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Abstract

In this paper we introduce a sequence of discrete Fourier trans-
forms and define new versions of bent functions, which we shall call
(weak, strong) octa/hexa/2k-bent functions. We investigate relation-
ships between these classes and completely characterize the octabent
and hexabent functions in terms of bent functions.
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1 Introduction

Let F2 be the prime field of characteristic 2 and let Vn := Fn2 is the n-
dimensional vector space over F2. A function from Fn2 to F2 is called a
Boolean function on n variables. We denote the set of all Boolean functions
by Bn.

The set of integers, real numbers and complex numbers are denoted by
Z, R and C respectively. The addition over Z, R and C is denoted by ‘+’.
The addition over Vn for all n ≥ 1, is denoted by ⊕. If x = (x1, . . . , xn)
and y = (y1, . . . , yn) are two elements of Vn we define the scalar (or inner)
product, by

x · y = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn.



We define the scalar/inner product x�y in C×C in the same way, although
the sum is over C. We define the intersection of two vectors x,y in some
vector space by

x ? y = (x1y1, x2y2, . . . , xnyn).

If z = a + b i ∈ C, then |z|=
√
a2 + b2 denotes the absolute value of z,

and z = a − b i denotes the complex conjugate of z, where i2 = −1, and
a, b ∈ R.

An important tool in the analysis of Boolean functions is the discrete
Fourier transform, known in Boolean function literature, as Walsh, Hadamard,
or Walsh–Hadamard transform, which we define next

Wf (u) = 2−
n
2

∑
x∈Vn

(−1)f(x)⊕u·x.

Any f ∈ Bn can be expressed in algebraic normal form (ANF) as

f(x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈Vn

ca

(
n∏
i=1

xaii

)
, ca ∈ F2.

The character (sign) form of some binary vector x = (x1, . . . , xn) is (−1)x =
((−1)x1 , . . . , (−1)xn). The character form of a function is the character
form of its truth table (output values). The (Hamming) weight of x ∈ Vn
is wt(x) :=

∑n
i=1 xi. The algebraic degree of f , deg(f) := maxa∈Vn{wt(a) :

ca 6= 0}. Boolean functions having algebraic degree at most 1 are said to be
affine functions. For any two functions f, g ∈ Bn, we define the (Hamming)
distance d(f, g) = |{x : f(x) 6= g(x),x ∈ F2n}|= wt(f ⊕ g).

The maximum nonlinearity of a Boolean function f ∈ Bn defined by
nl(f) = max{d(f, `) | ` ∈ An, the affine functions in n variables} known to
be equal to nl(f) = 2n−1 − 1

2 maxu|Wf (u)| is achieved when the maximum
absolute value in the Walsh spectrum is minimized. For even n, such func-
tions are known as bent functions [10] and the magnitudes of all the Walsh
values in the spectrum is constant, that is, if |Wf (u)|= 1 for all u ∈ Vn. If
f is bent, then for every u ∈ Vn, we have Wf (u) = ±1 = (−1)g(u), for some
function g, which is also bent and called the dual of f . A function f ∈ Bn
is called semibent, if the Walsh transform of f takes the values {0,±

√
2},

when n is odd, or {0,±2}, when n is even.
The sum Cf,g(z) =

∑
x∈Vn(−1)f(x)⊕g(x⊕z) is the crosscorrelation of f

and g at z. The autocorrelation of f ∈ Bn at u ∈ Vn is Cf,f (u) above, which
we denote by Cf (u). It is known [3] that a function f ∈ Bn is bent if and
only if Cf (u) = 0 for all u 6= 0.
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We refer to Carlet [1, 2], and Cusick and Stănică [3] for more on Boolean
functions.

Another transformation on Boolean functions was introduced by Rierra
and Parker [9] (see also [7, 11]), and dubbed nega–Hadamard transform of
f ∈ Vn at any vector u ∈ Vn as the complex valued function Nf (u) =
2−

n
2
∑

x∈Vn(−1)f(x)⊕u·x iwt(x). A function is said to be negabent if the nega–
Hadamard transform is flat in absolute value, namely |Nf (u)|= 1 for all
u ∈ Vn. The sum Cf,g(z) =

∑
x∈Vn(−1)f(x)+g(x⊕z)(−1)x·z is the nega–

crosscorrelation of f and g at z, and the nega–autocorrelation of f at u ∈ Vn
is Cf (u) =

∑
x∈Vn(−1)f(x)⊕f(x⊕u)(−1)x·u.

Let ζ2k = e
2π i

2k be a 2k-complex root of 1. In this paper we introduce yet
an entire sequence of transforms, which we call 2k-Hadamard transform as
the complex valued function

H(2k)
f (u) = 2−

n
2

∑
x∈Vn

(−1)f(x)⊕u·x ζ
wt(x)

2k
.

Certainly, if k = 1, 2, and so, ζ2 = −1, ζ4 = i, we get the Walsh-Hadamard,

respectively, the nega-Hadamard transforms. If k = 3, 4, and so, ζ8 = e
2πi
8 =

1+i√
2

, ζ16 = e
2πi
16 =

√
2+
√
2

2 + i

√
2−
√
2

2 , then we shall call the correspond-

ing transforms, the octa-Hadamard transform, respectively, hexa-Hadamard
transform and denote them by Of (u), respectively, Xf (u).

The 2k-crosscorrelation of f, g, respectively, 2k-autocorrelation of f are
defined by

C(2
k)

f,g (u) =
∑
x∈Vn

(−1)f(x)⊕g(x⊕z)µx�z,

C(2
k)

f (u) =
∑
x∈Vn

(−1)f(x)⊕f(x⊕z)µx�z,

where µ = ζ2 is a 2k−1 complex root of 1 (recall the scalar product x� z is
computed over Z). When k is fixed we shall use Cf,g, Cf , instead.

We call a function octabent, hexabent, and in general 2k-bent if and only if
the octa-Hadamard, hexa-Hadamard, respectively, 2k-Hadamard transform

are flat in absolute value, that is, |Of (u)|= 1, |Xf (u)|= 1, |H(2k)
f (u)|= 1, for

all u ∈ Vn. Since it is relevant below, we call a function g a strong 2k-bent
function if and only if g is 2`-bent for all ` ≤ k. Also, a function f is a weak
2k-bent function if and only if f ⊕ s2k−1 is a strong 2k−1-bent function.

In this paper, we will give some of the properties of the transform and
we will investigate functions that are both bent, octabent, hexabent and
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in general 2k-bent. In the case of octabent and hexabent, we will find a
necessary and sufficient condition in terms of “lower-ladder” level of such
functions.

2 Properties of the 2k-Hadamard transform

Certainly, such transforms to be of any use, they have to be invertible.

Lemma 1. Let f ∈ Bn. Then

(−1)f(y) = 2−
n
2 ζ
−wt(y)

2k

∑
u∈Vn

H(2k)
f (u)(−1)y·u. (1)

Proof. We have (let δ0(x) be the Dirac symbol, which is 1 at x = 0 and 0,
elsewhere),

2−
n
2

∑
u∈Vn

H(2k)
f (u)(−1)y·u =2−n

∑
u∈Vn

∑
x∈Vn

(−1)f(x)⊕u·x ζ
wt(x)

2k
(−1)y·u

=2−n
∑
x∈Vn

∑
u∈Vn

(−1)f(x)⊕u·x ζ
wt(x)

2k
(−1)y·u

=2−n
∑
x∈Vn

(−1)f(x)ζ
wt(x)

2k

∑
u∈Vn

(−1)u·(x⊕y)

=2−n
∑
x∈Vn

(−1)f(x)ζ
wt(x)

2k
2nδ0(x⊕ y)

=(−1)f(y)ζ
wt(y)

2k
,

and the lemma is shown.

As in [11], we next prove a theorem that gives the 2k-Hadamard trans-
form of various combinations of Boolean functions. For easy writing, when

k is fixed, we shall use Hf instead of H(2k)
f . We will make use throughout

of the well-known identity (see [5])

wt(x⊕ y) = wt(x) + wt(y)− 2wt(x ? y). (2)

Theorem 2. Let f, g, h be in Bn, ζ = e
2πi

2k and ω = e
πi

2k a square root of ζ.
The following statements are true:

(i) If `a,c(x) = a · x ⊕ c is affine (a ∈ Vn, c ∈ F2), then Hf⊕`a,c(u) =
(−1)cHf (a⊕ u). Moreover,

H`a,c(u) = (−1)c2n
(

cos
( π

2k

))n (
−i tan

( π
2k

))wt(a⊕u)
ωn−2wt(a⊕u).
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(ii) If h(x) = f(x)⊕ g(x) on Fn2 , then for u ∈ Fn2 ,

Hh(u) = 2−n/2
∑
v∈Fn2

Hf (v)Wg(u⊕ v) = 2−n/2
∑
v∈Fn2

Wf (v)Hg(u⊕ v).

(iii) If h(x) = f(Ox), then Hh(u) = ζwt(a)Hf (Ou), where O is an n × n
orthogonal matrix over F2 (and so, OTO = In).

(iv) If h(x,y) = f(x)⊕ g(y),x, y ∈ Fn2 , then Hf⊕g(u,v) = Hf (u)Hg(v).

(v) If f ∈ Bn, g ∈ Bm, and h(x,y) = f(x)g(y), then

2k/2Hh(u,v) = Hf (u)Ag1(v) + ωn ζ−wt(u)Ag0(v),

Ag1(v) +Ag0(v) = (−1)c2m
(

cos
( π

2k

))m (
−i tan

( π
2k

))wt(v)
ωm−2wt(v),

where Ag0(v) =
∑

y,g(y)=0(−1)y·v ζwt(v), Ag1(v) =
∑

y,g(y)=1(−1)y·v ζwt(v).

Moreover, if k = 1, then 21/2Hyf(x)(u, v) = (−1)v ζHf (u)+2n/2
(
cos
(
π
2k

))n(
−i tan

(
π
2k

))wt(u)
ωn−2wt(u), 21/2H(y⊕1)f(x)(u, v) = Hf (u)+2n/2(−1)v ζ(

cos
(
π
2k

))n (−i tan
(
π
2k

))wt(u)
ωn−2wt(u).

Proof. To show (i), write

Hf⊕`a,c(u) =
∑
x∈Vn

(−1)f(x)⊕`a,c(x)⊕x·uζwt(x)

= (−1)c
∑
x∈Vn

(−1)f(x)⊕x·(a⊕u)ζwt(x)

= (−1)cHf (a⊕ u).

Next, for ζ = e
2πi

2k and ω = e
πi

2k a square root of ζ, then

1 + ζ = 1 + cos
( π

2k−1

)
+ i sin

( π

2k−1

)
= 2 cos2

( π
2k

)
+ 2i sin

( π
2k

)
cos
( π

2k

)
= 2 cos

( π
2k

)
e
πi

2k = 2 cos
( π

2k

)
ω,

1− ζ = 2 sin2
( π

2k

)
− 2i sin

( π
2k

)
cos
( π

2k

)
= −2i sin

( π
2k

)
ω−1,
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so, 1 + (−1)bζ =
(

2 cos
(
α
2

)
− ω 1−(−1)b

2

)
ω(−1)b .

Let f = 0. Then, with notations a = (a1, . . . , an), u = (u1, . . . , un), and
for easy writing, bi := ai ⊕ ui, 1 ≤ i ≤ n, we write

H`a,c(u) = (−1)c
∑
x∈Vn

(−1)x·(a⊕u)ζwt(x)

= (−1)c
n∏
k=1

(
1 + ζ(−1)bk

)
= (−1)c

∏
bk=0

(1 + ζ)
∏
bk=1

(1− ζ)

= (−1)c
(

2 cos
( π

2k

))n−wt(a⊕u)
ωn−wt(a⊕u)

·
(
−2i sin

( π
2k

))wt(a⊕u)
ω−wt(a⊕u)

= (−1)c2n
(

cos
( π

2k

))n (
−i tan

( π
2k

))wt(a⊕u)
ωn−2wt(a⊕u).

Next, we show (ii). We write∑
v∈Vn

Hf (v)Wg(u⊕ v) = 2−n
∑

v,y,z∈Vn

(−1)f(y)⊕g(z)⊕v·(y⊕z)⊕u·z ζwt(y)

= 2−n
∑

y,z∈Vn

(−1)f(y)⊕g(z)⊕u·z ζwt(y)
∑
v∈Vn

(−1)v·(y⊕z)

=
∑
y∈Vn

(−1)f(y)⊕g(y)⊕u·y ζwt(y) = 2n/2Hf⊕g(u).

The second identity is similar.
For (iii) we use a similar argument as in [11], and get

Hh(u) = 2−n/2
∑
y

(−1)h(y)⊕u·y ζwt(y) = 2−n/2
∑
y

(−1)f(Oy)⊕u·y ζwt(y)

= 2−n/2
∑
z

(−1)f(z)⊕u·O
T z ζwt(OT z)

= 2−n/2
∑
z

(−1)f(z)⊕Ou·z ζwt(z)

= 2−n/2ζwt(a)
∑
z

(−1)f(z)⊕(Ou)·z ζwt(z)

= ζwt(a)Hf (Ou),
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since wt(OT z) = (OT z)T (OT z) = zT (OOT )z = zT z = wt(z).
Claim (iv) is straightforward, and for claim (v), exactly as in [11] for the

nega-Hadamard transform, we see that

2(n+m)/2Hh(u,v) =
∑

(x,y)∈Fn+k2

(−1)f(x)g(y)⊕x·u⊕y·v ζwt(x)+wt(y)

=
∑

y,g(y)=1

(−1)y·v ζwt(y)
∑
x

(−1)f(x)⊕x·u ζwt(x)

+
∑

y,g(y)=0

(−1)y·v ζwt(y)
∑
x

(−1)x·u ζwt(x)

= 2n/2Hf (u)
∑

y,g(y)=1

(−1)y·v ζwt(y) + 2n
(

cos
( π

2k

))n
·
(
−i tan

( π
2k

))wt(u)
ωn−2wt(u)

∑
y,g(y)=0

(−1)y·v ζwt(y),

from which we obtain the claim. In particular, for m = 1, if g(y) = y, then
Ag0(v) = 1, Ag1(v) = (−1)v ζ, and if g(y) = y⊕1, then Ag1(v) = 1, Ag0(v) =
(−1)v ζ, and so the claim follows.

Theorem 3. Let f, g ∈ Bn. The 2k-crosscorrelation of f, g is

C(2
k)

f,g (z) = ζwt(z)
∑
u∈Vn

Hf (u)Hg(u)(−1)u·z.

Furthermore, the 2k-Parseval identity holds∑
u∈Vn

|Hf (u)|2= 2n.

Moreover, f is 2k-bent if and only if Cf (u) =, for all u 6= 0.

Proof. Using [3, Lemma 2.6] and identity (2), we write

ζwt(z)
∑
u∈Vn

Hf (u)Hg(u)(−1)u·z

=2−n
∑

x,y∈Vn

(−1)f(x)⊕g(y)ζwt(x)+wt(z)−wt(y)
∑
u∈Vn

(−1)u·(x⊕y⊕z)

=
∑

x,y∈Vn

(−1)f(x)⊕g(x⊕z)ζ2wt(x?z)

=
∑
x∈Vn

(−1)f(x)⊕g(x⊕z)µx�z = C(2
k)

f,g (z).
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If f = g, then we get

C(2
k)

f (z) =
∑
u∈Vn

(−1)f(u)⊕f(u⊕z)µu�z = ζwt(z)
∑
u∈Vn

|Hf (u)|2(−1)u·z,

and by replacing z = 0, then we get the 2k-Parseval identity. The last claim
is also implied by the previous identity.

3 Complete characterization of octabent and hex-
abent Boolean functions

Lemma 4. Let z be a complex number. If s ∈ Z2, then

zs =
1 + (−1)s

2
+

1− (−1)s

2
z. (3)

Proof. The claim is a straightforward computation going through the cases
s = 0, 1.

Throughout the paper, we let

s1(x) =

n⊕
i=1

xi, s2(x) =
⊕

1≤i<j≤n
xixj ,

s3(x) =
⊕

1≤i<j<k≤n
xixjxk, s4(x) =

⊕
1≤i<j<k<l≤n

xixjxkxl

and, in general, st(x) =
⊕

1≤i1<...<it≤n
xi1 · · ·xit ,

be the symmetric polynomials of degree 1, 2, 3, 4, t, etc., respectively, all
reduced modulo 2 (we use the convention that st(x) = 0, if x ∈ F`2, and
` < t).

Lemma 5. Let x = (x1, . . . , xn) ∈ Vn. Then

wt(x) (mod 8) = s1(x) + 2s2(x) + 4s4(x)

wt(x) (mod 16) = s1(x) + 2s2(x) + 4s4(x) + 8s8(x),

wt(x) (mod 2k) = wt(x) (mod 2k−1) + 2k−1s2k−1(x) =

k−1∑
i=0

2is2i(x).
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Proof. We will be using Newton’s identities for symmetric polynomials: with
the notations x = (x1, . . . , xn), pi(x) =

∑n
k=1 x

i
k, e0(x) = 1, e1(x) =∑n

k=1 xk, e2(x) =
∑

1≤k<j≤n xkxj , e3(x) =
∑

1≤k<j<s≤n xkxjxs, etc., then

kek(x) =
k∑
i=1

(−1)i−1ek−i(x)pi(x).

Taking k = 3, we get 3e3 = e2p1−e1p2+p3. Reducing this identity modulo 2
and observing that pi(x) (mod 2) = s1(x), for all i ≥ 1, we can write,

s3(x) = s2(x)s1(x)⊕ s21(x)⊕ s1(x) = s2(x)s1(x). (4)

In general,

s2k+1(x) =

(
2k⊕
i=2

si(x)

)
s1(x).

We show our lemma by induction on n. The claim is certainly true for
n = 1, 2. Let x = (x′, xn+1), x

′ ∈ Fn2 . If xn+1 = 0, then

wt(x) (mod 8) = wt(x′) (mod 8)

= s1(x
′) + 2s2(x

′) + 4s4(x
′) (mod 8)

= s1(x) + 2s2(x) + 4s4(x) (mod 8).

If xn+1 = 1, then s1(x) = s1(x
′) ⊕ 1, s2(x) = s2(x

′) ⊕ s1(x
′), s4(x) =

s4(x
′) ⊕ s3(x

′) = s4(x
′) ⊕ s1(x

′)s2(x
′), using (4). We distinguish several

cases.
Case 1. s1(x

′) = 0 (thus wt(x′) (mod 8) < 7). Then

wt(x) (mod 8) = wt(x′) (mod 8) + 1

= 1 + s1(x
′) + 2s2(x

′) + 4s4(x
′)

= s1(x) + 2s2(x) + 4s4(x).

Case 2. s1(x
′) 6= 0, s2(x

′) = 0 (thus wt(x′) (mod 8) < 7). Then,

wt(x) (mod 8) = wt(x′) (mod 8) + 1

= 1 + s1(x
′) + 2s2(x

′) + 4s4(x
′)

= s1(x) + 2s2(x) + 4s4(x),

since s2(x) = s1(x
′) and s1(x) = 0.
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Case 3. s1(x
′) 6= 0, s2(x

′) 6= 0, s4(x
′) = 0 (thus wt(x′) (mod 8) < 7). Then,

wt(x) (mod 8) = wt(x′) (mod 8) + 1

= 1 + s1(x
′) + 2s2(x

′) + 4s4(x
′)

= s1(x) + 2s2(x) + 4s4(x),

since s4(x) = s1(x
′)s2(x

′) = 1 and s1(x) = s2(x) = 0.
Case 4. s1(x

′) 6= 0, s2(x
′) 6= 0, s4(x

′) 6= 0 (thus wt(x′) (mod 8) = 7). Then,

0 = wt(x) (mod 8)

= s1(x) + 2s2(x) + 4s4(x),

since in this case s1(x) = s2(x) = s4(x) = 0.
The remaining claims can be shown in a similar way, although there are

more cases to be considered, however an alternative inductive argument can
be used. Let wt(x) = 2kt + 2k−1s + p, where s = 0, 1 and p < 2k−1. If
s = 0, then wt(x) (mod 2k) = p = wt(x) (mod 2k−1), so we just need to
show that s2k−1(x) = 0 in this case. Certainly, s2k−1(x) is exactly the parity
of the number of terms in this polynomial, when the variables are taken
from the nonzero positions of x. That is, we simply need to consider the

parity of the binomial coefficient
(2kt+p
2k−1

)
, which is zero by a corollary to a

Theorem of Kummer (the binomial coefficient
(
m
`

)
≡ 0 (mod 2) if and only

if there is a carry when ` and m− ` are added in base 2, which is equivalent
to the statement that m has no 0 in its binary expansion every time ` has

a 1). Similarly, if s = 1, then s2k−1(x) =
(2kt+2k−1+p

2k−1

)
= 1, by the same

argument. Thus, we get the first equality of the last identity of our lemma,
and by induction, the second one is shown, as well.

Theorem 6. Let f ∈ Bn and ζ = e
2πi
8 . The octa-Hadamard transform of

f can be written as a combination of Walsh-Hadamard transforms in the
following way:

4Of (u) = α1Wf⊕s4(u) + α2Wf⊕s4(ū) + α3Wf⊕s2⊕s4(u) + α4Wf⊕s2⊕s4(ū),

where α1 = 1 + ζ + ζ2 + ζ3, α2 = 1 − ζ + ζ2 − ζ3, α3 = 1 + ζ − ζ2 −
ζ3, α4 = 1 − ζ − ζ2 + ζ3. Furthermore, f is octabent if and only if:
for n even, f ⊕ s4 is bent-negabent (that is, both f ⊕ s4, f ⊕ s2 ⊕ s4
are bent) and Wf⊕s4(u)Wf⊕s2⊕s4(u) = Wf⊕s4(ū)Wf⊕s2⊕s4(ū); for n odd,
f ⊕ s2, f ⊕ s2 ⊕ s4 are both semibent such that |Wf⊕s4(u)|= |Wf⊕s4(ū)|=√

2, Wf⊕s2⊕s4(u) = Wf⊕s2⊕s4(ū) = 0, or Wf⊕s4(u) = Wf⊕s4(ū) = 0,
|Wf⊕s2⊕s4(u)|= |Wf⊕s2⊕s4(ū)|=

√
2.
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Proof. Using Lemmas 4 and 5, we write (recall that in this case ζ = e
2πi
8 )

4Of (u) = 2−
n
2
+2
∑
x∈Vn

(−1)f(x)⊕u·xζwt(x)

= 2−
n
2
+2
∑
x∈Vn

(−1)f(x)⊕u·xζs1(x)+2s2(x)+4s4(x)

= 2−
n
2
+2
∑
x∈Vn

(−1)f(x)⊕u·xζs1(x)is2(x)(−1)s4(x)

= 2−
n
2
+2
∑
x∈Vn

(−1)f(x)⊕s4(x)+u·x
(

(1 + (−1)s1(x)) + (1− (−1)s1(x))ζ
)

·
(

(1 + (−1)s2(x)) + (1− (−1)s2(x))i
)

= α12
−n

2

∑
x∈Vn

(−1)f(x)⊕s4(x)⊕u·x

+ α22
−n

2

∑
x∈Vn

(−1)f(x)⊕s1(x)⊕s4(x)⊕u·x

+ α32
−n

2

∑
x∈Vn

(−1)f(x)⊕s2(x)⊕s4(x)⊕u·x

+ α42
−n

2

∑
x∈Vn

(−1)f(x)⊕s1(x)⊕s2(x)⊕s4(x)⊕u·x

= α1Wf⊕s4(u) + α2Wf⊕s1⊕s4(u) + α3Wf⊕s2⊕s4(u) + α4Wf⊕s1⊕s2⊕s4(u)

= α1Wf⊕s4(u) + α2Wf⊕s4(ū) + α3Wf⊕s2⊕s4(u) + α4Wf⊕s2⊕s4(ū),

where α1 = 1 + ζ + ζ2 + ζ3, α2 = 1 − ζ + ζ2 − ζ3, α3 = 1 + ζ − ζ2 − ζ3,
α4 = 1− ζ − ζ2 + ζ3.

DenotingX =Wf⊕s4(u), Y =Wf⊕s1⊕s4(u) =Wf⊕s4(ū), W =Wf⊕s2⊕s4(u),
Z =Wf⊕s1⊕s2⊕s4(u) =Wf⊕s2⊕s4(ū), we further obtain

4Of (u) = (W +X + Y + Z) +
√

2(W − Z)

+ i(X + Y −W − Z) + i
√

2(X − Y ),

and therefore,

16|Of (u)|2= 4(X2+Y 2+W 2+Z2)+2
√

2(X2+W 2−Y 2−Z2+2WY −2XZ).

If f is octabent, that is, |Of (u)|= 1, for all u, then, we obtain the
following system of equations

X2 + Y 2 +W 2 + Z2 = 4

X2 +W 2 − Y 2 − Z2 + 2WY − 2XZ = 0.

11



If n is even, then by Jacobi’s four-squares theorem, we obtain the solutions
(X,Y,W,Z)

(−1,−1,−1,−1), (−1,−1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1,−1),

(1,−1,−1, 1), (1,−1, 1,−1), (1, 1,−1,−1), (1, 1, 1, 1).

Thus, f ⊕ s4, f ⊕ s2 ⊕ s4 are both bent such that Wf⊕s4(u)Wf⊕s2⊕s4(u) =
Wf⊕s4(ū)Wf⊕s2⊕s4(ū). If n is odd, then the same system will have solutions
(X,Y,W,Z)

(−
√

2,−
√

2, 0, 0), (−
√

2,
√

2, 0, 0), (0, 0,−
√

2,−
√

2), (0, 0,−
√

2,
√

2),

(0, 0,
√

2,−
√

2), (0, 0,
√

2,
√

2), (
√

2,−
√

2, 0, 0), (
√

2,
√

2, 0, 0).

|Wf⊕s4(u)|= |Wf⊕s4(ū)|= 1 and Wf⊕s2⊕s4(u) = Wf⊕s2⊕s4(ū) = 0, or
Wf⊕s4(u) =Wf⊕s4(ū) = 0 and |Wf⊕s2⊕s4(u)|= |Wf⊕s2⊕s4(ū)|= 1.

A simple computation shows that for these values, f is octabent, and
the theorem is shown.

Remark 7. Given our definition, we see that f is octabent if and only if
f ⊕ s4 is a strong negabent function, together with some conditions on the
Walsh coefficients.

Corollary 8. If f is octabent, ζ = e
2π
8 , then the octa-Hadamard spectrum

of f is {ζk | 0 ≤ k ≤ 8} = {±1,±ζ,±i,±ζ3}. If f is a weak octabent, then

its spectrum in absolute value belongs to {1,
√

1± 1√
2
}.

Proof. The proof is a straightforward computation running through the set
of values for the Wash-Hadamard coefficients described in the previous the-
orem, respectively, all ±1 coefficients for the second claim.

Corollary 9. Let n be odd and f ∈ Bn. Then f is octabent if and only if
g1(x, y) = f(x)⊕ s4(x)⊕ ys2(x), g2(x, y) = f(x)⊕ s4(x)⊕ y(s2(x)⊕ s1(x))
and g3(x, y) = f(x)⊕ s4(x)⊕ s1(x)⊕ ys2(x) are all bent in Bn+1.
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Proof. We compute the Walsh-Hadamard transform of g1 by

Wg1(u, v) = 2−
n+1
2

∑
x∈Vn
y∈F2

(−1)f(x)⊕s4(x)⊕ys2(x)⊕u·x⊕yv

= 2−
n+1
2

∑
x∈Vn

(−1)f(x)⊕s4(x)⊕u·x

+ 2−
n+1
2

∑
x∈Vn

(−1)f(x)⊕s4(x)⊕s2(x)⊕u·x⊕v

=
1√
2

(Wf⊕s4(u) + (−1)vWf⊕s2⊕s4(u)) .

Similarly,

Wg2(u, v) =
1√
2

(Wf⊕s4(u) + (−1)vWf⊕s4⊕s2(ū))

Wg3(u, v) =
1√
2

(Wf⊕s4(ū) + (−1)vWf⊕s4⊕s2(ū)) .

If g1, g2, g3 are bent, then Wg1(u, v),Wg2(u, v),Wg3(u, v) ∈ {±1} which im-
plies (by solving the corresponding systems for every possible ±1 value) that
the Walsh coefficients of f ⊕ s2, f ⊕ s2⊕ s4, etc., are all in {0,±

√
2} and so,

these functions are semibent. If, |Wf⊕s4(u)|=
√

2, then Wf⊕s2⊕s4(u) = 0,
and so (using Wg2), |Wf⊕s2⊕s4(ū)|= 0, which forces |Wf⊕s4(ū) =

√
2. A

similar argument works ifWf⊕s4(u) = 0. By Theorem 6, then f is octabent.
Conversely, if f is octabent, then f ⊕ s2, f ⊕ s2 ⊕ s4 are semibent

and either |Wf⊕s4(u)|=
√

2 and Wf⊕s4⊕s2(u) = 0, or Wf⊕s4(u) = 0 and
|Wf⊕s4⊕s2(u)|=

√
2 and thus, |Wf⊕s4(u)±Wf⊕s2⊕s4(u)| =

√
2, |Wf⊕s4(u)±

Wf⊕s4⊕s2(ū)|=
√

2 and |Wf⊕s4(ū) ± Wf⊕s4⊕s2(ū)|=
√

2, that is, g1, g2, g3
are all bent.

It is known that (when n is even) f is negabent if and only if f⊕s2 is bent.
Thus our condition in the theorem can be rewritten (when n is even) as f is
octabent if and only if f⊕s4 is both bent-negabent (along with the constraint
on the spectra). From previous work [7], we know that x1x2 ⊕ x2x3 ⊕ x3x4
is both bent-negabent. This quickly gives us our first example of weak
octabent function, namely f(x1, x2, x3, x4) = x1x2⊕x2x3⊕x3x4⊕x1x2x3x4.
In reality, it is not difficult to give examples of weak octabent functions. Let
π be a permutation on Fn2 such that π(y)⊕y is also a permutation (see the
discussion on complete mapping polynomials from [4, 11, 12]). On F2n

2 , let
the Maiorana-McFarland type function f(x,y) = x ·π(y)⊕g(y), for some g,
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and f ′(x,y) = f((x,y) ·O⊕α) +a ·x⊕ c, where O is an orthogonal matrix.
We know that f ′ is bent-negabent and therefore f ′ ⊕ s4 is a weak octabent.
However, it is not that straightforward to construct (full) 2k-bent functions.

Next, we characterize hexabent functions.

Theorem 10. Let f ∈ Bn and ζ = e
2πi
16 . The hexa-Hadamard transform

of f can be written as a combination of Walsh-Hadamard transforms in the
following way:

8Xf (u) = β1Wf⊕s8(u) + β2Wf⊕s8(ū) + β3Wf⊕s2⊕s8(u) + β4Wf⊕s2⊕s8(ū)

+ β5Wf⊕s4⊕s8(u) + β6Wf⊕s4⊕s8(ū)

+ β7Wf⊕s2⊕s4⊕s8(u) + β8Wf⊕s2⊕s4⊕s8(ū),

where β1 = 1+ζ+ζ2+ζ3+ζ4+ζ5+ζ6+ζ7, β2 = 1−ζ+ζ2−ζ3+ζ4−ζ5+ζ6−ζ7,
β3 = 1+ζ−ζ2−ζ3+ζ4+ζ5−ζ6−ζ7, β4 = 1−ζ−ζ2+ζ3+ζ4−ζ5−ζ6+ζ7,
β5 = 1+ζ+ζ2+ζ3−ζ4−ζ5−ζ6−ζ7, β6 = 1−ζ+ζ2−ζ3−ζ4+ζ5−ζ6+ζ7,
β7 = 1 + ζ − ζ2 − ζ3 − ζ4 − ζ5 + ζ6 + ζ7, β7 = 1 − ζ − ζ2 + ζ3 − ζ4 + ζ5 +
ζ6− ζ7. Furthermore, f is hexabent if and only if conditions (i), for n even,
respectively, (ii), for n odd hold:

1. f ⊕ s8 is bent-negabent-octabent with the conditions that (Wf⊕s8(u),
Wf⊕s8(ū), Wf⊕s2⊕s8(u), Wf⊕s2⊕s8(ū), Wf⊕s4⊕s8(u), Wf⊕s4⊕s8(ū),
Wf⊕s2⊕s4⊕s8(u), Wf⊕s2⊕s4⊕s8(ū)) = (1, 1, 1, 1, 1, 1, 1, 1) ? (−1)`, where
` ∈ A3, and A3 is the set of affine functions in three variables.

2. f ⊕ s8, f ⊕ s2 ⊕ s8, f ⊕ s4 ⊕ s8, f ⊕ s2 ⊕ s4 ⊕ s8 are all semibent and
(Wf⊕s8(u),Wf⊕s8(ū),Wf⊕s2⊕s8(u),Wf⊕s2⊕s8(ū)) = (

√
2,
√

2,
√

2,
√

2)?
(−1)`, ` ∈ A2, and A2 is the set of affine functions in two variables,
and Wf⊕s4⊕s8(u) = Wf⊕s4⊕s8(ū) = Wf⊕s2⊕s4⊕s8(u) = Wf⊕s2⊕s4⊕s8(ū)) =
0; or, (Wf⊕s4⊕s8(u),
Wf⊕s4⊕s8(ū),Wf⊕s2⊕s4⊕s8(u),Wf⊕s2⊕s4⊕s8(ū)) = (

√
2,
√

2,
√

2,
√

2) ?
(−1)`, ` ∈ A2, and Wf⊕s8(u) = Wf⊕s8(ū) = Wf⊕s2⊕s8(u) = Wf⊕s2⊕s8(ū) =
0.

Proof. As in the previous theorem, we write (here, we set ζ := ζ16 = e
2πi
16 )

8Xf (u) = 2−
n
2 +3

∑
x∈Vn

(−1)f(x)⊕u·xζwt(x)

= 2−
n
2 +3

∑
x∈Vn

(−1)f(x)⊕u·xζs1(x)+2s2(x)+4s4(x)+8s8(x)

= 2−
n
2 +3

∑
x∈Vn

(−1)f(x)⊕u·xζs1(x)ζ
s2(x)
8 is4(x)(−1)s8(x)
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= 2−
n
2 +3

∑
x∈Vn

(−1)f(x)⊕s8(x)⊕u·x
(

(1 + (−1)s1(x)) + (1− (−1)s1(x))ζ
)

·
(

(1 + (−1)s2(x)) + (1− (−1)s2(x))ζ8

)
·
(

(1 + (−1)s4(x)) + (1− (−1)s4(x))i
)

= β12−
n
2

∑
x∈Vn

(−1)f(x)⊕s8(x)⊕u·x

+ β22−
n
2

∑
x∈Vn

(−1)f(x)⊕s1(x)⊕s8(x)⊕u·x

+ β32−
n
2

∑
x∈Vn

(−1)f(x)⊕s2(x)⊕s8(x)⊕u·x

+ β42−
n
2

∑
x∈Vn

(−1)f(x)⊕s1(x)⊕s2(x)⊕s8(x)⊕u·x

+ β52−
n
2

∑
x∈Vn

(−1)f(x)⊕s4(x)⊕s8(x)⊕u·x

+ β62−
n
2

∑
x∈Vn

(−1)f(x)⊕s1(x)⊕s4(x)⊕s8(x)⊕u·x

+ β72−
n
2

∑
x∈Vn

(−1)f(x)⊕s2(x)⊕s4(x)⊕s8(x)⊕u·x

+ β82−
n
2

∑
x∈Vn

(−1)f(x)⊕s1(x)⊕s2(x)⊕s4(x)⊕s8(x)⊕u·x

= β1Wf⊕s8(u) + β2Wf⊕s8(ū) + β3Wf⊕s2⊕s8(u) + β4Wf⊕s2⊕s8(ū)

+ β5Wf⊕s4⊕s8(u) + β6Wf⊕s4⊕s8(ū) + β7Wf⊕s2⊕s4⊕s8(u) + β8Wf⊕s2⊕s4⊕s8(ū),

where β1 = 1+ζ+ζ2+ζ3+ζ4+ζ5+ζ6+ζ7 = 1+i

(
1 +
√

2 +
√

2
(
2 +
√

2
))

,

β2 = 1− ζ + ζ2 − ζ3 + ζ4 − ζ5 + ζ6 − ζ7 = 1 + i

(
1 +
√

2−
√

2
(
2 +
√

2
))

,

β3 = 1 + ζ − ζ2 − ζ3 + ζ4 + ζ5 − ζ6 − ζ7 = 1 +
√

4− 2
√

2 + i
(
1−
√

2
)
,

β4 = 1 − ζ − ζ2 + ζ3 + ζ4 − ζ5 − ζ6 + ζ7 = 1 −
√

4− 2
√

2 + i
(
1−
√

2
)
,

β5 = 1 + ζ + ζ2 + ζ3 − ζ4 − ζ5 − ζ6 − ζ7 = (1 − i) +
√

2 +
√

2
(
2 +
√

2
)
,

β6 = 1 − ζ + ζ2 − ζ3 − ζ4 + ζ5 − ζ6 + ζ7 = (1 − i) +
√

2 −
√

2
(
2 +
√

2
)
,

β7 = 1 + ζ − ζ2 − ζ3 − ζ4 − ζ5 + ζ6 + ζ7 = 1 −
√

2 + i
(
−1−

√
4− 2

√
2
)

,

β8 = 1− ζ − ζ2 + ζ3 − ζ4 + ζ5 + ζ6 − ζ7 = 1−
√

2 + i
(√

4− 2
√

2− 1
)

.

SetA := Wf⊕s8(u), B := Wf⊕s8(ū), C := Wf⊕s2⊕s8(u), D := Wf⊕s2⊕s8(ū),
X := Wf⊕s4⊕s8(u), Y := Wf⊕s4⊕s8(ū), W := Wf⊕s2⊕s4⊕s8(u), Z := Wf⊕s2⊕s4⊕s8(ū).
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Taking the complex norm and arranging the coefficients (as in [6]), we get

64|Xf (u)|2 = 8(A2 +B2 + C2 +D2 +W 2 +X2 + Y 2 + Z2)

+ 4
√

2 (A2 +B2 − C2 −D2 − 2AW −W 2 + 2CX +X2 + 2DY

+ Y 2 − 2BZ − Z2)

+ 4

√
4 + 2

√
2 (A2 −B2 −AW +DW +BX + CX +X2 −AY −DY

− Y 2 +BZ − CZ)

+ 2

√
4− 2

√
2 (A2 −B2 + 2BC + C2 − 2AD −D2 − 4DW +W 2 +X2

+ 2WY − Y 2 + 4CZ − 2XZ − Z2).

We now assume that f is hexabent, so |Xf (u)|= 1, for all u ∈ Vn. We

obtain the following system of equations with solutions in 2−n/2Z,

A2 +B2 + C2 +D2 +W 2 +X2 + Y 2 + Z2 = 8

A2 +B2 − C2 −D2 − 2AW −W 2 + 2CX +X2 + 2DY + Y 2 − 2BZ − Z2 = 0

A2 −B2 −AW +DW +BX + CX +X2 −AY −DY − Y 2 +BZ − CZ = 0

A2 −B2 + 2BC + C2 − 2AD −D2 − 4DW +W 2 +X2

+ 2WY − Y 2 + 4CZ − 2XZ − Z2 = 0.

By a similar method as in [6], we can show that if n is even, then the above
system has the solutions

(−1,−1,−1,−1,−1,−1,−1,−1), (−1,−1,−1,−1, 1, 1, 1, 1),

(−1,−1, 1, 1,−1,−1, 1, 1), (−1,−1, 1, 1, 1, 1,−1,−1),

(−1, 1,−1, 1,−1, 1,−1, 1), (−1, 1,−1, 1, 1,−1, 1,−1),

(−1, 1, 1,−1,−1, 1, 1,−1), (−1, 1, 1,−1, 1,−1,−1, 1),

(1,−1,−1, 1,−1, 1, 1,−1), (1,−1,−1, 1, 1,−1,−1, 1),

(1,−1, 1,−1,−1, 1,−1, 1), (1,−1, 1,−1, 1,−1, 1,−1),

(1, 1,−1,−1,−1,−1, 1, 1), (1, 1,−1,−1, 1, 1,−1,−1),

(1, 1, 1, 1,−1,−1,−1,−1), (1, 1, 1, 1, 1, 1, 1, 1).

Similarly, if n is odd, the system has the solutions

(−
√

2,−
√

2,−
√

2,−
√

2, 0, 0, 0, 0), (−
√

2,−
√

2,
√

2,
√

2, 0, 0, 0, 0),

(−
√

2,
√

2,−
√

2,
√

2, 0, 0, 0, 0), (−
√

2,
√

2,
√

2,−
√

2, 0, 0, 0, 0),

(0, 0, 0, 0,−
√

2,−
√

2,−
√

2,−
√

2), (0, 0, 0, 0,−
√

2,−
√

2,
√

2,
√

2),

(0, 0, 0, 0,−
√

2,
√

2,−
√

2,
√

2), (0, 0, 0, 0,−
√

2,
√

2,
√

2,−
√

2),
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(0, 0, 0, 0,
√

2,−
√

2,−
√

2,
√

2), (0, 0, 0, 0,
√

2,−
√

2,
√

2,−
√

2),

(0, 0, 0, 0,
√

2,
√

2,−
√

2,−
√

2), (0, 0, 0, 0,
√

2,
√

2,
√

2,
√

2),

(
√

2,−
√

2,−
√

2,
√

2, 0, 0, 0, 0), (
√

2,−
√

2,
√

2,−
√

2, 0, 0, 0, 0),

(
√

2,
√

2,−
√

2,−
√

2, 0, 0, 0, 0), (
√

2,
√

2,
√

2,
√

2, 0, 0, 0, 0).

Consequently, if n is even, f⊕s8, f⊕s2⊕s8, f⊕s4⊕s8, f⊕s2⊕s4⊕s8 are all
bent with the conditions that (Wf⊕s8(u),Wf⊕s8(ū),Wf⊕s2⊕s8(u),Wf⊕s2⊕s8(ū),
Wf⊕s4⊕s8(u),Wf⊕s4⊕s8(ū),Wf⊕s2⊕s4⊕s8(u),Wf⊕s2⊕s4⊕s8(ū)) = (1, 1, 1, 1,
1, 1, 1, 1) ? (−1)`, where ` ∈ A3, and A3 are the affine functions in three
variables.

If n is odd, then f ⊕ s8, f ⊕ s2 ⊕ s8, f ⊕ s4 ⊕ s8, f ⊕ s2 ⊕ s4 ⊕ s8
are all semibent and (Wf⊕s8(u),Wf⊕s8(ū),Wf⊕s2⊕s8(u),Wf⊕s2⊕s8(ū)) =
(
√

2,
√

2,
√

2,
√

2)?(−1)`, ` ∈ A2, and A2 are the affine functions in two vari-
ables, andWf⊕s4⊕s8(u) = Wf⊕s4⊕s8(ū) = Wf⊕s2⊕s4⊕s8(u) = Wf⊕s2⊕s4⊕s8(ū)) =
0; or, (Wf⊕s4⊕s8(u),Wf⊕s4⊕s8(ū),Wf⊕s2⊕s4⊕s8(u),Wf⊕s2⊕s4⊕s8(ū)) = (

√
2,√

2,
√

2,
√

2) ? (−1)`, ` ∈ A2, and Wf⊕s8(u) = Wf⊕s8(ū) = Wf⊕s2⊕s8(u) =
Wf⊕s2⊕s8(ū) = 0.

It is a simple computation to check that these values of the Walsh-
Hadamard coefficients will render f hexabent, and so, the reciprocal is true,
as well.

Corollary 11. If f is octabent, ζ = e
2π
16 , then the hexa-Hadamard spectrum

of f is {ζk | 0 ≤ k ≤ 15}. If f is weak hexabent then its spectrum in absolute
value belongs to a 32 element set.

Proof. The proof is a straightforward computation running through the set
of values for the Wash-Hadamard coefficients described in the previous the-
orem, respectively all ±1 Walsh-Hadamard coefficients and removing dupli-
cates, for the second claim.

4 The general case of 2k-bent functions

As in the case of negabent functions, one can characterize the 2k-bent
functions in terms of codimension one subspace decomposition. We write
<(z),=(z) for the real part, respectively, imaginary part of a complex num-
ber z.

Theorem 12. Let h ∈ Bn and h(x, y) = f(x)(1 ⊕ y) ⊕ y g(x). Then f is

2k-bent if and only if |Hf (u)|2+‖Hg(u)|2= 2 and <(ζ)<
(
Hf (u)Hg(u)

)
+

=(ζ)=
(
Hf (u)Hg(u)

)
= 0.
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Proof. We first find the 2k-Hadamard transform of f ,

Hh(x, y) = 2−
n+1
2

∑
u∈Vn
v∈F2

(−1)h(u,v)⊕u·x⊕vyζwt(u)+v

= 2−
n+1
2

∑
u∈Vn

(−1)f(u)⊕u·xζwt(u)

+ 2−
n+1
2 ζ(−1)y

∑
u∈Vn

(−1)g(u)⊕u·xζwt(u)

=
1√
2
Hf (u) +

1√
2
ζ(−1)yHg(u).

Taking complex norms (with notations ζ = α + iβ, Hf (u) = z1 + iz2,
Hg(u) = w1 + iw2), squaring and simplifying the expressions, we get

2|Hh(x, 0)|2 = |Hf (u)|2+|Hg(u)|2+2α(z1w1 + z2w2) + 2β(w1z2 − z1w2)

2|Hh(x, 1)|2 = |Hf (u)|2+|Hg(u)|2−2α(z1w1 + z2w2)− 2β(w1z2 − z1w2).

If h is 2k-bent, then we immediately get (by adding the above expressions)
that |Hf (u)|2+|Hg(u)|2= 2, and α(z1w1 + z2w2) = β(w2z1 − z2w1). The
reciprocal is also true and the theorem is shown.

It turns out that we can prove that the bent ladder we previously ob-
served is preserved (we shall be more precise below), although, we are only
able to show a sufficiency criterion. Let Lk−1 be the set of all linear functions
in k − 1 variables and let Ψ := (1, ζ, . . . , ζ2

k−1
).

Theorem 13. Let f ∈ Bn and k ≥ 3. The 2k-Hadamard transform and
2k−1-Hadamard transforms are related by

2k−1H(2k)
f (u) =

∑
`a∈Lk−1

βaWf⊕s
2k−1⊕

∑k−2
j=0 εjs2j

(u), (5)

where `a =
∑n−1

j=0 εjxj ∈ Lk−1, for εj ∈ {0, 1}, and βa = Ψ · (−1)`a.

Moreover, if n is even and all f ⊕ s2k−1 ⊕
∑k−2

j=0 εjs2j are bent with their
Walsh-Hadamard transforms’ signs matching the character forms of the lin-
ear functions in k − 1 variables, then f is 2k-bent. If n is odd and all
f ⊕

∑k−1
j=1 εjs2i are semibent, with the extra condition that either the Walsh-

Hadamard transforms of f⊕s2k−1⊕
∑k−3

j=0 εjs2i match the signs of the linear

functions in k−2 variables, and the rest of the 2k−2 Walsh-Hadamard trans-
forms of f ⊕ s2k−1 ⊕ s2k−2 ⊕

∑k−3
j=0 εjs2j are zero, or vice-versa, then f is

2k-bent.
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Proof. By Lemma 5, we compute (we let ζ := ζ2k)

2k−1H(2k)
f (u) = 2−

n
2
+k−1

∑
x∈Vn

(−1)f(x)⊕u·x ζwt(x)

= 2−
n
2
+k−1

∑
x∈Vn

(−1)f(x)⊕s2k−1 (x)⊕u·x ζs1(x)⊕2s2(x)⊕···⊕s2k−1 (x)

= 2−
n
2

∑
x∈Vn

(−1)f(x)⊕s2k−1 (x)⊕u·x
(

(1 + ζ) + (1− ζ)(−1)s1(x)
)

·
(

(1 + ζ2) + (1− ζ2)(−1)s2(x)
)

·
(

(1 + ζ4) + (1− ζ4)(−1)s4(x)
)
· · ·

·
(

(1 + ζ2
k−1

) + (1− ζ2k−1
)(−1)s2k−1 (x)

)
which, by expansion, renders our first claim.

Now, if we consider all f ⊕
∑k−1

j=1 εjs2i bent with the Walsh-Hadamard
transforms having the signs of the character forms of some linear function
in k − 1 variables, say `b ∈ Lk−1, then we see that the right hand side of
equation (5) becomes

2k−1H(2k)
f (u) = (βa)`a∈Lk−1

· (−1)`b

= Ψ · (−1)`a⊕`b =
∑
a

βa = 2k−1,

since multiplying by (−1)`b has the effect of permuting the sum of βa, and
moreover, every coefficient of ζi, i ≥ 1, has the same number of ±1 in such
a sum. A similar argument holds for n odd. The proof is done.

We challenge the community to construct classes of weak and strong
2k-bent functions or show that they do not exist for various values of k.
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