
Key-recovery attacks against the MAC
algorithm Chaskey?

Chrysanthi Mavromati

1 Capgemini-Sogeti, R&D Lab, France
2 Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM, France

chrysanthi.mavromati@sogeti.com

Abstract. Chaskey is a Message Authentication Code (MAC) for 32-
bit microcontrollers proposed by Mouha et. al at SAC 2014. Its underly-
ing blockcipher uses an Even-Mansour construction with a permutation
based on the ARX methodology. In this paper, we present key-recovery
attacks against Chaskey in the single and multi-user setting. These at-
tacks are based on recent work by Fouque, Joux and Mavromati pre-
sented at Asiacrypt 2014 on Even-Mansour based constructions. We first
show a simple attack on the classical single-user setting which confirms
the security properties of Chaskey. Then, we describe an attack in the
multi-user setting and we recover all keys of 243 users by doing 243 queries
per user. Finally, we show a variant of this attack where we are able to
recover keys of two users in a smaller group of 232 users.

Keywords: Message Authentication Code, Collision-based cryptanalysis, ARX,
Even-Mansour, Chaskey, Multi-user setting.

1 Introduction

A Message Authentication Code (MAC) algorithm is a basic component in many
cryptographic systems and its goal is to provide integrity and data authentica-
tion. For this, it takes as input a message M and a n-bit secret key K, and
outputs a tag τ which is usually appended to M . In general, MAC algorithms
are built from universal hash functions, hash functions or block ciphers. The first
security property of a MAC is that it should be impossible to recover the key
K faster than 2n operations (key recovery attack). It should also be impossible
for an attacker to forge a tag for any unseen message without knowing the key
(MAC forgery). Here, the attacker selects a message and simply guesses the cor-
rect MAC value without any knowledge of the key. The probability that the guess
will be correct is 2−t where t is the size of the tag τ . However, such attacks can
be avoided by making the tag sufficiently large. MACs based on universal hash
functions compute the universal hash of the message to authenticate and then

? Final version submitted by the author and published in the proceedings of SAC
2015.

2 Chrysanthi Mavromati

encrypt this value. MAC algorithms based on block ciphers are usually given as
a mode of operation for the block cipher. Typically, CBC-MAC is very similar to
the CBC encryption mode of operation and is one of the most commonly used
MACs.

The implementation of a MAC algorithm on a typical microcontroller is a
challenging issue as many problems may appear. More precisely, the use of a
MAC based on a hash function or a block cipher might have a negative impact on
the speed of the microcontroller due to the computational cost of the operations
required by the underlying functions.

Recently, at SAC 2014, a new MAC algorithm named Chaskey has been
introduced by Mouha et al. [8]. It is a permutation-based MAC algorithm and
its underlying permutation relies on the ARX design. The designers claim that
Chaskey is a lightweight algorithm which overcomes the implementation issues
of a MAC on a microcontroller. The construction of Chaskey is based on some
simple variants of the CBC-MAC proposed by Black et al. [3]. As CBC-MAC
is not secure when used with messages of variable length, these variants were
designed to authenticate arbitrary length messages. Alternatively, Chaskey can
also be seen as an iterated Even-Mansour construction where the same subkey
is xored in the input and output of the last permutation round.

In Asiacrypt 2014, Fouque et al. [6] presented new techniques to attack the
Even-Mansour scheme in the multi-user setting. Based on this work, we present
here some key-recovery attacks against the MAC algorithm Chaskey in the single
and multi-user setting.

The paper is organized as follows: in Section 2 we recall the necessary back-
ground, present the multi-user setting, the Even-Mansour scheme and the gen-
eral principle of collision-based attacks using the distinguished points method,
in Section 3 we present the main specifications of the Chaskey MAC algorithm
and finally, in Section 4, we describe new attacks against Chaskey.

2 Preliminaries

2.1 The multi-user setting

The security of most schemes in cryptography is usually studied when we have
a single recipient of encrypted data: the single-user model. However, this setting
ignores an important dimension of the real world where there are many users,
who are all using the same algorithms, but each one has its own key. In this
setting, the attacker tries to recover all or fraction of keys more efficiently than
the complexity of the attack in the single-user model times the number of users.
This can be done by amortizing the cost of the attack among the users.

In [7], Menezes studies the security of MAC algorithms in the multi-user
setting. He shows that the security degrades when we pass from one to many
users. The scenario attack against MAC algorithms in the multi-user setting
can be seen as follows. Let HK : {0, 1}∗ → {0, 1}t be a family of MACs where
K ∈ {0, 1}k. In the single-user model, it should be hard for an attacker who

Key-recovery attacks against the MAC algorithm Chaskey 3

has access to an oracle HK to generate a valid message-tag pair (m, τ) without
knowing the key K. In the multi-user setting, we suppose that we have L users
with keys K(i) ∈ {0, 1}k where 0 ≤ i ≤ (L − 1). Then for an attacker who has
access to oracles for HK(i) , it should be difficult to produce a triplet (i,m, τ).

2.2 Collision-based attacks using the distinguished point technique
against the Even-Mansour scheme

The distinguished point technique. The distinguished point technique allows to
find collisions in a very efficient way. For this, we first have to define a function
f on a set S of size N and then define a distinguished subset S0 of S with
D distinguished points. The distinguished points should be easy to recognize
and generate. For example, we can choose our distinguished points to be n-bits
values with d zeros at the end. So, in a set of cardinalityN = 2n our distinguished
subset contains D = 2n−d elements. Starting from a random point x0 ∈ S we
build chains by evaluating the function f :

xi+1 = f(xi).

When a distinguished point is detected, i.e. x` ∈ S0, the construction of the
chain stops. To be able to recover the chain we need to store the starting point
x0, the distinguished point x` and the length of the chain ` which corresponds
to the number of iterations of the function f . Two chains that pass through the
same point necessarily end at the same distinguished point. To detect a collision
we use the inverse result: two chains that end at the same distinguished point
necessarily merge at some point unless one chain is a subchain of the other. Once
a collision in the distinguished points set is detected, the real collision can easily
be recovered. We assume that we have two colliding chains of length ` and `

′

and that ` ≥ `
′
. Then, starting from the longer chain, we rebuild the chain by

taking exactly `− `′ steps. From that point, it now suffices to build both chains
in parallel until a collision is reached.

Collision-based attacks against Even-Mansour. The Even-Mansour scheme is a
minimalistic very efficient design of a block cipher proposed at Asiacrypt 91 [5].
The main idea is the construction of a keyed permutation family ΠK1,K2 by a
public permutation π that operates on n-bit values (N = 2n):

ΠK1,K2 = π(m⊕K1)⊕K2,

where m is the plaintext and K1 and K2 are the two whitening keys. There is
also a simpler version presented by Dunkelman et al. [4], the Single-key Even-
Mansour, where K1 = K2. Even and Mansour showed that this simple block-
cipher is secure up to O(2n/2) queries of the adversary to the keyed permutation
Π and to the public permutation π. It has also been proved [4] that the Single-
key Even-Mansour has the same security bound as the original version.

In [6], Fouque et al. describe a new technique for collision-based attacks using
the distinguished point technique. They use this method to form attacks against

4 Chrysanthi Mavromati

the Even-Mansour scheme in the multi-user setting. The main idea is to find a
collision between two chains, one constructed from the public permutation π and
one from the keyed permutation Π. For this, as we cannot use permutations to
detect collisions, we have to construct two functions F and f , one based on Π
and one based on π. In previous attacks on Even-Mansour [2, 4], these functions
have been constructed by using the Davies-Meyer construction: F (m) = Π(m)⊕
Π(m ⊕ δ) and f(m) = π(m) ⊕ π(m ⊕ δ). However, these functions cannot be
used with the distinguished point technique as chains built by F and f defined
as previously can eventually cross but they cannot merge as they consist of
evaluations of two different functions. As a consequence, they use a different
definition of F and f to solve this problem:

F (m) = m⊕Π(m)⊕Π(m⊕ δ) and f(m) = m⊕ π(m)⊕ π(m⊕ δ).

For two messages m and m
′

such as m
′

= m ⊕K1, they remark that F (m
′
) =

f(m)⊕K1 and so they get two parallel chains, i.e. two chains that have a constant
difference between them.

They also remark that, for two different users i and j, two chains con-

structed by using F
(i)
Π and F

(j)
Π , where F

(i)
Π (m) = m ⊕ Π(i)(m) ⊕ Π(i)(m ⊕ δ)

and F
(j)
Π (m) = m⊕Π(j)(m)⊕Π(j)(m⊕ δ), can also become parallel and their

constant difference would be equal to the XOR of the users keys, i.e. K
(i)
1 ⊕K

(j)
1 .

To attack Even-Mansour using the distinguished point technique in the multi-
user setting, they build a set of chains for the public user using the function f
and a small number of chains for every user by using the keyed permutation F .
Whenever a collision F (i)(x) = F (j)(y) for two points x and y, where x = y⊕K1,

is detected between two users Ui and Uj , it yields K
(i)
1 ⊕ K

(j)
1 . From these

collisions it is possible to construct a graph whose vertices are the users and the
edges represent the xor of the first keys of the users with two colliding chains,

i.e. K
(i)
1 ⊕K

(j)
1 . When enough edges are present a giant component appears in

the graph. Then, it suffices to find a single collision F (i)(x) = f(y) between a
user and the public user to reveal all keys of the users in the giant component.

One of the main ideas of their technique is to detect parallel chains by simply
testing if π(y)⊕π(y⊕ δ) = Π(x)⊕Π(x⊕ δ) for two distinguished point x and y
where x = y⊕K1. This does not add any extra cost, as values of π(y)⊕π(y⊕ δ)
and Π(x)⊕Π(x⊕δ) are needed to calculate the next element of the chain. Also,
it does not require to go back and recompute the chains to detect the merging
points.

3 The MAC algorithm Chaskey

Chaskey was proposed at SAC 2014 by Mouha et al.. It is a permutation-based
MAC algorithm and its underlying permutation is based on the ARX design. Its
design is similar to the permutation of the MAC algorithm SipHash [1]. However,
in Chaskey, a state of 128-bits (instead of 256-bits in SipHash) is used which is

Key-recovery attacks against the MAC algorithm Chaskey 5

decomposed in 4 words of 32-bits (instead of 64-bits in SipHash). Also, different
rotation constants are used.

Chaskey takes as input a message M of arbitrary size and a 128-bit key
K. The message M is split into ` blocks m1,m2, . . . ,m` of 128 bits each. If
the last block is incomplete, a padding is applied. It outputs the t-bit tag τ
(where t ≤ n) that authenticates the message M . The underlying function is a
permutation constructed using the ARX design.

Two subkeys K1 and K2 are generated from K as follows: K1 is equal to the
result of the multiplication by 2 (binary notation) of K and K2 is equal to the
multiplication by 2 of K1. In general, we define K1 = αK and K2 = α2K. To
define multiplication in GF (2n), we need to specify the irreducible polynomial
f(x) of degree n that defines the representation of the field. The designers of
Chaskey choose their irreductible polynomial to be f(x) = x128 +x7 +x2 +x+1.

Chaskey operates in `+ 3 steps. On the first step, we xor the first block m1

with the key K. On the next step, we process the previous result through the
permutation π and we xor the output with the next block. This procedure is
repeated ` − 1 times until all blocks are being processed. If the last block m`,
which has been xored at the end of the `− 1 step, is a complete block, then, on
the `-th step, we simply xor the key K1. If it is an incomplete block, it should be
padded with 10n−|m`|−1 before being used. Then, on the `-th step, the key K2

will be used instead of K1. Then, the state will pass through the permutation π
and will be xored with K1 if m` is complete or with K2 if incomplete. Finally, the
t least significant bits are selected to be used as the tag τ . The whole procedure
can be seen on Figure 1.

K

m1

π

m2

π . . . π

ml K1

π

K1

τ

K

m1

π

m2

π . . . π

ml||pad K2

π

K2

τ

Fig. 1. The Chaskey MAC algorithm. First line when |m`| = n and second line when
0 ≤ |m`| ≤ n where pad = 10n−|m`|−1.

There is also a variant of Chaskey, called Chaskey-B, where Chaskey can
be seen as a MAC algorithm based on the Even-Mansour [5] block cipher. The
authors define the block cipher E as EX||Y (m) = π(m⊕X)⊕Y and so it suffices
to evaluate recursively the function hi+1 = EK||K(hi⊕mi) for i = 1, ..., l−1 and
h1 = 0n. If the last block is complete, we calculate h` = EK⊕K1||K1

(h` ⊕m`).

If not, we calculate h` = EK⊕K2||K2
(h` ⊕m`||10n−|m`|−1). Finally, the tag τ is

equal to the t least significant bits. However, in this case, we can easily see that
the key K, which is XORed after the application of the permutation π, vanishes

6 Chrysanthi Mavromati

at each iteration of the block cipher E. As a result, the key K intervenes only
on the first block and the keys K1 or K2 on the last block:

τ = π(π(π(π(m1 ⊕K)⊕m2)⊕ . . .)⊕ml ⊕K1)⊕K1.

The permutation π consists of 8 rounds of a function that follows the ARX
design: addition modulo 232, bit rotations and XOR. For constructing this round
function, the authors use the same structure as SipHash [1] but instead of 64-bit
words they are using words of 32 bits and different rotation constants. They
consider that 8 applications of the round function is secure but they suggest
that the 16 rounds version (Chaskey-LTS: long term security) should also be
implemented in case of security issues.

The authors prove that Chaskey is secure up to D = 2n/2 chosen plaintexts
and T = 2n/D queries to π or π−1.

4 Collision-based attacks against Chaskey

In this section, we show that the collision-based attack described in [6] can be
applied on Chaskey. Furthermore, we show that variants of this attack can be
applied in the case of Chaskey. All attacks can be performed when we use single-
block messages. Chaskey then becomes an Even-Mansour cipher:

m

K ⊕K1

π τ

K1

m||10n−|m|−1

K ⊕K2

π τ

K2

Fig. 2. Single-block messages in Chaskey

The main idea of all attacks is to build chains by using a function based on
Chaskey and then search for collisions between them. For this, a function that
can be used to build chains should be defined. However, in the case of Chaskey,
for every user we can build two different chains depending on the subkey that
we are using.

To build the chains needed, we define the functions:

fs(M) = Ks ⊕ π(M ⊕ (Ks ⊕K))

Ffs(M) = fs(M)⊕ fs(M ⊕ δ)⊕M

Key-recovery attacks against the MAC algorithm Chaskey 7

where K is the users key, Ks with s ∈ {1, 2} represents the two subkeys generated
as mentioned in section 3 and δ is an arbitrary but fixed non zero constant.

In the multi-user setting we assume that L different users are all using the
Chaskey MAC algorithm based on the same public permutation π. Each user Ui,
with 0 ≤ i ≤ L, chooses its own key K(i) at random and independently from all
the other users and generates Ks with s ∈ {1, 2}. We define the functions fs(M)
and Ffs(M) as above and we also define the function Fπ(M) for the public user
as follows:

Fπ(M) = M ⊕ π(M)⊕ π(M ⊕ δ).
We remark that for two plaintexts M and M

′
where M

′
= M ⊕Ks ⊕K, we

have Ffs(M ⊕Ks⊕K) = Fπ(M)⊕ (Ks⊕K). So, two chains based on functions
Ffs and Fπ may become parallel.

4.1 Key-recovery attack in the single-user setting

In this section, we show that an attack with complexity 264 can be applied in
the classical single-user scenario. This attack does not contradict the security
bound showed in the original paper of Chaskey and has similar complexity with
possible slide attacks based on [2]. However, with this attack we show a simple
application on Chaskey of the parallel chains detection technique.

The attack is described below:

1. Create two chains constructed by using both:

Ff1(M) = f1(M)⊕f1(M⊕δ)⊕M and Ff2(M
′
) = f2(M

′
)⊕f2(M

′
⊕δ)⊕M

′

until f1(M)⊕f1(M⊕δ) and f2(M
′
)⊕f2(M

′⊕δ) reach a distinguished point.

2. Store all endpoints of the constructed chains and search for collisions be-
tween the two different types of chains, i.e. for two plaintexts M and M

′

search for (Ff1(M))a = (Ff2(M
′
))b where a, b ≥ 1 is the number of itera-

tions of the respective functions. (For the rest of this paper, to facilitate the
reading, the use of a and b will be omitted from equations that represent
collisions between chains.)

3. If a collision is found, recover the XOR of the two inputs M ⊕M ′
which is

expected to be equal to:

K1 ⊕K ⊕K2 ⊕K = (α+ α2)K

and thus recover the key K.

Analysis of the attack. To find a collision between the two sets of endpoints,
one constructed by using the function Ff1 and one constructed by using Ff2 , we
need to construct two chains each of length 264. So, the total cost of the attack
is 264. As said previously, this attack does not contradict the security claim of
Chaskey. It is just an example which shows how to use the distinguished point
technique to attack Chaskey in the single-user setting.

8 Chrysanthi Mavromati

4.2 Key-recovery attack in the multi-user setting

To apply the attack of Fouque et al. we use the iteration functions fs, Ffs and
Fπ defined previously. The attack is described below:

1. In a set of L users, for every user Ui where 0 ≤ i ≤ (L − 1), build a con-
stant number of chains, starting from an arbitrary plaintext, using the func-
tion Ffs . For every user, create some chains using the function Ff1(M) =
f1(M) ⊕ f1(M ⊕ δ) ⊕M until f1(M) ⊕ f1(M ⊕ δ) reaches a distinguished
point and some chains using the function Ff2(M) = f2(M)⊕f2(M ⊕ δ)⊕M
until f2(M)⊕ f2(M ⊕ δ) reaches a distinguished poit.

2. Construct some chains for the unkeyed user starting from an arbitrary plain-
text, by iterating the function Fπ.

3. Store the endpoints and search for collisions between the users. In the case
of Chaskey, we can have three types of collisions between the keyed users:

– A collision between the two chains Ff1(M) and Ff2(M
′
) of the same user

i and, in this case, we recover K
(i)
1 ⊕K(i)⊕K(i)

2 ⊕K(i). As K
(i)
1 = αK(i)

and K
(i)
2 = α2K(i), we have that M ⊕M ′

= (α+ α2)K(i).

– A collision between two similar chains of two different users i and j:

F
(i)
f1

(M) = F
(j)
f1

(M
′
) or F

(i)
f2

(M) = F
(j)
f2

(M
′
). Then, we recover K

(i)
1 ⊕

K(i)⊕K(j)
1 ⊕K(j) = (1 +α)(K(i)⊕K(j)) or K

(i)
2 ⊕K(i)⊕K(j)

2 ⊕K(j) =
(1 + α2)(K(i) ⊕K(j)).

– A collision between two different type of chains between two different

users i and j (cross collision): F
(i)
f1

(M) = F
(j)
f2

(M
′
). Then, we learn

K
(i)
1 ⊕K(i) ⊕K(j)

2 ⊕K(j) = (1 + α)K(i) ⊕ (1 + α2)K(j).

Also search for collisions between a chain of a keyed user i and the unkeyed
user for whom we build chains by using the function Fπ. A collision of this
type may occur by using both Ff1 or Ff2 . From the first function, we learn

K
(i)
1 ⊕K(i) and from the second function K

(i)
2 ⊕K(i). As a consequence, in

both cases, we are able to recover K(i).

4. Build a graph where vertices represent the keyed and unkeyed users. More
precisely, each user is represented by two vertices as for each user we use two
different functions to build chains. Whenever a collision is obtained between
two chains, add an edge between the corresponding vertices. This edge is
labelled by the relation between the keys as explained in the previous step.
An example of the graph can be seen in Figure 3.

5. From the key relations found before, resolve the system and recover the users
keys. With only a single collision for the unkeyed user, we learn almost all
keys of the giant component. If we also find a collision for the unkeyed user,
then we are able to learn all keys of our giant component.

Key-recovery attacks against the MAC algorithm Chaskey 9

Ui

Up

Uq

Ur

Uj

U

(α + α2)K(i) (1 + α)K(j)

(1 + α2)K(j) ⊕ (1 + α)K(r)

(1 + α2)(K(r) ⊕K(q))

(1 + α)(K(p) ⊕K(q))

Fig. 3. Example of a giant component

Analysis of the attack. From [6] we know that in a group of N1/3 users we expect
to recover almost all keys by doing c ·N1/3 queries per user (where c is a small
arbitrary constant) and N1/3 unkeyed queries. So, for Chaskey, we are able to
recover almost all keys of a group of 243 users by doing 243 queries to the unkeyed
user and 243 queries per user.

Improvement. We show here that in the case of Chaskey, the use of δ can be
eliminated. This technique can be used when we search for a collision between
two similar chains of two different users.

If we use a full-block message x and its corresponding ciphertext y we observe
that:

αx⊕ (1 + α)y = α(x
′
⊕ (1 + α)K)⊕ (1 + α)(y

′
⊕ αK)

= αx
′
⊕���

��α(1 + α)K ⊕ (1 + α)y
′
⊕���

��α(1 + α)K

= αx
′
⊕ (1 + α)y

′

where x, x
′
, y and y

′
are represented in Figure 4.

10 Chrysanthi Mavromati

x

(1 + α)K

x
′ π y

′ y

αK

Fig. 4. The MAC algorithm Chaskey when single-block full messages are used (the
subkey K1 = αK is used).

As previously, our goal is to define a function and build chains by using this
function. Here, we define the function Ff1(x) as follows:

Ff1(x) = x⊕ αx⊕ (1 + α)f1(x) = (1 + α)(x⊕ f1(x))

where f1(x) = K1 ⊕ π(x ⊕ (K1 ⊕ K)). We also assume that two plaintexts x1
and x2 satisfy x1 ⊕ x2 = (1 + α)(K(i) ⊕K(j)).

Thus, for two users i and j for whom we detect a collision, we have that:

f
(i)
1 (x1)⊕ f (j)1 (x2) = α(K(i) ⊕K(j))

x1 ⊕ x2 ⊕ f (i)1 (x1)⊕ f (j)1 (x2) = x1 ⊕ x2 ⊕ α(K(i) ⊕K(j))

(x1 ⊕ f (i)1 (x1))⊕ (x2 ⊕ f (j)1 (x2)) = K(i) ⊕K(j)

(1 + α)(x1 ⊕ f (i)1 (x1))⊕ (1 + α)(x2 ⊕ f (j)1 (x2)) = (1 + α)(K(i) ⊕K(j))

F
(i)
f1
⊕ F (j)

f1
= (1 + α)(K(i) ⊕K(j))

and so we observe that chains constructed by Ff1 can become parallel and their
constant difference would be equal to (1 + α)(K(i) ⊕K(j)).

A similar technique can be used when the last block is incomplete and so the
key K2 is used. Here, we observe that:

α2m⊕ (1 + α2)τ = α2(m
′
⊕ (1 + α2)K)⊕ (1 + α2)(τ

′
⊕ α2K)

= α2m
′
⊕(((((

(
α2(1 + α2)K ⊕ (1 + α2)τ

′
⊕(((((

(
α2(1 + α2)K

= α2m
′
⊕ (1 + α2)τ

′
.

Thus, in this case, we define the function Ff2 as follows:

Ff2(x) = x⊕ α2x⊕ (1 + α2)f2(x) = (1 + α2)(x⊕ f2(x))

where f2(x) = K2 ⊕ π(x ⊕ (K2 ⊕ K)). We also assume that two plaintexts x1
and x2 satisfy x1 ⊕ x2 = (1 + α2)(K(i) ⊕K(j)).
Equivalently, for two users i and j, we observe that:

F
(i)
f2
⊕ F (i)

f2
= (1 + α2)(K(i) ⊕K(j)).

Key-recovery attacks against the MAC algorithm Chaskey 11

So, chains constructed by Ff2 can also become parallel and their constant dif-
ference would be equal to (1 + α2)(K(i) ⊕K(j)).

Thus, if we build our chains in the way presented here, we are able to have
a small improvement and gain a factor of

√
2 on the calculation of our chains.

4.3 Variant of the previous attack with cross collisions

We show in this section that a variant of the previous attack is also possible.
Indeed, we are able to apply a similar technique and we show that we can learn
keys of two users when we detect one cross collision between them.

The attack works as follows:

1. For two users Ui and Uj in a set of L users, build a constant number of chains,
starting from an arbitrary plaintext, using the function Ffs , for s ∈ {1, 2}.
For each user, create some chains using the function Ff1(M) = f1(M) ⊕
f1(M ⊕ δ) ⊕ M and some chains using the function Ff2(M) = f2(M) ⊕
f2(M⊕δ)⊕M . The construction of the chains stops when f1(M)⊕f1(M⊕δ)
and f2(M)⊕ f2(M ⊕ δ) reach a distinguished point.

2. For each chain, store the endpoints and search for a cross collision. A cross
collision for users Ui and Uj and for two plaintexts M and M

′
is detected

when F
(i)
f1

(M) = F
(j)
f2

(M
′
). This indicates that the XOR of the two inputs

M ⊕M ′
is expected to be equal to:

K
(i)
1 ⊕K(i) ⊕K(j)

2 ⊕K(j) = (1 + α)K(i) ⊕ (1 + α2)K(j).

3. If a cross collision is detected, recover also the XOR of the corresponding
outputs, which is equal to:

K
(i)
1 ⊕K

(j)
2 = αK(i) ⊕ α2K(j).

4. Solve the system:

(1 + α)K(i) ⊕ (1 + α2)K(j) = ∆1

αK(i) ⊕ α2K(j) = ∆2

and thus recover K(i) and K(j).

Analysis of the attack. This attack uses similar techniques to the attack described
before. However, the innovation here consists of the fact that we are able to
recover keys of two users, in a smaller group than before, by finding only a cross
collision between them. More specifically, to find a cross collision between two
users, it suffices to have a group of 4

√
N users and perform 4

√
N queries per user.

So, in the case of Chaskey, we are able to recover two keys in a group of 232 by
doing 232 queries per user. However, if we want to recover the keys of all users,
then we need a group of 243 users as previously.

12 Chrysanthi Mavromati

5 Conclusion

In this paper, we presented key-recovery attacks against the MAC algorithm
Chaskey. All attacks are using algorithmic ideas for collision based attacks of
Fouque et al. presented in [6]. They all work when using single-block messages
in the single or multi-user setting.

First, we show how to use these techniques to form an attack in the classical
single-user setting. By applying this attack, we are able to recover the key of
the user by doing 264 operations. However, this attack does not contradict the
security claim of Chaskey. Next, we presented two attacks in the multi-user
setting. The first one is able to recover almost all keys of a group of 243 users by
doing 243 queries per user. We also show that we can improve this attack and
gain a factor of

√
2. Finally, the second attack in the multi-user setting, is able

to recover the keys of 2 users in a smaller group of 232 by doing 232 queries per
user. We are able to achieve this new result by exploiting the use of two different
keys for the last block of Chaskey.

References

1. Jean-Philippe Aumasson and Daniel J. Bernstein. Siphash: A fast short-input PRF.
In Progress in Cryptology - INDOCRYPT 2012, 13th International Conference on
Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings, pages 489–
508, 2012.

2. Alex Biryukov and David Wagner. Advanced slide attacks. In Advances in Cryptol-
ogy - EUROCRYPT 2000, International Conference on the Theory and Application
of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages
589–606, 2000.

3. John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages: The
Three-Key Constructions. J. Cryptology, 18(2):111–131, 2005.

4. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography:
The even-mansour scheme revisited. In Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages
336–354, 2012.

5. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudo-
random permutation. In Advances in Cryptology - ASIACRYPT ’91, Fujiyoshida,
Japan, November 11-14, 1991, Proceedings, pages 210–224, 1991.

6. Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user Col-
lisions: Applications to Discrete Logarithm, Even-Mansour and PRINCE. In Ad-
vances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Tai-
wan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 420–438, 2014.

7. Alfred Menezes. Another Look at Provable Security. In EUROCRYPT, volume
7237 of Lecture Notes in Computer Science, page 8. Springer, 2012.

8. Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Pre-
neel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for 32-bit
microcontrollers. In Selected Areas in Cryptography - SAC 2014 - 21st Interna-
tional Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected
Papers, pages 306–323, 2014.

