
Algorithmic Information Theory for Obfuscation Security

Rabih Mohsen1 and Alexandre Miranda Pinto2
1Department of Computing, Imperial College London, UK

2Information Security Group, Royal Holloway University of London, UK and Instituto Universitário da Maia, Portugal
r.mohsen11@imperial.ac.uk, alex.miranda.pinto@gmail.com

Keywords: Code Obfuscation, Kolmogorov Complexity, Intellectual Property Protection

Abstract: The main problem in designing effective code obfuscation is to guarantee security. State of the art obfuscation
techniques rely on an unproven concept of security, and therefore are not regarded as provably secure. In this
paper, we undertake a theoretical investigation of code obfuscation security based on Kolmogorov complexity
and algorithmic mutual information. We introduce a new definition of code obfuscation that requires the
algorithmic mutual information between a code and its obfuscated version to be minimal, allowing for controlled
amount of information to be leaked to an adversary. We argue that our definition avoids the impossibility results
of Barak et al. and is more advantageous then obfuscation indistinguishability definition in the sense it is more
intuitive, and is algorithmic rather than probabilistic.

1 INTRODUCTION

Malicious reverse engineering represents a great
risk to software confidentiality, especially for software
that runs on a malicious host controlled by a software
pirate intent on stealing intellectual artifacts. Thwart-
ing vicious reverse engineering, using software protec-
tion techniques such as code obfuscation, is vital to
defend programs against malicious host attacks. An
obfuscating transformation attempts to transform code
so that it becomes unintelligible to human and auto-
mated program analysis tools, while preserving their
functionality. It is a low-cost technique that does not
affect portability and has promise for defending mobile
programs against malicious host attacks.

One of the major challenges of code obfuscation
is the lack of a rigorous theoretical background. The
absence of a theoretical basis makes it difficult to for-
mally analyse and certify the effectiveness of these
techniques against malicious host attacks. In particular,
it is hard to compare different obfuscating transforma-
tions with respect to their resilience to attacks. Often,
obfuscation transformation techniques are proposed
with no provable properties presented.

Software developers strive to produce structured
and easy to comprehend code, their motivation is to
simplify maintenance. Code obfuscation, on the other
hand, transforms code to a less structured and intel-
ligible version. It produces more complex code that
looks patternless, with little regularity and is difficult

to understand. We argue that irregularities and noise
makes the obfuscated code difficult to comprehend.
Kolmogorov complexity (Li and Vitányi, 2008) is a
well known theory that can measure regularities and
randomness. The size of the shortest program that de-
scribes a program tends to be bigger as more noise and
irregularities are present in a program. Kolmogorov
complexity is the basic concept of algorithmic informa-
tion theory, that in many respects adapts the viewpoint
of well-established Information Theory to focus on
individual instances rather than random distributions.
In general, algorithmic information theory replaces the
notion of probability by that of intrinsic randomness
of a string.

Kolmogorov complexity is uncomputable; however
it can be approximated in practice by lossless compres-
sion (Kieffer and Yang, 1996) (Li and Vitányi, 2008),
which helps to intuitively understand this notion and
makes this theory relevant for real world applications.
Our aim in this paper is to provide a theoretical frame-
work for code obfuscation in the context of algorithmic
information theory: to quantitatively capture the se-
curity of code obfuscation, to discuss its achievability
and to investigate its limitations and resilience against
an adversary.

We introduce the notion of unintelligibility to de-
fine confusion in code obfuscation and argue this is not
good enough. We then propose our notion of security
and compare both definitions. We argue that our model
of security is fundamentally different from the virtual

black-box model of Barak et al., and that because of
this their impossibility result does not apply. Then, we
show that under reasonable conditions we can have
secure obfuscation. Finally, we study the security of
two main approaches to obfuscated code in software,
encoding and hiding, at the subprogram level.

To the best of our knowledge, this paper is the
first to propose algorithmic information theory as a
theoretical basis for code obfuscation and its threat
model; we believe our work is the first step to derive
consistent metrics that measure the protection quality
of code obfuscation. The framework can be applied to
most code obfuscation techniques and is not limited to
any obfuscation method or language paradigm.

Paper structure: In Section 2, we provide an
overview of related work. Section 3 provides the pre-
liminaries and the required notations. In Sections 4,
we discuss the intuition behind our approach, propose
the formal definition of code obfuscation and present
some results for security code obfuscations against
passive attackers. In section 5, we study the security
of two main approaches to code obfuscation at the sub-
program level. Section 6 concludes with the proposed
future work.

2 RELATED WORK

Collberg et al. (Collberg et al., 1997) were the first
to define obfuscation in terms of a semantic-preserving
transformation. Barak et al. (Barak et al., 2001) in-
troduced a formal definition of perfect obfuscation in
an attempt to achieve well-defined security, which is
based on the black-box paradigm. Intuitively, a pro-
gram obfuscator O is called perfect if it transforms
any program P into a virtual black box O(P) so that
anything that can be also efficiently computed from
O(P), can be efficiently computed given just oracle
access to P . However, they also proved that the black-
box definition cannot be met by showing the existence
of set of functions that are impossible to obfuscate. On
the other hand, a recent study conducted by Garg et
al (Garg et al., 2013) provided positive results, using
indistinguishability obfuscation, for which there are
no known impossibility results. However, as argued
by (Goldwasser and Rothblum, 2007) there is a disad-
vantage of indistinguishability obfuscation: it does not
give an intuitive guarantee about the security of code
obfuscation.

3 PRELIMINARIES

We use the U as the shorthand for a universal Tur-
ing machine, x for a finite-length binary string and ∣x∣
for its length. We use ε for a negligible value, and Λ
for an empty string. We use the notation O(1) for a
constant, p(n) for a polynomial function with input
n ∈ N. ∥ is used to denote the concatenation between
two programs or strings.
P is a set of binary programs and P ′ is a set

of binary obfuscated programs, L = {λn ∶ λn ∈

{0,1}+, n ∈ N} is a set of (secret) security parame-
ters used in the obfuscation process 1. A = {An}n∈N
represents a set of adversaries (deobfuscators) where
an adversary A ⊆ A uses a set of deobfuscation tech-
niques (e.g. reverse engineering); the term adversary
is used interchangeably with deobfuscator.

We consider only the prefix version of Kolmogorov
complexity (prefix algorithmic complexity) which is
denoted by K(.). Complexity and Kolmogorov com-
plexity terms are sometimes used interchangeably; for
more details on prefix algorithmic complexity and al-
gorithmic information theory, we refer the reader to
(Li and Vitányi, 2008). The necessary parts of this
theory are briefly presented in the following.
Definition 1. Let U(P) denote the output of U when
presented with a program P ∈ {0,1}+.

1. The Kolmogorov complexity K(x) of a binary
string x with respect to U is defined as:

K(x) = min{∣P ∣ ∶ U(P) = x}.

2. The Conditional Kolmogorov Complexity relative
to y is defined as:

K(x ∣ y) = min{∣P ∣ ∶ U(P, y) = x}.

Definition 2. Mutual algorithmic information of two
binary programs x and y is given by

IK(x; y) =K(y) −K(y ∣x).
Theorem 1 (chain rule (Gács, 1974)). For all x, y ∈ N
1. K(x; y) =K(x)+K(y ∣x) up to an additive term
O(logK(x, y)).

2. K(x)−K(x ∣ y) =K(y)−K(y ∣x) i.e. IK(x; y) =
IK(y;x), up to an additive term O(logK(x, y)).
Logarithmic factors like the ones needed in the

previous theorem are pervasive in the theory of Kol-
mogorov complexity. As commonly is done in the
literature, we mostly omit them in our results, making
a note in the theorem statements that they are there.
This also “hides” smaller constant terms, and for this
reason we regularly omit them in the derivations.

1The security parameter may include the obfuscation key,
the obfuscation transformation algorithm or any necessary
information that the obfuscation function can use.

2

Definition 3. The Mutual algorithmic information of
two binary strings x and y conditioned to a binary
string z is defined as: I(x; y∣z) =K(y∣z)−K(y∣x, z)

Theorem 2 ((Li and Vitányi, 2008)). There is a con-
stant c such that for all x and y

K(x) ≤ ∣x∣ + 2 log ∣x∣ + c and K(x ∣ y) ≤K(x) + c.

Theorem 3 ((Shen, 1982; Taveneaux, 2011)). Given
a recursive computable function f ∶ {0,1}∗ → {0,1}∗,
for all x the algorithmic information content of f(x)
is bounded by: K(f(x)) ≤K(x) +O(1).

Theorem 4 ((Shen et al., 2014)). Given a recursive
computable function f ∶ {0,1}∗ × {0,1}∗ → {0,1}∗,
for any strings x, y the algorithmic information con-
tent of f(x, y) is bounded by:

K(f(x, y)∣y) ≤K(x∣y) +O(1).

If we are aware that x belongs to a subset S of
binary strings, then we can consider its complexity
K(x∣S). Also, we can measure the level of random-
ness (irregularities) using randomness deficiency.

Definition 4. (Li and Vitányi, 2008) The randomness
deficiency of x with respect to a finite set S containing
x is defined as δ(x∣S) = log #S −K(x∣S).

Lemma 5. (Li and Vitányi, 2008) Let S be an enumer-
able binary set of programs such that x ∈ S, Then,

K(x) ≤K(S) + log #S +O(1)

4 CODE OBFUSCATION USING
KOLMOGOROV COMPLEXITY

4.1 Motivation

The main purpose of code obfuscation is to confuse
an adversary, making the task of reverse engineer-
ing extremely difficult. Code obfuscation introduces
noise and dummy instructions that produce irregulari-
ties in the targeted obfuscated code. We believe that
these make the obfuscated code difficult to compre-
hend. Classical complexity metrics have a limited
power for measuring and quantifying irregularities in
obfuscated code, because most of these metrics are
designed to measure certain aspects of code attributes
such as finding bugs and code maintenance. Human
comprehension is a key in this case; an adversary has
to understand the obfuscated code in order to recover
the original. Measuring code obfuscation has to take
into consideration this human factor. Although measur-
ing code comprehension is very subjective, there were
some successful attempts to measure human cognitive

reasoning and cognitive science based on Kolmogorov
complexity (Gauvrit et al., 2011).

Code regularity (and irregularity) can be quantified,
as was suggested in (Lathrop, 1997) and (Jbara and
Feitelson, 2014), using Kolmogorov complexity and
compression. Code regularity means a certain structure
is repeated many times, and thus can be recognized.
Conversely, irregularities in code can be explained as
the code exhibiting different types of structure over
the code’s body. Regularities in programs were intro-
duced by Jbara et al. in (Jbara and Feitelson, 2014)
as a potential measure for code comprehension; they
experimentally showed using compression that long
regular functions are less complex than the conven-
tional classical metrics such as LOC (Line of Code)
and McCabe (Cyclomatic complexity) could estimate.

The main intuition behind our approach is based on
the following argument: if an adversary fails to capture
some patterns (regularities) in an obfuscated code, then
the adversary will have difficulty comprehending that
code: it cannot provide a valid and brief, i.e., simple
description. On the other hand, if these regularities
are simple to explain, then describing them becomes
easier, and consequently the code will not be difficult
to understand.

We demonstrate our motivation using the example
in Fig. 1. We obfuscate the program in Fig. 1-(a) that
calculates the sum of the first n positive integers, by
adding opaque predicates2 with bogus code and data
encoding. If we apply Cyclomatic complexity (Mc-
Cabe (McCabe, 1976)), a classical complexity mea-
sure, to Fig. 1-(b) the result will be 6. Cyclomatic
complexity is based on control flow graph (CFG), and
is computed by: E −N + 2, where E is the number of
edges and N is the number of nodes in CFG. Fig. 1-(b)
contains N = 8 nodes, E = 13 edges then the Cyclo-
matic complexity is (13−8+2) = 7. We can see some
regularity here: there is one opaque predicate repeated
three times. Furthermore, the variable y is repeated
three times in the same place of the If-branch. We
conjecture that we can find the short description of the
program in Fig. 1-(b), due to presence of regularity by
using lossless compression.

We take another obfuscated version in Fig. 1-(c) (of
the same program); this code is obfuscated by adding
three different opaque predicates. The patterns are
less in this version comparing to Fig. 1-(b); the short-
est program that describes Fig. 1-(c) is likely to be
very similar to the code itself, where the Cyclomatic
complexity is the same 7, and it does not account for
the changes that occurred in the code. Assuming the

2An opaque predicate is an algebraic expression which
always evaluates to same value (true or false) regardless of
the input.

3

while(i<n){
i=i+1;
x=x+i;}

(a) Sum code

while(i<n){
i=i+1;

if (7*y*y-1==x*x){ //false
y=x*i;

else
x=x+4*i;}

if (7*y*y-1==x*x){
y=x*i;

else
x=x-2*i;}

if (7*y*y-1==x*x){
y=x*i;

else
x=x-i;}}

(b) One opaque predicate

while(i<n){
i=i+1;
if (7*y*y-1==x*x){ //false
y=x*(i+1);

else
x=x+4*i;}

if (x*x-34*y*y==-1){ //false
y=x*i;

else
x=x-2*i;}

if ((x*x+x)mod 2==0){ //true
x=x-i;

else
y=x*(i-1);}}

(c) Three opaque predicate

Figure 1: Obfuscation example: (a) is the original code for the sum of n integers; (b) is an obfuscated version of (a) with one
opaque predicate and data encoding which has some patterns and regularities; (c) is another obfuscated version of (a) with
three opaque predicate and data encoding, which has less patterns and regularities comparing to (b).

opaque predicates of Fig. 1-(c) are equally difficult
to break, attacking this code requires at least twice
more effort than the code in Fig. 1-(b), as we need to
figure out the value of two more opaque predicates.
Furthermore, Fig. 1-(b) can be compressed at higher
rate than Fig. 1-(c); again, this is due to the inherent
regularity in Fig. 1-(b).

We argue that an obfuscated program which is se-
cure and confuses an adversary will exhibit a high
level of irregularity in its source code and thus require
a longer description to characterize all its features.
This can be captured by the notion of Kolmogorov
Complexity, which quantifies the amount of informa-
tion in an object. An obfuscated program will have
more non-essential information, and thus higher com-
plexity, than a non-obfuscated one. Thus, we can use
Kolmogorov Complexity to quantify the level of con-
fusion in obfuscated programs due to the obfuscation
process.

4.2 Applying Kolmogorov Complexity
to Code Obfuscation

In this section, we present a novel approach for code
obfuscation based on notions from algorithmic infor-
mation theory. We start with an intuitive definition
that is inspired by practical uses of obfuscation. The
rationale behind this definition is that an obfuscated
program must be more difficult to understand than the
original program. This uses the separate notion of
c-unintelligibility:

Definition 5. A program P ′ is said to be c-
unintelligible with respect to another program P if
it is c times more complex than P , i.e. the added

complexity is c times the original one, and thus more
difficult to understand. Formally:

K(P ′
) ≥ (c + 1)K(P),

for some constant c > 0.

Definition 6. A c-Obfuscator O ∶ P × L → P ′ is
a mapping from programs with security parameters
L to their obfuscated versions such that ∀P ∈ P, λ ∈

L .O(P,λ) ≠ P and satisfies the following properties:

• Functionality: O(P,λ) and P compute the same
function.

• Polynomial Slowdown: the size and running time
of O(P,λ) are at most polynomially larger than
the size and running time of P , i.e. for polynomial
function p. ∣O(P,λ)∣ ≤ p(∣P ∣), and if P halts in k
steps on an input i, then O(P,λ) halts within p(k)
steps on i.

• Unintelligibility: O(P,λ) is c-unintelligible with
respect to P .

It is interesting to ask to what extent unintelligibil-
ity is related to the quality of the obfuscation parameter
λ. Is a large λ necessary for high unintelligibility? Is
it sufficient?

We answer the first question in the positive by
showing that c-unintelligibility sets a lower bound on
the size of λ.

Lemma 6. Consider a program P and an obfuscated
version P ′ = O(P,λ) such that P ′ is c-unintelligible
with respect to P . Then, ∣λ∣ ≥ cK(P) −O(1).

Proof. By assumption, K(O(P,λ)) ≥ (c + 1)K(P).
To compute P ′, we only need P , λ and the obfuscator

4

program O and so we can upper bound K(P ′):

K(P) +K(λ∣P) +K(O) ≥K(O(P,λ))

≥ (c + 1)K(P)

⇒K(λ∣P) ≥ cK(P) −K(O).

Assuming the obfuscator program is simple, that
is, K(O) = O(1), we have by basic properties of
Kolmogorov complexity: ∣λ∣ ≥ K(λ) ≥ K(λ∣P) ≥
cK(P) −O(1).

To answer the second question, we show a counter-
example. So far, we have not addressed the nature
of O and how well it uses its obfuscation parameter.
It could well be the case that O only uses some bits
of λ to modify P . In an extreme case, it can ignore
λ altogether and simply return O(P,λ) = P . The
result satisfies the first two properties of an obfusca-
tor, but can be considered unintelligible only in the
degenerate case for c = 0 and surely we would not
call the resulting code obfuscated. Another extreme
case is when λ = P . Now, we would have at most
K(O(P,λ)) ≤ K(P) +K(O) + O(1) which again
would lead to a very small c. These two cases, al-
though extreme, serve only to show that the quality of
an obfuscator depends not only on λ but also on the
obfuscation algorithm itself,O. This is addressed later
in Theorem 12.

Definition 6 is perhaps the first natural definition
one can find, but it has one shortcoming. Merely re-
quiring the obfuscated program to be complex overall
does not mean that it is complex in all its parts, and
in particular, that it hides the original program. To
illustrate this point, consider the following example.

Example 1. Consider an obfuscated program P ′ =
O(P,λ) = P ∥ λ, which is a simple concatenation of
P and λ. Define n = ∣P ′∣. We know K(P ∥ λ) ≃
K(P,λ) within logarithmic precision (see (Li and
Vitányi, 2008) page 663). Then, by applying the
chain rule of Theorem 1, K(P ′) = K(P ∥ λ) ≃

K(P) + K(λ∣P) + O(logn). For large λ indepen-
dent of P , this might signify a large unintelligibility,
but the original program can be extracted directly from
the obfuscated version requiring only O(logn) to in-
dicate where P ends and λ starts.

This leads us to our second definition, where we
require not that the obfuscated program be more com-
plex than the original but rather, that it reveal almost
no information about the original. This is captured by
the notion of algorithmic mutual information and can
be stated formally as:

Definition 7. Consider a program P and its obfus-
cated program P ′ = O(P,λ). We say P ′ is a γ-secure

obfuscation of P if the mutual information between P
and P ′ is at most γ, that is:

IK(P ;O(P,λ)) ≤ γ.

We say P ′ is a secure obfuscation of P if is γ-
secure and γ is negligible.

It is common to consider, in the literature about
Kolmogorov Complexity, that logarithmic terms are
negligible. Thus, if both P and P ′ have lengths of
order n, we might consider that P ′ would be a secure
obfuscation for γ = logn. This intuition, however, is
bound to fail in practice.

Programs are typically redundant, written in very
well-defined and formal languages, with common
structures, design patterns, and even many helpful
comments. It is expected that the complexity of a non-
obfuscated program be low, compared to its length.
Consider then the case that for a given P and n = ∣P ∣
we have K(P) = O(logn). Consider a scenario like
that of Example 1, where the obfuscated reveals the
original program and so the mutual information be-
tween both programs is maximum, i.e.,

IK(P ;O(P,λ)) =K(P) −O(logn) = O(logn).

Even though this obfuscation can not be considered
secure, the resulting mutual information is so small
that Definition 7 would declare it secure. We have two
ways out of this:

• we do not consider programs with K(P) =

O(logn), since this is the error margin of the im-
portant properties of Kolmogorov complexity, and
at this level we can not achieve significant results;

• or we consider a relative definition of security, re-
quiring that the mutual information be only at most
a negligible fraction of the information in P .

The second option leads us to the following defini-
tion:

Definition 8. Consider a program P and its obfus-
cated program P ′ = O(P,λ). We say P ′ is a ε-secure
obfuscation of P if the mutual information between P
and P ′ is at most εK(P), that is:

IK(P ;O(P,λ)) ≤ εK(P),

for 0 ≤ ε ≤ 1.
We say P ′ is a secure obfuscation of P if is ε-

secure and ε is negligible in some appropriate sense.

The next proposition provides an example of how
to test the security of an obfuscated code against an
adversary.

Proposition 1. Consider a clear program P of length
n with K(P) ≥ n−O(logn) and A an adversary that
extracts at least m ≤ n consecutive bits of P from
P ′ = O(P,λ) then:

5

1. K(P ∣P ′) ≤ n −m +O(logn).
2. IK(P ;P ′) ≥m −O(logn)

Proof. We prove this proposition by building the fol-
lowing algorithm:

Algorithm:

• Build A of length O(1).
• Compute A(P ′), we obtain m ≤ n bits of P . De-

note these by string ω.
• Now, build a program β such that P = β(ω) which

computes two blocks of bits: those that come be-
fore and those that come after ω.
To produce P , β needs at most to produce a pair of
two strings (s1, s2) with combined length n −m.
To describe the pair, we need at mostO(logn) bits
saying where to divide s1 from s2. Thus, K(β) ≤
n −m +O(logn).

By construction,K(P ∣O(P,λ))+O(1) ≤K(β)+
O(1) ≤ n−m+O(logn). Using the assumption about
K(P), it is straight forward to compute

IK(P ;P ′
) ≥m −O(logn)

On the other hand, the adversary can fully obtain
P , with only a logarithmic error, if it knows λ the
security parameter, as the next theorem shows.

Theorem 7. Let P ′ = O(P,λ), for an adversary A
who knows λ:
1. K(P ∣P ′, λ) = O(logn).

2. IK(P,P ′∣λ) =K(P ∣λ) −O(logn).

where n is the maximum length of P,P ′ and λ.

Proof. If λ contains all the knowledge that A requires
to obtain P given P ′, then the shortest program for
a universal Turing machine U that describes P given
A, P ′ and λ, is negligible i.e. empty string. It is
sufficient for U to describe P from A, P ′ and λ with
no need of any extra programs i.e. U(Λ,A(P ′), λ) =
P where Λ is an empty string. O(logn) is needed as
an overhead cost required by U to combine A, P ′ and
λ and to locate them on U tape. The advantage of A
given λ is obtained as follows:

IK(P ;P ′
∣λ) =K(P ∣λ) −K(P ∣P ′, λ)

=K(P ∣λ) −O(logn)

These results are not surprising. Intuitively, an
adversary can easily recover the original code from the
obfuscated version once the security parameter that is
used for obfuscation is known.

4.3 ON THE IMPOSSIBILITY OF
OBFUSCATION

There exist other definitions of obfuscation in the lit-
erature. Of particular importance to us is the work of
(Barak et al., 2012), due to its famous impossibility re-
sult. As the authors argue in that paper, the black-box
model they propose for obfuscation is too strong to be
satisfiable in practice.

The black-box model considers a program3 P ′ ob-
fuscated if any property that can be learned from P ′
can also be obtained by a simulator with only oracle
access to P ′. This essentially states that P ′ does not
give any particular information about that property,
since it is possible to learn it without having access
to P ′. Notice that this model does not compare an
obfuscated program with an original one, but rather
with its functionality.

This is different from the definitions that we have
proposed so far. Our definitions can be used to capture
this purpose, namely, measuring how much informa-
tion a program P ′ gives about the function it computes,
which we denote by JP ′K.

It suffices to note that every function F has a min-
imal program for it, say, Q. Then, its Kolmogorov
complexity is the size of Q and for every other pro-
gram P ′ computing F we have

K(F) = ∣Q∣ ≤ ∣P ′
∣.

For every such program it must be that K(F) ≤

K(P ′)+O(1), otherwise we could build a programR
of sizeK(P ′) that produced P ′ and then ran in succes-
sion R and U(R).4 This composition of programs is
itself a program with complexityK(P ′)+O(1) which
would be smaller than the assumed minimal program
F , i.e., a contradiction. Therefore, our definition can
be changed to compare the obfuscated program not
with any simpler program but with the simplest pro-
gram computing the same function.
Definition 9. Consider a program P ′. We say P ′ is
ε-securely obfuscated if

IK(JP ′K;P ′
) ≤ εK(JP ′K),

for 0 ≤ ε ≤ 1.
We say P ′ is a secure obfuscated program if is

ε-secure and ε is negligible.
We believe our definitions of obfuscation differ

from the simulation black-box model in important
ways, and that because of this they avoid the impossi-
bility result of (Barak et al., 2012).

3Or rather, a circuit or a Turing machine representation
thereof.

4That is, we run R to produce P ′ then we execute the
result of this first execution, that is P itself.

6

Our definition is a less stringent form of obfusca-
tion rather than a weak form of black box obfuscation.
We assume the functionality of an obfuscated program
is almost completely known and available to an adver-
sary, and only require hiding the implementation rather
than the functionality itself. This approach to obfusca-
tion is very practical and pragmatic, especially for soft-
ware protection obfuscation, as usually the customer
likes to know exactly what a product does, although
s/he might not care about how it was implemented.

Our definition for security takes a program P (clear
code), which supposedly is an easy and smart imple-
mentation of functionality F , and compares it with
P ′, which is a different and supposedly unintelligible
implementation of F , such that the original P can not
be perceived or obtained from P ′. The defenders’ aim
is not to prevent an adversary from understanding or
finding F , but to prevent her/him from finding their
own implementations P .

This intuition best matches the idea of best possible
obfuscation which was advanced by Goldwasser and
Rothblum (Goldwasser and Rothblum, 2007). Accord-
ing to (Goldwasser and Rothblum, 2007) an obfusca-
tor O is considered as best possible if it transforms a
program P so that any property that can be computed
from the obfuscated program P ′, can also be computed
from any equivalent program of the same functionality.
However, despite the close intuitive correspondence,
our definition also differs from best possible obfus-
cation, in the sense that it relies on some form of
black-box simulation. It was proved in (Goldwasser
and Rothblum, 2007) that best possible obfuscation
has a strong relation with indistinguishability obfusca-
tion (Barak et al., 2001) (Garg et al., 2013), if O is an
efficient obfuscation i.e. run in polynomial time.

In contrast, the black box model definition requires
that all properties of a given obfuscated program P
must be hidden from any adversary that ignores its
source code but has access to at most a polynomial
number of points of JP K.

1. We can see that in our case, the adversary knows
more about the functionality. Since the function-
ality is mostly public, this would be equivalent to
giving the simulator in the black-box model access
to this extra knowledge, reducing the advantage of
the adversary and possibly making some functions
obfuscatable.

2. On the other hand, our definition allows the leak-
age of a small, but non-zero, amount of informa-
tion. Compare with the black-box model where
a single-bit property that is non-trivially com-
puted by an adversary, renders a function un-
obfuscatable. Our definition requires the adversary
to be able to compute more than a few bits in order

for obfuscation to be broken.

3. Our definition considers only deterministic adver-
saries, again making adversaries less powerful and
reducing their advantage.

We can try to model the implications for our defini-
tion of a successful black-box adversary against obfus-
cation. Consider an adversary A attacking a predicate
π by accessing an algorithm A , such that A(P ′) = 1
if and only P ′ satisfies π. In this case, A is able to
compute 1 bit of information about P ′, and we want
to measure how much this helps A in describing some
simpler program P that implements the same function
JP ′K.

Since the adversary A knows A, s/he can enumer-
ate the set S of all programs that satisfy A. Then,
for some program P ∈ S, we would have K(P ∣A) ≤
K(S∣A) + log ∣S∣.

Note that the set S may be infinite, and so enu-
meration is the best that can be done: we enumerate
all relevant programs and run A with each of them,
noting the result. We could try to avoid this infinity
problem by noticing we are only interested in pro-
grams simpler than the original, and thus satisfying
K(P) ≤ K(P ′) ≤ ∣P ′∣. This does not give abso-
lute guarantees, since in general there are programs
with ∣P ∣ > ∣P ′∣ and K(P) ≤ K(P ′), but our hope is
that these are few and far between as they increase
in length. Thus, even if we make this assumption
and disregard a whole class of possibly relevant pro-
grams, we still have in the order of 2n specimens.
If A were a deterministic algorithm, we would have
K(S∣A) = O(1), and if S has less than a half of all
possible programs, then indeed we would find that
K(P ∣A) ≤K(S∣A) + log ∣S∣/2 ≤ n − 1.

However, A is randomized, and in order to accu-
rately produce S, for each program q, A must be run
with a set of random coins r such thatA(q, r)⇔ q ∈ S.
One way to describe S from A would need a polyno-
mial number of bits for each program in S. Now, we
no longer have the comfort of a negligible K(S∣A)
term, and we can no longer be sure that knowing this
property would in any way reduce the complexity of
our target program.

We can still try to go around this problem, by al-
lowing our enumerator to list not only all programs
but also all possible random strings, and choosing the
majority vote for each program. The length, and there-
fore the number, of possible random strings is bound
by the running time of the program, which in turn is
bound by a function of its length. Therefore, if we
limit the length of our programs we limit the number
of random strings to search5.

5Conversely, if we really want to enumerate all programs,

7

This would eliminate the necessity of considering
the extra information due to the random coins, but
on the other hand the running time would increase
exponentially. Any successful adversary would be very
different to the PPT adversaries of (Barak et al., 2001),
and although our definition has been made, for ease of
exposition, with unbounded Kolmogorov complexity
(for unbounded adversaries), it is easy to change it to
consider polynomially-bounded adversaries by using
an alternative definition of mutual information:

I∗K(P ;P ′
) =K(P) −Kt()

(P ∣P ′
),

where t() is a polynomial on the length of P ′ that acts
as a hard limit to the number of steps the universal
machine can be run for.

This notion of information can be negative in some
cases, but clearly limits the ability of any adversary
trying to find P from P ′ in a consistent way with the
black-box model. With this definition of obfuscation,
the above reasoning would lead to examples where
non-obfuscatability by the black-box model does not
prevent obfuscatability in the algorithmic information-
theoretic model.

4.4 Security and Unintelligibility

Our first attempt to characterize obfuscation was based
on unintelligibility, and then we evolved to a notion of
security based on mutual information. The first notion
seemed more immediately intuitive, traditional obfus-
cation techniques seem to rely only on making the
code as complex as possible in an attempt to hide its
meaning. But precisely this notion of “hiding meaning”
is nothing more than reducing the information that the
obfuscated program leaks about the original one, and
so we believe the second approach to be the correct
one. However, we can ask the natural question: is there
any relation between these two concepts? Does high
unintelligibility imply high security, or vice-versa?

We give a partial answer to this question. In cer-
tain situations, high unintelligibility will imply high
security, as stated in the following theorem.

Theorem 8. Consider a program P of length m and
its obfuscated version P ′ = O(P,λ) of length n >m
(where n is at most polynomially larger than m), sat-
isfying c-unintelligibility for c ≥ n

K(P) . Assuming
that the obfuscation security parameter λ satisfies
K(P ′∣P) ≥K(λ∣P) − α, then up to O(logn):

I(P ;O(P,λ)) ≤ α −O(1)

then we also have to enumerate an infinite number of random
strings.

\\ variable that holds authentication
password

string user-Input = input();
string secure-password = ...;
if secure-password == user-Input {
grant-access();

else
deny-access();}

P : simple password checker

string O@ = x0();
string $F=...;
if O@== $F{
x1();

else
x2(); }

P ′ : obfuscating P

Figure 2: An example for obfuscating a program using re-
naming technique.

Proof. By Theorem 3, K(P ′) = K(O(P,λ)) ≤

K(P,λ) + K(O) = K(P,λ)6 and by assumption
K(P ′) ≥ (c + 1)K(P). Then,

K(P,λ) ≥ (c + 1)K(P)

K(P,λ) −K(P) ≥ cK(P)

K(λ∣P) ≥ cK(P)

Now, for mutual information, we have

I(P ;P ′
) =K(P ′

) −K(P ′
∣P)

≤K(P ′
) −K(λ∣P) + α (by assumption)

≤ n − cK(P) + α

≤ n − n + α (by assumption)
= α

Intuitively, if we consider an optimal obfuscation
key (it has all the information needed to produce P ′
from P , but not much more than that), we can say that
if P ′ is c-unintelligible for large enough c, then P ′ is
a secure obfuscation of P .

The above theorem shows when high c-
unintelligibility implies security of code obfuscation.
It turns out that the reverse implication does not exist,
as the following theorem illustrates.

Claim 9. There are obfuscated functions O(P,λ)
that are arbtrarily secure and yet do not satisfy c-
unintelligibility for c ≥ 0.

6The O(1) term is absorbed by the logarithmic additive
term that we are not notating

8

Proof. Consider first the case of program P of Fig. 2,
that simply checks a password for access, and its ob-
fuscated version P ′, which was computed using layout
obfuscation (Collberg et al., 1997): variable and func-
tion renaming and comment deleting. The obfuscated
variable and function names are independent of the
original ones and so the information that P ′ contains
about P is limited to the unchanging structure of the
code: assignment, test and if branch.

The complexity of the original code can be broken
in several independent parts: the comment, the struc-
ture, the variable and function names, and therefore we
can writeK(P) = nc+ns+nv . The only thing that P ′
can give information about is the structure part, since
all the other information was irrevocably destroyed
in the process: there is no data remaining that bears
any relation to the lost comment or the lost function
names. Therefore, IK(P ;P ′) ≤ ns = ns

nc+ns+nv
K(P).

We can make the fraction ns

nc+ns+nv
as small as nec-

essary by inserting large comments, long names and
representing structure as compactly as possible, for
example, keeping names in a dictionary block and
indicating their use by pointers to this.

However the complexity ofP ′ is less than that ofP ,
since there is less essential information to describe: the
same structure, no comments and the function names
could be described by a simple algorithm. Therefore,
we have that c-unintelligibility can not be satisfied for
any non-negative value of c. This shows that high
ε-security does not imply high unintelligibility.

The next theorem shows how we can obtain secu-
rity if the obfuscated code is complex enough and the
obfuscation key is independent of the original program.

Theorem 10. Let P be a program of length n and λ an
independent and random obfuscation key, satisfying
K(λ) ≥ n − α and K(P,λ) ≥ K(P) + K(λ) − β,
where α,β ∈ N. Suppose the obfuscation O(P,λ)
satisfies K(O(P,λ)∣P) ≥ K(λ∣P) −O(1). Then up
to a logarithmic factor:

IK(P ;O(P,λ)) ≤ α + β

Proof.

IK(P ;O(P,λ)) =K(O(P,λ)) −K(O(P,λ)∣P)

≤K(O(P,λ)) −K(λ∣P)

Applying Theorem 1
≤K(O(P,λ)) −K(λ,P) +K(P)

≤ n −K(P) − n + α + β +K(P)

≤ α + β

The first two assumptions are natural: picking λ at
random and independently of P will satisfy high com-
plexity and low mutual information with high prob-
ability, so we can simply assume those properties at
the start. The third assumption, however, is not im-
mediately obvious: it describes a situation where the
obfuscation key is optimal, in the sense that it contains
just the amount of information to go from P to P ′,
within a small logarithmic term. The following lemma
shows how λ must have a minimum complexity to
allow the derivation of P to P ′.

Lemma 11. Consider P ′ = O(P,λ) is the result of ob-
fuscating a program P . Then, K(λ∣P) ≥K(P ′∣P) −
O(1)

Proof. Given the obfuscator O and any λ, construct
the function qλ(⋅) = O(⋅, λ). Let Qλ be a program
that implements it. Then, clearly, U(Qλ, P) = P ′
and so ∣Qλ∣ ≥ K(P ′∣P). To describe Qλ, we only
need to specify λ and instructions to invoke O with
the proper arguments, but since P is already known,
we can use it to find a shorter description for λ. This
gives K(P ′∣P) ≤K(λ∣P) +O(1).

An optimal obfuscation key λ is then the one that
uses as little information as possible.

Obfuscation techniques can use randomness or not.
In Claim 9, we showed one case where names could be
obfuscated in a deterministic way, without any random-
ness. However, we could equally have used instead
highly random names, with the same effect in security
but increasing unintelligibility as well. We can as well
consider that the set of obfuscation techniques is finite
and describe each of them by a unique number. This
way, we can characterize a single application of obfus-
cation by a key composed of the technique’s index and
the randomness needed.

We now proceed to show that it is possible to
achieve obfuscation security according to our defi-
nitions, but restricted to a passive adversary, that is,
one that does not realize transformations over the in-
tercepted code. The intuition is to use obfuscation
techniques that behave as much as possible as secure
encryption functions, namely, using random keys that
are independent from the code and large enough that
they obscure almost all original information. The cru-
cial difference that enables security is that because an
obfuscation technique preserves functionality, we do
not need to decrypt the obfuscated code and so don’t
need to hide the key.

First, we prove the effect of obfuscating an elemen-
tary piece of code, by application of a single obfusca-
tion technique. Then, we reason about the case of a full
program, composed of several of these independent
blocks.

9

Theorem 12. Let p represent a program block, O
an obfuscation technique and λ ∈ L an obfuscation
key with fixed length n. Let p′ = O(p, λ) be the ob-
fuscated block. Assume O produces an output with
length ` ≤ n + γ and is “nearly-injective” in the fol-
lowing sense: for every p, any subset of L of keys
with the same behaviour for p has cardinality at most
polynomial in n. That is, for all p and λ0 ∈ L,
∣{λ ∶ O(p, λ) = O(p, λ0)}∣ ≤ n

k, for some positive in-
teger k.

Then, if the key is random, K(λ) ≥ n−α and inde-
pendent from p, K(λ∣p) ≥ K(λ) − β, the obfuscated
code p′ is (α+ β + γ)-secure up to a logarithmic term.

Proof. By symmetry of information, we can write
K(p∣p′) = K(p′∣p) + K(p) − K(p′). Since p′ =

O(p, λ), it’s easy to see that K(p′∣p) ≤ K(O) +
K(λ∣p) = K(λ∣p), since K(O) is a constant in-
dependent of p, λ or p′. As well, we can show
the reverse inequality. To produce λ from p, we
can first produce p′ from p (with a program that
takes at least K(p′∣p) bits) and then build the set
Sp,p′ = {λ ∶ ∣λ∣ ≤ n,O(p, λ) = p′} of all compati-
ble λ, by a program whose length is O(1). Finally,
we just have to give the index of λ in this set, and
so K(λ∣p) ≤ K(p′∣p) + log #Sp,p′ . Then, by as-
sumptions on λ, K(p′∣p) ≥ K(λ∣p) − log #Sp,p′ ≥
n − α − β − log #Sp,p′ . By assumption on the out-
put of O, K(p′) ≤ ∣O(p, λ)∣ ≤ n + γ. This gives
K(p∣p′) ≥ K(p) + n − α − β − O(logn) −K(p′) ≥
K(p) − α − β − γ −O(logn).

The randomness and independence conditions for
the keys are natural. The other two conditions may
seem harder to justify, but they ensure that O effec-
tively mixes p with the randomness provided by λ: the
limit on the size of subsets of L implies a lower bound
on the number of possible obfuscations for p (the more
the better); on the other hand, the limit on the length
of the output of O forces the information contained
in p to be scrambled with λ, since it can take only a
few more bits than those required to describe λ itself.
The extreme case is similar to One-Time Pad encryp-
tion7, when both the output and λ have the same size
n, and O is injective for each p: there are 2n keys, as
well as possible obfuscations for each p. Furthermore,
because the obfuscated code has the same length of λ,
the exact same obfuscated strings are possible for each
p, maximizing security.

In general, a program is composed of several of
these minimal blocks in sequence. The above proof
shows when the obfuscated block p′ gives no informa-
tion about its original block, say p0. As well, p′ can

7Which is proved to be an unconditionally secure sym-
metric cypher

not give any more information about any other block
p1, as there is no causal relation between p1 and p′. At
best, there is some information in p1 about p0, but then
the information given by p′ about p1 should be at most
that given by about p0. Therefore, we conclude that
if all the sub-blocks in a program are securely obfus-
cated, then the whole program is. The above theorem,
then, shows that secure obfuscation is possible under
very reasonable assumptions.

5 INDIVIDUAL SECURITY OF
CODE OBFUSCATION

Studying the security of individual instances of
obfuscated code provides more granularity. Even if
the obfuscated program is considered secure according
to our definition, it may have parts which can provide
some information about other obfuscated parts, which
reduce the security of the obfuscated code. It could
be that a program is obfuscated but that some module
is not: some part of the obfuscated code stays still in
its original form. We can demonstrate this relation
by providing some boundaries on the complexity of
subprograms in the same program.

We can view (obfuscated) programs as finite, and
therefore recursively enumerable, sets of subprograms
(blocks or modules) such that P ′ = {p′n}n∈N. Given an
obfuscated program P ′, it may consist of obfuscated
and unobfuscated modules, that is: ∃p′j , p

′
i ∈ P

′, where
p′i is an obfuscated module and p′j is an unobfuscated
module.

Theorem 10 demonstrates the effect of security
parameters λ on the whole obfuscation process. The
following results show the effect of each individual
security parameter on each obfuscated subprogram.
Choosing a good λ (with a good source of random-
ness) requires a minimum amount of information to
be shared with obfuscated code and the clear code. It
is important to study the relation between the secu-
rity parameter and the original (clear) code. In the
following theorem, we use a simple way to check the
independence between λ and P on the subprogram
level.

Theorem 13. Let P ′ be a set of obfuscated subpro-
grams and P a set of clear subprograms, such that
each subprogram p′ of P ′ has length at most n, and
is the obfuscation of a corresponding block in P :
∃pi ∈ P,κi ∈ λ. p′ = O(pi, κi). If K(κi, pi) ≥

K(pi) +K(κi) − α, then (up to a logarithmic term):

IK(κi;pi) ≤ α

Proof. Since K(pi, κi) ≤ K(κi∣pi) + K(pi) +

10

O(logn), we have by assumption

K(pi) +K(κi) − α ≤K(κi∣pi) +K(pi) +O(logn)

K(κi) − α ≤K(κi∣pi) +O(logn)

K(κi) −K(κi∣pi) ≤ α +O(logn)

IK(κi, pi) ≤ α +O(logn)

The following two theorems address the secu-
rity of two different forms of code obfuscation:
obfuscation-as-encoding and obfuscation-as-hiding. In
the obfuscation-as-encoding technique, the original
program is transformed in such a way it changes the
structure of original code, but preserving the func-
tionality, for example Data transformation techniques
such as array splitting, splitting variable, Restructure
Arrays and Merge Scalar Variables (Collberg et al.,
1997). The encoding process is considered as the secu-
rity parameter that dictates how the obfuscation should
be performed and where it should take place. Encod-
ing differs from encryption, if somebody knows the
encoding process, then the original code can be recov-
ered. In encoding obfuscation, the clear program is
not presented in the obfuscated code; what still exists,
but hidden, is the encoding process. Reversing the
encoded program (obfuscated) requires finding and
understanding the encoding process. For instance we
used a simple encoding in Fig. 1, x=x+i is encoded as
x=x+4*i;x=x-2*i;x=x-i; the encoding process
converts i to 4*i;-2*i;-i, to figure out x=x+i ,
we have to find and combine 4*i;-2*i;-i, which
is the security parameter in this case.

The next theorem addresses the security of obfus-
cation code when we apply encoding to P (as a set of
subprograms), here, the encoding process is presented
as a part of security parameter.

Theorem 14 (Encoding). Let P ′ be a collection of ob-
fuscated subprograms p′i using κi ∈ λ, each of length
at most n. Then,

IK(κi;p
′
i) ≤ δκi −O(1),

for δκi = δ(κi∣P
′).

Proof. Since P ′ is a collection of sub-programs, we
can assume that it contains all the information in p′i as
well as that of all other sub-programs. Then,

K(κi∣P
′) =K(κi∣p′1, . . . , p

′
i, . . . , p

′
n) ≤K(κi∣p

′
i)

and so

IK(κi;p
′
i) =K(κi) −K(κi∣p

′
i)

≤K(κi) −K(κi∣P
′
)

≤K(κi) − (log #P ′
− δκi) by Definition 4

Because each subprogram has length at most n, P ′
can contain at most 2n distinct programs. Assuming
that each appears at most a constant number of times,
we have that #P ′ = O(2n) and log #P ′ = n +O(1).
Then,

IK(κi;p
′
i) ≤ n − n + δκi −O(1)

≤ δκi −O(1)

In hiding obfuscation techniques the original sub-
program still exists in the obfuscated program (set of
obfuscated subprograms), the security of such tech-
niques depends on the degree of hiding in the set ob-
fuscated subprograms. An example of such technique
is the control flow obfuscations such as Insert Dead
basic-blocks, Loop Unrolling, Opaque Predicate and
Flatten Control Flow (Collberg et al., 1997). Normally
these techniques are combined and used with encod-
ing obfuscation techniques, in order to make the code
more resilient to reverse engineering techniques.

For code obfuscation, an opaque predicate is used
as a guard predicate that cannot statistically be com-
puted without running the code; however the original
code still exists too in the obfuscated code, but pro-
tected by the predicate. In Fig. 1 we used opaque pred-
icates with simple data encoding technique. Consider
the following obfuscated code of Fig. 1-(a), where the
encoding has been removed. Obviously, x=x+i is
still in the code, but is hidden under the protection of
opaque predicate.

while(i<n){
i=i+1

if (7*y*y-1==x*x){ //false
y=x*i;

else
x=x+i;}}

opaque predicate with no encoding

Theorem 15 (Hiding). Let P ′ be a collection of ob-
fuscated subprograms p′i, each of length at most n.
Then,

IK(pi;p
′
i) ≤ δpi −O(1),

for δpi = δ(pi∣P
′).

Proof. The proof is very similar to Theorem 14. The
block pi is hidden in P ′ but in its original form, due
to the obfuscation process. Since P ′ is a collection
of sub-programs, we can assume that it contains all
the information in p′i as well as that of all other sub-
programs. Then,

K(pi∣P
′) =K(pi∣p′1, . . . , p

′
i, . . . , p

′
n) ≤K(pi∣p

′
i)

11

IK(pi;p
′
i) =K(pi) −K(pi∣p

′
i)

≤K(pi) −K(pi∣P
′
)

≤K(pi) − (log #P ′
− δpi) by Definition 4

Similarly to the proof of Theorem 14, #P ′ = O(2n)
and log #P ′ = n +O(1). Then,

IK(pi;p
′
i) ≤ n − n + δpi −O(1)

≤ δpi −O(1)

6 CONCLUSION AND FUTURE
WORK

In this paper, we provide a theoretical investigation
of code obfuscation. We defined code obfuscation us-
ing Kolmogorov complexity and algorithmic mutual
information. Our definition allows for a small amount
of secret information to be revealed to an adversary,
and it gives an intuitive guarantee about the security
conditions that have to be met for secure obfuscation.
We argued our definition is more lenient than the vir-
tual black-box model of Barak et al. and that for that
reason the impossibility result does not apply. In con-
trast, we showed that under reasonable circumstances
we can have secure obfuscation according to our defi-
nition.

To the best of our knowledge, this paper is the
first to propose algorithmic information theory as a
theoretical basis for code obfuscation. We believe that
our new definition for code obfuscation provides the
first step toward establishing quantitative metrics for
certifying code obfuscation techniques. Currently, we
are working toward deriving new metrics based on
our model, aiming to validate and apply these metrics,
empirically, to real obfuscated programs using state of
the art obfuscation techniques.

There are still some questions we want to address
in future work. For example, it is still not clear whether
the complexity of security parameter (key) has always
a positive effect on the the security of obfuscated pro-
grams based on algorithmic mutual information defini-
tion. Furthermore, algorithmic mutual information has
a parallel counterpart based on classical information
theory such as Shannon mutual information, it would
be interesting to explore the relation between our defi-
nition and Shannon mutual information in the context
of code obfuscation security. We are also planning to
study and characterize the security of particular tech-
niques and to analyze more carefully the scenario of
active adversaries.

ACKNOWLEDGEMENTS

This research is partially funded by EPSRC-DTA
(Mohsen). We would like to thank Steffen van Bakel
and Emil Lupu for their comments.

REFERENCES

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sa-
hai, A., Vadhan, S., and Yang, K. (2012). On the
(im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sa-
hai, A., Vadhan, S. P., and Yang, K. (2001). On the
(im)possibility of obfuscating programs. IACR Cryp-
tology ePrint Archive, 2001:69.

Collberg, C., Thomborson, C., and Low, D. (1997). A Tax-
onomy of Obfuscating Transformations.

Gács, P. (1974). On the symmetry of algorithmic information.
Soviet Math. Dokl, 15:1477–1480.

Garg, S., Raykova, M., Gentry, C., Sahai, A., Halevi, S.,
and Waters, B. (2013). Candidate indistinguishability
obfuscation and functional encryption for all circuits.
In In FOCS.

Gauvrit, N., Zenil, H., and Delahaye, J. (2011). Assess-
ing cognitive randomness: A kolmogorov complexity
approach. CoRR, abs/1106.3059.

Goldwasser, S. and Rothblum, G. N. (2007). On best-
possible obfuscation. In Proceedings of the 4th con-
ference on Theory of cryptography, TCC’07, pages
194–213, Berlin, Heidelberg. Springer-Verlag.

Jbara, A. and Feitelson, D. G. (2014). On the effect of code
regularity on comprehension. In Proceedings of the
22Nd International Conference on Program Compre-
hension, ICPC 2014, pages 189–200, New York, NY,
USA. ACM.

Kieffer, J. C. and Yang, E. H. (1996). Sequential codes,
lossless compression of individual sequences, and Kol-
mogorov complexity. IEEE Trans. on Information
Theory, 42(1):29–39.

Lathrop, J. I. (1997). Compression depth and the behavior
of cellular automata. Complex Systems.

Li, M. and Vitányi, P. M. (2008). An Introduction to Kol-
mogorov Complexity and Its Applications. Springer
Publishing Company, Incorporated, 3 edition.

McCabe, T. J. (1976). A complexity measure. IEEE Trans.
Software Eng., 2(4):308–320.

Shen, A. (1982). Axiomatic description of the entropy notion
for finite objects. VIII All-USSR Conference (Logika
i metodologija nauki),Vilnjus, pages 104 – 105. The
paper in Russian.

Shen, A., Uspensky, V., and Vereshchagin, N. (2014). Kol-
mogorov complexity and algorithmic randomness. MC-
CME Publishing house.

Taveneaux, A. (2011). Towards an axiomatic system for
kolmogorov complexity. Electronic Colloquium on
Computational Complexity (ECCC), 18:14.

12

