
Fair Distributed Computation of Reactive Functions

Juan Garay
Yahoo Labs

garay@yahoo-inc.com

Björn Tackmann ∗

UC San Diego
btackmann@eng.ucsd.edu

Vassilis Zikas†

ETH Zurich
vzikas@inf.ethz.ch

Abstract

A fair distributed protocol ensures that dishonest parties have no advantage over honest
parties in learning their protocol’s output. This is a desirable property, as honest parties are
more reluctant to participate in an (unfair) protocol in which cheaters learn their outputs while
the honest parties waste their time and computation resources. But what makes fairness an even
more intriguing topic is Cleve’s seminal result [STOC’86], which proves that it is impossible to
achieve in the presence of dishonest majorities.

Cleve’s result ignited a quest for more relaxed, yet meaningful definitions of fairness, with
numerous works suggesting such relaxations and protocols satisfying them. A common pattern
in these works, however, is that they only treat the case of non-reactive computation—i.e.,
distributed computation of “one-shot” (stateless) functions, in which parties give inputs strictly
before any output is computed. Yet, many natural cryptographic tasks are of a reactive (stateful)
nature, where parties provide inputs and receive outputs several times during the course of the
computation. This is the case, for example, when computing multi-stage auctions or emulating
a virtual stock-exchange market, or even when computing basic cryptographic tasks such as
commitments and secret sharing.

In this work we introduce the first notion of fairness tailored to reactive distributed com-
putation, which can be realized in the presence of dishonest majorities. Our definition builds
on the recently suggested utility-based fairness notion (for non-reactive functions) by Garay,
Katz, Tackmann and Zikas [PODC’15], which, informally, defines the utility of an adversary
who wants to break fairness and uses it as a measure of a protocol’s success in satisfying the
property. Similarly to the non-reactive notion, our definition enjoys the advantage of offering a
comparative notion of fairness for reactive functions, inducing a partial order on protocols with
respect to fairness.

We then turn to the question of finding protocols that restrict the adversary’s utility. We
provide, for each parameter choice of the adversary’s utility, a protocol for fair and reactive
two-party computation, and prove the optimality of this protocol for one (natural) class of
parameter values and (non-tight) lower bounds for all remaining values. Our study shows that
achieving fairness in the reactive setting is more complex than in the much-studied case of one-
shot functions. For example, in contrast to the non-reactive case, (a) increasing the number of
rounds used for reconstructing the output can lead to improved fairness, and (b) the minimal
number or rounds required in the reconstruction depends on the exact values of the adversary’s
utility.

Key words: Cryptographic protocols, secure multi-party computation, fairness, game theory.

∗Research partly done while at ETH Zurich, and partly supported by the SNF via the Fellowship no.
P2EZP2-155566 and by the NSF grant CNS-1228890.
†Research supported in part by the SNF via the Ambizione grant PZ00P-2142549.

1 Introduction

In secure multi-party computation (MPC) [Yao82, GMW87], a set of n parties wishes to perform
some joint computation on their inputs in a secure manner, despite the arbitrary behavior of some
of them. The basic security requirements are privacy (cheating parties learn only their output of
the computation) and correctness (cheaters cannot distort the outcome of the computation). An
additional desired property is fairness, which, roughly speaking, requires that the protocol does
not give a cheating party any advantage in learning the output of the computation over the honest
parties.

In traditional cryptographic definitions, the worst-case scenario of collaborative cheating is
captured by the notion of a (central) adversary. Informally, the adversary is an entity which takes
control of (“corrupts”) parties and then uses them to attack the computation. Unfortunately, an
early impossibility result by Cleve [Cle86] established that with such an adversary it is impossible
to achieve all three properties—correctness, privacy and fairness—simultaneously, unless there is a
majority of honest (i.e., uncorrupted) parties.

Following Cleve’s impossibility, much work has focused on achieving meaningful weaker notions
of fairness. One main example of this are gradual-release-type approaches [Blu84, BG89, Dam95,
BN00, Pin03, GMPY06], in which parties take turns in releasing bits of information. More recently,
Asharov et al. [ACH11] suggested a definition of fairness for the case of two parties using ideas
from so-called “rational cryptography,” where all the protocol participants are modeled as rational
players aiming to maximize a given utility function, and presented a gradual-release-based protocol
satisfying their definition. This rational model for fairness was later enhanced and extended in
various ways (e.g., arbitrary instead of fail-stop misbehavior, ideal-world/real-world definition) by
Groce and Katz [GK12].

All of these weaker notions of fairness, however, are of an “all-or-nothing” nature, in the
sense that either a protocol achieves the respective security definition, or the notion renders
the protocol unfair and makes not further statement about it. For example, this is the case
for resource fairness [GMPY06], which formalizes the intuition of the gradual release paradigm
[Blu84, BG89, Dam95, BN00, Pin03] in a simulation-based framework. Indeed, a resource-fair pro-
tocol should ensure that, upon abort by the adversary, the amount of computation that the honest
party needs for producing the output is comparable to the adversary’s for the same task; yet, a
protocol that achieves a worse ratio between the amount of work required by the honest party and
the adversary is not distinguished from a fully unfair one. The same holds for the above fairness
definitions in rational cryptography, which require the protocol to be an equilibrium strategy with
respect to a preference/utility function for curious-but-exclusive agents, where each agent prefers
learning the output to not learning it, but would rather be the only one that learns it. We remark
though that some of these frameworks do offer completeness results, in the sense that they show
that one can construct protocols that are fair in the respective notions; nevertheless, none of them
provides a comparative statement for protocols which do not fully satisfy their property.

Recent work by Garay et al. [GKTZ15] changed the state of things, by introducing a quantita-
tive approach to fairness. This new notion is based on the idea that one can use an appropriate
utility function to express the preferences of an adversary who wants to break fairness, and allows
for comparing protocols with respect to how fair they are, placing them in a partial order according
to a relative-fairness relation.1 Previously, the only other notion providing any sort of comparative
statement was that of 1/p-security (aka “partial fairness”), where security is given up with proba-
bility 1/p for some polynomial p [GK10, BLOO11], but which does not always guarantee privacy

1We stress that this approach is incomparable to the one in rational cryptography, as the honest parties are not
rational and follow whichever protocol is designed for them.

2

and correctness (see [GKTZ15] for a detailed comparison).
Technically, the approach in [GKTZ15] builds on machinery developed in the recently proposed

Rational Protocol Design (RPD) framework, by Garay et al. [GKM+13]. In more detail, [GKM+13]
describes how to design protocols which keep the utility of an attacker aiming at provoking certain
security breaches as low as possible. At a high level, this is then used as follows: first, one specifies
the class of utility functions that naturally capture an adversary attacking a protocol’s fairness,
and then one interprets the actual utility that the best attacker (i.e., the one maximizing its utility)
obtains against a given protocol as a measure of the protocol’s success in satisfying the property.
The more a protocol limits its best attacker with respect to the fairness-specific utility function, the
fairer the protocol is. We remark that, in addition, this quantitative fairness approach preserves
the composability of the underlying security model (such as, e.g., [Can00, Can01]) with respect to
standard secure protocols, in the sense that it allows the replacement of an ideal component (a
“hybrid” or ideal functionality in the language of [Can01]) in a fair/optimal protocol by a protocol
which securely implements it without affecting its fairness/optimality.

Our contributions. In this work we present the first notion of fairness tailored to reactive
distributed computation, where parties provide inputs and receive outputs multiple times during
the course of the computation; the notion can be realized in the presence of dishonest majorities.

As in [GKTZ15], we specify the utility function characterizing the incentives of an attacker who
aims at breaking fairness of a two-party MPC protocol, deriving the natural quantitative notions of
fairness and of protocol optimality. However, and as expected, formulation and analysis are quite
more complex here than in the non-reactive case, where for example the honest parties can simply
restart the protocol after an “early abort” where no party received outputs, using default inputs for
the parties that caused the abort. In contrast, in the reactive case earlier rounds in the computation
may already have leaked information to the adversary, which makes a restart potentially unsafe.
As a result, the protocol we present bounds the adversary’s utility by the maximum of two terms,
one of which is the same as in the non-reactive case and corresponds to the adversary’s strategy of
aborting right after obtaining its output, and the other one stems from the potential “early aborts”
and depends on the number of rounds used in the reconstruction of the protocol output as well as
the exact values of the adversary’s utility.

We then derive lower bounds, showing the protocol optimally fair for a natural class of parameter
values—at a high level, those expressing that the adversary prefers that the honest party does not
get the output, to the extent that he is willing to have negative utility when all parties receive the
output, but up to a point; besides being optimally fair, the protocol is also optimal with respect to
the number of reconstruction rounds. For the remaining values, the lower bound we derive is close
to the bound achieved by our protocol but not tight; we leave the closing of this gap as an open
problem.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2
we describe notation and the very basics of the RPD framework [GKM+13] that are needed for
understanding and evaluating our results. In addition, we extend Canetti’s simulation-based model
of computation and protocol composition [Can00] to support computation of reactive functions. In
Section 3 we define the utility function of attackers who aim at violating fairness, which enables the
relative assessment of protocols as well as the notions of “optimal” fairness which we use in this work.
(This section is a generalization of the approach in [GKTZ15] to the reactive computation case.)
Section 4 is dedicated to the fair reactive protocol (Section 4.2) and lower bounds (Section 4.3).
Some detailed expositions, complementary material and proofs appear in the appendix.

3

2 Preliminaries and Model

We first establish some notational conventions. For an integer m ∈ N, the set of positive numbers
smaller or equal to m is [m] := {1, . . . ,m}. In the context of two-party protocols, we will always
refer to the parties as p1 and p2, and for i ∈ {1, 2} the symbol ¬i refers to the value 3−i (so p¬i 6= pi).
Most statements in this paper are actually asymptotic with respect to an (often implicit) security
parameter k ∈ N. Hence, f ≤ g means that ∃k0 ∀k ≥ k0 : f(k) ≤ g(k), and a function µ : N → R
is negligible if for all polynomials p, µ ≤ 1/p, and noticeable if there exists a polynomial p with

µ ≥ 1/p. We further introduce the symbol f
negl

≈ g to denote that ∃ negligible µ : |f − g| ≤ µ, and

f
negl

≥ g to denote ∃ negligible µ : f ≥ g − µ, with
negl

≤ defined analogously.
For the model of computation and protocol composition, we follow Canetti’s adaptive

simulation-based model for multi-party computation [Can00]. The protocol execution is formalized
by collections of interactive Turing machines (ITMs); the set of all efficient ITMs is denoted by ITM.
We generally denote our protocols by Π and our (ideal) functionalities (which are also referred to
as the trusted party [Can00]) by F both with descriptive super- or subscripts, the adversary by A,
the simulator (aka the ideal-world adversary) by S, and the environment by Z. The random vari-
able ensemble {execΠ,A,Z(k, z)}k∈N,z∈{0,1}∗ , which is more compactly often written as execΠ,A,Z ,
describes the contents of Z’s output tape after an execution with Π, F, and A, on auxiliary input
z ∈ {0, 1}∗.

Secure computation of reactive functions. As mentioned above, we cast our definitions of
fairness for the reactive setting in the technically simpler framework in [Can00] (allowing sequential
and modular composition), which considers synchronous protocols with guaranteed termination.2

The [Can00] framework, however, lacks a formal definition of computation of reactive functions. In
this section we describe the corresponding real-world/ideal-world experiments based on this model
with adaptive adversaries [Can00, Section 5]. Although we will be designing protocols only for
two-party computation (2PC), since this is the first formal treatment of the reactive setting with
respect to fairness we provide definitions for the more general case of n parties. The resulting model
allows for modular composition in a similar sense as in [Can00]: in each round of a protocol, the
parties can make use of a sub-protocol computing another functionality. For the reduction to work,
it is important that the higher-level protocol does not continue—apart from interacting with the
sub-protocol—until the sub-protocol has terminated.

As discussed in [KMTZ13], reactive computation can be seen as an ordered sequence of compu-
tations of non-reactive functions (SFE) that can maintain a joint (private) state. More concretely,
reactive computation is specified by a vector of (probabilistic) functions ~f = (f1, . . . , fm), where
each fλ ∈ ~f takes as input a vector of values from {0, 1}∗∪{⊥} (corresponding to the parties inputs
to fλ), a uniformly random value r from a known domain R (corresponding to the random coins
used for evaluating fλ), and a state vector ~Sλ ∈ (({0, 1}∗ ∪ {⊥})n × R)(λ−1), which includes the
inputs and random coins used for the evaluation of functions f1, . . . , fλ−1. Each fλ ∈ ~f outputs a
vector of strings ~yλ = (y1,λ, . . . , yn,λ) ∈ {0, 1}n, where yi,λ is pi’s output.

The ideal process. At a high level, execution in the ideal world is similar to the corresponding
experiment in [Can00], but instead of a single function, the trusted third party (TTP, or “func-

tionality”) F ~f
rc is parameterized by the vector ~f = (f1, . . . , fm) of functions to be sequentially

evaluated, with each of these functions receiving as input the state vector (consisting of all inputs
received so far as well as the used randomness) along with parties’ inputs to the function which

2Our definitions can be extended to Universally Composable (UC) security [Can01] using the approach of Katz et
al. [KMTZ13] to model terminating synchronous (reactive) computation in UC.

4

is currently computed. The output of the computation is taken to be the vector of outputs of all
functions in ~f .

The ability to maintain a joint state, however, is not the only difference between reactive and
non-reactive computation. Rather, we need to ensure that parties are able to choose their input
for any fλ, λ ∈ [m], depending on inputs and outputs from the evaluation of f1, . . . , fλ−1. Thus,
we cannot fix the input sequence of the parties at the beginning of the protocol execution as is
the case with the ideal-evaluation experiment of non-reactive functions. Instead, we assume that
every party pi ∈ P gives as input to the trusted party a sequence of m input-deciding functions
Inpi

1, . . . , Inpmi , where for each λ ∈ [m], Inpλi : (({0, 1}∗)λ−1)2 → {0, 1}∗ is a function that on input
the inputs and outputs from the evaluation of functions f1, . . . , fλ−1 computes the input for the
evaluation of fλ. (Wlog, assume that pi’s input to f1 is Inp1

i (0, 0).) Note that, unlike the parties,
the interaction of the TTP with the simulator allows him to to choose his inputs during the (ideal)
protocol execution. Refer to Appendix A for the formal description of the above ideal process.

The real-world execution. The real-world experiment in analogous to the corresponding experiment
in [Can00], where the input of each party pi is his input-deciding function vector Inpi

1, . . . , Inpmi .

Rational Protocol Design. Our results utilize the Rational Protocol Design (RPD) frame-
work [GKM+13]. Here we review the basic elements that are needed to motivate and express our
definitions and results; we refer to [GKM+13] for further details. In RPD, security is defined via
a two-party sequential zero-sum game with perfect information, called the attack game, between
a protocol designer D and an attacker A. The designer D plays first by specifying a protocol Π for
the (honest) participants to run; subsequently, the attacker A, who is informed about D’s move
(i.e., learns the protocol) plays by specifying a polynomial-time attack strategy A by which it may
corrupt parties and try to subvert the execution of the protocol (uncorrupted parties follow Π as
prescribed). Note that it suffices to define the utility uA of the adversary as the game is zero-sum.
(The utility uD of the designer is then −uA.)

In RPD, the definition of utilities relies on the simulation paradigm3, with the caveat that
the real-world execution is compared to an ideal process in which S gets to interact with a relaxed
version of the functionality which, in addition to implementing the task as F would, also allows
the simulator to perform the attacks we are interested in capturing. For example, an attack to the
protocol’s correctness is modeled by the functionality allowing the simulator to modify the outputs
(even of honest parties). Given such a functionality, the utility of any given adversary is defined as
the expected utility of the best simulator for this adversary, where the simulator’s utility is defined
according to which weaknesses of the ideal functionality the simulator is forced to exploit.

3 Utility-based Fairness and Protocol Optimality

In this section we utilize the RPD machinery to introduce a natural fairness relation (partial order)
to the space of efficient protocols for secure reactive two-party computation (2PC) and define
maximal elements in this order to be the optimal protocol with respect to fairness. Towards that
goal, we follow the three-step process described in [GKM+13, GKTZ15] for specifying an adversary’s
utility, instantiating this process with parameters that capture a fairness-targeted attacker:

Step 1: Relaxing the ideal experiment to allow attacks on fairness. First, we relax the
ideal world to allow the simulator to perform fairness-related attacks. In particular, we consider the
ideal-world experiment for reactive MPC described in Section 2 but modify it to allow the simulator

3In RPD the statements are formalized in Canetti’s Universal Composition (UC) framework [Can01]; however,
one can use any other simulation-based model, in particular the one in [Can00] described above.

5

S to (1) refuse receiving his inputs from the functionality and/or (2) refuse the functionality to
deliver outputs to the parties (i.e., instruct it to abort); analogously to [GKTZ15], the simulator
is allowed to choose when to abort, i.e., before or after receiving his inputs if he chooses to. The
reactive MPC ideal functionality is parameterized by the (sequence of) functions ~f = (f1, . . . , fm)

as described in Section 2 and is denoted F ~f,⊥
rc (or simply F⊥rc if the function sequence is clear

from the context). A detailed description can be found in Appendix A. We point out that when

F ·,⊥rc is parameterized with a single function (as in Ff,⊥rc) then it corresponds to the standard SFE

functionality Ff,⊥sfe (i.e., computation of non-reactive functions) with unfair abort as in [GKTZ15].

Step 2: Events and payoffs. Next, we specify a set of events in the experiment corresponding
to the ideal evaluation of F⊥rc which capture whether or not a fairness breach occurs, and assign
to each such event a “payoff” value capturing the severity of provoking the event. The relevant
questions to ask with respect to fairness are:

1. Does the adversary learn “noticeable” information about the output of the corrupted parties?

2. Do honest parties learn their output?

In comparison to the non-reactive case, there are a priori different ways to define the events,
based on whether one asks for the adversary to receive any output or all the outputs. Since the
reactive computation proceeds round by round, a natural choice is to ask for the honest parties
to receive all outputs, or otherwise to ask for the adversary to also not receive information about
some output. The corresponding events (which we use to describe fairness) correspond to the four
possible combinations of answers to the above questions. In particular, we define the events indexed
by a string ij ∈ {0, 1}2, where i (resp., j) equals 1 if the answer to the first (resp., second) question
is yes and 0 otherwise. The events are then as follows:

ER
00: The simulator does not ask Ff,⊥rc for the all of the corrupted party’s outputs and instructs

Ff,⊥rc to abort. This corresponds to neither the honest party nor the adversary receiving all
their outputs.

ER
01: The simulator does not ask Ff,⊥rc for all of the corrupted party’s outputs and does not instruct

it to abort. This corresponds to the honest party receiving all its outputs and the adversary
not receiving some of its outputs. This accounts also for the case where no party is corrupted.

ER
10: The simulator asks Ff,⊥rc for all his outputs and instructs it to abort before the honest party

receives all its outputs. This corresponds to the adversary receiving all its outputs and the
honest party not receiving some of its outputs.

ER
11: The simulator asks the functionality for all his outputs, and allows the honest party to receive

all its outputs (i.e., it does not abort). This accounts also for the case where all parties are
corrupted.

We remark that our definition does not give any advantage to an adversary corrupting both parties.
This is consistent with the intuitive notion of fairness, as when there is no honest party, the
adversary has nobody to gain an unfair advantage over.

To each of the events ER
ij we associate a real-valued payoff γij which captures the adversary’s

utility when provoking this event. Thus, the adversary’s payoff is specified by vector ~γ = (γ00, γ01,
γ10, γ11) ∈ R4, corresponding to events ~ER = (ER

00, E
R
01, E

R
10, E

R
11).

Finally, we define the expected payoff of a given simulator S (for an environment Z) to be4:

U
F⊥rc,~γ
I (S,Z) :=

∑
i,j∈{0,1}

γij Pr[ER
ij]. (1)

4Refer to [GKM+13, Section 2] for the rationale behind this formulation.

6

Step 3: Defining the attacker’s utility. Given U
F⊥rc,~γ
I (S,Z), the utility uA(Π,A) for a pair

(Π,A) of a protocol Π and an adversary A is defined following the methodology in [GKM+13] as
the expected payoff of the best simulator5 that simulates A in the F⊥rc-ideal world in presence of
the least favorable environment—i.e., the one that is most favorable to the attacker. To make the
payoff vector ~γ explicit, we sometimes denote the above utility as ÛΠ,F⊥rc,~γ(A) and refer to it as the
payoff of strategy A (for attacking Π).

More formally, for a protocol Π, denote by SIMA the class of simulators for A, i.e, SIMA = {S ∈
ITM | ∀Z : execΠ,A,Z ≈ execF⊥rc,S,Z}. The payoff of strategy A (for attacking Π) is then defined
as:

uA(Π,A) := ÛΠ,F⊥rc,~γ(A) := sup
Z∈ITM

inf
S∈SIMA

{UF
⊥
rc,~γ

I (S,Z)}. (2)

To complete our formulation, we now describe a natural relation among the values in ~γ which
is both intuitive and consistent with existing approaches to fairness, and which we will assume to
hold for the remainder of the paper. Specifically, we will consider attackers whose least preferred
event is that the honest parties receive their output while the attacker does not, i.e., we assume
that γ01 = minγ∈~γ{γ}. Furthermore, we will assume that the attacker’s favorite choice is that he
receives the output and the honest parties do not, i.e., γ10 = maxij∈{0,1}2{γij}. Lastly, we point
out that for an arbitrary payoff vector ~γ, one can assume without loss of generality that any one
of its values equals zero, and, therefore, we can set γ00 = 0. This can be seen immediately by
setting γ′ij = γij − γ01. We denote the set of all payoff vectors adhering to the above restrictions

by Γfair ⊆ R4. Summarizing, our fairness-specific payoff (“preference”) vector ~γ satisfies

0 = γ01 ≤ min{γ00, γ11} and max{γ00, γ11} < γ10.

Optimally fair protocols. We are now ready to define our partial order relation for protocols
with respect to fairness. Informally, a protocol Π will be at least as fair as another protocol Π′ if
the utility of the best adversary A attacking Π (i.e, the adversary which maximizes uA(Π,A)) is no
larger than the utility of the best adversary attacking Π′ (except for some negligible quantity).

Definition 1. Let Π and Π′ be protocols, and ~γ ∈ Γfair be a preference vector. We say that Π is

at least as fair as Π′ with respect to ~γ (i.e., it is at least as ~γ-fair), denoted Π
~γ
� Π′, if

sup
A∈ITM

uA(Π,A)
negl

≤ sup
A∈ITM

uA(Π
′,A). (3)

We will refer to a protocol which is a maximal element according to the above fairness relation
as an optimally fair protocol.

Definition 2. Let ~γ ∈ Γfair. A protocol Π is optimally ~γ-fair if it is at least as ~γ-fair as any other
protocol Π′.

4 Fair and Reactive 2PC

The optimally fair two-party computation (2PC) protocol in the non-reactive case [GKTZ15] can
be described as follows: the protocol chooses one party uniformly at random, and the output
is reconstructed toward this party first. If one party aborts the protocol early (that is, before
the reconstruction phase), the other party can restart the protocol with a default input for the

5The best simulator is taken to be the one that minimizes his payoff [GKM+13].

7

(corrupted) party that aborted. Intuitively, this means that the only way for a corrupted party
to prevent the honest party from receiving output is to run the protocol until the reconstruction
phase, hope to be the one that is chosen to receive the output first, and then abort the protocol.
The result is that the adversary’s expected payoff is bounded by (γ10 + γ11)/2, where γ10 is the
payoff for an unfair abort, and γ11 is the payoff for a fair execution.

The most intuitive idea for solving the same problem for reactive computation is to apply the
same reconstruction protocol for distributing the outputs in each round of the reactive computa-
tion. Unfortunately, the resulting protocol is not optimal: if the adversary aborts prior to the
reconstruction phase in some round of the reactive computation, but it already achieved outputs
in previous rounds, the honest party cannot safely restart the protocol with a default input for the
corrupted party. Hence, adversaries with a utility satisfying γ00 > γ11 may be better off by abort-
ing the protocol early and thus definitely preventing the honest party from obtaining output—the
simple adversarial strategy of choosing one party to corrupt at random and aborting as soon as
an output is received is, in contrast to the non-reactive case, no longer optimal. In fact, even in
the reactive case, if γ11 ≥ γ00 = 0, then the adversary has no incentive to stop the protocol before
obtaining output, so we can use the same protocol as in [GKTZ15].

4.1 Distributing the Output in Rounds

In case the adversary’s utility satisfies γ00 > γ11, one can construct protocols with better fairness
guarantees if one adds more rounds to the reconstruction phase. The reason is that if the adversary
puts more emphasis on keeping the honest party from learning the output than on him learning
the output himself, he might be tempted to abort the protocol even without obtaining output.
But we use the assumption that ER

01 is the adversary’s least preferred event to threaten him with
potentially only obtaining payoff γ01 in case of an early abort—and γ01 < γ11. By carefully adapting
the probabilities with which we output the value in a certain round of a reconstruction protocol,
we can consistently keep the adversary in the dilemma between continuing the execution of the
protocol or aborting it, maximizing the honest party’s probability of obtaining the output.

In more detail, for a protocol with r rounds and for each round i = 1, . . . , r, there is a probability
pi ∈ [0, 1] for a party to obtain the output in that round. The probabilities are the same for both
parties since the setting is symmetric. In each of the rounds, the adversary has the advantage
to receive his output before giving the same capability to the honest part; this corresponds to
the adversary in each round delaying his message until receiving the honest party’s message for
the same round, this behavior is possible unless the timing guarantees given by the network are
extremely strong. Consequently, in each round i = 1, . . . , r, the adversary can trade giving the
probability pi corresponding to the current ith round to the honest party, obtaining the probability
pi+1 of the next (i+ 1)st round in exchange. We now have to determine the values p1, . . . , pr such
as to keep the adversary in a constant dilemma.

The payoff for the adversary aborting within round j ∈ [1, . . . , r] can be computed by the
probabilities for the honest party (p1 + · · ·+pr−1) and the adversary (p1 + · · ·+pr) to have received
the value and the respective payoff values γ01 and γ10. The condition to keep the adversary in a
dilemma is then described by the equation(

j+1∑
u=1

pu

)
γ10 +

(
j∑

u=1

pu

)
γ01 =

(
j∑

u=1

pu

)
γ10 +

(
j−1∑
u=1

pu

)
γ01,

which implies

pj+1 = pj

(
−γ01

γ10

)
.

8

With % := −γ01

γ10
, we obtain by induction that pj = %j−1p1. By the fact that

∑r
j=1 pj = 1, this

means that
r−1∑
j=1

pj =
r−1∑
j=1

(%j−1p1) =

r−1∑
j=1

%j−1

 · p1 = 1− pr,

or p1 = (1 − pr)
(∑r−1

j=1 %
j−1
)−1

. In fact, we show in the remaining part of the paper that the

protocol achieving this distribution of probabilities is optimal.
As only the rounds of the reconstruction phase are relevant for the achieved fairness, we call a

protocol an r-round-reconstruction protocol if it requires only r rounds of interaction to reconstruct
the outputs after the computation has taken place. (This is made precise in [GKTZ15].) For
simplicity, we only consider functionalities in which all parties receive the same output; the extension
to the general case can be achieved using standard techniques. We now turn to the description of
a fair reactive 2PC protocol, which is optimal when γ11 > −γ10, as it follows from our lower bound
results (Section 4.3).

4.2 The Protocol

At a high level, the protocol works as follows: The functionality is sequentially evaluating the func-
tions f1, . . . , fm; the invariant of the computation is that at any point, the state of the computation
(i.e., the inputs and randomness used so far) is shared according to a two-out-of-two authenticated
secret sharing. Each function fλ, for 1 ≤ λ ≤ m, is evaluated by having the two parties evaluate
the function fsh,fλ,D (formally specified in Figure 2) which on input a sharing 〈Sλ−1〉 of the current
state along with the parties’ inputs x1,λ and x2,λ, outputs a sharing 〈Sλ〉 of the updated state Sλ
along with a sharing 〈fλ〉 of the outputs of fλ evaluated on Sλ−1, x1λ and x2,λ. Next, the sharing
〈fλ〉 is reconstructed in an r-round-reconstruction protocol as follows:

The index of some party i ∈R {0, 1} is chosen uniformly at random (this will be the party that
will receive the output during some early output round, i.e., before the last round r);

for this party pi, a round l∗ ∈ [r−1] is chosen according to the probability distribution described
in Section 4.1;

in each round l ∈ [r − 1] \ {l∗} of the reconstruction protocol, party pi learns only that this
round was not chosen;

in round l∗, pi learns the complete output;

in the last round r, the sharing is reconstructed to both parties.

The idea behind the above construction is to have the adversary, in each round, face the following
conundrum: To increase the expected payoff, that is, the probability of obtaining the output, it
has to proceed to the next round. This means, however, that it first has to finish the current
round by sending a message to the honest party, which will of course increase the honest party’s
probability of receiving the value (and hence reduce the adversary’s payoff). For this technique to
work, however, we need to make sure that no information about the chosen party and round leaks
before the actually chosen party obtains the message in the chosen round.

To achieve the above properties, we use the function fsh,fλ,D to compute (and output) r pairs
of sharings (〈y11〉, 〈y21〉), . . . , (〈y1r〉, 〈y2r〉) as follows: for each round l ∈ [r − 1] \ {li}, y1l = y2l =
DummyRound, where DummyRound is a default value signifying that this is not the output; for round
li, yili is set to the output of the function, whereas y¬ili is DummyRound as before. Finally, for the
last round l = r, both y0r and y1r are set to the output of the function.

We are now ready to describe our reactive computation protocol, Πfair
RC , for evaluating the two-

party functionality described by ~f = (f1, . . . , fm). The protocol is parametrized by the function

9

vector ~f , the number r of reconstruction rounds used for each output, and the probability distri-
bution D on [r − 1] of the early output round l∗.

Protocol Πfair
RC (p1, p2,D, r, f1, . . . , fm)

Initialize S0 := (⊥,⊥, 0); the parties compute a default sharing of S0, denoted 〈S0〉. For λ = 1, . . . ,m, evaluate
fλ sequentially as follows:

1. Use an (unfair MPC) sub-protocol to compute fsh,fλ,D on input the sharing 〈Sλ−1〉 of the current state and

the fλ-inputs x
(λ)
1 and x

(λ)
2 of parties p1 and p2, respectively; if the protocol aborts then abort the execution

of Πfair
RC , otherwise denote by 〈Sλ〉, (〈y(λ)

1,1 〉, 〈y
(λ)

2,1 〉), . . . , (〈y
(λ)

1,r 〉, 〈y
(λ)

2,r 〉) the output of the evaluation.

2. For l = 1, . . . , r do the following sequentially: have 〈y(λ)

1,l 〉 and 〈y(λ)

2,l 〉 reconstructed towards p1 and p2,
respectively (by having pi send his share to p¬i).

3. For each pi ∈ {p1, p2}, if any of the reconstructions yields a value y 6∈ {⊥, DummyRound} then output y;

otherwise abort.

Figure 1: The protocol for fair reactive 2PC.

We give a complete description of the function fsh,λ,D used by Πfair
RC in Figure 2. The function

is parameterized by the function f whose output is to be computed, and further by a probability
distribution D on the set [r − 1] according to which the round l∗ is chosen.

Function fsh,f,D(〈S〉, x1, x2)

• Upon receiving inputs (x1, 〈S〉1) and (x2, 〈S〉2) from p1 and p2, respectively do:

1. If the shares 〈S〉1 and 〈S〉2 are inconsistent or the reconstructed state is the abort vector S =
(abt, abt), then set the output to y := ⊥; otherwise, choose r ∈R {0, 1}∗, set y = f(x1, x2, S, r),
and update S by appending x1, x2 and r to S; denote by S′ the updated state.

2. Compute an authenticated sharing 〈S′〉 of S′.

3. Choose a party index i ∈R {1, 2} uniformly at random and choose a round index l∗
D← [r − 1]

according to D.

4. For l = 1, . . . , r−1, compute the authenticated-sharing pair (〈y1,l〉, 〈y2,l〉), where yjl is computed
as follows:

If l < r, y¬i,l := DummyRound, whereas yi,l :=

{
y if l = l∗;
DummyRound otherwise.

If l = r, y1,l = y2,l = y.

• Output 〈S′〉, (〈y1,1〉, 〈y2,1〉), . . . , (〈y1,r〉, 〈y2,r〉).

Figure 2: The function to compute the authenticated sharings that are used in protocol Πfair
RC .

We now analyze the degree of fairness achieved by Πfair
RC , which we later (Section 4.3 show

optimal for certain parameters by proving a lower bound on the adversary’s payoff. The proof of
the theorem appears in the full version.

Theorem 3. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γfair. Then

ūA(Π
fair
RC ,A)

negl

≤ max

{
γ10

2
∑r−1

`=1 %
`−1

,
γ10 + γ11

2

}
,

with % =
∣∣∣γ01

γ10

∣∣∣. In particular, if γ11 > −γ10, then ūA(Π
fair
RC ,A)

negl

≤ γ10+γ11

2 .

10

The adversary’s payoff depends on the number of rounds used in the reconstruction, and the
optimal number of rounds depends on the exact values of the adversary’s utility. We provide more
details on this relation in the full version.

4.3 Lower Bounds

In this section, we prove lower bounds on the adversary’s payoff that hold with respect to arbitrary
protocols. In the case γ11 > −γ10, this actually shows that protocol Πfair

RC is optimally fair, as the
lower bound tightly matches the upper bound from Theorem 3. In the other case, i.e., γ11 ≤ −γ10,
we still give a lower bound which is close to the upper bound we proved.

To show a lower bound on the adversary’s expected payoff, we use a specific “two-phase ex-
change” functionality f⊥2Ex that works as follows: Both parties input a 2k-bit string, and in the
first phase, both obtain the first k bits of the other party’s input. In the second phase, they both
obtain the remaining k bits of the other party’s input. (See Figure 3.)

Function f⊥2Ex

The functionality f⊥2Ex is a two-party functionality that proceeds in two rounds:

• Obtain from each pi an input xi ∈ {0, 1}2k, and split xi into xi = yi|zi with yi, zi ∈ {0, 1}k. Output y1

to p2 and y2 to p1.

• No inputs: output z1 to p2 and z2 to p1.

Figure 3: The two-phase exchange functionality.

We begin by considering simple and generic adversarial strategies Ai that corrupt party pi in
the beginning but follow the protocol honestly until the last output phase of the protocol. Then,
it aborts as soon as it obtained the output—that is, in each round Ai checks whether the protocol
would already provide the output if the other (honest) party would abort; in this case, Ai aborts
the protocol without sending the messages for that round.6 The bound proven in the following
lemma comes from the fact that if one of the parties gets the output first, then the adversary has a
1/2 chance to corrupt this party and be the only one to get the output. The payoff of this strategy
is the same as for the SFE (non-reactive) case, and the proof of the lemma also resembles the proof
of the simpler case.

Lemma 4. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γfair. For every protocol Π which securely implements the
(unfair) functionality f⊥2Ex, there exists an adversary A with

ūA(Π,A)
negl

≥ γ10 + γ11

2
.

As mentioned above, if the adversary aborts in a later phase of a reactive MPC protocol, the
honest party cannot simply start over because the adversary has obtained output already in an
earlier phase. For this reason, the optimally fair protocol in the SFE case is not applicable here.
In fact, in the case of reactive MPC, we can prove that the maximum utility of the adversary also
depends on the number of rounds. The following lemma shows a trade-off between the payoff of the
generic adversary and the payoff of adversaries that potentially abort during the protocol without
receiving their output. In the following statements, we use Agen to denote the adversarial strategy

6Note that in the case of (reactive) MPC the protocol may output only either the correct value or an “abort”
symbol, as an honest party cannot restart the protocol with a default input because the adversary already obtained
output in the previous rounds.

11

that uses either A1 or A2 with probability 1/2 each. The proof of the following lemma is in the
full version.

Lemma 5. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γfair, and Π be an r-round-reconstruction protocol that
securely implements the (unfair) functionality f⊥2Ex, such that

ūA(Π,Agen) ≤ γ10 + γ11

2
+ ω.

Then, there exists an adversary A with

ūA(Π,A)
negl

≥

(
1
2 −

ω
γ10−γ11

)
γ10∑r−1

`=1 %
`−1

,

where % = −γ01/γ10.

Now, by increasing the number of rounds of the reconstruction phase and choosing a suitable
distribution of probabilities over the rounds, we can decrease the payoff of the “aborting” adversaries
below the bound of the generic adversary, thus establishing that protocol Πfair

RC is optimally fair in
certain cases. The number of rounds necessary for the optimal result depends on the exact values
of the adversary’s utility vector, and can be computed from the formulae in Section 4.1; details are
in the full version.

Corollary 6. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γfair and γ11 > −γ01. Then protocol Πfair
RC from Figure 1

is optimally ~γ-fair.

References

[ACH11] Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game theoretic view of secure
computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 426–445, Heidelberg, 2011. Springer.

[BG89] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority. In Pro-
ceedings of the 30th Symposium on Foundations of Computer Science, pages 468–473. IEEE,
1989.

[BLOO11] Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-secure multiparty computation
without honest majority and the best of both worlds. In Phillip Rogaway, editor, CRYPTO
2011, volume 6841 of LNCS, pages 277–296, Heidelberg, 2011. Springer.

[Blu84] Manuel Blum. How to exchange (secret) keys. ACM Transactions on Computer Science, 1:175–
193, 1984.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, CRYPTO 2000,
volume 1880 of LNCS, pages 236–254, Heidelberg, 2000. Springer.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13:143–202, April 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145.
IEEE, 2001.

[Cle86] Richard E. Cleve. Limits on the security of coin flips when half the processors are faulty.
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pages 364–369,
Berkeley, 1986. ACM.

12

[Dam95] Ivan Damg̊ard. Practical and provably secure release of a secret and exchange of signatures.
Journal of Cryptology, 8(4):201–222, 1995.

[GK10] Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In Henry
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 157–176. Springer, 2010.

[GK12] Adam Groce and Jonathan Katz. Fair computation with rational players. In David Pointcheval
and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 81–98.
Springer, 2012.

[GKM+13] Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Rational
protocol design: Cryptography against incentive-driven adversaries. In 54th Annual Symposium
on Foundations of Computer Science. IEEE, 2013.

[GKTZ15] Juan A. Garay, Jonathan Katz, Björn Tackmann, and Vassilis Zikas. How fair is your protocol?
A utility-based approach to protocol optimality. In Paul Spirakis, editor, Proceedings of the 2015
ACM symposium on Principles of distributed computing. ACM Press, 2015.

[GMPY06] Juan A. Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fairness and
composability of cryptographic protocols. In Shai Halevi and Tal Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 404–428. Springer, 2006.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game—A com-
pleteness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, pages 218–229. ACM, 1987.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
477–498, Heidelberg, 2013. Springer.

[Pin03] Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 87–105, Heidelberg, 2003. Springer.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science, pages 80–91. IEEE, 1982.

A Secure Multi-Party Computation of Reactive Functions

In this section we provide formal definitions of the ideal world execution corresponding to reactive
MPC and its relaxation used in our fairness definition. Although we will design protocols only for
the two-party case (2PC), since this is the first formal treatment of the reactive case we provide
our definitions for the more general case of n parties. (See the figures below.)

The events ER
ij can now be described more precisely as follows:

ER
00: The simulator does not ask Ff,⊥rc for the all the corrupted party’s outputs, i.e., it sends o =

NoOut during the evaluation of at least one fi, and it instructs Ff,⊥rc to abort by sending
s = abort.

ER
01: The simulator does not ask Ff,⊥rc for all the corrupted party’s outputs and does not instruct

it to abort, i.e., it does not send s = abort.

ER
10: The simulator asks Ff,⊥rc for all his outputs (i.e., always sends o = YesOut) and instructs it to

abort before the honest party receives all its outputs (i.e., in the last invocation of Step B.5).

ER
11: The simulator asks the functionality for all his outputs, and it does not sent s = abort.

13

Reactive MPC – Ideal Process

The trusted party F ~f
rc is parameterized by a vector ~f = (f1, . . . , fm) of multiparty functions, where

fλ : ({0, 1}∗ ∪ {⊥})n × (({0, 1}∗ ∪ {⊥})n × R)(λ−1) × R → ({0, 1}∗)n, for λ = 1, . . . ,m. That are
to be evaluated sequentially. Each pi ∈ P has m local input deciding function Inp1

i , . . . , Inpmi , where
Inpλi : (({0, 1}∗)λ−1)2 → {0, 1}∗, for λ ∈ [m]. The simulator S chooses the parties to corrupt adaptively
(at any point, denote by I the set of corrupted parties) and gets to see their input-deciding function

and all outputs they have received so far, and possibly replace the inputs they hand to functions in ~f
that have not yet been evaluated.

A. Every pi ∈ P \ I hands his vector of input deciding functions to the functionality F ~f
rc.

B. For λ = 1, . . . , n the following steps are executed sequentially:

1. For every pi ∈ P \ I, F
~f
rc computes pi input xi,λ for the λth function fλ ∈ ~f as follows:

– If λ = 1 then xi,1 = Inpi(0
∗, 0∗),

– Otherwise, let xi,1, . . . , xi,λ−1 and yi,1, . . . , yi,λ−1 denote the inputs and outputs from

the evaluations of the functions f1, . . . , fλ−1, respectively. F ~f
rc computes xi,λ =

Inpi ((xi,1 . . . , xi,λ−1), (yi,1 . . . , yi,λ−1)).

S gets to corrupt parties adaptively as in [Can00] (upon corruption of some pi, S gets to
see and possible change pi’s input and all outputs generated for him so far, i.e., output

from the evaluation of f1, . . . , fλ−1). For each pi ∈ I, S sends some input x′i,λ to F ~f,⊥
rc (if

S sends no value or an invalid value for some pi ∈ I then the functionality takes a default

value d for this input). F ~f
rc denotes the vector of all inputs for fλ as (x′1,λ, . . . , x

′
n,λ).

2. F ~f
rc chooses rλ ∈ R uniformly at random and computes

(y1,λ, . . . , yn,λ) = f
(
(x′1,λ, . . . , x

′
n,λ, rλ), (x′1,λ−1, . . . , x

′
n,λ−1, rλ−1), (x′1,1, . . . , x

′
n,1, r1))

)
,

where R`, ` = 1, . . . , λ denotes the randomness used by F ~f
rc for the evaluation of f` .

3. F ~f
rc sends to S the outputs {yi,λ}i∈I of corrupted parties pi. (S is as usually allowed to

corrupt more parties adaptively.)

4. For each pj ∈ P \ I : F ~f
rc records pj ’s output yj,λ.

C. For each honest pi, F
~f
rc sends ~yi = (yi,1, . . . , yi,m) to pi who outputs ~yi (corrupted parties output

⊥)

14

Reactive MPC with Fair/Unfair Abort – Ideal Process

The trusted party F ~f,⊥
rc is parameterized by a vector ~f = (f1, . . . , fm) of multiparty functions, where

fλ : ({0, 1}∗ ∪ {⊥})n × (({0, 1}∗ ∪ {⊥})n × R)(λ−1) × R → ({0, 1}∗)n, for λ = 1, . . . ,m. That are
to be evaluated sequentially. Each pi ∈ P has m local input deciding function Inp1

i , . . . , Inpmi , where
Inpλi : (({0, 1}∗)λ−1)2 → {0, 1}∗, for λ ∈ [m]. The simulator S chooses the parties to corrupt adaptively
(at any point, denote by I the set of corrupted parties) and gets to see their input-deciding function and

all outputs they have received so far, and possibly replace the inputs they hand to functions in ~f that
have not yet been evaluated. He is also allowed to non-receive his outputs (i.e., outputs of corrupted
parties) and to prevent honest parties from receiving outputs (i.e., force and abort) before or after
receiving his own outputs.

A. Every pi ∈ P \ I hands his vector of input deciding functions to the functionality F ~f,⊥
rc .

B. For λ = 1, . . . , n the following steps are executed sequentially:

1. For every pi ∈ P \ I, F
~f
rc computes pi input xi,λ for the λth function fλ ∈ ~f as follows:

– If λ = 1 then xi,1 = Inpi(0
∗, 0∗),

– Otherwise, let xi,1, . . . , xi,λ−1 and yi,1, . . . , yi,λ−1 denote the inputs and outputs from

the evaluations of the functions f1, . . . , fλ−1, respectively. F ~f
rc computes xi,λ =

Inpi ((xi,1 . . . , xi,λ−1), (yi,1 . . . , yi,λ−1)).

S gets to corrupt parties adaptively as in [Can00] (upon corruption of some pi, S gets to
see and possible change pi’s input and all outputs generated for him so far, i.e., output

from the evaluation of f1, . . . , fλ−1). For each pi ∈ I, S sends some input x′i,λ to F ~f,⊥
rc (if

S sends no value or an invalid value for some pi ∈ I then the functionality takes a default

value d for this input). F ~f
rc denotes the vector of all inputs for fλ as (x′1,λ, . . . , x

′
n,λ).

2. F ~f
rc chooses rλ ∈ R uniformly at random and computes

(y1,λ, . . . , yn,λ) = f
(
(x′1,λ, . . . , x

′
n,λ, rλ), (x′1,λ−1, . . . , x

′
n,λ−1, rλ−1), (x′1,1, . . . , x

′
n,1, r1))

)
,

where R`, ` = 1, . . . , λ denotes the randomness used by F ~f
rc for the evaluation of f` .

3. Sim sends F ~f,⊥
rc a message s = abort (or no message, i.e., s =⊥). If S sends s = (abort),

then for every (honest) pj ∈ P \ I, F ~f,⊥
rc updates yj,λ := (abort) for all (j, λ) ∈ [n] × [m]

and goes to Step C (i.e, skips the remainder of the computation and produces output).

4. S sends F ~f,⊥
rc a message o ∈ (YesOut, NoOut). If o = YesOut then F ~f,⊥

rc sends to S the
outputs {yi,λ}i∈I of corrupted parties pi. (S is as usually allowed to corrupt more parties
adaptively.)

5. Sim sends F ~f,⊥
rc a message s = abort (or no message, i.e., s =⊥). If S sends s = (abort),

then for every (honest) pj ∈ P \ I, F ~f,⊥
rc updates yj,λ := (abort) for all (j, λ) ∈ [n] × [m]

and goes to Step C (i.e, skips the remainder of the computation and produces output).

6. For each pj ∈ P \ I : F ~f
rc records pj ’s output yj,λ.

C. For each honest pi, F
~f
rc sends ~yi = (yi,1, . . . , yi,m) to pi who outputs ~yi (corrupted parties output

⊥)

B An Authenticated Secret Sharing Scheme

The sharing of a secret s (field element) is a pair (s1, s2) of random field elements (in some larger
field) with the property that s1 + s2 = (s, tag(s, k1), tag(s, k2)), where k1 and k2 are MAC keys

15

associated with the parties p1 and p2, respectively, and tag(x, k) denotes a MAC tag for the value x
computed with key k. We refer to the values s1 and s2 as the summands. Each pi ∈ {p1, p2} holds
his share (si, tag(si, k¬i)) along with the MAC key ki which is used for the generation of the MAC
tags he is supposed to verify. We denote by 〈s〉 a sharing of s and by 〈s〉i party pi’s share. The
above sharing can be reconstructed towards any of the parties pi as follows: p¬i sends his share
〈s〉¬i = (s¬i, t¬i) to pi who, using ki, verifies that t¬i is a valid MAC for s¬i. Subsequently, pi
reconstructs the authenticated secret s by computing s1 + s2 := (s, t′1, t

′
2) and verifying, using key

ki, that t′i is a valid MAC for s. If any of the MAC verifications fails then pi aborts and outputs ⊥.

C Fair and Reactive 2PC (cont’d)

C.1 Upper Bound Proofs

Theorem 3. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γfair. Then there exists an r-reconstruction-round proto-
col Π such that

ūA(Π,A)
negl

≤ max

{
γ10

2
∑r−1

`=1 %
`−1

,
γ10 + γ11

2

}
,

with % =
∣∣∣γ01

γ10

∣∣∣. In particular, if γ11 > −γ10, then: ūA(Π,A)
negl

≥ γ10+γ11

2 .

Proof. The case γ11 ≥ 0 follows as in [GKTZ15], and the main statement immediately follows from
Lemma 7. The particular statement for 0 > γ11 > −γ10 follows by additionally using Lemma 8 to
obtain the necessary number of rounds.

The following lemma analyzes the protocol and is hence crucial in the above theorem.

Lemma 7. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γfair and % =
∣∣∣γ01

γ10

∣∣∣, and let D denote the following probabil-

ity distribution on [r−1]: Pr%(1) =
(∑r−1

`=1 %
`−1
)−1

, and for ` ∈ {2, . . . , r−1}: Pr%(`) = %`−1 Pr%(1).

Then, for any vector of functions ~f = (f1, . . . , fm), the protocol Πfair
RC(p1, p2,D, r, f1, . . . , fm) securely

computes ~f , while for the utility of adversary A it holds that

ūA(Π
fair
RC ,A)

negl

≤ max

{
γ10

2
∑r−1

`=1 %
`−1

,
γ10 + γ11

2

}
.

For simplicity, the following proof is phrased with respect to static adversaries. The general-
ization to the adaptive case is straightforward because the simulator never commits to any output
(it can always simulate the necessary shares should a party become corrupted), and the transfor-
mations of the adversarial strategies in the second part of the proof apply equally to static and
adaptive strategies, the described adversarial strategies simply corrupt either p1 or p2 with some
probability.

Proof (sketch). We first construct a simulator SA for proving security with respect to F ~f,⊥
rc . Then,

we show that SA achieves the upper bound claimed in the lemma. In case either no party or both
parties are corrupted, the lemma follows from the non-triviality of the protocol and the assumption
that ~γ ∈ Γfair. For the remainder of the proof we consider an adversary who corrupts exactly one
party.

We describe the simulator SA for an adversary A corrupting p1 (the case where p2 is corrupted
is handled analogously). The simulator uses A in a straight-line black-box manner, where all

16

messages sent from Z to A (and vice-versa) are forwarded to their respective recipient. The
following description applies to the computation of each fλ for λ = 1, . . . ,m.

• At the point where the adversary would send p1’s input x′1,λ to the functionality Ffsh,fλ,D,⊥
sfe ,

the simulator SA sends x′1,λ to F ~f,⊥
rc . When the adversary aborts Ffsh,fλ,D,⊥

sfe , then SA sends

(abort) to F ~f,⊥
rc .

• For simulating each of the reconstruction phases, SA selects an index i ∈R {1, 2} uniformly at
random. We consider the cases i = 1 and i = 2 separately. In case i = 2 (i.e., the index of the

honest party is chosen): For each round l ∈ [r− 1]: SA selects a summand s
(λ)
2 that together

with the summand of A reconstructs to DummyRound, sends s
(λ)
2 to A; in the r-th round, SA

requests p1’s fλ-output from F ~f,⊥
rc by sending YesOut, chooses a summand s

(λ)
2 that together

with the summand of A reconstructs to this output, and sends s
(λ)
2 to A. If, in any one of

the rounds, A sends inconsistent shares, then SA sends NoOut and (abort) to F ~f,⊥
rc . In case

i = 1 (i.e., the index of the corrupted party is chosen), SA samples a round l∗ according to the
distribution D and the same as before, with the only difference that in round l∗, SA requests

p1’s fλ-output from F ~f,⊥
rc , and reconstructs this output (instead of DummyRound) to A.

The fact that the above is a good simulation for protocol Π follows directly in the Ffsh,fλ,D,⊥
sfe -hybrid

model from the fact that the party which receives the “early output” as well as the corresponding
round are chosen according to the same distribution as the function fsh,fλ,D.

To complete the proof we need to show that the above simulator achieves the bound stated in
the lemma. An important observation is that SA has the following property: It starts simulating
the evaluation of the λ-th function fλ of ~f only after asking for the output of each of the previous
functions f1, . . . , fλ−1 and only if it has not (yet) sent the abort symbol to the functionality.

For the next claim, we describe the following adversaries A(i)
1 , . . . ,A(i)

r : A(i)
` corrupts pi in the

onset of the execution and (in principle) behaves honestly up to round ` in the reconstruction of the

outputs of fm. For the first `− 1 rounds, A(i)
` first checks whether it obtained the output already.

In this case, it aborts, otherwise if follows the protocol for this round. In round `, however, A(i)
`

aborts independently of whether it obtained the message.

Claim 1. For some i ∈ {1, 2} and some ` ∈ [r],

ūA(Π
fair
RC ,A

(i)
`)

negl

≥ ūA(Π
fair
RC ,A),

for all adversaries A.

Proof (sketch). Let A be an arbitrary adversary. We denote by Z a specific environment that
maximizes the adversary’s payoff. We transform A in several steps and show that each of the
transformations only preserves or increases the payoff.

First, we transform A into an adversary A′ that behaves similarly to A, but whenever A (after
corrupting a party) sends to the honest party a message that is not the correct share according
to the output of the functionality, then A′ simply aborts. Note that—except with the negligible
probability of forging a share of the authenticated sharing—sending a value different from the
original share will make the honest party abort the protocol. Hence,

ūA(Π
fair
RC ,A′)

negl

≥ ūA(Π
fair
RC ,A).

17

Second, we transform A′ into an adversary A′′ that, for each message obtained from the honest
party while evaluating the last function fm of ~f , checks whether it obtained the output already.7

In this case, A′′ aborts immediately. Clearly, A′′ obtains all outputs whenever A′ does, and the
honest parties only obtain all outputs in an execution with A′′ if they would have obtained them
with A′ as well. By the natural assumptions on the payoff vector (γ10 ≥ max{γ00, γ11} and
min{γ00, γ11} ≥ γ01),

ūA(Π
fair
RC ,A′′)

negl

≥ ūA(Π
fair
RC ,A′).

The adversary A′′ can be written as a convex combination of the adversaries A1, . . . ,Ar. Note
that the values that A′′ obtained from the execution of Πfair

RC before the reconstruction are statisti-
cally independent of the round and party chosen in the evaluation of fsh,f,D. Even together with
all shares received from p2 up to round `, all values have the same distribution in all cases where
either the chosen round is larger than ` or the chosen party is p2. Consequently, the distribution of
rounds in which A′′ aborts prematurely (i.e., without receiving the output) and the choice of the
party to corrupt are independent of the actual values chosen in fsh,f,D. As A′′ can be written as
a convex combination of the A`, there is necessarily one such strategy which is at least as good as
A′′.

It remains to compute the payoff of the adversarial strategies A1, . . . ,Ar. For A1, the payoff is

ūA(Π
fair
RC ,A1)

negl

≈ 1

2
Pr%(1)γ10 =

γ10

2
∑r−1

`=1 %
`−1

,

since A1 obtains the value only if l∗ = 1 and i∗ = 1, and p2 never obtains the value. Analogously,

ūA(Π
fair
RC ,A`)

negl

≈ 1

2

∑̀
j=1

Pr%(j)

 · γ10 +
1

2

`−1∑
j=1

Pr%(j)

 · γ01

=
1

2

∑̀
j=1

%j−1 Pr%(1) · γ10 +
1

2

`−1∑
j=1

%j−1 Pr%(1) · γ01

=
1

2

∑̀
j=1

%j−1 Pr%(1) · γ10 −
1

2

∑̀
j=2

%j−1 Pr%(1) · γ10 =
γ10

2
∑r−1

`=1 %
`−1

,

for all l < r. The adversary Ar is exactly the strategy considered in the non-reactive setting, so

ūA(Π
fair
RC ,Ar)

negl

≈ γ10 + γ11

2
.

Altogether, we obtain the claimed bound.

Lemma 8. For a preference vector ~γ ∈ Γ with γ11 > −γ10. The number of rounds required to make
the generic strategy Agen optimal is:

if −γ01 = γ10, then

r ≥ 2γ10 + γ11

γ10 + γ11
;

else,

r ≥
⌈

log−γ01/γ10

(
γ11 − γ01

γ10 + γ11

)⌉
+ 1.

7Note that A′′ can perform this check with at most negligible error probability, since Πfair
RC is secure with abort

and during the evaluation of the last function fm, the only possible outputs of the protocol are ⊥ or the correct value.

18

Proof. We can compute how many rounds a protocol must at least have to achieve the optimal

bound, namely such that 1
2

(∑r−1
i=1 (−γ01)i−1/γi10

)−1
≤ γ10+γ11

2 , so after multiplying by 2:

(
r−1∑
i=1

(−γ01)i−1/γi10

)−1

= γ10

(
r−1∑
i=1

(−γ01/γ10)i−1

)−1

≤ γ10 + γ11.

First, if −γ01 = γ10, then the above equation means that

r ≥ 2γ10 + γ11

γ10 + γ11
.

Otherwise, if −γ01 6= γ10, we compute the partial sums and obtain (after inverting)

γ−1
10

r−2∑
i=0

(−γ01/γ10)i = γ−1
10

(−γ01/γ10)r−1 − 1

(−γ01/γ10)− 1

≥ 1

γ10 + γ11
, or

(−γ01/γ10)r−1 − 1

(−γ01/γ10)− 1
≥ γ10

γ10 + γ11
.

If −γ01 > γ10, then

(−γ01/γ10)r−1 ≥ −γ01 − γ10

γ10 + γ11
+ 1

=
γ11 − γ01

γ10 + γ11
,

which means

r − 1 ≥ log−γ01/γ10

(
γ11 − γ01

γ10 + γ11

)
.

(The same inequality arises for −γ01 < γ10 because the inequality is first a “≤,” but then the base
in the logarithm is < 1.) As the number of rounds must be an integer, we obtain

r ≥
⌈

log−γ01/γ10

(
γ11 − γ01

γ10 + γ11

)⌉
+ 1,

as we have to round up the number of rounds to make the “generic” adversarial strategies optimal.

C.2 Lower Bound Proofs

Lemma 4. For every protocol Π which securely implements the (unfair) functionality f⊥2Ex, there
exists an adversary A with

ūA(Π,A)
negl

≥ γ10 + γ11

2
.

Proof. As in [GKTZ15, Theorem 5], we consider the adversary strategies A1 and A2, where Ai
(statically) corrupts pi and follows the protocol until the first output phase is finished. In each
round of the second output phase, Ai receives all messages from p¬i, checks whether the protocol

19

for p1 provides the output,8 and in that case records the output and abort the execution before
sending p¬i’s message for that round.9 Otherwise, let p1 correctly execute its instructions for that
round.
We use the following claim, which is proven analogously to Lemma [GKTZ15, Lemma 4].

Claim 2. Let ~γ ∈ Γ be a preference vector. For every protocol Π which securely implements the
(unfair) functionality f⊥2Ex the following inequality holds:

ūA(Π,A1) + ūA(Π,A2)
negl

≥ γ10 + γ11.

The adversary A chooses one of the strategies A1 or A2 uniformly at random. As a result, we
obtain

ūA(Π,A) =
1

2
· ūA(Π,A1) +

1

2
· ūA(Π,A2)

negl

≥ 1

2
(γ10 + γ11).

Lemma 5. Let Π be an r-round-reconstruction protocol that securely implements the (unfair) func-
tionality f⊥2Ex, such that

ūA(Π,Agen) ≤ γ10 + γ11

2
+ ω.

Then, there exists an adversary A with

ūA(Π,A)
negl

≥

(
1
2 −

ω
γ10−γ11

)
γ10∑r−1

`=1 %
`−1

,

where % = −γ01/γ10.

Proof. We start with a rough outline of the proof. First, we measure certain parameters of the
protocol in a “benign” environment. Second, we construct a (generalized) “probabilistic release”
protocol that is at least as fair as the original protocol. Third, we prove a lower bound on the
adversary’s payoff for any protocol of this “probabilistic release” type.

Measuring the reconstruction phase. Consider the dummy adversary D (which simply for-
wards all communication from and to the environment) and the environment Z that admits the
execution of the protocol up to the round where both parties provide as output the first half of
the other party’s input. Note that, from this point on, if the adversary aborts, the only choice for
honest party is to also abort (and provide output only if it already obtained the correct value).
This is due to the fact that the adversary already obtained output and the honest party cannot
simply restart the protocol with a default input for the adversary.

We fix this particular state of the execution (including the random tapes, so the execution is
deterministic), and we measure, for both p1 and p2, the “first round in which pi would provide
output, given that p¬i would abort in that round.” (Formally, we copy the state of the complete
system and execute it with adversaries D(1) and D(2) where D(i) corrupts p¬i and, in each round,
checks whether p¬i would output the second half of pi’s input before actually sending the message
of the round.) For such a fixed state, we obtain a pair (`1, `2) ∈ [r]2 of round numbers. Note
that, except for a negligible fraction of the cases, both parties will indeed provide output in some

8This is possible since as a second output in the reactive computation, the protocol may output only either the
correct value or an “abort” symbol.

9This attack is possible because the adversary is rushing.

20

round, as the protocol is secure with abort and the other party follows the protocol. This procedure
determines a random distribution over pairs of rounds, which we denote by D.

Constructing the protocol. Given such a distribution, we construct a “canonical” protocol π̄
that is at least as fair as Π. In particular, the payoff of a “benign” strategy with respect to Π is at
least as large (up to a negligible difference) as the payoff with respect to π̄D, and the best strategies
against π̄D are indeed the “benign” ones.

Protocol π̄D for 2 Parties.

The following F f̄ ,⊥rc -hybrida multi-party protocol (with D a distribution on [r]× [r])
computes the functionality f⊥2Ex. Define the function f̄ as

f̄ : ({0, 1}2k)2 × (R× [r]2) → {0, 1}k × {0, 1}k × (S2 × S2)r

(y1|z1, y2|z2, R, `1, `2) 7→ (y2, y1, 〈δ1`1(z2)〉, 〈δ1`2(z1)〉, . . . ,
〈δr`1(z2)〉, 〈δr`2(z1)〉),

where the pair (`1, `2) is chosen according to the distribution D.

Computation: Use F f̄ ,⊥sfe to compute the respective outputs of f̄ . A party not
obtaining its output aborts.

Reconstruction: In each round, each party sends the respective share of the other
party for the current round. A party that does not receive an expected (correct)
share aborts (but provides output if applicable).

Output: A party that obtained a value 6= ⊥ in one of the previous rounds outputs
this value (and ⊥ otherwise).

aRecall that when F ·,⊥rc is parameterized with a single function—as is the case with F f̄ ,⊥rc —then

it corresponds to the standard SFE functionality F f̄ ,⊥sfe (i.e., computation of non-reactive functions)
with unfair abort as in [GKTZ15].

Of course, we have to show that the protocol π̄ indeed implements the functionality f⊥2Ex.

Claim 3. The protocol π̄ implements the functionality f⊥2Ex.

Proof. This proof is similar to the “security with abort” part in the proof of Theorem 3; the
correctness follows from the security of the authenticated sharing.

Let A(i)
` and Z(i)

` for i ∈ {1, 2} and ` ∈ [r] be the pair of adversary and environment that

corrupts party i and begins to run the protocol faithfully. Indeed, A(i)
` behaves exactly as Agen up

to round `, but aborts after obtaining and checking the message in this round `.

Claim 4. For the above described adversarial strategies A(i)
` and environments Z(i)

` ,

inf
S∈SIM

A(i)
`

{Uf⊥2Ex,~γ(S,Z(i)
`)}

negl

≥ inf
S∈SIM

A(i)
`

{Uf⊥2Ex,~γ(S,Z(i)
`)}.

21

Proof. The probability that the adversary obtains the output is the same in both cases by the
definition of the protocol π̄D. Yet, the probability that the honest party outputs the value in the
case of π̄D is exactly according to the distribution D, whereas for Π it is only upper bounded by D
(as the honest party in Π might have output the value in a previous round, but output ⊥ again
in later rounds). Assuming that γ10 ≥ γ11 and γ00 ≥ γ01, the statement of the claim follows (the
negligible slackness appears as the real payoff is defined via the ideal payoff).

The above claim only makes a statement about a specific type of adversary, and of course

sup
A
ūA(Π,A)

negl

≥ ūA(Π,A(i)
`)

negl

≥ inf
S∈SIM

A(i)
`

{Uf⊥2Ex,~γ(S,Z(i)
`)}.

For general protocols such as Π there might be more successful adversarial strategies than A(i)
` . In

the particular case of π̄D, however, these strategies are indeed optimal.

Claim 5. For some i ∈ {1, 2} and ` ∈ [r],

inf
S∈SIM

A(i)
`

{Uf⊥2Ex,~γ(S,Z(i)
`)}

negl

≥ ūA(π̄D,A),

for all adversaries A, where Ar = Agen.

Proof (sketch). Let A be an arbitrary adversary. By the definition of the payoff,

ūA(π̄D,A)
negl

≈ sup
Z

{
inf

S∈SIMA
{Uf⊥2Ex,~γ(S,Z)}

}
,

and we denote by Z a specific environment that fulfills the condition. The remainder of the claim
is proven exactly as the first claim in Theorem 3.

To simplify the lower bound proof for the payoff of the best adversary A(i)
` and the protocol

π̄D, we transform the distribution D in several steps. For each step, however, we show that the
transformation can only lead to a “more secure” protocol. The first observation is that the protocol
should never provide the output to both p1 and p2 in the same round: The “rushing” adversary
will receive its message for the round first and abort before sending the response. Hence, define
the distribution D′ by setting D′(`, `) = 0, D′(`, ` + 1) = D(`, ` + 1) + 1

2D(`, `), and D′(` + 1, `) =
D(`+ 1, `) + 1

2D(`, `) for ` ∈ [r − 1], and D′(`, `′) = D(`, `′) everywhere else.

Claim 6. For D and D′ as described above, we have

ūA(π̄D,A
(i)
`)

negl

≥ ūA(π̄D′ ,A
(i)
`),

for i ∈ {1, 2} and all ` ∈ [r].

Proof. We only have to argue that the adversary’s payoff in the case (`, `) is at least as large as

in the case (`, ` + 1) (respectively (` + 1, `)). For adversaries A(i)
`′ with `′ < `, the payoff remains

constant. If `′ ≥ ` and A(i)
`′ obtains the value in round `, the payoff is also the same as for (`, `).

If, however, A(i)
`′ obtains the value only in round `+ 1, the payoff decreases from γ10 to γ11.

From the distribution D′ we define a distribution D′′ such that the party that obtains the
output later will receive it only in the last round. Formally, D′′(`, `′) = 0 for ` < r and `′ < r, and
D′′(`, r) =

∑
`′>`D

′(`, `′).

22

Claim 7. For D′ and D′′ as described above, we have

ūA(π̄D′ ,A
(i)
`)

negl

≥ ūA(π̄D′′ ,A
(i)
`).

Proof. In cases where the adversary obtains the output first, the payoff remains constant (either
the adversary gets the output in both cases or in none; the honest party does not get the output).

If the honest party gets the value first, then either the payoff remains constant (for A(i)
r or if the

adversary aborts before obtaining the output also in π̄D′), or the payoff decreases if the adversary
aborts before the final round (as γ00 ≥ γ01).

For the remaining part of the proof, we consider the adversaries A1, . . . ,Ar−1 that behave as
follows: In the beginning, A` chooses a party pi to corrupt uniformly at random and then behaves

as A(i)
` . In this setting, it makes sense to consider the protocol π̄ as being parametrized by a vector

~q ∈ distr−1(qr) :=

{
(q1, . . . , qr−1) ∈ [0, 1]r−1

∣∣∣∣∣
r∑
`=1

q` = 1

}

that we obtain essentially as a symmetric version of D′′. Roughly speaking, each party obtains the
output in round ` with probability exactly q`, but these probabilities are of course not independent—
at least one party will always obtain the value only in the last round (so qr ≥ 1/2). For (the best of)
these adversaries, we can explicitly prove a lower bound on the utility when attacking the protocol
π̄~q.

Claim 8 (tradeoff). Consider the adversaries A1, . . . ,Ar as above, and qr ∈ [1/2, 1]. Then,

min
~q∈distr−1(qr)

max
1≤`≤r−1

ūA(π̄~q,A`)
negl

≥ (1− qr)γ10∑r−1
`=1 %

`−1
.

Proof. We can easily compute the adversary’s payoff for these fixed strategies. For A`, the prob-
ability that the adversary obtains the output is

∑`
j=1 qj , and the payoff in this case is γ10. The

probability that the honest party obtains the output is
∑`−1

j=1 qj . As the adversary aborts prema-
turely, the payoff in this case is γ01, which results in

ūA(π̄~q,A`)
negl

≈

∑̀
j=1

qj

 · γ10 +

`−1∑
j=1

qj

 · γ01.

Our goal is to find the optimal vector ~q, that is, the payoff of the best adversary is minimized. We
encounter a trade-off: By changing the vector ~q to reduce the payoff of a certain adversary, we
inevitably increase the payoff for different adversary. Consequently, for an optimal ~q all adversaries
have essentially the same payoff, which is formalized in the following claim (if this is not the case,
we can provably reduce the maximum payoff).

Claim 9. If ~q is optimal, then

ūA(π̄~q,A`)
negl

≈ ūA(π̄~q,A`′)

for all `, `′ ∈ [r − 1].

23

Proof. Assume that ~q is optimal but there exists a ` such that

ūA(π̄~q,A`)
negl

≈ max
`<`′<r

ūA(π̄~q,A`′)

and
ūA(π̄~q,A`) = ūA(π̄~q,A`−1) + δ

with noticeable δ. For ε = δ/(γ10 − γ01), define the vector ~q′ with q′u = qu for ` 6= u 6= ` − 1,
q′` = q` − ε, and q′`−1 = q`−1 + ε. Then,

ūA(π̄~q′ ,Au) = ūA(π̄~q,Au)

for all ` 6= u 6= `− 1,

ūA(π̄~q′ ,A`−1)
negl

≈ ūA(π̄~q,A`−1) + γ10/(γ10 − γ01)δ,

and
ūA(π̄~q′ ,A`)

negl

≈ ūA(π̄~q,A`) + γ01/(γ10 − γ01)δ.

As a result, the payoff of the adversary A` decreases by a noticeable amount. If A` was the only
strategy with maximal payoff, we already reached a contradiction. If there were more than one
strategy with maximal payoff, then this procedure must be applied repeatedly. (Of course, the
analogous argument can also be made for the other direction, i.e., by shifting “probability mass”
from ` to `+ 1.)

Following the claim, we can now compute an optimal vector ~q and the payoff of the individual
adversaries. In particular, the claim implies that q1γ10 = (q1 + q2)γ10 + q1γ01 = . . . , which means(

j+1∑
u=1

qu

)
γ10 +

(
j∑

u=1

qu

)
γ01 =

(
j∑

u=1

qu

)
γ10 +

(
j−1∑
u=1

qu

)
γ01,

which can be reformulated as

qj+1 = qj

(
−γ01

γ10

)
.

With % := −γ01

γ10
, we obtain by induction that qj = %j−1q1. By the fact that

∑r
j=1 qj = 1, this

means that
r−1∑
j=1

qj =

r−1∑
j=1

(%j−1q1) =

r−1∑
j=1

%j−1

 · q1 = 1− qr,

or q1 = (1− qr)
(∑r−1

j=1 %
j−1
)−1

. By the above formula, we compute the payoff of A1 as

ūA(π̄~q′ ,A1)
negl

≈ q1γ10 =
(1− qr) · γ10∑r−1

j=1 %
j−1

,

which is equal to the payoff of all adversaries A2, . . . ,Ar−1.

Note that if qr = 1
2 + x, then

ūA(π̄D,Agen)
negl

≈ (1/2 + x)γ10 + (1/2− x)γ11 =
γ10 + γ11

2
+ x(γ10 − γ11),

24

together with the statement about Agen we obtain x ≤ ω
γ10−γ11

. Hence, we obtain by the trade-off-
claim that there exists an adversary A with

ūA(π̄~q,A)
negl

≥ (1− qr)γ10∑r−1
`=1 %

`−1
=

(1/2− x)γ10∑r−1
`=1 %

`−1
≥

(
1
2 −

ω
γ10−γ11

)
γ10∑r−1

`=1 %
`−1

,

and by all claims proven before, there is an adversary for protocol Π which is at least as good.

D Asymptotic Behavior of the Number of Rounds

As Figure 4 illustrates, the number of rounds grows infinitely for % → 2. The following corollary,
however, states that this growth is moderate in the sense that whenever % is bounded away from 2
by a noticeable distance, the necessary number of rounds remains linear in the security parameter.
The main reason for the function to diverge at this point is that γ11 → −γ10, which means that
overall we approach the situation where the adversary prefers to always abort and obtain γ00 = 0
(as (γ10 + γ11)/2→ 0 as well).

Figure 4: The optimal number of rounds, given % = −γ01

γ10

Corollary 9. Let ~γ ∈ Γ be a preference vector, and assume that γ11 = γ10 + γ01, and define
% = −γ01

γ10
. If there exists a polynomial q(k) such that %(k) + 1/q(k) ≤ 2, then the optimal number

of rounds in Lemma 8 is linear in k.

Proof. We compute

r̂(k)− 1 =

⌈
log%

(
γ11 − γ01

γ10 + γ11

)⌉
=

⌈
log%

(
γ10

2γ10 + γ01

)⌉
=

⌈
log%

(
1

2− %(k)

)⌉
=

⌈
− log(2− %(k))

log %(k)

⌉
,

and realize that the enumerator diverges for %(k)→ 2. In particular,

r̂(k)− 1 =

⌈
− log(2− %(k))

log %(k)

⌉
≤

⌈
− log 1/q(k)

log %(k)

⌉
=

⌈
log q(k)

log %(k)

⌉
,

25

where for the denominator we have log %(k)→ log 2. Hence, r̂(k) ≤ c · log q(k) for some c > 0 and
if the ratio is bounded away from 2 by a noticeable term, then the necessary number of rounds is
linear.

26

	Introduction
	Preliminaries and Model
	Utility-based Fairness and Protocol Optimality
	Fair and Reactive 2PC
	Distributing the Output in Rounds
	The Protocol
	Lower Bounds

	Secure Multi-Party Computation of Reactive Functions
	An Authenticated Secret Sharing Scheme
	Fair and Reactive 2PC (cont'd)
	Upper Bound Proofs
	Lower Bound Proofs

	Asymptotic Behavior of the Number of Rounds

