assuming S2 has t′−bits of zero padding. So equating the length of these two strings, we
have a + 256b− (16− t) = c.2t + 256a + b + t′ or equivalently

255(b− a) = c.2t + 16− t+ t′.

18 Ivan Tjuawinata, Tao Huang, Hongjun Wu

Now as usual, consider the family

Fp,(1,2),(2,2) = {(a,b, c, t, t′) : 1 ≤ a,b ≤ 255, 1 ≤ t ≤ 15,max(1, 28−t) ≤ c ≤ 216−t,

t′ ≥ 0, 255(b− a) = c.2t + 16− t+ t′}.

Now we consider the feasibility of each quintuple. Let (a,b, c, t, t′) ∈ Fp,(1,2),(2,2). Then
we have c.2t − a bits that is in K2 that is not in K1 and hence needs to be guessed.
A simple calculation tells us that this value can reach as low as 3, which is achievable,
for instance, when (a,b, c, t, t′) = (253, 255, 128, 1, 269). So like before, we can define a
subfamily of Fp,(1,2),(2,2),k for any integer k ≥ 3 :

Fp,(1,2),(2,2),k = {(a,b, c, t, t′) ∈ Fp,(1,2),(2,2), c.2
t − a ≤ k}.

Then we have that for any quintuple taken from Fp,(1,2),(2,2),k, the success probability

of collision of the session key is at least 2−k.
II.4. Case II.4. [LK1

] = [LV1
] = 2. Then we can have 0 ≤ a,b, c ≤ 255,a, c 6= 0 such that

LK1
= 256a + b and LV1

= 256c. Here 256 divides LV1
due to Observation 2. So we have:

S1 = (K1 || V1 || 0t || a || b || c || [0]2).

As before, we further divide this case to 4 smaller subcases based on [LK2
] and [LV2

].
– Case II.4.a. [LK2

] = [LV2
] = 1. Then we have LK2

= b and LV2
= c. Now since

a 6= 0, if t′ is the number of zero paddings in S2, we must have t′ < 8. Then we have
K1 || V1 || 0t || a = K2 || V2 || 0t

′
. So equating the length, we have 256a+b+256c+t+8 =

b + c + t′ or equivalently

256a + 255c + t = t′ − 8 < 0.

Now note that a, c, t > 0. So the expression 256a + 255c + t must be a positive number.
So the inequality cannot be satisfied for any value of the variables. Hence this case is
impossible and can be disregarded.

– Case II.4.b. [LK2
] = 2 and [LV2

] = 1. Then we have LV2
= c and LK2

= 256a + b. As
before, this implies that K1 = K2 and V1 = V2 || 0255c.

– Case II.4.c. [LK2] = 1 and [LV2] = 2. Then we have LV2 = 256b + c and LK2 = a. So we
have 255a + b bits of K1 that is not in K2 and hence needs to be guessed. Since a 6= 0,
this translates to a success probability of at most 2−255 which is infeasible. So we can
again disregard this case.

– Case II.4.d. [LK2] = [LV2] = 2. Then we have LV2 = 256b + c and by similar analysis
as before, t < 8. Furthermore, if we let V1 = V ′1 || d where d is the last 8 − t-bits of
V1, we have LK2

= 28+td + a. Then we have K1 || V ′1 = K2 || V2 || 0t
′

where t′ is the
number of zero paddings in S2. So equating the length, we get 256a+b+256c−(8−t) =
d.28+t + a + 256b + c + t′. Simplifying this, we have the equation:

255(a− b + c) = d.28+t + 8− t+ t′.

So we can define the family

Fp,(2,2),(2,2) = {(a,b, c,d, t, t′) : 1 ≤ a,b, c ≤ 255, 1 ≤ t ≤ 7, 1 ≤ d ≤ 28−t − 1,

t′ ≥ 0, 255(a− b + c) = d.28+t + 8− t+ t′}

Next we check the feasibility of each elements of this family. Let (a,b, c,d, t, t′) ∈
Fp,(2,2),(2,2). Then we have

∣∣256a + b− (d.28+t + a)
∣∣ =

∣∣255a + b− d.28+t
∣∣ secret bits

that is in one secret key but not both. So this needs to be guessed. Now enumerating all
the elements of the family, we see that this value can be as low as 0 which, for instance,
can be realised by the element (a,b, c,d, t, t′) = (2, 2, 3, 1, 1, 260). Then as before, we
can define a subfamily Fp,(2,2),(2,2),k for any non-negative integers such that

Fp,(2,2),(2,2),k = {(a,b, c,d, t, t′) ∈ Fp,(2,2),(2,2) :
∣∣255a + b− d.28+t

∣∣ ≤ k}.

Cryptanalysis of the Authenticated Encryption Algorithm COFFE 19

Then taking any element from Fp,(2,2),(2,2),k, the success probability of a collision is at

least 2−k. Lastly, we still need to investigate the extension of the secret key. Recall that
K1 || V ′1 = K2 || V2 || 0t

′
. As we have discussed in Case I.4.d, if K2 is longer, no restriction

is required for K2. However, it K1 is longer, we must have the last max(0, t′ − LV ′
1
) of

K1 to be all zero. Now in here we have LV ′
1

= LV1
− (8− t). So this is the only difference

of the restriction we have for this family from the restriction in case I.4.d.

