
1

Fault Space Transformation: A Generic
Approach to Counter Differential Fault Analysis

and Differential Fault Intensity Analysis on
AES-like Block Ciphers

Sikhar Patranabis, Abhishek Chakraborty, Debdeep Mukhopadhyay, and P.P. Chakrabarti
Department of Computer Science and Engineering

IIT Kharagpur, India
{sikhar.patranabis, abhishek.chakraborty, debdeep, ppchak}@cse.iitkgp.ernet.in

Abstract—Classical fault attacks such as Differential Fault Analysis (DFA) as well as biased fault attacks such as the Differential Fault
Intensity Analysis (DFIA) have been a major threat to cryptosystems in recent times. DFA uses pairs of fault-free and faulty ciphertexts
to recover the secret key. DFIA, on the other hand, combines principles of side channel analysis and fault attacks to try and extract the
key using faulty ciphertexts only. Till date, no effective countermeasure that can thwart both DFA as well as DFIA based attacks has
been reported in the literature to the best of our knowledge. In particular, traditional redundancy based countermeasures that assume
uniform fault distribution are found to be vulnerable against DFIA due to its use of biased fault models. In this work, we propose a novel
generic countermeasure strategy that combines the principles of redundancy with that of fault space transformation to achieve security
against both DFA and DFIA based attacks on AES-like block ciphers. As a case study, we have applied our proposed technique to to
obtain temporal and spatial redundancy based countermeasures for AES-128, and have evaluated their security against both DFA and
DFIA via practical experiments on a SASEBO-GII board. Results show that our proposed countermeasure makes it practically
infeasible to obtain a single instance of successful fault injection, even in the presence of biased fault models.

Index Terms—Security, Block Ciphers, Fault Attacks, Biased Faults, Countermeasure, Redundancy, Fault Space Transformation

F

1 INTRODUCTION

The advent of pervasive devices for communication and
information systems such as the Internet of Things (IoT) has
led to an increasing demand for embedded security solu-
tions. State of the art block ciphers such as the Advanced
Encryption Standard (AES) [1] form crucial building blocks
in the design of secure embedded devices for consumer
products and electronic gadgets. While any cryptographic
primitive must be resistant to cryptanalysis attacks, they
must also be implemented carefully to resist passive and
active side channel attacks (SCA). SCAs exploit the leakage
from a target device executing a cryptographic algorithm
to try and retrieve the secret key using divide and conquer
techniques. There exist today extremely strong passive SCAs
such as the differential power analysis (DPA) [2] that ex-
ploits the correlation between physical measurements such
as power dissipation obtained at various time instances, and
the internal state of the processing device at those time
instances, to reveal the secret key. In active side channel
attacks, such as fault analysis (FA) [3]–[5], an adversary in-
jects faults to disturb the normal execution of cryptographic
systems, and then analyzes the corresponding leakage be-
havior to try and retrieve the secret key. Fault attacks are
a potent threat to cryptographic algorithms since they are
easy to mount, require low cost equipment, and render
even mathematically robust and cryptographically secure

algorithms vulnerable.
Fault attacks come in many varieties. Some fault attacks

such as the differential fault attack (DFA) [6]–[11] exploit
the propagation of a fault from the point of injection to
the output, and requires pairs of correct and faulty cipher-
texts. Other techniques such as differential fault intensity
analysis (DFIA) [12]–[14] require only faulty ciphertexts and
exploit the biased nature of the fault distribution. Safe error
attacks (SEA) [15], [16] do not even require faulty cipher-
texts, but only exploit the behavior of the cipher under
fault attacks. With fault attacks now being an established
and potent threat to cryptosystems, sound countermeasures
against them must be introduced into cryptographic de-
vices. Countermeasures against DFA come in many flavors
- concurrent error detection techniques [17]–[23], infection
based countermeasures [24], [25] and coding based coun-
termeasures [26], [27]. In this paper, we introduce a generic
variety of countermeasure against fault attacks known as
fault space transformation (FST) based countermeasures.
This family of countermeasures is sound against a wide
variety of fault attacks and fault models, and overcomes
a number of drawbacks of the existing countermeasures. In
particular, the security of FST is independent of the fault
distribution, is nearly exhaustive against all first order fault
attacks, is independent of fault properties such as Hamming
weight, and does not drastically deteriorate the area foot-
print or the throughput of the cipher implementation.



2

1.1 Contributions
The major contributions of the paper are as follows:

• The paper provides a mathematical quantification of
the threat posed by biased fault models to classical
fault attack countermeasures in terms of the variance
of the fault probability distribution.

• The paper introduces a generalized countermeasure
framework against both DFA and DFIA using the
concept of fault space transformation (FST), provides
a theoretical justification for its effectiveness, and
presents several examples of how this framework
may be instantiated While some of these instances
are prevalent in the cryptographic literature, the
paper also introduces a new instance of FST that
successfully counters both DFA and DFIA.

• The paper motivates the requirement of such a coun-
termeasure by demonstrating actual DFIA attacks
using practically achievable biased fault models on
the trivial temporal and spatial redundancy counter-
measures, applied to AES-128 implementations on a
SASEBO GII platform.

• The paper presents a novel instance of the pro-
posed countermeasure scheme applied to AES-128,
and demonstrates its effectiveness in preventing
both DFA and DFIA via practical experiments on a
SASEBO GII platform.

Note that a preliminary version of the present work was
published in COSADE 2015 [28]. In the preliminary version,
we presented a mathematical quantification of the threat
posed by biased fault models to classical fault attack coun-
termeasures in terms of the variance of the fault probabil-
ity distribution, and an experimantal demonstration of the
vulnerability of naı̈ve redundancy based techniques such
as temporal and spatial redundancy to biased fault attacks
such as DFIA. The current version not only presents the
analysis with respect to the above contributions in a much
more detailed manner, but also makes several new technical
contributions, including the proposal of a novel counter-
measure technique referred to as Fault Space Transforma-
tion (FST) against both DFA and DFIA based fault attacks,
which was not present in [28]. We provide theoretical anal-
ysis to demonstrate the effectiveness of fault space transfor-
mation, and suggest possible realizations of the same. FST
is also compared against five major categories of existing
fault attack countermeasures in the literature - linear compli-
mentary dual codes, infective countermeasures, information
redundancy, dual rail precharge logic and encryption fol-
lowed by decryption. Section 6 presents a case study for our
proposed FST countermeasure strategy as applied to AES-
128. We propose using the MixColumns transformation for
transforming the fault space, and demonstrate an efficient
pipelined version of the implementation which has lower
overhead than the generally proposed strategy. We present
implementation details for both temporally and spatially
redundant versions of our countermeasure as well detailed
descriptions of the fault models they are secure against. The
frequency ranges and fault models for the spatial redundant
version, as well as the countermeasure implementation are
novel contributions of the currently submitted version and
do not appear in [28]. The experimental results presented

on a SASEBO GII platform are broadly categorized into two
parts. The first part demonstrates the practical feasibility of
DFIA on naı̈ve redundancy based techniques such as tem-
poral and spatial redundancy. The results of the attack on
spatial redundancy are novel contributions of the currently
submitted version and do not appear in [28]. The second
part of the experimental results focus on the effectiveness of
our proposed countermeasure strategy in preventing both
DFA and DFIA. In particular, we demonstrate that even on
using precise fault models such as single and double bit
flips, we require as many as 106 fault injection instances to
recover the key, which is practically infeasible. These results
do not appear in [28].

2 BACKGROUND AND RELATED WORK

2.1 Fault Attacks on Block Ciphers: A Brief Survey

The seminal work of Boneh et al. [3] that demonstrated fault
attacks on the RSA cryptosystem triggered an extensive
study of fault analysis with respect to a wide variety of
cryptosystems. In particular, fault attacks on block ciphers
such as AES have received widespread attention in recent
years. The basic principle of any fault attack is to cause a
malicious aberration in the normal execution of the target
cryptographic algorithm, and to use the corresponding leak-
age to try and recover the key. In general, fault attacks on
block ciphers may be categorized into three major categories
based on the attack principle and the nature of the data
recovered by the attacker. We describe them next.

2.1.1 Differential Fault Analysis (DFA)
In DFA, the adversary injects a random fault with certain
known spatio-temporal characteristics, and analyzes faulty
and fault-free ciphertext pairs to recover the secret key. DFA
has been widely studied on a number of block ciphers
such as AES [6]–[10]. DFA is powerful enough to recover
the entire 128 bit key of AES with just a single random
fault injection [9]. The usage of practically achievable fault
models such as bit faults and byte faults that can be injected
using low cost fault injection techniques [9] makes DFA a
potent threat to the security of cryptographic algorithms.

2.1.2 Differential Fault Intensity Analysis (DFIA)
DFIA [14] represents a class of fault attacks that combine
principles of side channel analysis techniques such as DPA
with that of fault based perturbations to recover the secret
key [13]. Such attacks require only faulty ciphertexts, and
exploit the fact that the key-dependent faulty state value has
a strongly biased distribution for the correct key hypothesis.
This in turn can be distinguished from a random state
due to an incorrect key hypothesis using an appropriate
distinguisher.

2.1.3 Safe-Error Attacks (SEA), Differential Behavior Anal-
ysis (DBA), Fault Sensitivity Analysis (FSA)
Safe error attacks (SEA) and differential behavior
analysis (DBA) deduce the presence or absence of a
fault during an encryption operation from the behavior of
a cryptographic device [15], [16]. The crux of the attack
lies in the fact that depending on a particular subpart of



3

the secret key (such as a bit or a byte), a fault may or
may not lead to a faulty computation. Hence, such key
dependent behavior can be a potential source of leakage,
and has in fact been exploited to mount implementation
dependent attacks on AES [16]. In case of AES, the attack
targets the implementation of the xtime operation to reveal
secret key bytes based on the response of the device to
fault injections. More recent propositions that use a similar
agorithm, such as the fault behavior analysis (FBA) [29], are
also quite powerful. Another class of fault attacks - fault
sensitivity analysis (FSA) has also been proposed in the
recent literature [11]. It monitors the sensitivity information
of the design under faulty conditions to try and reveal
information about the circuit. FSA shares similarities with
side channel analysis (SCA) attacks, and has been recently
combined with zero value attacks [30] for greater accuracy.

An important aspect of any fault attack is the injection tech-
nique. Fault injection techniques that have been reported
in the cryptographic literature include voltage spike attacks
[16], clock glitch attacks [31], optical and laser attacks [32]
and electromagnetic attacks [33]. Except laser based at-
tacks, all the aforementioned injection techniques are semi-
invasive in the sense that they do not require physical
openings, chemical procedures or electrical contact with the
IC surface [16]. Moreover, these attacks are easy to mount
and do not require very high-end equipment or elaborate in-
jection set-ups. Laser fault injection attacks provide greater
precision, but are more expensive and do require physical
modifications of the IC. Table 1 summarizes the major fault
attack techniques and their variants discussed above on the
AES block cipher.

2.2 Countermeasures Against Fault Attacks

Any countermeasure against fault attack has two major
phases - fault detection and fault nullification. The first step
usually involves the usage of some form of spatio-temporal
redundancy to detect the occurrence of the fault, while the
second phase attempts to either suppress or adequately
randomize the effect of the fault so as to render it ineffective
in recovering the secret key. We present three broad classi-
fications for countermeasures against fault attacks on block
ciphers proposed in the cryptographic literature.

2.2.1 Concurrent Error Detection (CED)

CED techniques use four major kinds of redundancies -
temporal, spatial, information and hybrid (combination of
space, time and information) to detect faults. In temporal
redundancy, each operation is performed twice, followed
by a check to detect errors [17], [18]. A similar concept
is that of spatial redundancy, where the system maintains
two copies of the same hardware operating in parallel,
and checks for errors by comparison [17], [20]. Information
redundancy uses additional check bits that are generated by
encoding the input message and are transmitted with the
encrypted message [22]. The decrypter derives these check
bits and checks if they indeed are generated by encoding the
decrypted message. These bits could be derived from linear
codes such as parity [42] or non-linear robust codes [19].

2.2.2 Infective Countermeasures
A second variety of countermeasures against fault attacks
is based on infection. Infective countermeasures avoid the
usage of comparison (as opposed to detection based coun-
termeasures) by diffusing the effect of the fault to render
the ciphertext unexploitable. Several propositions regarding
infective countermeasures have been made in the crypto-
graphic literature, and the most recently proposed variant
[25] combines the usage of redundancy with dummy rounds
to confuse the adversary. Infective countermeasures have
been proven to be formally secure against standard first
order DFA and have been suitably implemented to pre-
vent even advanced software-based fault attacks such as
instruction skips [43]. However, a major shortcoming of in-
fective countermeasures lies in their usage of the additional
dummy rounds, which tends to reduce throughput to a large
extent.

2.2.3 Encoding Based Countermeasures
A third and very efficient class of countermeasures against
fault attacks use the concept of data encoding. In such coun-
termeasures, the naı̈ve detection step is performed using a
different data encoding so as to reduce the fault collision
probability. A foremost example of such technique is the
orthogonal direct sum masking (ODSM) [26] that uses linear
complementary dual codes to detect and prevent both side
channel and fault attacks. An extended version of this is
used to prevent hardware Trojan horse based fault attacks
on encoded circuits [27]. A major disadvantage of the tech-
nique in [26], [27] is that it can only detect first order fault
attacks upto a maximum Hamming weight d. Secondly,
the usage of masking makes the overhead of ODSM large
with respect to fault attack prevention. Another popular
encoding technique to prevent fault attacks is the usage of
dual rail precharge logic [44].

We finally note that the above mentioned techniques are
not sufficient against strong attack models such as SEA.
To prevent SEA, the designer must ensure that the circuit
behaves identically under fault free and faulty computations
(behavior here includes power consumption, time for com-
putations as well as output). In practice, it is very difficult
to prevent such attacks. Also fault attacks such as FSA are
more similar in principle to side channel countermeasures
and are generally thwarted using SCA countermeasure tech-
niques such as masking [11], as well as usage of WDDL
logic [11], [45] and configurable delay blocks [46]. In this
paper, we focus on presenting a generalized countermeasure
framework for preventing DFA and DFIA. While we believe
that our generalized framework can be combined with the
aforementioned techniques to protect against FSA as well, a
detailed discussion of the same is beyond the scope of this
paper and may be an interesting future work.

3 PRELIMINARIES

3.1 Definitions

In this section, we introduce some definitions related to
faults that are extensively used throughout the rest of the
paper. The definitions are illustrated using an example for
the ease of understanding.



4

TABLE 1: Fault Attacks on Block Ciphers: A Summary of Status

Attack Nature Fault Model No. of Faulty Ciphertexts Key Search Space Fault Source
Clock Spike Optical EM

DFA

Random 2128 2128

Single bit [16] 128 1
Single Byte [34] 2 240 [35] [36] [5]
Single Byte [8] 2 232 [36] [5]
Single Byte [9] 1 28 [36] [5]
Multiple Byte DM∗

0 [37] 1 232 [37] [5]
DM1 [37] 1 264 [37] [5]
DM2 [37] 1 296 [37] [5]
DM3 [37] 1 2128 [37] [5]
Single bit [38] ≈ 50 1 [31] [5]
Single Byte [39] ≈ 40 1 [40] [36] [5]
Single Byte [41] ≈ 36 212 [41]

FSA and Zero Value Gradual Increase in Fault Intensity [11] 360 28

Fault Intensity [30]

Biased Fault Attacks
Single Byte [13], [14] 10-14 212 [14]
Single Byte [13] 14-80 234

Diagonal Fault (Stuck-at) [13] 4-10 232

SEA and DBA Random [16] 256 1 [16]
Single bit [15] 256 28

∗ DM refers to Diagonal Fault Models as proposed in [37]

3.1.1 Fault Space
The fault space F is defined as the whole set of possible
faults {f1, f2, · · · , fn} that an adversary can inject using a
specific fault injection technique. For example, if we con-
sider the simplest fault attack on AES-128 presented in [38],
where the adversary wishes to recover a single byte of the
key, the fault space F is the set of all possible byte faults
{1, 2, · · · , 255}.

3.1.2 Fault Number
Given a fault space F , the fault number is a map from
F to N that associates with each fault f ∈ F a unique
number i ∈ {1, · · · , n}, where n = |F|. For example, for the
single byte fault space, one such numbering is to associate
with each 8-bit fault value a number corresponding to its
decimal equivalent. In our representation, we refer to the
fault associated with fault number i as fi.

3.1.3 Fault Probability
Given a fault space F = {f1, f2, · · · , fn}, let F be a
discrete random variable that denotes the outcome of a
single random fault injection, and let pi be the probability of
occurrence of fault fi, where 1 ≤ i ≤ n. Hence, we have

pi = Pr[F = fi]

We denote by P the probability distribution {p1, · · · , pn}
and refer to it as the fault probability distribution followed
by the fault space F . For example, let F be the space of
all single byte faults, and assume that the adversary only
injects single bit flip faults with uniform probability. Then,
if F1 = {f2j}1≤j≤7, we have

Pr[F = fi|fi ∈ F1] =
1

8
Pr[F = fi|fi ∈ F \ F1] = 0

On the other hand, if the adversary injects all single byte
faults with uniform probability, then we have

Pr[F = fi] =
1

255
∀i ∈ {1, · · · , 255}

We further note that the latter is an example of a uniform
fault probability distribution since all faults in F have equal
probability of occurrence, while the former is an example of
a biased fault probability distribution, due to its non-uniform
nature.

3.1.4 Fault Model
A fault model is a two-tuple (F ,P), where F and P
are the fault space and the fault probability distributions
respectively, as defined above. A fault model is termed as
uniform or biased depending on the nature of P .

3.1.5 Fault Order
In this paper, we focus on first and second order fault
injections. We refer to any fault injection as a first order
fault injection if the adversary faults an arbitrary number
of bits such that each bit belongs to a single state of a single
encryption block. A second order fault injection is said to occur
if the adversary faults an arbitrary number of bits such
that they are spread across two different states in the same
encryption block. For example, suppose that an encryption
block has two registers R0 and R1. Then a first order fault
injection affects any number of bits in either only R0 or only
R1, while a second order fault injection affects any number
of bits in both R0 and R1. Note that for a second order fault
injection, both R0 and R1 may be affected by the same or
different fault injection events.

3.1.6 Fault Bias
In the statistical literature, the bias of an estimator θ̂ for a
random variable θ is given by Eθ(θ̂ − θ). In the context of
fault models, let p̂i be the estimator of the probability pi of
occurrence of fault fi. The expectation of pi is 1

n , where n is
the total number of faults, which coincides with the uniform
fault distribution case. Thus, for a real life fault model, any
metric for the bias of the fault model should capture the
information of how the different fault probabilities stray
from their expected uniform probability of occurrence. With
these requirements in perspective, we propose the following
metric to quantify the bias of a fault model.



5

(a) Unprotected Implementation

(b) Temporal Redundancy (c) Spatial Redundancy

Fig. 1: Generalized Schematics for Block Cipher Implementations

Definition 1. The bias of the fault model (F ,P) is defined
as V ar, the variance of P .

It may be observed that V ar =
∑n

i=1 pi
2

n − 1
n2 . We

choose V ar as the measure of bias for the simple reason
that the variance represents the second central moment of
the probability distribution, and captures how far the values
are spread from the central mean. For a fault model, it thus
successfully measures how far the distribution is from that
of a uniform model. To the best of our knowledge, this is
the first attempt in the cryptographic literature to quantify
the bias of a fault model using a generic probability based
metric that is independent of the fault model and fault
injection technique.

3.2 A Generalized Block Cipher Implementation
We introduce in Figure 1a a simple schematic description
for a generalized block cipher structure with no protection
against fault attacks. We intentionally abstract out the round
function to make it independent of any specific block cipher
structure such as substitution permutation network (SPN)
or Fiestel. The register R0 is an N bit state register, and
is updated with the N bit intermediate cipher state value
at the end of each round. The block cipher has a total of
R rounds. Note that it is assumed that the round function
involves the secret key corresponding to a particular round,
and an adversary tries to inject a fault in the state register
R0. In all our forthcoming discussions, we use this block
cipher schematic as our reference point.

In order to illustrate the concepts of temporal and spatial
redundancy as fault countermeasures, we also present in
Figures 1b and 1c the schematics for block cipher ciphers
using these countermeasure techniques. Once again, these
schematics are generic and are independent of any particu-
lar block cipher structure.

4 FAULT BIAS: A THREAT TO TRIVIAL REDUN-
DANCY TECHNIQUES

In this section, we formally present the idea that biased fault
attacks indeed weaken redundancy based countermeasures
using the formal quantification of the bias of a fault model
in term of the variance of the fault probability distribution
introduced in Section 3.1. In particular, we demonstrate a
relationship between the bias of the fault model and the
probability that the adversary can introduce identical faults
in independent fault injections, which we refer to as the fault
collision probability.

4.1 The Fault Collision Probability
Consider a redundant implementation of an encryption
algorithm in which each operation is repeated twice (maybe
in space or in time). In order to get a faulty ciphertext, an
adversary using a fault model (F ,P) has to ensure that the
same fault fi ∈ F occurs in both the original and redun-
dant computations. Let f̂0 and f̂1 be the random variables
denoting the outcome of fault injections in the original and
redundant rounds respectively. Since the fault injection in
the original and redundant rounds are independent, we
have Pr[f̂0 = fi, f̂1 = fj ] = pipj . We focus on the event
where f̂0 = f̂1. Let the probability of this event be denoted
by p̃.

p̃ =
n∑
i=1

Pr[f̂0 = fi, f̂1 = fi] =
n∑
i=1

pi
2. (1)

Evidently, this is also the probability of leakage of
faulty ciphertexts. Any redundancy based countermeasure,
if naı̈vely implemented, would fail to detect the occurrence
of a fault as long as the adversary could inject the same
fault in both the original and redundant computations. This
probability is expected to depend on two major factors -
the bias of the fault model and the precision of the fault
model. In particular, an increase in bias should increase this
probability value, while an increase in the number of faults
would reduce the fault collision probability. We note that
this is precisely the case since the following relationship
holds between the fault variance V ar and the fault collision
probability p̃ :

p̃ = nV ar +
1

n
(2)

This equation captures the fact that the fault collision
probability is characterized by both the fault bias (quantified
by V ar) and the fault precision, represented by the number
of faults n in the fault space. Thus, this choice of metric
allows us to mathematically quantify the threat posed by
biased fault models to redundancy based countermeasures,
in terms of the bias of the fault model. To the best of
our knowledge, no other metric currently proposed in fault
attack literature does the same.

5 COUNTERING FAULT COLLISION: TRANSFOR-
MATION OF THE FAULT SPACE

In this section we present a generalized view of fault space
transformation as a countermeasure strategy to prevent



6

Fig. 2: Fault Space Transformation

fault collision based attacks on classical redundancy based
countermeasures. The basic idea is to prevent the adversary
from being able to exploit the underlying bias in the fault
model to inject the same fault in both the original and
redundant state registers, referred to as R0 and R1 respec-
tively (refer Figures 1b and 1c). We begin by introducing
the concept of equivalent fault injection under fault space
transformation. We then introduce the countermeasure and
examine its security against second order fault attacks.

5.1 The Generic Countermeasure Strategy : Fault
Space Transformation
The idea of fault space transformation is to ensure that the
computations for R0 and R1 are performed under different
encodings, such that it is difficult to inject equivalent faults
in them. Let W : (0, 1)

N → (0, 1)
N be an additional

bijective mapping introduced in the redundant computation
such that R1 = W (R0) under fault free operation of the
augmented redundancy-based countermeasure. As a result
of this state space transformation, the fault space F0 for the
original computation is mapped to a corresponding fault
space F1 for the redundant computation, which in turn is
a subset of a much larger fault space F∗, as demonstrated
in Figure 2. In particular, for each fault fi ∈ F0 there is an
equivalent fault fj ∈ F1, that is, fi ≡ fj under the mapping
W . The following broad assumption may be stated regard-
ing an adversary mounting a second order fault attack on
a redundant block cipher implementation with fault space
transformation :
Assumption 1: The adversary can guarantee the occurrence
of a fault in the larger fault space F∗ but not in the subset
F1.
The assumption is intuitive as we demonstrate with respect
to our earlier example of fault space mapping W that maps
the space F0 of all single byte faults in the original com-
putation to a specific subspace F1 of the larger fault space
F∗ of all four byte faults, in the redundant computation. We
point out that the adversary can use a specific fault injection
technique (such as glitching or EM injections) to inject single
byte and four byte faults in the original and redundant com-
putations respectively. However, it is practically infeasible to
specifically enhance the probability of occurrence of the four
byte faults in F1 out of all four byte faults in F∗. In other
words, the faults in F1 would still have the same probability
of occurrence as they had in the larger fault space F∗.

We next examine mathematically the probability of the
fault injection event for a random choice of the transfor-
mation W . We begin with a generalized analysis and then
look at some specific cases with respect to practical fault
injection techniques. Any chosen mapping W maps F0 to
a subset F1 of F∗ such that |F1| = |F0|. There are

(|F∗|
|F1|
)

such subsets. A particular fault fj ∈ F∗ occurs in
(|F∗|−1
|F1|−1

)
of the subsets. Thus, given a random fault fi ∈ F0 and a
random fault fj ∈ F∗, the expectation of Pr[fj = W (fi)])
over all possible choices of W (assuming the adversary has
no control over W ) is given as follows:

E(Pr[fj =W (fi)]) =

(|F∗|−1
|F1|−1

)
(|F∗|
|F1|
)
|F1|

=
1

|F∗|
(3)

Let pi and pj be the probability of occurrence of the faults
fi ∈ F0 and fj ∈ F∗, and let ρ denote the correlation
coefficient between the fault probability distributions for F0
and F∗. Also, let V ar0 and V ar∗ be the variances of the two
fault probability distributions.Assuming that the adversary
has perfect knowledge of first fault injection f̂0 = fi ∈ F0
for some i, the expected probability of equivalent fault
injection p̃ on two random fault injections f̂0 and f̂1 is given
as follows:

E(p̃) = E(
|F0|∑
i=1

Pr[f̂0 = fi, f̂1 = W (fi)])

=

|F0|∑
i=1

E(Pr[f̂0 = fi])E(Pr[f̂1 = W (fi)]) + ρ
√
V ar0.V ar∗

=

|F0|∑
i=1

E(Pr[f̂0 = fi])(
1

|F∗|
) + ρ

√
V ar0.V ar∗

=
1

|F∗|

|F0|∑
i=1

E(Pr[f̂0 = fi]) + ρ
√
V ar0.V ar∗

=
1

|F∗|
+ ρ

√
V ar0.V ar∗

(4)

We now look at some special cases and the corresponding
expressions for p̃.

5.1.1 Uniform Fault Models
If the fault model corresponding to at least one of F0

or F∗ follows a uniform probability distribution, then the
corresponding variance is 0 and the expression for p̃ is
simply 1

|F∗| .

5.1.2 Independent Original and Redundant Fault Distribu-
tions
For certain transient fault injection techniques such as glitch-
ing (clock/voltage) and EM injections, it is reasonable to
assume that the probability distribution of faults in the fault
spacesF0 andF∗ are independent, that is, ρ = 0. In this case
also, the expression for p̃ is 1

|F∗| , as for uniform fault models.
Clearly, in such a scenario, the fault collision probability
is the same for uniform and biased fault models. In other
words, the threat of biased fault attacks is nullified in such
a case.

5.1.3 Dependent Original and Redundant Fault Distribu-
tions
Certain fault injection techniques such as bit flips in the
memory could lead to correlations between the probability
distribution of faults in the fault spaces F0 and F∗. In
such scenarios, depending on the value of the correlation
coefficient ρ, p̃ could be better or worse for biased fault
models as compared to uniform fault models. However, for
a random choice of the mapping W , the fault spaces F0

and F∗ are expected to be strongly correlated with very low
probability. Thus fault space transformation indeed reduces



7

the threat of biased fault models in such scenarios, even it
does not completely obliterate it.
Figure 3a present a schematic idea of the proposed counter-
measure technique as applied to any general block cipher.
The redundant computation mentioned in Figure 3a could
be either spatial or temporal, as illustrated separately in
Figures 3b and 3c the modified temporal and spatial re-
dundancy countermeasure schemes for block ciphers that
incorporate the fault space transformation W . Observe that
the main components of the countermeasure are the original
and redundant computations, and the fault space transfor-
mation W applied to the redundant computation, which do
not depend on the specific structure of the block cipher. In
particular, our countermeasure strategy is applicable to SPN
block ciphers such as AES as well as Fiestel block ciphers.

5.2 The Transformation Function W : the Good and the
Bad
An important aspect of the fault space transformation strat-
egy presented above is the choice of the transformation
function W . From the designer’s perspective of countering
both classical DFA as well as the biased fault model-based
DFIA, the following must be ensured while choosing W :

• The transformation W must ensure that a smaller
fault space F0 should be mapped onto the subspace
of a larger fault space F1. This is because a larger
fault space makes it more difficult for the adversary
to achieve the desired fault with desirable precision.

• The occurrence of faults in the original and trans-
formed fault spaces should be uncorrelated so as to
reduce the fault collision probability.

Based on the above criterion, we may broadly classify all
possible transformation functions W into two categories
- good transformations that ensure that the fault space
transformation achieve the aforementioned criteria and bad
transformations that fail to do so. For example, with re-
spect to the standard block cipher AES, the MixColumns
operation represents a good choice of transformation since
it maps a single byte fault to a much larger space of four
byte faults by virtue of its MDS properties. On the other
hand, the SubBytes operation represents a bad choice of
transformation since it maps a single byte fault to a single
byte fault, virtually achieving no fault space transformation
at all.

5.2.1 Are Random Transformations Desirable?
We now explore some concrete design choices for W . A
possible strategy is to use a randomized transformation,
such as a random permutation of the operands in the
redundant computation [22]. We point out, however, that
a randomized transformation may not be the best choice
for W with respect to fault attack prevention, since the
inherently random nature of the transformation implies
that it may be good or bad with uniform probability. We
present an example here to illustrate this phenomenon.
Suppose that W is chosen to be full-round AES-128 with
a randomly chosen secret key, which essentially makes W
an excellent random permutation. Unfortunately, for some
choice of secret key, it is possible that a single byte differ-
ential at the input of W could actually be mapped onto a

single byte differential at the output, which is a bad fault
space transformation according to our specified criteria.
Thus, instead of randomized transformations, we propose
using a deterministic W , that always guarantees good fault
space transformation and successfully thwarts both DFA
and DFIA. This is discussed in details next.

5.3 Our Proposed Fault Space Transformations: Using
MDS Matrices
We now look at a possible strategy for designing the trans-
formation function W . We propose the use of Maximum Dis-
tance Separable (MDS) matrices [47] for W . An MDS matrix
is a matrix representing a function with special diffusion
properties and has many useful applications in cryptogra-
phy, especially in designing multipermutations to prevent
cryptanalysis. Now, suppose that the linear transformation
W is a m2 × m1 MDS mapping over a field K from Km1

to Km2 . We propose the use of MDS matrices because they
guarantee a fault space transformation such that the original
and redundant fault spaces F0 and F1 differ sufficiently in
their Hamming weights to have low correlation of occur-
rence. Let the adversary inject a t byte fault f0 in the register
R0, and let f1 be the corresponding fault to be injected in
the register R1 so that the countermeasure fails to detect
the fault injection. By the MDS diffusion property, any t
byte fault f0 is mapped to an at least a m2 − t + 1 byte
fault f1. For the special case of a single byte fault (t = 1),
the transformed fault space comprises of faults that affect
at least m2 bytes of the output. Thus the precision of the
transformed fault space F1 is approximately 1

2(8m2−1) times
lower than the original fault space F0, making it difficult for
the adversary to create equivalent fault injections with high
probability. Additionally, since using MDS matrices causes
W to be a linear transformation, the side channel leakage of
the implementation is not adversely affected [48].

5.3.1 Comparison with the use of Linear Complementary
Dual Codes
In the cryptographic literature, the use of linear comple-
mentary dual codes for fault detection has been a subject
of recent study as part of a number of countermeasure
schemes combining fault and side channel protection such
as ODSM [26], and have also been used for Trojan detection
[27]. A major drawback of the use of dual codes is that
they can only detect a certain subclass of even first order
fault attacks upper bounded by a certain Hamming weight
d that parameterizes the system. In addition, the possibility
of preventing second order biased fault attacks using such
codes on top of redundant cipher implementations has also
not been studied to the best of our knowledge. On the other
hand, using MDS matrices for fault space transformation
achieves fault space transformation without putting any
restrictions on the Hamming weight of the injected fault.

5.3.2 Comparison with Infective Countermeasures
We note that our proposed countermeasure scheme is fun-
damentally different from infective countermeasure scheme
in the sense that there are no dummy rounds in our propo-
sition. Infective countermeasures avoid an explicit detection
step; rather they focus on modifying and amplifying the



8

Fig. 3: Our Proposed Countermeasure : Fault Space Transformation

(a) Schematic of Proposed Countermeasure
(b) Temporal Redundant Implementation

(c) Spatial Redundant Implementation

effect of the injected fault so as to render the faulty ci-
phertext unexploitable to the adversary [25]. However, the
most recently proposed infective countermeasures that are
provably secure against first order DFA [25], [43] make use
of additional dummy rounds (over and above the standard
redundancy of performing each round twice) in order to
confuse the adversary. On the other hand, our countermea-
sure uses only standard redundancy, but the original and
redundant computations occur in different state spaces so
as to reduce the fault collision probability. Also, our pro-
posed countermeasure uses detection and not amplification
to render the faulty ciphertext unexploitable, and does not
require any additional dummy rounds. In this respect, our
countermeasure achieves better throughput as compared to
infective countermeasures.

5.3.3 Comparison with Information Redundancy
We also present a comparison our countermeasure tech-
nique with information redundancy techniques such as
parity [42] and robust codes [19]. We note first of all that
unlike information redundancy, our proposed countermea-
sure does not require any separate prediction units. The
main overhead in information redundancy techniques such
as robust codes arises from the use of elaborate prediction
units (such as linear codes for parity or non-linear robust
codes), while that in our proposed countermeasure arises
from the use of redundant computations and the transfor-
mation function W . In information redundancy, designers
prefer the use of non-linear codes owing to their better fault
coverage as compared to linear codes. It is important to
note, however, that using non-linear error detection codes
often tends to increase the correlation of the circuit power
consumption, thus making it more vulnerable against SCA
attacks [48]. In this regard, our proposed countermeasure is
advantageous because the use of an additional linear trans-
formation function W does not enhance the side channel
vulnerability of the implementation.

5.3.4 Comparison with Dual Rail Precharge Logic
The authors of [44] claim that dual rail precharge logic acts
as a sound countermeasure against classical DFA, since the
injection of multi-bit flips leads to a NULL value encoding
(00 or 11) with high probability and renders the faulty
ciphertext unexploitable. Indeed, under the assumption that

all the injected faults are uniformly distributed in the target
fault space of single byte faults, the probability that the
adversary successfully injects a two bit flip (simultaneous
0 → 1 and 1 → 0 bit flips) in a single dual rail couple
[44] is low. Even so, there still exists a finite probability that
such a fault may be injected, implying that the coverage
with respect to first order fault injections is not 100% for
dual rail precharge logic. On the other hand, fault space
transformation provides 100% coverage against all first
order fault attacks. Moreover, the assumption in [44] that
a random fault injection leads to a NULL value with high
probability is not valid when the fault model is biased, as is
the case for DFIA. In such a scenario, depending on the fault
injection technique and the critical path delay of the circuit,
the adversary may appreciably enhance the probability of
a successful fault injection using a precise single byte fault
model to perform a number of successful fault injections,
and then use these faulty ciphertexts and the underlying
bias of the fault model to recover the key.

5.3.5 Comparison with Round Encryption followed by De-
cryption
A popular fault detection technique in the literature is to
use a temporal redundancy where instead of repeating each
round of the encryption algorithm twice, an encryption
round is followed by a decryption round. An efficient im-
plementation of such a technique with respect to AES-128
is presented in [21]. In this case, the transformation func-
tion W is essentially the entire AES round itself. We note
however, that instead of using the entire round operation,
using only the MixColumns operation (which uses an MDS
mapping) would achieve the same fault space transforma-
tion, since the other round operations (SubBytes, ShiftRows
and AddRoundKey) do not conribute towards transforming
the fault space. Thus instead of incorporating all the round
operations in the transformationW , our proposed technique
focuses on efficiently using specifically the MDS operation
that suffices for transforming the fault space.

6 CASE STUDY : APPLICATION OF FAULT SPACE
TRANSFORMATION ON AES-128
In this section, we present a case-study on the block cipher
AES-128, which is the current standard block cipher in the



9

TABLE 2: Fault Model Description

Symbol Fault Model
SBU Single Bit Upset

SBDBU Single Byte Double Bit Upset
SBTBU Single Byte Triple Bit Upset
SBQBU Single Byte Quadruple Bit Upset

cryptographic community. The case study is organized as
follows. We first discuss a possible fault model to perform
biased fault attack DFIA on AES-128. We show that such
a fault model is indeed practically feasible and can be
achieved on a real life hardware implementations of AES-
128. We present simulation studies to illustrate the the
relation of attack efficiency with the precision and bias of the
fault model. Finally, we present actual experimental results
where the biased fault attack is mounted on two classical
fault-tolerant implementations of AES-128, namely spatial
(or hardware) redundancy and temporal redundancy. Fi-
nally, we apply the proposed countermeasure strategy of
fault space transformation to these implementations, and
demonstrate the effectiveness of the countermeasure in
thwarting such attacks.

6.1 The Fault Model
Depending on the type and method of fault injection, dif-
ferent types of faults may occur with varying granularity.
These include single bit upsets, multi bit upsets, single and
multi byte upsets, and diagonal upsets. Table 2 summarizes
our proposed fault models. Our experiments have shown
that SBU is the most suitable fault model for our attacks on
time or hardware redundant AES implementations. How-
ever, we also present results for SBDBU, SBTBU and SBQBU
to show the impact of fault model granularity on the perfor-
mance of our attacks. Note that the degree of control that the
attacker has on the fault location impacts the fault models
in terms of the number of possible fault (N ) under that fault
model. We distinguish between the following two situations
- Situation-1 when the attacker has perfect control over the
faulty byte and Situation-2 when the attacker does not have
control over the faulty byte.

6.2 The Fault Injection Set Up
The fault injection set up consists of an FPGA (Spartan-
3A XC3S400A), a PC and an external arbitrary function
generator (Tektronix AFG3252). The FPGA has a DUT
(Device Under Test) block, which is a time or hardware
redundant AES implementation. Faults were injected us-
ing clock glitches and the fault intensity was controlled
by increasing/decreasing the glitch frequency. The system
had two clock signals - clkslow and clkfast, both of which
were derived from an external clock signal clkext via a
Xilinx Digital Clock Manager (DCM) module. The clkslow
signal was used for fault-free operation of the DUT, while
the clkfast signal was used to create the glitches for fault
injection. The appropriate signal was fed to the DUT via
a MUX. The faulty states of the registers were monitored
using Chipscope Pro 12.3 analyzer.

We performed biased fault attacks on both the time and
hardware redundant versions of AES. The attack essentially
extends DFIA [14] to two target rounds instead of just
one, and also uses an additional distinguisher function

TABLE 3: Fault Models and Corresponding Frequency Ranges

Fault Model Frequency Range (MHz)
Time Redundancy Hardware Redundancy

SBU 125.3-125.4 70.3-70.5
SBDBU 125.6-125.7 70.6-70.9
SBTBU 126.0-126.1 71.0-71.1
SBQBU 126.3-126.4 71.3− 71.4

- the Squared Euclidean Imbalance (SEI), along with the
Hamming distance (HD) based distinguisher, to identify the
correct key hypothesis. The attack procedure introduces the
fault into either round 8 or round 9 of AES, and exploits
the biased nature of the introduced fault to decipher the
key. Note that our fault model for the attack only comprises
SBU, SBDBU, SBTBU and SBQBU (refer Table 2), i.e, all the
fault models are single byte fault models. Further details of
the attack approach may be found in [13], [14]. Since the
Chipscope pro 12.3 Analyzer limits the number of observ-
able samples at a given frequency to 1024, we observed 512
samples for the original computation and 512 samples for
the redundant computation. Table 3 elucidates the common
frequency ranges between either round where each type of
fault model is predominant for either countermeasure.

6.3 Applying Fault Space Transformation to AES-128

We apply our proposed fault space transformation based
countermeasure technique to protect AES-128 against biased
fault attacks. For the transformation function W , we pro-
pose using the Rjindael MixColumns matrix for its ease of
implementation. The Rjindael MixColumns operation used
in AES consists of multiplying a input vector of length 4 by
a 4 × 4 MDS matrix in the finite field GF(28). Each column
of the matrix is treated as a polynomial over GF(28) and
is then multiplied modulo x4 + 1 with a fixed polynomial
c(x) = 3x3 + x2 + x + 2, where {2}, {3} ∈ GF(28).
The MixColumns operation takes four bytes as input and
produces 4 bytes as output, where each input byte affects
all four output bytes. This implies that if a single byte of
the input vector is changed, all 4 bytes of the output are
affected. From the point of view of fault injections, if the
adversary were to inject a single byte fault in the input
vector, the MixColumns would diffuse the fault across all
four bytes of the output vector. Thus essentially, the fault
model transformation takes place from a single byte fault
to a four byte fault. Since we have already demonstrated
that fault models beyond single byte faults are of little
practical significance to the adversary for attacking the time
and hardware redundancy countermeasures due to lack of
precision, it is sufficient to consider the diffusion property of
MixColumns for single byte faults. Thus, in accordance with
our previous discussion F0 is the set of all single byte faults,
F∗ is the set of all 4 byte faults and F1 is the image of F0 in
F∗ under the MixColumns mapping. Even if the adversary
were to know precisely which byte of R0 was affected by
the injected fault (and the corresponding bytes of R1 that
would need to be affected for an equivalent fault), the size
of F∗ is too huge for the adversary to be able to precisely
introduce only those faults that are in F1.

To elucidate this fact we present a comparison with
the use of linear complimentary dual codes as a fault de-
tection countermeasure. Suppose an adversary uses single



10

TABLE 4: Implementation Details of Our Proposed Countermeasure

AES Implementation Area Overhead Maximum Frequency Clock Cycles(Slice Count) (MHz)
Without Redundancy 2580 78.5 10

Naı̈ve Temporal Redundancy 3580 74.6 20
Naı̈ve Spatial Redundancy 5250 68.9 10

Temporal Redundancy + Fault Space Transformation 3876 72.3 20
Spatial Redundancy + Fault Space Transformation 5538 66.7 10

Optimized Architecture (Figure 4) 5356 67.5 10

Fig. 4: Efficient Implementation of AES-128: Spatial Redundancy with Fault Space
Transformation

byte faults to attack ODSM [26], which uses linear compli-
mentary dual codes, as well as our proposed fault space
transformation (FST) based countermeasure, that uses MDS
matrixes. As per the implementation of ODSM using a
[16,8,5] dual code on AES-128 presented in [26] as well as
in [27], any fault injection that affects more than four bits is
not detected. Assuming uniform fault injection probability,
the success probabilities of the adversary are as follows:

Pr[Success]ODSM =
28 −

∑i=4
i=1

(8
i

)
28

≈ 0.5

Pr[Success]FST =
|F1|
|F∗|

=
255

232 − 4.224 − 6.216 − 4.28 − 1

≈ 6.032× 10−8

The above comparison highlights the advantage of using
the MixColumns transformation for transforming the fault
space to prevent second order fault injection attacks.

6.3.1 Implementation Overhead
We present here the implementation overhead and critical
frequency for the proposed countermeasure technique in Ta-
ble 4. The results are presented on a Spartan-3A XC3S400A
FPGA.

6.3.2 Reason for Choosing MixColumns: Efficient
Pipelined Implementations
We point out here that the presence of the MixColumns
operation in the normal round function of AES allows to
obtain a pipelined implementation where the state registers
R0 and R1 are placed after and before the MixColumns
operation respectively. This achieves the desired fault space
transformation without the additional overhead of the Mix-
Columns and the Inverse MixColumns operation. Figure

TABLE 5: Experimental Results : Biased Fault Attacks on Time Redundancy

Round Fault Model Fault Variance Ciphertexts Faults(estimate) Faults(practical)

8

SBU 9.5× 10−2 305 340 388
SBDBU 1.4× 10−2 625 1456 1448
SBTBU 9.7× 10−3 1020 1816 1975
SBQBU 3.2× 10−3 1879 7869 8003

9

SBU 9.2× 10−2 304 386 388
SBDBU 8.8× 10−2 625 641 648
SBTBU 8.1× 10−2 832 874 856
SBQBU 7.5× 10−2 1328 1788 1809

TABLE 6: Experimental Results : Biased Fault Attacks on Hardware Redundancy

Round Fault Model Fault Variance Ciphertexts Faults (estimate) Faults (practical)

8

SBU 1.1× 10−1 300 336 323
SBDBU 9.4× 10−2 651 1426 1455
SBTBU 5.6× 10−3 990 1857 1824
SBQBU 4.5× 10−3 1724 7536 7503

9

SBU 9.5× 10−2 304 390 377
SBDBU 7.7× 10−2 619 647 664
SBTBU 7.6× 10−2 883 892 829
SBQBU 3.4× 10−2 1299 1851 1913

4 shows such an efficient implementation of the spatial
redundancy with fault space transformation. The pipelined
implementation has the same overhead as the naı̈ve redun-
dancy technique, but with the added protection of fault
space transformation.

7 EXPERIMENTAL RESULTS

In this section, we present experimental results to validate
the security of our proposed countermeasure scheme. All
experiments have been conducted on a Spartan 3A FPGA,
on a SASEBO GII platform. The experimental section is
divided into two broad parts. The first part demonstrates
that the proposed fault attack is indeed feasible on time and
hardware redundant implementations of AES. The second
part shows the effect of introducing the fault space transfor-
mation on the number of fault injections required per faulty
ciphertext.

7.1 Demonstration of Biased Fault Attacks on Naı̈ve
Spatial and Temporal Redundancies
In this section we present the practical results of biased
fault attacks on both the time and hardware redundancy
countermeasure schemes. The implementation is a register-
transfer level Verilog definition of the countermeasure al-
gorithms described in Figures 1b and 1c. We repeated the
experiment 100 times, with the same randomly chosen key
and the randomly chosen plaintext. Tables 5and 6 summa-
rize the results of our attacks for different fault models. The
estimated number of fault injections is computed from the
number of faults and the experimentally observed variance.
It is evident from the results that the experimentally ob-
tained number of fault injections corroborates the estimated
number of fault injections results very well. The results thus
confirm that biased fault attacks can recover the key from
classical redundancy based countermeasures in practically



11

0 5 10 15

0

2

4

6

8

·10−2

Number of Faulty Bits

A
ve

ra
ge

V
ar

ia
nc

e

0 5 10 15

0

0.2

0.4

0.6

0.8

1

·106

Number of Faulty Bits

A
ve

ra
ge

Fa
ul

tI
nj

ec
ti

on
s

pe
r

Fa
ul

ty
C

ip
he

rt
ex

t

Fig. 5: Effect of Fault Precision

feasible number of fault injections. Additionally, greater the
fault model precision, lesser is the number of fault injections
necessary to recover the key, as demonstrated in Figure 5.

7.2 Effect of Fault Space Transformation on Biased
Fault Attacks
This section presents the practical results of biased fault at-
tacks on the temporal and spatial redundancy countermea-
sures with fault space transformation. Our results demon-
strate that FST enhances the security of both the spatial
and temporal redundancy countermeasures by rendering
both DFA and DFIA practically infeasible. The faults are
observed using the Chipscope pro 12.3 Analyzer just before
the comparison step, where the fault collision is expected to
occur in case of a successful fault injection. Figures 6 and
7 summarize the impact of our proposed countermeasure
on biased fault attacks using single bit upset (SBU) on the
time and hardware redundancy countermeasures respec-
tively. It is observed that the frequency ranges where the
single bit upsets are observed in the original and redundant
rounds respectively, are completely disjoint due to the fault
space transformation. Moreover, the specific four byte faults,
which are equivalent to single bit faults under the Mix-
Columns transformation, occur with very low frequency.
Tables 7 and 8 summarize the results of our attacks for
different fault models before and after applying FST. Note
that the term Faults Required in both these tables refers to the
number of fault injections required to be performed in order
to recover the entire secret key of AES-128, in the absence
and presence of FST, respectively. This was calculated as
follows. After performing each fault injection, we tried to
recover the key bytes using the faulty ciphertexts acquired
so far. We note here that only those faulty ciphertexts in
which the effect of countermeasure could be nullified by
injecting equivalent faults in the original and redundant
computations contributed towards recovering the key. The
results show that injection of equivalent faults is much
easier to achieve in the absence of FST, resulting in key
recovery using fewer number of fault injections. However,
the presence of FST drastically increases the number of fault
injections required for recovering the key, thus rendering the
attacks practically infeasible. In addition, this result holds
for each of the four fault models considered in this paper, as
demonstrated in Tables 7 and 8.

7.3 Distribution of Faults against Clock Frequency
Tables 9a and 9b summarize the frequency ranges at which
various fault models are observed for the modified time

TABLE 7: Effect of Fault Space Transformation with Temporal Redundancy

Round Fault Model Faults Required (without FST) Faults Required (with FST)

8

SBU 388 3× 106

SBDBU 1448 5× 106

SBTBU 1975 107

SBQBU 8003 > 107

9

SBU 388 5× 106

SBDBU 648 107

SBTBU 856 107

SBQBU 1809 > 107

TABLE 8: Effect of Fault Space Transformation with Spatial Redundancy

Round Fault Model Faults Required (without FST) Faults Required (with FST)

8

SBU 323 2× 106

SBDBU 1455 2.5× 106

SBTBU 1824 5× 106

SBQBU 7503 > 107

9

SBU 377 3× 106

SBDBU 664 5× 107

SBTBU 829 > 107

SBQBU 1913 > 107

and hardware redundancy countermeasures respectively.
The results have been presented for 512 samples obtained
at different frequencies for both the time and hardware
implementations of AES-128. Quite evidently, for each fault
model, the transformation not only causes the frequency
ranges for equivalent faults in the original and redundant
computations to be drastically different, but also affects the
occurrence probability of various faults. Moreover, unlike in
the original computation where different fault models have
disjoint frequencies of occurrences, the frequency ranges for
the redundant computation overlap. This makes it impossi-
ble for the adversary to identify characteristic frequencies to
inject faults belonging to a particular fault model with a high
probability. Thus our proposed countermeasure successfully
combines redundancy with fault space transformation to
render DFA and DFIA practically infeasible.

7.4 Distribution of Faults in the Original and Redundant
Calculations
Figures 8a and 8b depict the distribution of faults in terms
of the number of affected bytes in the original and redun-
dant rounds of AES-128 obtained via our fault injection
experiments using clock glitches, generalized over 107 in-
jections. The results are presented separately for temporally
and spatially redundant implementations. We contrast the
distribution of the target fault space corresponding to the
original round, and the actually obtained fault space in the
redundant round, for the and without the presence of fault
space transformation. Quite evidently, the results highlight
that in the absence of fault space transformation, these
spaces overlap almost always upto a fault space of 11 bytes,
making it easy for the adversary to inject equivalent faults
and bypass the final check. In particular, singe byte faults
are extremely effective for launching DFIA attacks in this
case. However, in the presence of fault space transforma-
tion, these spaces rarely overlap in an actual fault injection
scenario, making it very difficult for the adversary to bypass
the final check by injecting equivalent faults. In particular,
the fault spaces obtained in the redundant computation
quickly saturate to 16 bytes, implying that all bytes in the
state register are affected. Even for single byte faults, the
target fault space is that of 4 byte faults, which is extremely
imprecise for equivalent fault injection.

We also point out here that the fault injection parameters
required to achieve a given target fault space is essentially



12

124 126 128 130 132 134 136

0

20

40

60

Fast Clock Frequency (in MHz)
Fa

ul
tO

cc
ur

re
nc

e
Fr

eq
ue

nc
y

Original Computation
Redundant Computation

(a) Countermeasure Without FST

124 126 128 130 132 134 136

0

10

20

30

40

Fast Clock Frequency (in MHz)

Fa
ul

tO
cc

ur
re

nc
e

Fr
eq

ue
nc

y

Original Computation
Redundant Computation

(b) Countermeasure With FST

Fig. 6: Effect of Fault Space Transformation on Biased Fault Attacks : Temporal Redundancy

64 66 68 70 72 74 76

0

20

40

Fast Clock Frequency (in MHz)

Fa
ul

tO
cc

ur
re

nc
e

Fr
eq

ue
nc

y

Original
Redundant

(a) Countermeasure Without FST

64 66 68 70 72 74 76

0

20

40

60

Fast Clock Frequency (in MHz)

Fa
ul

tO
cc

ur
re

nc
e

Fr
eq

ue
nc

y

Original
Redundant

(b) Countermeasure With FST

Fig. 7: Effect of Fault Space Transformation on biased fault attacks : Spatial Redundancy

dependent on the target device and the fault injection
methodology used. In the absence of FST, the same fault
injection parameters suffice to achieve equivalent fault injec-
tion in the original and redundant rounds, since both faults
lie in the same target space. For instance, if the adversary
wishes to inject single byte faults in both the original and re-
dundant computations using clock glitches, the same glitch
frequency range may be used for both the injections. In the
presence of FST, however, the equivalent fault spaces for the
original and redundant computations are distinct. Hence the
adversary must vary the fault injection parameters between
the two computations to achieve the desirable faults in these
two spaces. For instance, a single byte fault in the original
redundant round may be equivalent to a four byte fault
in the redundant round; hence the adversary would need
to switch between the precise glitch frequency ranges for
the single byte and the corresponding four byte fault. As
the aforementioned results demonstrate, this is practically
infeasible to achieve.

In order to further elucidate the implication of the
aforementioned results, we explain how Figures 8a and
8b essentially explain the observations in Tables 7 and 8.
We point out that the target fault space described in these
figures is essentially the fault space in which the adversary
intends to inject a second fault in the redundant round so
that she achieves an equivalent fault injection to nullify
the effect of the fault space transformation. The figures
illustrate that in the absence of FST, this is easy to achieve,
which is precisely why the DFIA based attack is practically
feasible in the absence of FST. The results in Tables 7 and 8
reflect this observation, since the number of fault injections
required in the absence of FST is less. On the other hand,
achieving equivalent fault injection in the presence of FST is
difficult, which is reflected in the fact that the corresponding
attacks in the presence of FST require very high number of
fault injections. Once again, Tables 7 and 8 corroborate this
observation.

7.5 Nature of Fault Injection
Although FST is a general countermeasure technique and is
independent of fault injection techniques, in this paper we
focus on violation based fault injections because they are
easier to inject and hence more potent. Other more precise
fault injections such as laser fault injection will be more
difficult to counter using FST, since injecting equivalent
faults in the original and redundant computations would be
easier using such techniques. An interesting future direction
of work would be to compare and contrast the degree of
difficulty in injecting equivalent faults in the original and
redundant rounds with and without FST, for different fault
injection techniques.

8 CONCLUSIONS

In this work, we have proposed a novel fault space transfor-
mation based countermeasure that counters both traditional
DFA as well as DFIA-like biased fault attacks on AES-like
block ciphers. We propose a formal quantification of the bias
of a fault model in terms of the variance of the fault proba-
bility distribution, and use this definition to formally argue
the threat posed by biased fault attacks to naı̈ve redundancy
based countermeasure techniques. We introduce the concept
of fault space transformation, in which the adversary is
forced to inject two equivalent faults in different fault spaces
to bypass the detection step. We propose the use of MDS
matrices to provide formal guarantees of low correlation
between the original and redundant fault spaces. Our pro-
posed countermeasure is independent of the block cipher
structure, and is generic enough to be applied to a variety
of redundancy based countermeasures against a variety of
fault injection techniques. We present a case study on AES-
128 to prove the effectiveness of our countermeasure. We
demonstrate how our proposed countermeasure thwarts
glitch based biased fault attacks on RTL implementations
of spatial and temporal redundant implementations of AES-
128 on a Spartan 3A FPGA on a SASEBO GII board.



13

TABLE 9: Frequency Ranges for Fault Models : Fault Space Transformation

Fault Model Frequency Range (MHz)
Original Computation Redundant Computation

SBU 125.3-125.4 129.8− 134.4
SBDBU 125.6-125.7 130.1− 133.6
SBTBU 126.0-126.1 129.7-133.8
SBQBU 126.3-126.4 128.9− 132.5

(a) Modified Time Redundancy

Fault Model Frequency Range (MHz)
Original Computation Redundant Computation

SBU 64.3-64.9 71.2− 72.5
SBDBU 65.1-65.4 70.1− 73.8
SBTBU 65.8-66.2 69.1− 74.6
SBQBU 66.4− 67.1 69.5− 72.2

(b) Modified Hardware Redundancy

0 5 10 15
0

5

10

15

Target Fault Space (Number of Faulty Bytes)

In
je

ct
ed

Fa
ul

tS
pa

ce
(N

um
be

r
of

Fa
ul

ty
By

te
s)

Without FST
With FST

(a) Temporal Redundancy

0 5 10 15
0

5

10

15

Target Fault Space (Number of Faulty Bytes)

In
je

ct
ed

Fa
ul

tS
pa

ce
(N

um
be

r
of

Fa
ul

ty
By

te
s)

Without FST
With FST

(b) Spatial Redundancy

Fig. 8: Effect of Fault Space Transformation on Fault Distribution: Original and Redundant Computations

9 ACKNOWLEDGMENTS

The authors would like to acknowledge the Information
Security and Education Awareness (ISEA) projec and the
Institute Seed Grant (NGI) for partial funding of the work.
P.P. Chakrabarti would like to acknowledge the Department
of Science and Technology, Government of India, for partial
funding of the work.

REFERENCES

[1] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media,
2013.

[2] Paul Kocher, Joshua Jaffe, and Benjamin Jon. Differential Power
Analysis. Advances in Cryptology CRYPTO99.Springer, pages 388–
397, 1999.

[3] Dan Boneh, Richard Millo, and Richard Lipton. On the Importance
of Checking Cryptographic Protocols for Faults. Advances in
Cryptology EUROCRYPT97.Springer, pages 37–51, 1997.

[4] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret
Key Cryptosystems. In Burton S. Kaliski Jr., editor, Advances
in Cryptology – CRYPTO 1997, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997.

[5] Amine Dehbaoui, J-M Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic transient faults injection on a hardware and a
software implementations of aes. In Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2012 Workshop on, pages 7–15. IEEE, 2012.

[6] Matthieu Rivain. Differential fault analysis on DES middle rounds.
Cryptographic Hardware and Embedded Systems-CHES 2009, pages
457–469, 2009.

[7] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault
Attack Technique against SPN Structures, with Application to the
AES and KHAZAD. Cryptographic Hardware and Embedded Systems,
CHES 2003, Springer, pages 77–88, 2003.

[8] Debdeep Mukhopadhyay. An Improved Fault Based Attack of the
Advanced Encryption Standard. In Bart Preneel, editor, Progress
in Cryptology – AFRICACRYPT 2009, volume 5580 of Lecture Notes
in Computer Science, pages 421–434. Springer, 2009.

[9] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Dif-
ferential fault analysis of the advanced encryption standard using
a single fault. In Information Security Theory and Practice. Security
and Privacy of Mobile Devices in Wireless Communication, pages 224–
233. Springer, 2011.

[10] H.C Kim. Differential Fault Analysis against AES-192 and AES-
256 with Minimal Faults. 2010 Workshop on Fault Diagnosis and
Tolerance in Cryptography(FDTC),IEEE, pages 3–9, 2010.

[11] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fuku-
naga, Junko Takahashi, and Kauzo Ohta. Fault Sensitivity Anal-
ysis. Cryptographic Hardware and Embedded Systems, CHES 2010,
Springer, pages 320–334, 2010.

[12] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard.
Fault Attacks on AES with Faulty Ciphertexts Only. In Wieland
Fischer and Jörn-Marc Schmidt, editors, Fault Diagnosis and Toler-
ance in Cryptography – FDTC 2013, pages 108–118. IEEE Computer
Society, 2013.

[13] Thomas Fuhr, Eliane Jaulmes, Victor Lomne, and Adrian Thillard.
Fault Attacks on AES with Faulty Ciphertexts Only. 2013 Workshop
on Fault Diagnosis and Tolerance in Cryptography(FDTC).IEEE, pages
108–118, 2013.

[14] Nahid Ghalaty, Bilgiday Yuce, Mostafa Taha, and patrick Schau-
mont. Differential Fault Intensity Analysis. 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography(FDTC).IEEE, 2014.

[15] Bruno Robisson and Pascal Manet. Differential behavioral analy-
sis. In Cryptographic Hardware and Embedded Systems - CHES 2007,
9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, pages 413–426, 2007.

[16] Johannes Blömer and Jean-Pierre Seifert. Fault Based Cryptanal-
ysis of the Advanced Encryption Standard (AES). In Rebecca N.
Wright, editor, Financial Cryptography, volume 2742 of Lecture Notes
in Computer Science, pages 162–181. Springer, 2003.

[17] T Malkin, F.X Standaert, and M Yung. A Compara-
tive Cost/Security Analysis of Fault Attack Countermeasures.
2005 Workshop on Fault Diagnosis and Tolerance in Cryptogra-
phy(FDTC),IEEE, pages 109–123, 2005.

[18] P. Maistri and R Leveugle. Double-Data-Rate Computation as
a Countermeasure against Fault Analysis. IEEE Transactions on
Computers, 57(11):1528–1539, 2008.

[19] Mark Karpovsky, Konrad J Kulikowski, and Alexander Taubin.
Robust protection against fault-injection attacks on smart cards
implementing the advanced encryption standard. In Dependable
Systems and Networks, 2004 International Conference on, pages 93–
101. IEEE, 2004.

[20] Marc Joye, Pascal Manet, and J-B Rigaud. Strengthening hardware
aes implementations against fault attacks. IET Information Security,
1(3):106–110, 2007.

[21] Akashi Satoh, Takeshi Sugawara, Naofumi Homma, and Takafumi
Aoki. High-performance concurrent error detection scheme for aes
hardware. In Cryptographic Hardware and Embedded Systems–CHES
2008, pages 100–112. Springer, 2008.

[22] Xiaofei Guo and Ramesh Karri. Recomputing with permuted
operands: A concurrent error detection approach. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
32(10):1595–1608, 2013.

[23] Michel Agoyan, Sylvain Bouquet, Jacques Fournier, Bruno Ro-
bisson, Assia Tria, Jean-Max Dutertre, and Jean-Baptiste Rigaud.
Design and characterisation of an aes chip embedding counter-
measures. International Journal of Intelligent Engineering Informatics,
1(3-4):328–347, 2011.

[24] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. In-
fective Computation and Dummy Rounds: Fault Protection for
Block Ciphers without Check-before-Output. In Alejandro Hevia
and Gregory Neven, editors, Progress in Cryptology – LATINCRYPT



14

2012, volume 7533 of Lecture Notes in Computer Science, pages 305–
321. Springer, 2012.

[25] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopad-
hyay. Destroying fault invariant with randomization. In Crypto-
graphic Hardware and Embedded Systems–CHES 2014, pages 93–111.
Springer, 2014.

[26] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley,
and Houssem Maghrebi. Orthogonal direct sum masking. In
Information Security Theory and Practice. Securing the Internet of
Things, pages 40–56. Springer, 2014.

[27] Xuan Thuy Ngo, Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley,
and Zakaria Najm. Linear complementary dual code improvement
to strengthen encoded circuit against hardware trojan horses. In
Hardware Oriented Security and Trust (HOST), 2015 IEEE Interna-
tional Symposium on, pages 82–87. IEEE, 2015.

[28] Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen,
and Debdeep Mukhopadhyay. A Biased Fault Attack on the
Time Redundancy Countermeasure for AES. In Constructive Side-
Channel Analysis and Secure Design, pages 189–203. Springer, 2015.

[29] Yang Li, Yu-ichi Hayashi, Arisa Matsubara, Naofumi Homma,
Takafumi Aoki, Kazuo Ohta, and Kazuo Sakiyama. Yet another
fault-based leakage in non-uniform faulty ciphertexts. In Founda-
tions and Practice of Security, pages 272–287. Springer, 2014.

[30] Oliver Mischke, Amir Moradi, and Tim Güneysu. Fault sensitivity
analysis meets zero-value attack. In 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2014, Busan, South
Korea, September 23, 2014, pages 59–67, 2014.

[31] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David
Naccache, Anne-Lise Ribotta, and Assia Tria. How to flip a bit? In
IOLTS, pages 235–239, 2010.

[32] Elena Trichina and Roman Korkikyan. Multi fault laser attacks on
protected CRT-RSA. In Fault Diagnosis and Tolerance in Cryptogra-
phy (FDTC), 2010 Workshop on, pages 75–86. IEEE, 2010.

[33] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Ro-
bisson, and Emmanuelle Encrenaz. Electromagnetic fault injec-
tion: towards a fault model on a 32-bit microcontroller. In Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2013 Workshop on,
pages 77–88. IEEE, 2013.

[34] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault
Attack Technique against SPN Structures, with Application to the
AES and Khazad. In Colin D. Walter, Çetin K. KoÇ, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2003, volume 2779 of Lecture Notes in Computer Science, pages 77–
88. Springer, 2003.

[35] Nidhal Selmane, Sylvain Guilley, and J-L Danger. Practical setup
time violation attacks on aes. In Dependable Computing Conference,
2008. EDCC 2008. Seventh European, pages 91–96. IEEE, 2008.

[36] Robert Demming and Daniel J Duffy. Introduction to the Boost C++
Libraries; Volume I-Foundations. Datasim Education BV, 2010.

[37] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy
Chowdhury. A diagonal fault attack on the advanced encryption
standard. IACR Cryptology ePrint Archive, 2009:581, 2009.

[38] Christophe Giraud. DFA on AES. In Hans Dobbertin, Vincent Rij-
men, and Aleksandra Sowa, editors, Advanced Encryption Standard
– AES, volume 3373 of Lecture Notes in Computer Science, pages
27–41. Springer, 2005.

[39] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential
fault analysis on aes. In Applied Cryptography and Network Security,
pages 293–306. Springer, 2003.

[40] Alessandro Barenghi, Cédric Hocquet, David Bol, François-Xavier
Standaert, Francesco Regazzoni, and Israel Koren. Exploring the
feasibility of low cost fault injection attacks on sub-threshold
devices through an example of a 65nm aes implementation. In
RFID. Security and Privacy, pages 48–60. Springer, 2012.

[41] Ronan Lashermes, Guillaume Reymond, Jean-Max Dutertre,
Jacques Fournier, Bruno Robisson, and Assia Tria. A dfa on aes
based on the entropy of error distributions. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2012 Workshop on, pages 34–43.
IEEE, 2012.

[42] Ramesh Karri, Grigori Kuznetsov, and Michael Goessel. Parity-
based concurrent error detection of substitution-permutation net-
work block ciphers. In Cryptographic Hardware and Embedded
Systems-CHES 2003, pages 113–124. Springer, 2003.

[43] Sikhar Patranabis, Abhishek Chakraborty, and Debdeep
Mukhopadhyay. Fault tolerant infective countermeasure for
aes. In Security, Privacy, and Applied Cryptography Engineering,
pages 190–209. Springer, 2015.

[44] Jean-Luc Danger, Sylvain Guilley, Shivam Bhasin, Maxime Nassar,
and Laurent Sauvage. Overview of dual rail with precharge
logic styles to thwart implementation-level attacks on hardware
cryptoprocessors. 2009.

[45] Li Yang and Kazuo Sakiyama. Toward effective countermeasures
against an improved fault sensitivity analysis. IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications and Computer
Sciences, 95(1):234–241, 2012.

[46] Sho Endo, Yang Li, Naofumi Homma, Kazuo Sakiyama, Kazuo
Ohta, and Takafumi Aoki. An efficient countermeasure against
fault sensitivity analysis using configurable delay blocks. In Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2012 Workshop on,
pages 95–102. IEEE, 2012.

[47] Pascal Junod and Serge Vaudenay. Perfect diffusion primitives
for block ciphers. In Selected Areas in Cryptography, pages 84–99.
Springer, 2005.

[48] Francesco Regazzoni, Thomas Eisenbarth, Luca Breveglieri, Paolo
Ienne, and Israel Koren. Can knowledge regarding the presence
of countermeasures against fault attacks simplify power attacks
on cryptographic devices? In Defect and Fault Tolerance of VLSI
Systems, 2008. DFTVS’08. IEEE International Symposium on, pages
202–210. IEEE, 2008.

Sikhar patranabis has been pursuing Ph.D. in
Dept. of Computer Science and Engineering, IIT
Kharagpur since 2015. His research interests
include public key cryptography, lightweight cryp-
tography and hardware security.

Abhishek Chakraborty received his M.S from
Dept. of Computer Science and Engineering,
IIT Kharagpur in 2016. His research interests
include high performance computer architecture,
embedded systems, and hardware security.

Debdeep Mukhopadhyay received his PhD
from Dept. of Computer Science and Engineer-
ing, IIT Kharagpur in 2007, where he is presently
an Associate Professor. His research interests
include cryptography, VLSI of cryptographic al-
gorithms, hardware security and side channel
analysis.

Partha Pratim Chakrabarti received his Ph.D.
from Dept. of Computer Science and Engineer-
ing, IIT Kharagpur, in 1988. He is currently
the Director and a Professor in the Department
of Computer Science and Engineering at IIT
Kharagpur. His areas of interest include AI, CAD
for VLSI, Embedded Systems, Algorithm Design,
and Reliable and Fault Tolerant Systems.


	Introduction
	Contributions

	Background and Related Work
	Fault Attacks on Block Ciphers: A Brief Survey
	Differential Fault Analysis (DFA)
	Differential Fault Intensity Analysis (DFIA)
	Safe-Error Attacks (SEA), Differential Behavior Analysis (DBA), Fault Sensitivity Analysis (FSA)

	Countermeasures Against Fault Attacks
	Concurrent Error Detection (CED)
	Infective Countermeasures
	Encoding Based Countermeasures


	Preliminaries
	Definitions
	Fault Space
	Fault Number
	Fault Probability
	Fault Model
	Fault Order
	Fault Bias

	A Generalized Block Cipher Implementation

	Fault Bias: A Threat to Trivial Redundancy Techniques
	The Fault Collision Probability

	Countering Fault Collision: Transformation of the Fault Space
	The Generic Countermeasure Strategy : Fault Space Transformation
	Uniform Fault Models
	Independent Original and Redundant Fault Distributions
	Dependent Original and Redundant Fault Distributions

	The Transformation Function W : the Good and the Bad
	Are Random Transformations Desirable?

	Our Proposed Fault Space Transformations: Using MDS Matrices
	Comparison with the use of Linear Complementary Dual Codes
	Comparison with Infective Countermeasures
	Comparison with Information Redundancy
	Comparison with Dual Rail Precharge Logic
	Comparison with Round Encryption followed by Decryption


	Case Study : Application of Fault Space Transformation on AES-128
	The Fault Model
	The Fault Injection Set Up
	Applying Fault Space Transformation to AES-128
	Implementation Overhead
	Reason for Choosing MixColumns: Efficient Pipelined Implementations


	Experimental Results
	Demonstration of Biased Fault Attacks on Naïve Spatial and Temporal Redundancies
	Effect of Fault Space Transformation on Biased Fault Attacks
	Distribution of Faults against Clock Frequency
	Distribution of Faults in the Original and Redundant Calculations
	Nature of Fault Injection

	Conclusions
	Acknowledgments
	References
	Biographies
	Sikhar patranabis
	Abhishek Chakraborty
	Debdeep Mukhopadhyay
	Partha Pratim Chakrabarti


