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Abstract. A cryptosystem for wireless communications, recently pro-
posed by T. Dean and A. Goldsmith, is considered. That system can be
regarded as a second revolution in cryptography because the confiden-
tiality of the messages transmitted over a wireless massive MIMO-based
channel is provided by the difference in the space locations of legal and
illegal users and it does not require any secret key distribution. How-
ever our investigation shows that there is a chance of eavesdropping the
cipher texts by using a suboptimal algorithm. Therefore we investigate
some additional conditions for channel matrices and additive noises in
order to provide a desired security. A combination of wiretap channel
coding with a MIMO-based cryptosystem is also considered.
Keywords. Cryptosystem, wireless channel, massive MIMO, lattice hard
problems.

1 Introduction

The invention of public key cryptography by W. Diffie and M. Hellman [1] can
be thought as a real “revolution in cryptography of the 20-th century”. The au-
thors proposed an asymmetric cryptosystem for which encryption and decryption
keys were different and, moreover, the decryption key cannot be computationally
derived from the encryption key. This approach simplified the problem of key
distribution among legitimate users in the presence of eavesdroppers. The use
of a public key algorithm (PKA) solved the problem for a digital signature sce-
nario and allowed the creation of many multiparty cryptographic protocols [2].
However, the PKA’s have several drawbacks:

– the encryption or the decryption procedure, even for legitimate users, may
be enough complex,

– it is necessary to check the integrity and authenticity of public keys within
their storing or distribution,

– although some PKA’s are “provable secure”, i. e. breaking the cipher can be
equivalent to solve strong mathematical problem (say integer factorisation
or discrete logarithm calculation), typically this assert holds on the average
but not for the worst cases, and



– private keys can be extracted from tamper resistant modules over side attack
channels (say, electrical power or electromagnetic radiation in the environ-
ment).

In a recent paper [3], a cryptosystem has been proposed to avoid generic draw-
backs belonging to PKA. Although this cryptosystem cannot be used in all
situation requiring confidentiality, it is adequate for the case when transmission
of secret messages over wireless multipath channels supplied by massive MIMO
technology is necessary. On the other hand such wireless channel model was
very popular in recent years both as object for theoretical investigations and
for practical implementations [4]. Thus, at least for wireless multipath channels,
our proposal approach is rather relevant. The main restrictions on the channel
model assumed at [3] are:

1. The channel between legitimate users (say Alice (A) and Bob (B)) is de-

scribed by an m×n-matrix A = (aij)
1≤j≤n
1≤i≤m of i.i.d. Gaussian random values

with zero mean and a given variance σ2, where each aij is the gain of the
i-th antenna at A to the j-th antenna at B.

2. The eavesdropper channel between A and Eve (E) is properly an n × m-

matrix B = (bij)
1≤j≤n
1≤i≤m of i.i.d Gaussian random values with zero mean and

a given variance σ2
w, where each bij is the gain of the i-th antenna at A to

the j-th antenna at E.
3. All elements of the matrix A are statistically independent of all elements of
B if the legitimate user B is replaced by the eavesdropper E, at least with
respect to some reasonable distance (of order about the wave-length).

4. The gain matrices are known exactly by all parties of communications in-
cluding the eavesdropper.

5. The entries of the matrices A and B do not depend statistically on the
elements at these matrices on other communication sessions.

These requirements are in line with the experimental results for some wireless
channels [5]. At [3] it is claimed that under these conditions, there exists a
cryptosystem having the following properties:

1. No secret keys are required to be shared in advance between legitimate users.
2. The proposed cryptosystem (PCS) is provably secure, and it is associated

with a well known hard problem on lattices [6] for the worst case.
3. Encryption and decryption operations are relatively simple and they require

just a matrix multiplication over the field of reals.

The above properties (and especially the first one) may assert that PCS is in-
deed “the next revolution in cryptography” (at least in the case of MIMO-based
channels).

The goal of the current paper is to analyse the PCS security (or, in other
words, its unbreakability). For simplicity reason we consider further just the
particular case m = n, namely, that the number of receiving antennas equals the
number of transmitting antennas. By using an error-correcting code, it would be



possible to reduce the complexity of deciphering for legitimate users [7]. However
this facility may be also of help for potential eavesdroppers, hence we avoid in
the current approach the use of any error-correcting code.

2 Description of the encryption/decryption algorithms
for PCS

Following [3], let us recall the mathematical model of a legitimate channel:

z = Ay + e (1)

where y ∈ Zn represents the transmitted vector, A ∈ Zn×n characterises the
channel among legitimate users, and e ∈ Zn represents the legitimate channel
noise. Instead, the eavesdropper’s channel is:

z′ = By + e′

where B ∈ Zn×n characterises the channel between a legitimate user and an
intruder user, and e′ ∈ Zn represents the eavesdropper’s channel noise.

Alice, A, encrypts a message x ∈ Zn
M , x = [x1 · · · xn]T , with 0 ≤ xk < M

and xk ∈ N, for all k = 1, . . . , n, as:

y = V x (2)

where V is a matrix appearing at the calculation of the singular value decom-
position (SVD) of the matrix A, given as A = USV T , with orthogonal matrices
U and V , and diagonal matrix S (the superindex “T” denotes matrix transpo-
sition). By combining (1) with (2) and taking into account the orthogonality of
V , the following version of the ciphertext is obtained

z = Ay + e = USx+ e.

In order to decrypt the ciphertext, the legitimate user B, knowing the SVD form
of A (see the restriction 4 above), computes

z′′ = UT z = UTUSx+ UT e = Sx+ ê (3)

where ê = UT e. On the assumption of Gaussian distribution for ê, from (3), the
optimal estimation (that is the decryption indeed) of x as x′ given z′′, is:

x′ = arg min
x

‖z′′ − Sx‖ (4)

(‖ · ‖ denotes the Euclidean norm on Rn). Since the matrix S is diagonal, say
S = diag[s1 · · · sn], the relation (4) is transformed into:

∀i ∈ {1, . . . , n} : x′i = arg min
xi

‖z′′i − sixi‖ (5)



From (5) it follows immediately that the decryption of the message x has linear
complexity (proportional to n) because it is provided by the calculation of all
the n coordinates of x. As a matter of fact, no keys are used for decryption or
encryption. Of course, it is possible to call “key” the matrix A but since the
eavesdropper E may know this matrix, it is not a secret key at all.

Let us cryptanalyse the case when an eavesdropper tries to follow the strategy
of a legitimate user. Eve, E, receives the vector

z′ = By + e′ = BV x+ e′ = U ′S′(V ′)TV x+ e′ = Cx+ e′ (6)

where C = U ′S′(V ′)TV and U ′S′(V ′)T = B is the SVD of the matrix B. The
eavesdropper E then computes (see (3))

z′′′ = (U ′)T z′ = (U ′)TCx+ (U ′)T e′ = C ′x+ ê′

where ê′ = (U ′)T e′ and C ′ = S′(V ′)TV . Since the matrix C ′ is not diagonal,
finding an optimal estimation for the vector x in the case of a Gaussian i.i.d.
noise vector ê′, given the vector z′′′, is reduced to:

x′′ = arg min
x

‖z′′′ − C ′x‖. (7)

The problem (7) is known to be a hard problem on lattices [6]. It is shown in [3]
(see its main theorem), that it is NP-hard problem under the following condition:

M
√
σ2 σ̃2

e ≥
√
n, (8)

where M is the size of the message alphabet, σ is the standard deviation of the
channel gains in B, σ̃e is the standard deviation of the eavesdropper’s channel
noise, and n is the number of antennas in the MIMO system. Indeed, the con-
dition (8) entails a larger noise at the attacker side, thus the bounded distant
decoding algorithm [8] is not suitable in this context.

We may claim, however, that due to the NP-hardness of the problem (7),
this cryptanalysis of PCS renders impractical an attack for n ≥ 100.

In summary, at [3] it is claimed that under the assumptions of

– separated locations of legal users and eavesdroppers, and

– the existence of multipath channels with fading combined with massive
MIMO technology,

it is possible to build a cryptosystem which, under the condition (8), guarantees
a polynomial deciphering complexity by the legitimate users and exponential
complexity of cipher breaking by any eavesdropper. However, at [3] it is not
considered to break PCS (even under the assumption (8)) for the case when
suboptimal deciphering algorithms are used. We consider these algorithms in
the next section.



3 Suboptimal cipher breaking algorithms

Consider the suboptimal decryption algorithm under the not so strong condi-
tion that the matrix C in (6) is non-singular, i.e. there exists its inverse C−1.
Multiplication of both sides of (6) by the inverse matrix gives:

ẑ′ = C−1z′ = x+ C−1e′

C−1 is not necessarily an orthogonal matrix, hence C−1e′ is not necessarily an
i.i.d. Gaussian vector. Then

∀i ∈ {1, . . . , n} : x′′′i = arg min
xi

‖ẑ′i − xi‖ (9)

where ẑ′ = [ẑ′1 · · · ẑ′n]T is not necessarily an optimal estimation algorithm.
Clearly, (9) entails a linear complexity.

The quality of the cryptanalysis given by (9) can be determined by the error
probability (x′′′i 6= x). This probability depends on the parameters σw, σ̃e and n.

The simulations for both the error probabilities of the legitimate user and the
eavesdropper, calculated by (5) and (9), respectively, are presented in Table 1.
We consider that the message alphabet is {−1,+1}, thus M = 2, and n = 100.

It can be can seen at Table 1, that for the case of equal legitimate and wiretap
channels qualities (σ2 = σ2

w and σ2
e = σ̃2

e) the error probabilities at a legitimate
channel is much lesser than the error probabilities at a wiretap channel. More-
over, the error probabilities for a wiretap channel may occur sufficiently large
such that it is not possible to recover any meaningful text in some natural lan-
guage. In fact, if we assume (for ease of simplicity) that the symbols of some
natural language are coded into 5-bits combinations and each bit is transformed
independently into an erroneous bit with probability p′ in line with a binary
symmetric channel model, then the capacity of such 32-ary symmetric channel
without memory can be calculated as follows [9]:

C = 5 + (1− p′)5 log2

[
(1− p′)5

]
+ 5p′(1− p′)4 log2

[
p′(1− p′)4

]
+10(p′)2(1− p′)3 log2

[
(p′)2(1− p′)3

]
+10(p′)3(1− p′)2 log2

[
(p′)3(1− p′)2

]
+ 5(p′)4(1− p′) log2

[
(p′)4(1− p′)

]
+ (p′)5 log2

[
(p′)5

]

(10)

In Table 2 there are presented the results of some calculations by (10) for
different values of p′.

Let us suppose that the entropy of a natural language with 32-letter alphabet
is approximately 1.5 bit/letter [10], then for p′ > 0.19 it is impossible to recognise
the meaningful text correctly by Shannon theorem [10].

In order to confirm this fact, we simulate a corruption of a meaningful text
in English using a BSC model with different error probabilities p′. The results
are presented in Table 3.



Channel parameters
σ2 σ̃2

e p p′ M
√
σ2
w σ̃2

e

7 4 0.0207 0.2119 10.58

8 4 0.0187 0.2024 11.31

9 4 0.0190 0.1927 12.00

6 5 0.0243 0.2398 10.95

7 5 0.0224 0.2240 11.83

8 5 0.0214 0.2182 12.64

5 6 0.0290 0.2657 10.95

6 6 0.0267 0.2530 11.99

7 6 0.0248 0.2382 12.96

8 6 0.0240 0.2207 13.85

4 7 0.0345 0.2915 10.58

5 7 0.0314 0.2836 11.83

6 7 0.0287 0.2721 12.96

7 7 0.0261 0.2569 14.00

4 8 0.0374 0.3008 11.31

5 8 0.0327 0.2817 12.64

6 8 0.0305 0.2791 13.85

7 8 0.0281 0.2639 14.96

Table 1. The error probabilities for the legitimate user (p) and for eavesdropper (p′).
We assume σ2 = σ2

w and σ2
e = σ̃2

e and n = 100.

p′ 0.1 0.19 0.4 0.49

C 2.655 1.4926 0.1452 0.0014

Table 2. Capacity of a 32-ary symmetric noisy channel without memory for 5-bit
representation and transmitting bits over binary symmetric channel (BSC) without
memory against the error probability p′.



p′ = 0.1

p′ = 0.2

p′ = 0.3
Table 3. The results of simulation English meaningful text that passes over BSC with
error probabilities p′ (many non-printable characters appear).



From this experiment it can be seen that, for p′ > 0.2, it is practically
impossible to recover correctly the text. But if it is encrypted, more redundant
material (say multiple repetition of the same symbols or words) may appear,
thus it could be possible to recover this text even for the error probability p′ >
0.2. Moreover, Table 1 shows that, for chosen channel parameters, the error
probability for a legitimate channel is insufficiently small.

In order to decrease this probability we propose to increase the variance σ2,
say at the cost of increasing the transmitted signal power. The results of such
simulation of both channels (legitimate and wiretap, for n = 100) are presented
in Table 4. It follows that although the error probabilities for legitimate users
can be acceptable, the error probabilities for wiretapper are not sufficiently large.
(We stress that this result is valid even under the condition (8)!)

It is possible to decrease the error probability at the legitimate channel keep-
ing almost the same error probability for wiretap channel by increasing the
number n of antennas. So, taking n = 1000, σ2 = σ2

w = 8 and σ2
e = σ̃2

e = 5
then necessarily p = 0.00642, p′ = 0.2175 (compare with Table 1, N = 6). How-
ever such a large number of antennas obviously creates a technological problem
within a MIMO system.

4 A combination of PCS with wiretap channel coding

From Table 1, we find that PCS entails a significant increasing of the error prob-
ability for wiretap channel. This fact paves the way for additional application of
wiretap coding [11]. It is well known that the so called secret capacity of wiretap
channel is (in our notation) [12]:

C = h(p)− h(p′)

where H : x 7→ h(x) = x log2 x+ (1− x) log2(1− x).
This means that there exist encoding/decoding procedures with code rate

R < C providing a probability of incorrect decoding, by a legitimate channel, as
small as desired and simultaneously an amount of Shannon’s information leaking
to eavesdropper as small as desired when the length of code blocks approaches
to infinity.

In Table 5 there are presented the values of C calculated for some values p
and p′ appearing partly at Table 1.

We see from this table that it is possible to reach sufficiently large code rate in
order to provide close to zero eavesdropping and reliable legitimate information
transmission. Moreover, changing additive noise variation we can maximise the
value of capacity C. The control of additive noise power can be done by sending
additive noise with desired power from transmitting side as it was described
in [3].

Of course it is possible to share a secret key initially using the so called public
discussion [13, 14] which does not require complex encoding/decoding methods
but in this way one may lost the main feature of PKS, namely, the absence of
any key distribution in advance.



Channel parameters
σ2 σ̃2

e p p′ M
√
σ2 σ̃2

e

20 4 0.0122 0.1320 17.88

50 4 0.0081 0.0838 28.28

70 4 0.0069 0.0742 33.46

100 4 0.0059 0.0625 40.00

20 5 0.0137 0.1496 20.00

50 5 0.0090 0.0974 31.62

70 5 0.0075 0.0854 37.41

100 5 0.0067 0.0693 44.72

20 6 0.0149 0.1605 21.90

50 6 0.0097 0.1040 34.64

70 6 0.0084 0.0905 40.98

100 6 0.0072 0.0742 48.98

20 7 0.0162 0.1692 23.66

50 7 0.0106 0.1117 37.41

70 7 0.0089 0.0990 44.27

100 7 0.0077 0.0815 52.91

20 8 0.0171 0.1793 25.29

50 8 0.0112 0.1210 40.00

70 8 0.0095 0.1062 47.32

100 8 0.0081 0.0869 56.56

Table 4. The error probabilities for the legitimate user (p) and for eavesdropper (p′).
We assume σ2 = σ2

w and σ2
e = σ̃2

e and n = 100, with increased variances of channel
matrices.

p 0.0207 0.0224 0.0248 0.0261 0.0281

p′ 0.2119 0.2240 0.2382 0.2569 0.2639

C 0.5997 0.6127 0.6244 0.6476 0.6478

Table 5. The values of secret capacity C for wiretap channel with different bit error
probabilities of legitimate (p) and wiretap channel (p′).



5 Conclusion

We have considered the keyless cryptosystem proposed in [3] and intended for
the use in wireless multipath channels based on massive MIMO technology. It
seems to be very novel approach to build a provable (for the worst case) secure
cryptosystem based on lattice hard problem. We remark that if the condition (8)
holds it is sufficient to provide an exponential complexity for the optimal decryp-
tion algorithm (7) but it is not enough to exclude suboptimal cipher breaking
algorithm (9). Although even so this algorithm is used, it provides in signifi-
cant degradation of the eavesdropper’s channel but not for all cases it results
in impossibility of plaintext reading. It depends on the parameters of the chan-
nel model (σ2, σ2

w, σ
2
e , σ̃

2
e), which in turn can be unknown exactly for a designer

of cryptosystem. The use of wiretap coding in a combination with PCS allows
to provide both security and reliability but constructive encoding method that
provides the code rate close to channel capacity is still unknown. In order to put
PCS into practice, it is also necessary to arrange a procedure of channel matrices
estimation based on a sending of testing signals in real time.

And then the first question arises how affects incorrectness of channel matri-
ces estimation on the error probability in the legitimate channel?

Thus we can conclude that the proposed cryptosystem is very interesting from
the theoretical point of view but its practical implementation requires further
investigations.
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