
Efficient Hardware Implementations of the Warbler
Pseudorandom Number Generator

Gangqiang Yang, Mark D. Aagaard, and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, N2L 3G1, CANADA
{g37yang, maagaard, ggong}@uwaterloo.ca

Abstract. Pseudorandom number generators (PRNGs) are very important for EPC Class 1 Gener-
ation 2 (EPC C1 G2) Radio Frequency Identification (RFID) systems. A PRNG is able to provide
a 16-bit random number that is used in many commands of the EPC C1 G2 standard, and it can
also be used in future security extensions of the EPC C1 G2 standard, such as mutual authentication
protocols between the readers and tags. In this paper, we investigate efficient ASIC hardware imple-
mentations of Warbler (a lightweight PRNG), and demonstrate that Warbler can meet the area and
power consumption requirements in passive RFID systems. Warbler is built upon three nonlinear
feedback shift registers (NLFSRs) and four WG-5 transformation modules. We employ two design
options to implement Warbler and three different compilation methods to further optimize the area,
maximum operating frequency, and power consumption. We can achieve an area of 498 GEs after
the place and route phase in a CMOS 65nm ASIC, with a maximum frequency of 1430 MHz and a
total power consumption of 1.239 µW at 100 KHz. Accordingly, an area of 534 GEs after the place
and route phase, with a maximum frequency of 250 MHz and a total power consumption of 0.296
µW at 100 KHz can be obtained in a CMOS 130nm ASIC. Our results show that the LFSR counter-
based design is better than the binary counter-based one in terms of area and power consumption.
In addition, we show that the areas of WG-5 transformation look-up tables depend on the specific
decimation values.

Keywords: PRNG, Lightweight, Warbler, ASICs, Passive RFID

1 Introduction

Radio Frequency Identification (RFID) is an emerging technology widely used to perform automatic
and unique identification of objects. For example, the RFID applications include animal identification,
passports, access control, and supply chain management. A typical RFID system includes three parts:
tags, readers, and a database. Each RFID tag is issued with a unique identification number, such as the
Electronic Product Code (EPC) number in the EPC Class 1 Generation 2 (EPC C1 G2) standard [7].
These RFID tags are attached to the objects, and they communicate wirelessly with the RFID readers,
which interrogate the tags and get their responses. After that, the readers search for more specific in-
formation about each object in the database with a secure channel. The tiny and inexpensive properties
mean that the passive EPC C1 G2 RFID tags have very limited power consumption, constrained mem-
ory, and computing capability. Thus, it is impractical to apply the traditional cryptographic primitives to
such RFID tags. However, the 16-bit random number (RN16) is used in many commands of the EPC C1
G2 standard. Furthermore, the random numbers can also be used in future potential security extensions
of this standard, such as the challenge-response based mutual authentication protocols [6] between the
readers and tags, where both the readers and tags use the random numbers as challenges.

NIST Lightweight Cryptography Workshop 2015



Motivated by the above applications, many lightweight pseudorandom number generators (PRNGs)
have been devised in recent years, such as LAMED [16], Melia-Segui et al. [13], Warbler [11], J3Gen
[14], and AKARI1B [12]. LAMED [16] is designed based on registers, arithmetic logic unit (ALU), XOR
and modular operations. Melia-Segui et al.’s PRNG [13] and J3Gen [14] rely on the security of linear
feedback shift registers (LFSRs) and a truly random number generator (TRNG). Warbler [11] is designed
by using the properties of nonlinear feedback shift registers (NLFSRs) and the WG-5 transformation
modules. The estimated areas of these four PRNGs are all below 2000 GEs, the maximum area limit for
resource constrained applications [2,9]. However, there have been no actual hardware implementations
for them until now. AKARI1B [12] is designed based on the T-function and a non-linear filter function,
and it was synthesized using the UMC Faraday 90nm technology.

The sequences generated by Warbler can pass the EPC C1 G2 standard’s statistical tests as well as
the NIST randomness test suite [11]. In addition, this sequence has guaranteed randomness properties,
such as period and linear span. Moreover, Warbler has been shown to be resistant to the algebraic attack,
cube attack, time-memory-trade-off attack and so on [11] and it can be securely used in the EPC C1 G2
RFID systems.

In this paper, we pay attention to the low-area implementation of Warbler in CMOS 65nm and CMOS
130nm ASICs, and provide the area, maximum clock frequency, and total power consumption results.
The maximum clock frequency is not important for the passive RFID tags but it is useful for high perfor-
mance applications. We use two different design options to implement Warbler, one based on the binary
counter and the other based on the LFSR counter. The LFSR counter-based design is better than the
binary counter-based one in terms of area and total power consumption.

We compare our best results with those of other lightweight primitives (Table 1). We provide the key
size, IV/Block size, and internal state size for all the designs, in order to have a fair comparison. From
the table, we can see that the areas from both before and after the place and route phase of Warbler are
smaller than the estimated areas of LAMED, Melia-Segui et al.’s PRNG, and J3Gen, and also smaller
than the areas of AKARI1B, Grain, Trivium, SIMON, SPECK, PHOTON-80/20/16, and SPONGENT-
88. The maximum frequency of Warbler is higher than Grain’s and Trivium’s in CMOS 65nm. The
throughput of Warbler is less than that of Grain and Trivium, but greater than that of AKARI1B, SIMON,
SPECK, PHOTON-80/20/16, and SPONGENT-88. The total power consumption is related to the operat-
ing frequency and the corresponding technology. However, as we can see, the total power consumption
of Warbler is very small at 100 KHz, and it is smaller than Grain’s, Trivium’s, and SPONGENT-88’s in
CMOS 130nm. Hence, it is very suitable for passive RFID applications. Even though the key size is only
45-bit, Warbler has been proved to be sufficiently secure in the passive RFID tags [11].

This paper is organized as follows. In Section 2, we describe the specification of Warbler. Section 3
first presents our metrics and design flow in CMOS 65nm and CMOS 130nm ASICs. Then, we give
our ASIC architecture of Warbler, including the top-level architecture, Finite State Machine (FSM), and
datapath. Later, we present our ASIC results and analysis in both CMOS 65nm and CMOS 130nm in
Section 4. Finally, Section 5 concludes this paper.

2 Description of Warbler

This section gives a detailed description of Warbler.

2.1 Specification of Warbler

The following terms and notations are used to describe Warbler and its hardware architecture.

– p(x) = x5 +x4 +x3 +x+1, a primitive polynomial of degree 5 over F2. It is used to generate F25 .
Let α be a primitive element of F25 such that p(α) = 0.



Table 1. Comparison of Hardware Implementations of Lightweight Primitives.

Algorithms
Key IV/ Internal Area Max Throughput Total Tech

SourceBlock State Frequency @100KHz Power
Size Size* Size (GEs) (MHz) (Kbps) (nm)

PRNG

Warbler 45 20 65 491† 250 20 0.296 µW 130 here
534‡ @100KHz

Warbler 45 20 65 464† 1430 20 1.239 µW 65 here
498‡ @100KHz

LAMED 32 32 64 15854 − − − − [16]
Melia-Segui et al. 16 0 16 7614 − − − − [13]
J3Gen 64 0 64 14194 − − − − [14]

AKARI1B − − 64 1749† − 14.2 0.182 µW5 90 [12]
@100KHz

Grain 80 64 160 1259‡ − 100 0.78 µW 130 [1]
@100KHz

Stream Trivium 80 80 288 2088‡ − 100 1.44 µW 130 [1]
@100KHz

cipher Grain 80 64 160 1126‡ 1020 100 2.04 mW 65 [17]
@1020MHz

Trivium 80 80 288 1986‡ 962 100 3.88 mW 65 [17]
@962MHz

Block SIMON� 64 32 96 523† − 5.6 − 130 [3]
cipher SPECK� 64 32 96 580† − 4.2 − 130 [3]

Hash PHOTON-80/20/16 − − 100 865† − 2.82 − 180 [8]

Function SPONGENT-88 − − 88 738† − 0.81 1.57 µW 130 [4]
@100KHz

* IV is for PRNGs and stream ciphers, and Block is for block ciphers.
† Areas are obtained before the place and route (P & R) phase and ‡ areas are obtained after the P & R phase.
− The corresponding value is not related or not provided by the authors.
4 The estimated area.
5 The estimated power consumption in UMC Faraday 90nm library.
� The smallest one in the SIMON and SPECK families.

– A polynomial basis of F25 over F2 is a basis of the form {1, α, α2, α3, α4}. All the computations in
Warbler are calculated based on this polynomial basis.

– Tr(x) = x+ x2 + x22
+ x23

+ x24
, the trace function from F25 → F2.

– WGP-5(x) = x+ (x+ 1)5 + (x+ 1)13 + (x+ 1)19 + (x+ 1)21, x ∈ F25 . The WG-5 permutation
from F25 → F25 .

– WGT-5(x) = Tr(WGP-5(x)) = Tr(x19), x ∈ F25 . The WG-5 transformation with decimation 1
from F25 → F2, which is the WGT2-5 module in Figure 1.

– WGT-5(x3) = Tr(WGP-5(x3)) = Tr(x13), x ∈ F25 . The WG-5 transformation with decimation 3
from F25 → F2, which is the WGT1-5 module in Figure 1.

– NLFSR1, a nonlinear feedback shift register with length N1 = 18 and it generates a span N1

sequence a = {ai}i≥0, where ai ∈ F2. The span n sequence is a binary sequence with period 2n−1
and each non-zero n-tuple occurs exactly once in one period [11].

– NLFSR2, a nonlinear feedback shift register with length N2 = 17 and it generates a span N2

sequence b = {bi}i≥0, where bi ∈ F2.



– NLFSR3, a nonlinear feedback shift register with length N3 = 6 and it generates a sequence c =
{ci}i≥0, where ci ∈ F25 .

– g(x) = x6+x+γ, a feedback primitive polynomial of degree 6 over F25 for NLFSR3, and γ = α15.

WGT1-5

a17 a0

b16 b0

WGT1-5WGT2-5

c5 c0

⊕
⊕⊕

⊕⊕
c1

γ⊕⊕
⊕

1

5

1
5

NLFSR1

NLFSR2

NLFSR3

⊗WGT1-5

Initialization Running

1

s

t

w

o

5

Fig. 1. Key/IV Initialization and Running Phases of Warbler

Warbler is mainly built upon three NLFSRs and four WG-5 transformation modules. It contains
two phases as depicted in Figure 1: the Key and IV initialization phase and the running phase. In the
initialization phase, the output of the WGT1-5 module in NLFSR3 is used to feed back to the inputs of
NLFSR1 and NLFSR2. The random sequences are generated from the output of the WGT1-5 module
in NLFSR3 in the running phase, and there is no feedback from WGT1-5 module in NLFSR3 to the
inputs of NLFSR1 and NLFSR2 in this phase.

The nonlinear recurrence relations for NLFSR1 and NLFSR2 without the feedback from NLFSR3
are defined as follows:

aN1+k = ak ⊕WGT-5(x3), x = (ar1+k, ar2+k, · · · , ar5+k) ∈ F25 .

bN2+k = bk ⊕WGT-5(x3), x = (br′
1+k, br′

2+k, · · · , br′
5+k) ∈ F25 .

where, k ≥ 0, 0 < ri < N1, and 0 < r
′

i < N2 are the tap positions of NLFSR1 and NLFSR2
respectively. They are listed as below:

(r1, r2, r3, r4, r5) = (4, 7, 8, 10, 15),

(r
′

1, r
′

2, r
′

3, r
′

4, r
′

5) = (4, 7, 8, 9, 12).

Based on the sequences a = {ai}i≥0 and b = {bi}i≥0, a new sequence s = {si | si = ai⊕bi, i ≥ 0}
is generated and will be sent to a 5-bit shift register immediately. The element of this 5-bit shift register
is used as one feedback for NLFSR3. This element can be represented as tk ∈ F25 , k ≥ 0.

The recursive relation for NLFSR3 is defined as follows:

cN3+k = γck + ck+1 + wk + tk, wk = (0, 0, 0, 0,WGT-5(ck+5)), k ≥ 0,

where, the least significant bit of wk is generated by the WGT-5(x) module from the most significant
element of NLFSR3, and the other bits of wk are zeros.



2.2 The Behaviour of Warbler

Warbler has an internal state of 65 bits: a 45-bit Key (K0,K1,K2, · · · ,K44) and a 20-bit IV (IV0, IV1,
IV2, · · · , IV19). Initially, the Key and IV need to be loaded into the registers in NLFSR1, NLFSR2,
and NLFSR3. The Key bits are loaded into the first consecutive 12, 11, and 22 positions of NLFSR1,
NLFSR2, and NLFSR3 respectively. The remaining positions in each NLFSR are reserved for IV. More
Specifically, the Key and IV loading process can be listed as follows.

a11, · · · , a0 = K11, · · · ,K0,

a17, · · · , a12 = IV5, · · · , IV0,

b10, · · · , b0 = K22, · · · ,K12,

b16, · · · , b11 = IV11, · · · , IV6,

c0 = K27, · · · ,K23,

c1 = K32, · · · ,K28,

c2 = K37, · · · ,K33,

c3 = K42, · · · ,K38,

c4 = IV14, IV13, IV12,K44,K43,

c5 = IV19, IV18, IV17, IV16, IV15.

After we finish loading the Key and IV, a 36-round initialization phase is performed to mix the Key
and IV properly. In this phase, the output signal o (Figure 1) from the WGT1-5 module in NLFSR3 is
used as a feedback to NLFSR1 and NLFSR2 in every clock cycle. The Warbler initialization method is
described as follows.

NLFSR1 :

 x = (ak+4, ak+7, ak+8, ak+10, ak+15),
o0 = 0,

ak+18 = ak ⊕WGT-5(x3)⊕ ok, 0 ≤ k ≤ 35.

NLFSR2 :

 y = (bk+4, bk+7, bk+8, bk+9, bk+12),
o0 = 0,

bk+17 = bk ⊕WGT-5(y3)⊕ ok, 0 ≤ k ≤ 35.

5-bit shift register :

 sj = 0, j = 0, 1, 2, 3,
sk+4 = ak ⊕ bk,
tk = (sk, sk+1, sk+2, sk+3, sk+4), 0 ≤ k ≤ 34.

NLFSR3 :

 wk = (0, 0, 0, 0,WGT-5(ck+5)),
ck+6 = γck + ck+1 + wk + tk,
ok+1 = WGT-5(c3k+5), 0 ≤ k ≤ 34.

The first output sequence bit o0 from NLFSR3 is manually set to 0, which is used for the feedback
from NLFSR3 to NLFSR1 and NLFSR2 in the first initialization clock cycle. The reason for this setting
is that there is a 5-bit shift register between NLFSR1 and NLFSR2 together and NLFSR3. s4 needs to
take one clock cycle in order to shift into this 5-bit shift register. Therefore, NLFSR3 needs to wait for
one clock cycle until the first element t0 in the 5-bit shift register is ready for the feedback computation
of NLFSR3. As a result, in the initialization phase, the NLFSR1 and NLFSR2 run for 36 clock cycles,
and the NLFSR3 runs only for 35 clock cycles.

After the NLFSRs finish the initialization phase, they simultaneously go to the running phase, where
the following 5-bit element tk is used as a feedback element for NLFSR3.

tk = (s5(k−27)−1, s5(k−27), s5(k−27)+1, s5(k−27)+2, s5(k−27)+3) ∈ F25 , k ≥ 35.



tk can be obtained by every five clock cycles from the 5-bit shift register, which results in a 1/5 (i.e.,
1-bit per five clock cycles) throughput of the Warbler output sequence ok+1, k ≥ 35 .

3 ASIC Implementation

We discuss the ASIC implementation of Warbler in this section, including the design flow and metrics,
and the specific architecture.

3.1 Design Flow and Metrics

We use Synopsys Design Compiler Version D-2010.03-SP4 to synthesize the designs into netlist, based
on the STMicroelectronics CMOS 65nm CORE65LPLVT_1.20V and IBM CMOS 130nm CMR8SF-
LPLVT Process SAGE v2.0 standard cell library, with both having a typical 1.2V voltage and 25◦C
temperature. Cadence SoC Encounter v09.12-s159_1 is used to finish the place and route phase in order
to generate the layout of the designs. We use Mentor Graphics ModelSim SE 10.1a to conduct functional
simulation of the designs and perform timing simulation by using the timing delay information generated
from SoC Encounter as well. The area of the design after the logic synthesis is provided for comparisons
with previous designs, and a more accurate area after place and route is also provided for deploying
the designs in practical cases. The densities used for the place and route phase for CMOS 130nm and
65nm are 0.92 and 0.93 respectively, in order to make a trade-off between area and maximum operating
frequency when the densities are pretty high. We choose them because the area after the place and route
phase will decrease when the density is higher. However, the corresponding critical path will increase;
leading to potential DRC (Design Rule Check) and LVS (Layout Versus Schematic) violations. As usual,
the area is measured in gate equivalents (GEs), and one GE is equivalent to the physical area required for
the two-input one-output NAND gate with the lowest driving strength of the corresponding technology.
The areas of one GE are 2.08 (µm)2 and 5.76 (µm)2 for ST CMOS 65nm and IBM CMOS 130nm
respectively.

We use SoC Encounter v09.12-s159_1 to generate accurate power consumption based on the activity
information generated from the timing simulation with a frequency of 100 KHz, and a duration time
of 0.1s. We do so because the 100 KHz clock frequency is widely used for benchmarking in resource
constrained applications and 0.1s is long enough to provide accurate activity information for all the
signals. Moreover, the maximum clock frequency which can be operated for a specific design is obtained
by using the critical path after the place and route phase.

In order to be fair enough to compare our results with the related work [3,5,15], we provide the areas
of some basic gates in our specific libraries. All the areas of basic gates provided here are the smallest
one in the library, and we normalize the two-input one-output NAND gate to be 1. The specific basic
gates in our IBM CMOS 130nm and ST CMOS 65nm libraries are listed in Table 2.

Table 2. The Areas of Basic Gates in the Libraries

NAND AND OR NOT XOR XNOR 2-1 MUX DFF 1-bit Full Adder Scan FF
IBM CMOS 130nm 1 1.25 1.25 0.75 2 2 2.25 4.25 5.75 5.5
ST CMOS 65nm 1 1.25 1.5 0.75 2.25 2.25 2 3.75 4.5 4.75



3.2 ASIC Architecture

In this subsection, we target a low-area implementation of Warbler but still maintain a very high max-
imum operating frequency. We first provide the top-level architecture of Warbler and then present the
architectures of FSM and datapath.

Entire Architecture

We provide a top-level architecture for Warbler in Figure 2, and the entire architecture includes two
parts: FSM and datapath. FSM is used to provide state transition signals (Load, Init, Run) and the register
chip-enable signal (NLFSR_ce3) for the datapath. The datapath is used to load the initial data for the
registers (Section 2.2) using the input ports (d1, d2, d3), to process the internal sates in the registers,
and then to output the sequence (o_Warbler) and the valid signal (o_valid).

FSM Datapath

clk

reset

d1
d2

o Warbler

o valid
d3[4:0]

Init
Load

NLFSR ce3
Run

Fig. 2. The Top-level Architecture of Warbler

FSM

Our architecture has three states: loading, initialization, and running. The loading state takes 18
clock cycles, the initialization state lasts for 36 clock cycles, and the running state lasts forever unless
Warbler is reset. Specifically, our FSM goes into loading state immediately when reset equals 1. Warbler
reads the initial data from d1 into the datapath once reset goes to 0 again, and it reads data from d2 and
data from d3 in the 2th and 13th clock cycles of the loading state respectively. Once the loading state is
finished, the initialization and running states will run.

From the description of Warbler in Section 2, we know that the throughput of Warbler is 1/5, because
the Shift5 module takes five clock cycles for one feedback computation of NLFSR3 in the running state.
Therefore, a register chip-enable signal (NLFSR_ce3) is required to control NLFSR3 in order to output
the sequence correctly. However, NLFSR1 and NLFSR2 always run after reset, which makes them
use only the standard registers without chip-enable signals. This property reduces the Warbler’s area.
Furthermore, it also explains why we have only one chip-enable signal in our architecture in Figure 2.

Recently, LFSR based counters have been used to replace the binary counter in the FSM in hardware
implementations [10], because they only contain several registers and some combinational feedback
logic without using a full-adder. In general, the combinational logic of the LFSR counter is smaller than
the full-adder of the binary counter in terms of area. Therefore, we can achieve some hardware benefits
by using the LFSR counter to replace the binary counter. The binary and LFSR counter-based designs are
both provided in this paper. To design our LFSR counter, we use a primitive polynomial (X6 +X + 1)
with an initial value (1, 1, 1, 1, 1, 1).

We use one-hot encoding for the three states: loading (100), initialization (010), and running (001).
For the binary counter-based design, the counter starts from 0 in each state. Similarly, the counter starts



from 63 in each state for the LFSR counter-based design. The states transition conditions for these two
designs are summarized in Table 3. The Load signal stays at 1 when the FSM is in the loading state;
otherwise, it equals 0. The similar case for the Init and Run signals.

Table 3. States Transition Conditions for FSM

States Binary counter-based LFSR counter-based
Loading (100)→ initialization (010) 17 17

Initialization (010)→ running (001) 35 39

The chip-enable signal (NLFSR_ce3) is generated as follows: it is set to 1 in the loading state, 1
in the initialization state except the first clock cycle, and (0, 0, 0, 0, 1) in every five clock cycles in the
running state.

Datapath

The datapath for Warbler in our ASIC architecture is shown in Figure 3. It includes five parts:
NLFSR1, NLFSR2, NLFSR3, Shift5, and o_valid. NLFSR1 contains a 18-stage register, a WGT1-5
module, and other feedback logic. Similarly, NLFSR2 contains a 17-stage register, a WGT1-5 module,
and other feedback logic. NLFSR3 contains a 6-stage register, a Gamma_Mult module, a WGT1-5
module, a WGT2-5 module, and other feedback logic. Shift5 is used for the 5-bit shift register and is
comprised of a 5-stage register and other combinational logic. Moreover, o_valid provides a valid signal
for the Warbler output sequence.

According to Section 2.2, the feedback values vary for different states. Therefore, Init, Load, and
NLFSR_ce3 are used to select correct feedback values for NLFSRs in each state. Furthermore, the
NLFSR_ce3 is used to control the throughput of output sequence (o_Warbler) and the output valid
signal (o_valid). The datapath works with the FSM together to generate a pseudorandom sequence cor-
rectly.

The Gamma_Mult module is used for the calculation of γck in F25 . Under the polynomial basis
representation, the element X ∈ F25 (X = x0 + x1α + x2α

2 + x3α
3 + x4α

4) multiplied by γ = α15

can be computed as follows:

X · α15 = (x0 + x1α+ x2α
2 + x3α

3 + x4α
4) · α15

= x0α
15 + x1α

16 + x2α
17 + x3α

18 + x4α
19

= (x2 + x4) + (x2 + x3 + x4)α+ (x0 + x3 + x4)α2 +
(x0 + x1 + x2)α3 + (x1 + x3 + x4)α4.

Therefore, the result of X · γ is represented as a 5-bit vector (x2⊕x4, x2⊕x3⊕x4, x0⊕x3⊕x4, x0⊕
x1⊕x2, x1⊕x3⊕x4). Thus, we can implement our Gamama_Mult module using the finite field logic
directly.

Similarly, we can compute WGT-5(x3) and WGT-5(x) in polynomial basis for every x ∈ F25 by
using the finite field logic directly or pre-storing them to two look-up tables (WGT1-5 and WGT2-5 re-
spectively), as in [17]. However, the hardware implementations of WGT1-5 module (with decimation 3)
and WGT2-5 module (with decimation 1) are more efficient if the look-up table method ? is used rather
than the finite field logic methods [17]. Therefore, we use the look-up table methods for implementing
the WGT1-5 and WGT2-5 modules.
? The look-up table method here and the following refers to using the hardware tools to optimize the pre-stored

tables of the corresponding modules to the logic but not to using the RAM directly.



a17 a0

WGT1-5

⊕
5× 1

a4

Shift5

a7a8a10a15 · · ·· · ·· · ·· · ·· · ·

b16 b0b4b7b8b9b12 · · ·· · ·· · ·· · ·

LoadInit

NLFSR ce3

d1

0

1

0

10

1

′0′
⊕

LoadInit
NLFSR ce3

d2

0

1

1

0

0

1

′0′
⊕

WGT1-5
5× 1

⊕

⊕

s0

s1

s2

s3

s4

c0c1c5 · · ·

⊕⊕

5

Gamma Mult

5× 55

d3

⊕
Load

NLFSR ce3

1

0

WGT1-5
5× 1

WGT2-5
5× 1

(0,0,0,0,WGT2-5)

5

o valid
NLFSR ce3

o Warbler

11

1 1

1

1

1 NLFSR1
o valid

NLFSR2
NLFSR3

Run

5
5

1

1

Fig. 3. Datapath of Warbler

4 ASIC Results and Analysis

In this section, we first give the ASIC implementation results of Warbler, using our architecture in CMOS
65nm and CMOS 130nm. Then, we provide a comprehensive analysis of the area that use different
technologies and various compilation techniques.

4.1 ASIC Results

We use three different compilation techniques in Design Compiler to perform hardware optimizations:
simple compile, compile ultra, and compile ultra with clock gating. The simple compile options can
provide us with the hierarchal architectures of the design, and the area of specific submodules. The
compile ultra option can make deeper optimizations by optimizing the entire module together, thereby
reducing the area and power consumption significantly [5,10] . The clock gating technique can further
reduce the area and power consumption [5].

Table 4 shows the ASIC implementation results of Warbler by using our architecture in CMOS
130nm and CMOS 65nm. The metric in our ASIC optimization is the low-area implementation, while
still maintain a very high maximum frequency. In general, when the clock period constraint in the Design
Compiler is very small, we can get a circuit with higher maximum frequency but also bigger area.
However, in order to get a low-area implementation, we make a trade-off between the area and the
maximum frequency by setting the clock period constraint loosely. In this way, we sacrifice a little
bit maximum frequency because it is, generally, high enough for the passive RFID tags. The area results
from before and after the place and route phase are both provided by using compile ultra and clock gating



Table 4. Our ASIC Implementation Results of Warbler in CMOS 65nm and CMOS 130nm.

Warbler Technology
Area (GEs) Max Throughput Total Power Optimality

Before After Frequency @100KHz @100KHz (MHz/#GEs)
P&R P&R (MHz) (Kbps) (µW )

Binary counter-based 65nm 475† 511† 1370 20 1.274 2.68
LFSR counter-based 65nm 464† 498† 1430 20 1.239 2.87
Binary counter-based 130nm 500† 543† 270 20 0.298 0.50
LFSR counter-based 130nm 491† 534† 250 20 0.296 0.47
† Area obtained by using compile ultra and clock gating techniques.

techniques with a purpose of comparison with other designs. The corresponding maximum frequency is
given by using the critical path. The throughput of Warbler is 1/5, as mentioned in Section 2. Therefore,
it is 20 Kbps at 100 KHz, the typical frequency for benchmarking lightweight primitives. Similarly, the
total power consumption is provided at 100 KHz. Since the operating frequency is so small, the static
power consumption dominates the total power consumption. However, the static power consumption
is larger in CMOS 65nm than in CMOS 130nm. Therefore, the total power consumption of Warbler
in CMOS 65nm is larger than in CMOS 130nm. In addition, the maximum frequency and total power
consumption are both obtained after the place and router phase in order to be closer to the practical cases.
The optimality is given based on our trade-off strategy.

From Table 4, we can see that the LFSR counter-based design is smaller than the binary counter-
based design (i.e., 11 GEs and 9 GEs smaller in CMOS 65nm and CMOS 130nm respectively, for the
areas before the place and route). Similarly, the total power consumption of the LFSR counter-based
design is smaller than that of the binary counter-based design in both CMOS 65nm and CMOS 130 nm.
The optimality for the LFSR counter-based design is higher than that for the binary counter-based design
in CMOS 65nm, but opposite in CMOS 130nm.

Our another observation is that the sequential logic dominates the entire area. In the area before the
place and route phase, for example, the proportion of sequential logic (Table 5), depends on the adopted
technologies and compilation techniques. However, they are all above 65%.

Table 5. The Sequential Logic Ratios of Warbler

Warbler
CMOS 65nm CMOS 130nm

Compile Compile Compile ultra Compile Compile Compile ultra
simple ultra + clock gating simple ultra + clock gating

Binary counter-based 65.0% 66.7% 65.0% 70.0% 71.5% 72.4%
LFSR counter-based 65.6% 67.4% 66.7% 71.3% 73.2% 73.4%

4.2 Results Analysis

In order to thoroughly analyze the constitution of the area of Warbler in CMOS 65nm and CMOS 130nm,
we break down the entire area from before the place and route phase into separate submodules, as shown
in Table 6. It is worth noting that the following analysis is based on the areas of the submodules which
are obtained by using the compile simple technique.

The areas of the datapath for the binary counter-based and the LFSR counter-based designs are the
same, and only the areas of the FSM are different. The LFSR counters are 17.4% and 23.7% smaller than
the binary counters in CMOS 65nm and CMOS 130nm respectively. However, the total areas of the FSM



Table 6. Breakdown of the Implementation Results of Warbler before the Place and Route Phase

CMOS 65nm CMOS 130nm
Binary LFSR Binary LFSR

counter- counter- counter- counter-
based based based based

Components (GEs) (GEs) (GEs) (GEs)

FSM State transitions + chip_enable logic 35.25 39.00 36.75 37.50
Counter 47.50 39.25 51.75 39.50

Datapath

NLFSR1
18-stage register 67.50 76.50
WGT1-5 15.50 14.50
Other feedback logic 10.00 9.50

NLFSR2
17-stage register 63.75 72.25
WGT1-5 15.50 14.50
Other feedback logic 10.00 9.50

NLFSR3

6-stage register 150.00 180.00
Gamma_Mult 13.75 14.00
WGT1-5 15.50 14.50
WGT2-5 9.25 9.50
Other feedback logic 32.50 30.75

Shift5 5-stage register 18.75 21.25
Other combinational logic 8.00 8.00

O_valid 6.50 6.50
Compile simple 519 515 570 558

Totals Compile ultra 505 493 555 541
Compile ultra + clock gating 475 464 500 491

are only 5.5% and 13% smaller accordingly, due to the area of state transitions and chip-enable logic is
bigger in the LFSR counter-based FSM than in the binary counter-based FSM.

For the registers in NLFSR1, NLFSR2, and Shift5, we can verify that they are indeed implemented
by the standard registers without chip-enable signals. For example, the area of this type of register in
CMOS 65nm is 3.75 GEs (Table 2), and the total area is 67.50 GEs for the 18-stage register in NLFSR1.
This area is confirmed with our architecture as described in Section 3.2. The areas of combinational
logic, such as the WGT1-5 module, depend on the areas of basic gates in the different technologies. For
example, the areas of the WGT1-5 module are 15.50 GEs and 14.50 GEs in CMOS 65nm and CMOS
130nm respectively. The same situation exists for other submodules.

For the area of NLFSR3, the 6-stage register use registers with chip-enables, and moreover the
WGT1-5 and WGT2-5 modules are different in the same technology (i.e., 15.50 GEs and 9.25 GEs
respectively in CMOS 65nm, and 14.50 GEs and 9.50 GEs respectively in CMOS 130nm). We give the
specific contents of these two look-up tables in Table 7. As we can see, the position distributions of 1
and 0 are different for the WGT1-5 and WGT2-5 modules, and they are computed based on WG-5
transforms with decimation 3 and 1 respectively. The synthesis tool is able to optimize WGT2-5 to the
simpler logic in hardware than WGT1-5; therefore, the area of WGT1-5 is bigger than WGT2-5’s as
shown in Table 6. The distinct areas of different WG-5 transformation tables give us the worthwhile idea
to select a decimation value in order to make the WG-5 transformation table as small as possible for a
new design.

As shown in Table 6, the compile ultra and compile ultra plus clock gating techniques can indeed
reduce the area. Table 8 shows the area reduction percentages by using compile ultra, and compile ultra
plus clock gating techniques, compared to the compile simple technique. We can see that compile ultra



Table 7. The WGT1-5 and WGT2-5 Look-up Tables

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WGT1-5 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1
WGT2-5 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1

can reduce the area by at least 2.6%, and compile ultra plus clock gating can reduce the area by at least
8.5% for our Warbler designs.

Table 8. The Area Reduction Percentages by using Compile Ultra and Compile Ultra plus Clock Gating

Techniques
CMOS 65nm CMOS 130nm

Binary LFSR Binary LFSR
counter-based counter-based counter-based counter-based

Compile ultra 2.7% 4.3% 2.6% 3.0%
Compile ultra + clock gating 8.5% 9.9% 12.3% 12.0%

5 Concluding Remarks

In this paper, we have presented hardware implementations of Warbler in CMOS 65nm and CMOS
130nm ASICs. We proposed an architecture that takes advantage of standard registers without chip-
enable signals. In addition, we investigated two methods for designing the FSM: binary counter-based
and LFSR counter-based. We used three different compilation techniques to optimize our designs. We
can achieve the areas of 498 GEs and 534 GEs after the place and route phase in CMOS 65nm and
CMOS 130nm respectively. The corresponding maximum frequencies are 1430 MHz and 250 MHz
respectively, for CMOS 65nm and CMOS 130nm. The power consumption of Warbler is very small at
100 KHz: only 1.239 µW and 0.296 µW respectively, for CMOS 65nm and CMOS 130nm. From the
ASIC results, we have determined that the LFSR counter-based design is better than the binary counter-
based design in terms of smaller area and lower total power consumption. In addition, the sequential logic
ratios for all our designs are larger than 65% for both CMOS 65nm and CMOS 130nm. Our analysis has
verified that the areas of NLFSRs and combinational logic are dependent upon the type of registers
and the adopted technologies. The area of the WG-5 transformation table depends upon the selected
decimation value, giving us some suggestions for future ciphers and pseudorandom number generator
designs using WG-5 transformations. When compared with other lightweight primitives, the area of our
Warbler implementation is smaller than the estimated areas of LAMED, Melia-Segui et al.’s PRNG,
and J3Gen, and also smaller than the areas of AKARI1B, Grain, Trivium, SIMON, SPECK, PHOTON-
80/20/16, and SPONGENT-88. In conclusion, Warbler can fit into passive RFID systems.

References

1. M. D. Aagaard, G. Gong, and R. K. Mota. Hardware Implementations of the WG-5 Cipher for Passive RFID
Tags. In 6th IEEE International Symposium on Hardware-Oriented Security and Trust, pages 24–29, June 2013.

2. F. Armknecht, M. Hamann, and V. Mikhalev. Lightweight Authentication Protocols on Ultra-Constrained
RFIDs-Myths and Facts. In Radio Frequency Identification: Security and Privacy Issues, pages 1–18. Springer,
2014.



3. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and SPECK Fam-
ilies of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.
iacr.org/.

4. A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I. Verbauwhede. SPONGENT: A Lightweight
Hash Function. In Cryptographic Hardware and Embedded Systems–CHES 2011, pages 312–325. Springer,
2011.

5. C. De Canniere, O. Dunkelman, and M. Knežević. KATAN and KTANTAN: A Family of Small and Efficient
Hardware-oriented Block Ciphers. In Cryptographic Hardware and Embedded Systems-CHES 2009, pages
272–288. Springer, 2009.

6. D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith. Ultra-lightweight Cryptography for Low-cost RFID Tags:
Hummingbird Algorithm and Protocol. Centre for Applied Cryptographic Research (CACR) Technical Reports,
29, 2009.

7. EPCglobal. EPC Radio Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communi-
cations at 860 MHZ - 960 MHz. http://www.gs1.org/sites/default/files/docs/uhfc1g2/
uhfc1g2_2_0_0_standard_20131101.pdf, 2013.

8. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash Functions. In Advances in
Cryptology–CRYPTO 2011, pages 222–239. Springer, 2011.

9. A. Juels and S. A. Weis. Authenticating Pervasive Devices with Human Protocols. In Advances in Cryptology–
CRYPTO 2005, pages 293–308. Springer, 2005.

10. L. Knudsen, G. Leander, A. Poschmann, and M. J. Robshaw. PRINTcipher: A Block Cipher for IC-printing. In
Cryptographic Hardware and Embedded Systems, CHES 2010, pages 16–32. Springer, 2010.

11. K. Mandal, X. Fan, and G. Gong. Warbler: A Lightweight Pseudorandom Number Generator for EPC C1 Gen2
Tags. In Radio Frequency Identification System Security: RFIDsec’12 Asia Workshop Proceedings, page 73.
IOS Press, 2013.

12. H. Martin, E. San Millán, P. Peris-Lopez, and J. E. Tapiador. Efficient ASIC Implementation and Analysis of
Two EPC C1 G2 RFID Authentication Protocols. Sensors Journal, IEEE, 13(10):3537–3547, 2013.

13. J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti. Analysis and Improvement of a Pseudorandom
Number Generator for EPC Gen2 Tags. In Financial Cryptography and Data Security, pages 34–46. Springer,
2010.

14. J. Melià-Seguí, J. Garcia-Alfaro, and J. Herrera-Joancomartí. J3Gen: A PRNG for Low-cost Passive RFID.
Sensors, 13(3):3816–3830, 2013.

15. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In Advances in Cryptology–EUROCRYPT 2011, pages 69–88. Springer, 2011.

16. P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Ribagorda. LAMED–A PRNG for EPC
Class-1 Generation-2 RFID Specification. Computer Standards & Interfaces, 31(1):88–97, 2009.

17. G. Yang, X. Fan, M. Aagaard, and G. Gong. Design Space Exploration of the Lightweight Stream Cipher WG-8
for FPGAs and ASICs. In Proceedings of the Workshop on Embedded Systems Security, page 8. ACM, 2013.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.gs1.org/sites/default/files/docs/uhfc1g2/uhfc1g2_2_0_0_standard_20131101.pdf
http://www.gs1.org/sites/default/files/docs/uhfc1g2/uhfc1g2_2_0_0_standard_20131101.pdf

	Efficient Hardware Implementations of the Warbler Pseudorandom Number Generator
	Introduction
	Description of Warbler
	Specification of Warbler
	The Behaviour of Warbler

	ASIC Implementation
	Design Flow and Metrics
	ASIC Architecture
	Entire Architecture
	FSM
	Datapath


	ASIC Results and Analysis
	ASIC Results
	Results Analysis

	Concluding Remarks


