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Abstract

The notion of extended nested dual system groups (ENDSG) was recently proposed by Hofheinz et al. [P-
KC 2015] for constructing almost-tight identity based encryptions (IBE) in the multi-instance, multi-ciphertext
setting. However only the composite-order instantiation was provided and more efficient prime-order instan-
tiations are absent. The paper fills the blank by presenting two constructions.

• We revisit the notion of ENDSG and realize it using asymmetric prime-order bilinear groups based on
Chen and Wee’s prime-order instantiation of nested dual system groups [CRYPTO 2013]. This yields the
first almost-tight IBE in the prime-order setting achieving weak adaptive security in the multi-instance,
multi-ciphertext scenario under the d-linear assumption (in the asymmetric setting). We further ex-
tended the ENDSG to capture stronger security notions, including B-weak adaptive security and full
adaptive security, and show that our prime-order instantiation is B-weak adaptive secure without any
additional assumption and full adaptive secure under the d-linear assumption.

• We also try to provide better solution by fine-tuning ENDSG again and realizing it following the work
of Chen, Gay, and Wee [EUROCRYPT 2015]. This leads to an almost-tight fully adaptively secure IBE
in the same setting with better performance than our first IBE scheme but requires a non-standard
assumption, d-linear assumption with auxiliary input. However we note that, the 2-linear assumption
with auxiliary input is implied by the external decisional linear assumption. Or we can realize the
second instantiation using symmetric bilinear pairings in which case the security relies on standard
decisional linear assumption.
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1 Introduction

1.1 Background and Problem

Recently we have witnessed a breakthrough of proof technique in the field of functional encryptions. In
2009, Waters [Wat09] proposed a new proof paradigm for identity based encryptions (IBE), called dual system
technique, and obtained the first adaptively secure IBE with short public key in the standard model whose
security relies on a static assumption and the security loss is O(q) where q is the number of key extraction
queries. From a high-level view, the dual system technique works with two copies of some target cryptographic
primitive such as IBE. The first copy is put into the so-called normal space and acts as the real system, while
the second copy is put into the so-called semi-functional space and only used in the proof. Furthermore, the
independence of the two spaces (say, orthogonality under pairing operations) allows us to make some changes
in the semi-functional space for proof but still maintain the correctness in the normal space. The new technique
permits the simulator to reply all queries made by the adversary and avoids the security loss caused by the
classical partition technique [BF01, BB04a, Wat05].

The revolution was then spreading across the field of functional encryptions. In particular, the dual system
technique is now applied for establishing adaptive security of various types of functional encryptions, ranging
from simple functionality, such as IBE [BKP14, CW14, JR13, CW13, Lew12, CLL+12, RCS12] to expressive
and complicated functionality, like ABE and IPE [LOS+10, LW12, OT12, Att14, CW14, Wee14, AY15, CGW15].
Some of them applied the dual system technique in a modular and abstract fashion such as Wee’s predicate
encoding [Wee14] and Attrapadung’s pairing encoding [Att14].

The dual system technique also helped us to go further. Chen and Wee [CW13] combined the dual system
technique with the proof idea underlying the Naor-Reingold pseudorandom function [NR04] and achieved the
first almost-tight IBE from standard assumption in the standard model. The security loss is O(n) where n the
length of identities, and unrelated to the number of key extraction queries anymore. The proof of Chen and
Wee [CW13] established the real system in the normal space and a mirror one in the semi-functional space
for proof as the original dual system technique [Wat09]. However, instead of dealing with key extraction
queries (in the semi-functional space) separately as Waters [Wat09], Chen and Wee [CW13] handled all (i.e.,
q) secret keys as a whole in the next step following the proof strategy of Naor and Reingold [NR04]. In detail,
we may imagine the master secret key as a truly random function taking identities as input. Starting from
the original master secret key whose domain is just {ε}, the proof argues that we can double the domain size
until it reaches the size of the identity space if identities are encoded in a bit-by-bit fashion [Wat05]. For
identity space {0,1}n, only n steps are required. Finally, the property of the random function allows us to
information-theoretically hide the challenge message.

Recent work by Hofheinz et al. [HKS15] extended Chen and Wee’s result [CW13] and achieved almost
tightness in the multi-instance, multi-ciphertext setting where the adversary simultaneously attacks multiple
challenge identities in multiple IBE instances. In Chen and Wee’s paradigm [CW13], the i-th step that increases
the domain size from 2i−1 to 2i can only handle the situation where all challenge ciphertexts share the same
i-th bit, which no longer holds in the multi-instance, multi-ciphertext setting. The proposed solution [HKS15]
is to further split the semi-functional space into two independent (in some sense) subspaces, labelled by ∧
and ∼ respectively. The i-th step starts from ciphertexts with ∧-semi-functional component. We then move
the semi-functional components in all ciphertexts for identities whose i-th bit is 1 to the ∼-semi-functional
space. At this moment, (1) in the ∧-semi-functional space, all ciphertexts share the same i-th bit 0; (2) in the
∼-semi-functional space, all ciphertexts share the same i-th bit 1, which means that one can now applied Chen
and Wee’s proof strategy [CW13] in both subspaces separately.

Unfortunately, only an instantiation using composite-order bilinear groups was proposed in [HKS15]. Our
goal is to realize an almost-tight IBE in the multi-instance, multi-ciphertext setting using prime-order bilinear
groups. We emphasize that it is not just a theoretical interest to pursue a solution in the prime-order setting.
Most schemes (including [HKS15]) using composite-order bilinear groups base their security on the Subgroup
Decision Assumption [BWY11] which implies the hardness of factoring the group order. This forces us to
work with elliptic curve groups with quite large, say 1024 bits, base field when implementing the scheme. In
contrast, for constructions in the prime-order setting, we could significantly reduce the size of base field, say
160 bits, without sacrificing the security level. Though the construction now becomes complex in general, this
still brings us a considerable advantage in both computation and space efficiency.
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1.2 Motivation and Observation

Hofheinz et al.’s work [HKS15] roughly follows the style of [CW13]. In particular, they first extended
the notion of Nested Dual System Groups proposed by Chen and Wee [CW13], then proposed a general IBE
construction from the extended NDSG (ENDSG) in the multi-instance, multi-ciphertext setting, and finally
presented an instantiation of ENDSG using composite-order bilinear groups. Therefore it is sufficient for our
purpose to realize ENDSG using prime-order bilinear groups and apply the general construction proposed
in [HKS15]. However we observe that the definition of ENDSG proposed in [HKS15] sets too strong require-
ments on the algebra structure of underlying groups, which makes it hard to be instantiated using existing
technique realizing dual system technique from prime-order bilinear groups.

An ENDSG describes a set of abstract groups with a bunch of structural and computational requirements
supporting the Hofheinz et al.’s proof strategy. We roughly recall1 that an ENDSG defined in [HKS15] consists

of five algorithms: SampP, SampG, SampH, ÛSampG, and åSampG. Informally, the first algorithm generates
a set of groups G,H,GT of order N (as well as other parameters) and the other four algorithms are used to
sample random elements from some subgroup of G or H (which are associated with ciphertexts and secret
keys, respectively, in the context of IBE). We highlight that they required that

– Groups G and H are generated by some g ∈ G and h ∈ H, respectively. (From the specification of group
generator G.)

– The outputs of SampG, ÛSampG, and åSampG are distributed uniformly over the generators of different
nontrivial subgroups of Gn+1 of coprime order, respectively. (From the G-subgroups.)

On the other hand, nearly all techniques realizing dual system technique in the prime-order setting employs
vector spaces over Fp (for a prime p) to simulate groups G and H [Lew12, LW12, OT12, CW13, CW14,
CGW15]. Meanwhile subgroups of G and H are naturally simulated by subspaces of the vector space. Firstly,
since a vector space is an additive group but not cyclic in general, neither G nor H is cyclic. Secondly, any

d-dimensional subspace has pd vectors, thus the orders of the outputs of SampG, ÛSampG, and åSampG must
share a common factor p. In a word, techniques based on vector spaces by no means meets the requirements
shown above.

Fortunately, we observe that both requirements are applied nowhere but to provide random self-reducibility
of computational requirements (including LS1, LS2, NH) when they proved ENDSG implies IBE. For example,
the Left-subgroup indistinguishability 1 (LS1) said that, for any (PP, SP) ← SampP(k, n), the following two
distributions are computationally indistinguishable.

�

g : g← SampG(PP)
	

and
n

g · bg : g← SampG(PP), bg←ÛSampG(PP, SP)
o

.

Given T which is either g or g · bg, the simulator (in the proof) can sample s← Z∗N and generate another inde-
pendent problem instance T s following the two requirements we have reviewed. We note that this property
is crucial for achieving almost-tight reduction since the multi-instance, multi-ciphertext model is considered
where the adversary is able to enquire more than one challenge ciphertext. This suggests that, if we adapt the
ENDSG to support such random self-reducibility explicitly, the resulting ENDSG will still imply an IBE in the
multi-instance, multi-ciphertext setting and the limitations on the underlying groups may be removed. As this
happens, many existing techniques in the prime-order setting can finally be applied to realize ENDSG and it is
now feasible to build an almost-tight IBE in the same setting using prime-order bilinear groups.

1.3 Contributions and Techniques

In this paper, we revisit the definition of ENDSG, and show that the revised ENDSG not only implies
an IBE in the multi-instance, multi-challenge setting but also can be almost-tightly instantiated using prime-
order bilinear groups. Putting them together, we obtain an almost-tight IBE in the same setting from prime-
order bilinear groups in the standard model. In summary, we proposed two constructions: the first one is
proven secure under the d-linear assumption (d-Lin), while the second one is proven secure under a stronger
assumption (d-linear assumption with auxiliary input, d-LinAI for short) but has shorter keys and ciphertexts
than the first one.

1The notation is slightly different from [HKS15].
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Revisiting Extended Nested Dual System Groups. Our revision of ENDSG is defined mainly in the spirit
of [HKS15] but with the difference that we provide (in the requirements like LS1) enough independently-
sampled subgroup elements directly instead of assuming some special algebraic structure. As an example,
we can define LS1 as: for any (PP, SP) ← SampP(k, n), the following two distributions are computationally
indistinguishable.

n

¦

g j

©

j∈[q] : g j ← SampG(PP)
o

and
n

¦

g j · bg j

©

j∈[q] : g j ← SampG(PP), bg j ←ÛSampG(PP, SP)
o

.

Here the parameter q depends on the number of challenge ciphertexts. This makes the definition more general
and allows us to realize the notion using diverse algebra frameworks, especially prime-order bilinear groups
we focus on in this paper. On the other hand, it still implies an IBE in the multi-instance, multi-ciphertext
setting. The construction and the proof are almost the same as [HKS15] and have not essential difference.

To be fair, Hofheinz et al.’s definition is more convenient in the sense that any instantiation of ENDSG
immediately results in an almost-tight IBE in the multi-instance, mulit-ciphertext setting. In contrast, an
instantiation of our definition with loose security reduction clearly can not lead to tightly secure IBE. Hence,
when working with our definition, we should not jump to the conclusion before checking the tightness. We
also remark that we do not negate prime-order instantiations of Hofheinz et al.’s ENDSG.

Instantiation from d-Linear Assumption. We implement our revised ENDSG by extending the prime-order
instantiation of NDSG by Chen and Wee [CW13]. The security only relies on the d-linear assumption in the
asymmetric setting and the reduction is tight in the sense that the security loss is O (d) and independent of the
number of samples, say q in the previous example, given to the adversary. By the generic construction [HKS15]
(also c.f. Appendix B), we obtain the first almost-tight IBE in the multi-instance, multi-ciphertext setting in the
prime-order setting and fill the blank left in the Hofheinz et al.’s work [HKS15].

Technically, we extend the basis from 2d × 2d matrix used in [CW13] to 3d × 3d matrix in order to
accommodate the additional semi-functional space. In detail, the first d-dimensional subspace is the normal
space, the next d-dimensional subspace is the ∧-semi-functional space, and the last d-dimensional subspace is
the ∼-semi-functional space.

The main challenge is to realize the Left Subgroup Indistinguishability 2 (LS2) property (c.f. Section 3).
Roughly, we must prove that g ·bg (sampled from the normal space and ∧-semi-functional space of G) and g ·eg
(sampled from the normal space and ∼-semi-functional space of G) are computational indistinguishable even
when the adversary can access to bh∗ ·eh∗ ∈ H where bh∗ ∈ H is orthogonal to the normal and ∼-semi-functional
space of G and eh∗ ∈ H to the normal and ∧-semi-functional space of G. To simulate bh∗ ·eh∗, we further extend
the subspace ofbh∗ andeh∗ from 1-dimensional to d-dimensional which allows us to utilize the technique used in
the proof of right subgroup indistinguishability property of Chen-Wee’s prime-order instantiation of dual system

groups [CW14]. So as to support this technical extension, we replace bh∗ and eh∗ with two algorithms ÛSampH
∗

and åSampH
∗

respectively in our revised ENDSG, and corresponding computational requirements are further
revised following the style discussed in the previous paragraph.

Achieving Stronger Security Guarantee. Hofheinz et al. [HKS15] achieved weak security from their ENDS-
G where the adversary is allowed to make single challenge query for each identity in each instance. They
introduced a variant of the BDDH assumption (s-BDDH) and proved the full security of their original construc-
tion where the above restriction on the adversary is removed. This additional computational requirement is
realized under the dual system bilinear DDH assumption (DS-BDDH) in their composite-order instantiation.

The revisions we have made do not involve the s-BDDH assumption, and the resulting ENDSG only leads to
weak security. Motivated by and based on our prime-order instantiation, we investigate two flavors of security
stronger than the weak one.

1. We extend the non-degenerate property to B-bounded version which states that the non-degeneracy
property holds even when a single bh∗ works with B bg0’s where B is a prior bound. It is not hard to prove
that our prime-order instantiation has already B-bounded non-degenerated and an ENDSG equipped
with B-bounded non-degenerate property implies an IBE with B-weak adaptive security where the ad-
versary allows to make at most B challenge queries for each identity in each instance (c.f. Section 2).
Therefore, when building the system based on the d-linear assumption with d > 1, we obtain an IBE
with strictly stronger security guarantee.
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2. We extend the non-degeneracy property to computational version which is essentially similar to the s-
BDDH assumption used in [HKS15] and states that the non-degeneracy property holds even when a
single bh∗ works with polynomially many bg0’s. We show that an ENDSG equipped with this computa-
tional non-degeneracy requirement achieves full security where there is no restriction on the number
of challenge queries on a single identity (c.f. Section 2). Luckily, we can prove that our prime-order
instantiation (with no modification) is computationally non-degenerated under the d-linear assumption,
and no additional assumption is required.

Towards More Efficient Instantiation. Having obtained the first prime-order instantiation of ENDSG, we
continue to purse more efficient solutions. One possible method is to reduce the dimension of two semi-
functional spaces. Because we hope to continue to base our construction on the general d-linear assumption
in the asymmetric setting. The attempt gives rise to two technical problems due to the lack of space.

– We can not prove Left Subgroup Indistinguishability 2 (LS2) property using the technique provided by
Chen and Wee in [CW14]. In particular, the simulator will need some elements in another source group
to simulate bh∗ ·eh∗ which is not given in the standard d-linear assumption.

– We can not prove Computational Non-degeneracy (ND) property as before since neither bg0 nor bh has
enough space to program the d-linear assumption during the simulation.

The second issue is easy to solve by the observation that there are two semi-functional spaces and we
only use one of them so far. We first define a variant of computational non-degeneracy property taking the ∼
semi-functional space into account. Then if all two semi-functional spaces together has at least d dimension,
this computational non-degeneracy property should be proved as before. On the other hand, from the view of
IBE, we could use the pseudo-randomness of e(bg0 · eg0,bh∗ ·eh∗) to prove the security (from Game3 to Game4,
c.f. Appendiex B) instead of just e(bg0,bh∗). To make the intuition explicit and general, we also re-organize
the series of left-subgroup indistinguishability properties in our revised ENDSG. Roughly, we define three LS
requirements as: (1) LS1: g is indistinguishable from g · bg · eg; (2) LS2: g · bg · eg is indistinguishable from g · eg;
(3) LS3: g · bg · eg is indistinguishable from g · bg.

In contrast, the first issue is seemingly hard to circumvent. Therefore, we decide to prove the LS2 property
under an enhanced d-linear assumption where we give adversary more elements on another source group for
simulating bh∗ ·eh∗, which is called d-linear assumption with auxiliary input (c.f. Section 8). Even though this
assumption is non-standard in general, we point out that the concrete assumption with d = 2 is implied by
the external decision linear assumption [ACD+12] (c.f. Section 9 and Appendix A.1), which has been formally
introduced and used to build other cryptographic primitives.

Beside that, we further fine-tune the ENDSG by hiding public parameters for SampH from the adversary
when defining computational requirements, including LS1, LS2, LS3, NH, and ND. We argue that the absence
of this part of public parameters will not arise difficulty in building IBE scheme since they always correspond to
the master secret key which is not necessary to be public according to the security model. Instead, we give the
adversary enough samples from Hn+1 which is sufficient for answering key extraction queries in the security
reduction from ENDSG to IBE. Though this relaxation of ENDSG has no direct motivation, we thought it will
help us to reach simple, clean and efficient solution.

In summary, we have fine-tuned the ENDSG in three aspects: (1) update non-degeneracy requirement;
(2) re-organize LS requirements; (3) hide parameters for SampH. We describe the fine-tuned ENDSG in
Section 7 and verify in Appendix C that all these modifications will not prevent ENDSG from deriving IBE in
the multi-instance, multi-ciphertext setting.

The start point of instantiating the fine-tuned ENDSG is the prime-order instantiation of dual system groups
recently proposed by Chen et al. [CGW15], which is quite simple and introduced a new method of randomizing
the basis. Following the above discussion, we technically work with 2d×2d matrix and generate the basis using
the dual pairing vector space method [OT08, OT09, LOS+10]. Assuming d is even, the first d dimensional
subspace is normal space, the remaining two d/2 dimensional subspaces act as ∧ semi-functional subspace
and ∼ semi-functional subspace, respectively. Note that both semi-functional spaces are now smaller (each
of them has d/2 dimension) but enough for our proof (the entire semi-functional space has d dimension).
Finally, the basis is then randomized following [CGW15].

The security of this instantiation is tightly reduced to the d-linear assumption with auxiliary input in the
asymmetric setting, which leads to an almost-tight fully adaptively secure IBE in the multi-instance, multi-
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Table 1: Comparing Efficiency among existing and proposed almost-tight IBE schemes. |MPK|, |SK|, and |CT| are the size
of master public key, user’s secret key and ciphertext, respectively. |G1| and |G2| indicates the size of elements in the
source groups of asymmetric bilinear groups. |G| indicates the size of elements in the source group of symmetric bilinear
groups (of prime and composite order). For all cases, |GT | is the size of elements in the target group of bilinear groups.
TEnc and TDec are the running time of algorithm Enc and Dec, respectively. For simplicity, we just consider the amount of
exponentiation and pairing operations. Following the similar style, we let E1 be the running time of a single exponentiation
on group G1 in the asymmetric bilinear group, E the running time of a single exponentiation on group G in the symmetric
bilinear group. For any case, ET and P indicates the time consumed by a single exponentiation in group GT and by a single
pairing operation, respectively. “MIMC” indicates whether the construction is proven secure in the multi-instance, multi-
ciphertext setting. “d-Lin” and “d-LinAI” stand for d-linear assumption and its extension with auxiliary input, respectively.
”DLIN”, “SXDH” and “sDLIN” stand for the decisional linear assumption in the asymmetric setting, symmetric external
Diffie-Hellman assumption, and decisional linear assumption in the symmetric setting, respectively. “Static” means static
assumptions in the composite-order bilinear group, such as subgroup decision assumption.

Scheme Ord of Grp Assump. |MPK| |SK| |CT| TEnc TDec MIMC

CW [CW13] Prime
d-Lin 2d2(2n+ 1)|G1|+ d|GT | 4d|G2| 4d|G1|+ |GT | 4d2E1 + dET 4dP

%DLIN (16n+ 8)|G1|+ 2|GT | 8|G2| 8|G1|+ |GT | 16E1 + 2ET 8P
SXDH (4n+ 2)|G1|+ |GT | 4|G2| 4|G1|+ |GT | 4E1 + ET 4P

HKS [HKS15] Comp. Static (2n+ 1)|G|+ |GT | 2|G| 2|G|+ |GT | 2E + ET 2P "

Sec. 5 Prime
d-Lin 3d2(2n+ 1)|G1|+ d|GT | 6d|G2| 6d|G1|+ |GT | 6d2E1 + dET 6dP

"DLIN (24n+ 12)|G1|+ 2|GT | 12|G2| 12|G1|+ |GT | 24E1 + 2ET 12P
SXDH (6n+ 3)|G1|+ |GT | 6|G2| 6|G1|+ |GT | 6E1 + ET 6P

Sec. 9 Prime
d-LinAI 2d2(2n+ 1)|G1|+ d|GT | 4d|G2| 4d|G1|+ |GT | 4d2E1 + dET 4dP

"
sDLIN (16n+ 8)|G|+ 2|GT | 8|G| 8|G|+ |GT | 16E1 + 2ET 8P

ciphertext setting with higher efficiency than our first construction. As we have mentioned, the concrete IBE
with d = 2 is based on the external decision linear assumption [ACD+12]. This suggests that this concrete
construction can be further adapted to work with symmetric bilinear groups and the security is now based on
the decisional linear assumption in the symmetric setting, which is well-established and has been extensively
used in many sub-field of cryptography.

1.4 Comparison and Discussion

We make a comparison among existing almost-tight IBE schemes in the multi-instance,multi-ciphertext
setting in terms of time and space efficiency. The details are shown in Table 1. Our comparison involves the
composite-order construction by Hofheinz et al. [HKS15], the prime-order constructions in Section 5 based on
the d-Lin, DLIN (d = 2) and SXDH assumption (d = 1), and the prime-order construction from Section 9 based
on the d-LinAI assumption in the asymmetric setting and the DLIN assumption in symmetric bilinear groups
(d = 2). As a base line, we also consider the efficiency of prime-order construction by Chen and Wee [CW13]
in the Table, which is not built for the multi-instant,multi-ciphertext setting.

Hofheinz et al.’s construction (see the second row in Table 1) works with a symmetric bilinear group whose
order is the product of four distinct primes, the sizes of group elements are much larger, and exponentiation
operations and pairing operations are much more expensive. Therefore the overall efficiency is not acceptable
even though the numbers of group elements in MSK, SK and CT are smaller and Enc and Dec require less
exponentiation operations and pairing operations.

When instantiating our first instantiation (see the third row in Table 1) under the decisional linear assump-
tion, each group element in G and H is a 6-dimension vector over the underlying bilinear group G1 and G2,
respectively. When instantiating under the SXDH Assumption, each group element inG andH is a 3-dimension
vector over G1 and G2, respectively. These of course increase the size of MPK, SK and CT in the derived IBE
scheme compared with Chen-Wee’s construction (see the first raw in Table 1) in the weak model. And so do
the running time of Enc and Dec. We emphasize that in the SXDH case the cost we pay for stronger security
model is quite small. In particular, the sizes of SK and CT increase by just 2 group elements (of G1 or G2), and
the running time of Enc and Dec increase by the cost of just 2 exponentiations and pairings, respectively.

In our second instantiation based on the DLIN assumption in the symmetric bilinear group (see the last
row in Table 1), each group element in G and H is a vector of just 4-dimension over G. The resulting IBE is of
course more efficient than first instantiation under DLIN assumption in the symmetric setting. Furthermore,
we remind the reader that the instantiation of Chen-Wee’s almost-tight secure IBE [CW13] (not in the multi-
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instance, multi-ciphertext setting) under the DLIN assumption (see the first row in Table 1) also works with
4 × 4 matrix. In other word, we reach stronger security guarantee for free. However, since the latter two
constructions can be realized using asymmetric bilinear groups, their concrete efficiency may be still better
than our second one. We thought this as the first step towards better constructions and leave it as an open
problem to find more efficient constructions under the d-linear assumption in the asymmetric setting.

1.5 Related Work

Dual System Groups and Its Variants. Chen and Wee proposed the notion of dual system group [CW14],
which captures key algebra structure supporting the dual system technique. They used this abstract primitive
to obtain an HIBE scheme with constant-size ciphertext using prime-order bilinear groups. The nested dual
system group, an variant of dual system groups, was proposed by Chen and Wee [CW13] to reach almost-tight
adaptively secure IBE in the standard model. Recently, Gong et al. [GCTC15] extended the concept of dual
system group and derived an unbounded HIBE [LW11] with shorter ciphertexts in the prime-order setting.

Identity Based Encryption. The notion of identity based encryptions was introduced by Shamir [Sha84] in
1984. The first practical realization was proposed by Boneh and Franklin [BF01] using bilinear groups and
Cocks [Coc01] using quadratic residue. Both of them rely on the heuristic random oracle model. Since then
several practical solutions in the standard model were proposed, including Boneh-Boyen’s IBE [BB04b, BB04a],
Waters’ IBE [Wat05], and Gentry’s IBE [Gen06]. In 2009, Waters [Wat09] proposed a new proof methodology,
the dual system encryption, and presented an IBE scheme with short public key and proved its security under
several simple assumptions in the standard model. Recently, Chen and Wee [CW13] achieved almost-tight IBE
by utilizing the dual system technique in a novel way. Very recently, Blazy et al. [BKP14] built the connection
between IBEs and affine message authentication code which is a symmetric primitive. IBE can also be realized
using other algebra framework such as lattices [GPV08, ABB10a, ABB10b].

1.6 Independent Work

The independent work by Attrapadung, Hanaoka, and Yamada [AHY15] also involves several constructions
of almost-tight IBE in the multi-instance, multi-ciphertext setting. They developed an elegant framework for
building almost-tight IBE in the multi-instance, multi-ciphertext setting from the so-called broadcast encoding,
which is a special form of Attrapadung’s pairing encoding [Att14], and obtained a series of almost-tight IBE
schemes with various properties (including sub-linear size master public key and anonymous version) using
both composite-order and prime-order bilinear group. Their results and ours partially overlap. Their scheme
with constant-size ciphertext in prime-order group (i.e., Φprime

cc ) is similar to our second construction based
on decisional linear assumption (in symmetric case) or external decision linear assumption (in asymmetric
case) shown in Section 9. In fact, they share the same performance in terms of the size of ciphertexts and
secret keys and running time of Enc and Dec. However we note that we also provide an generalization of this
construction but proven secure under a non-standard assumption, d-linear assumption with auxiliary input.
Furthermore, our first construction in Section 5 is full adaptively secure under the d-linear assumption in the
asymmetric bilinear group, which is a more general and weaker assumption than the external decision linear
assumption used by both Attrapadung et al.’s and our second constructions.

1.7 Outline

The paper is organized as follows: Section 2 presents necessary background. Section 3 gives our revised
definition of ENDSG. We realize our revised ENDSG in the prime-order setting in Section 4 and investigate how
to update our ENDSG and its prime-order instantiation to achieve higher security level in Section 6. A derived
concrete IBE is presented in Section 5. The next two sections are devoted to gain more efficient solutions. We
fine-tune the notion of ENDSG in Section 7 and present a prime-order realization in Section 8. The resulting
concrete IBE is shown in Section 9.
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2 Preliminaries

The section defines some notations used hereinafter and reviews the definition and the security model for
an identity based encryption in the multi-instance, multi-ciphertext setting.

2.1 Notations

For a finite set S, we use s ← S to denote the process of picking s from S at random. For any n ∈ Z+, we
take [n] as the brief representation of set {1, . . . , n}. For a probabilistic algorithm Alg, both y ← Alg(x; r)
and Alg(x; r) → y mean that we run the algorithm Alg on input x (probably consisting of more than one
arguments) and randomness r, and then assign the result to variable y . Fixed an input x , we may view
Alg(x; r) as a random variable and use [Alg(x; r)] to indicate its support, i.e., the set of all possible outputs of
algorithm Alg on input x . We may omit r for brevity when it is irrelevant to our discussion and the distribution
is clear from the context.

We use ord(G) to denote the order of group G. For a vector x = (x1, . . . , xn) ∈ Zn
ord(G), we define yx :=

(y x1, . . . , y xn) ∈ Zn
ord(G) for any y ∈ Zord(G), and gx := (g x1 , . . . , g xn) ∈ Gn for any g ∈ G. Let ei denote the

vector with 1 on the i-th position and 0 elsewhere. For two vectors of group elements g := (g1, . . . , gn) ∈ Gn

and g′ := (g ′1, . . . , g ′n) ∈ Gn, we define g · g′ = (g1 · g ′1, . . . , gn · g ′n) ∈ Gn where “·” on the right-hand side is
the group operation of G. Furthermore, for any vector x = (x1, . . . , xn) and i ∈ [n], we define x−i as a vector
(x1, . . . , x i−1,⊥, x i+1, . . . , xn) whose i-th position is unknown (we take ⊥ as a placeholder), and x|i as its prefix
of length i, i.e., x|i := (x1, . . . , x i). All notations described in this paragraph also apply to vector-like objects,
such as lists.

2.2 Identity Based Encryptions

Algorithms. An identity-based encryption scheme in the multi-instance setting consists of five (probabilistic)
polynomial time algorithms defined as follows:

– Param(1k, SYS)→ GP. The parameter generation algorithm takes as input a security parameter k ∈ Z+

in its unary form and a system-level parameter SYS, and outputs a global parameter GP.

– Setup(GP)→ (MPK, MSK). The setup algorithm takes as input a global parameter GP, and outputs a master
public key MPK and the corresponding master secret key MSK.

– KeyGen(MPK, MSK,y) → SKy. The key generation algorithm takes as input a master public key MPK, a
master secret key MSK and an identity y, and outputs a secret key SKy for the identity y.

– Enc(MPK,x, M) → CTx. The encryption algorithm takes as input a master public key MPK, an identity x
and a message M, outputs a ciphertext CTx for the message M under the identity x.

– Dec(MPK, SK, CT)→ M. The decryption algorithm takes as input a master public key MPK, a secret key SK

and a ciphertext CT, outputs a message M or a special symbol ⊥ indicating a decryption failure.

The so-called “multi-instance setting" indicates that we are considering a collection of IBE instances, each of
which is established under the same global parameter GP. We leave the system-level parameter SYS undefined
for generality. It may depend on concrete constructions or application scenarios.

Remark 1 The definition shown here is slightly different from that in [HKS15]. We combine the (system-level)
public parameter pp and secret parameter sp in [HKS15] as a global parameter GP. This global parameter is only
fed to algorithm Setup to create fresh master public/secret key pairs. And all the other algorithms just take MPK,
a local parameter, as input instead of pp, a global one. The adaptation is purely conceptual and made for clarity.
The security model (given below) is tuned accordingly.

Correctness. Roughly speaking, the correctness says that, for any IBE instance equipped with a legal master
public/secret key pair, any secret key honestly generated using the master secret key for some identity should
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be able to recover the message from a ciphertext for the same identity under the master public key. Formally,
for any parameter k ∈ Z+, any SYS, any identity x, and any message M,

Pr













Dec(MPK, SKx, CTx) = M

�

�

�

�

�

�

�

�

�

GP← Param(1k, SYS)
(MPK, MSK)← Setup(GP)

SKx← KeyGen(MPK, MSK,x)
CTx← Enc(MPK,x, M)













¾ 1− 2−Ω(k).

The probability space is defined by the random coins consumed by algorithm Param, Setup, KeyGen and Enc.

Adaptive Security in the Multi-instance, Multi-ciphertext Setting. Roughly, the adaptive security in the
multi-instance, multi-ciphertext setting extends the traditional adaptive security model for IBE [BF01] in the
sense that the adversary can access to multiple IBE instances (obtaining master public key and users’ keys)
and attack multiple ciphertexts (i.e., challenge ciphertexts), which is formalized by Hofheinz et al. [HKS15].
Ideally, the adversary is free to choose the challenge instance, the challenge identity and the challenge message
pair. Hofheinz et al. [HKS15] also identified a weaker variant in which only one challenge ciphertext is allowed
for each challenge identity in each challenge instance, and called the ideal one full security.

We review the experiment ExpIBE
A (k,λ, qK , qC , qR) between a challenger C and an adversary A [HKS15],

which captures both the weaker and full security notion. Here λ, qK , qC is the upper bound on the number of
IBE instances, key extraction queries, and challenge identities, respectively. The parameter qR is the maximum
amount of challenge ciphertexts for each challenge identity in each instance, which distinguishes the weak
security from the full security.

Setup. C gets GP← Param(1k, SYS) and creates λ pairs of master public key and secret key
�

(MPKι, MSKι)
	

ι∈[λ]
by independently invoking Setup with GP for λ times. We simply employ integers 1,2, . . . ,λ as their
instance handlers respectively. All master public keys and their instance handlers

�

(ι, MPKι)
	

ι∈[λ] are
sent toA . C also chooses a secret random bit β ∈ {0, 1}.

Query. A is allowed to make two types of queries: key extraction queries and challenge queries. C initializes
two sets QK and QC as empty sets, and answers every queries as follows:

– For each key extraction query (ι,y), C neglects it if, (1) ι /∈ [λ], or (2) |QK | > qK ; otherwise, it
outputs SK← KeyGen(MPKι, MSKι,y), and updates QK :=QK ∪

�

(ι,y, SK)
	

.

– For each challenge query (ι∗,x∗, M∗0, M∗1), C neglects it if, (1) ι∗ /∈ [λ], or (2) |M∗0| 6= |M
∗
1|, or (3)

�

�Q Id

�

�> qC where Q Id :=
¦

(ι,x)
�

�(ι,x,?,?,?) ∈QC

©

, or (4)
�

�

�

¦

(M0, M1, CT)
�

�(ι∗,x∗, M0, M1, CT) ∈QC

©

�

�

�>

qR; otherwise, it outputs CT∗← Enc(MPKι∗ ,x
∗, M∗β), and updates QC :=QC ∪

¦

(ι∗,x∗, M∗0, M∗1, CT∗)
©

.

We emphasize that we permit the adversary to submit a single query repeatedly by letting challenger C
keep track of each query made by adversaryA as well as the reply.

Guess. A outputs its guess β ′ ∈ {0, 1}.

We say an adversaryA wins in the above experiment if and only if both β = β ′ and QK ∩Q Id = ; hold. We use
ExpIBE

A (k,λ, qK , qC , qR) = 1 to denote this event. The probability space is defined by the randomness consumed
by both C andA . We define the advantage ofA as

AdvIBE
A (k,λ, qK , qC , qR) =

�

�Pr[ExpIBE
A (k,λ, qK , qC , qR) = 1]− 1/2

�

� .

Definition 1 (Adaptive Security of IBE) An identity based encryption is (λ, qK , qC , qR)-adaptively-secure if, for
any probabilistic polynomial time adversaryA the advantage AdvIBE

A (k,λ, qK , qC , qK) is bounded by 2−Ω(k).

Clearly, the (λ, qk, qC , qR)-adaptive security with unbounded qR is consistent with the full security, while the
(λ, qk, qC , 1)-adaptive security is exactly the weak security. Furthermore, we define B-weak adaptive security, an
intermediate security notion between the weak and the full security, as (λ, qK , qC , B)-adaptive security where
B ¾ 1 is an a priori bound.

10



3 Revisiting Extended Nested Dual System Groups

This section revises the ENDSG proposed by Hofheinz et al. [HKS15]. Our main goal is to reduce the
dependence on some special algebra structure which hinders the development of more instantiations beyond
using composite-order bilinear groups, especially more efficient prime-order instantiations. (See Section 1.)
We show our revised ENDSG followed by a series of remarks clarifying motivations and reasons behind several
technical decisions. As discussed in Section 1, key points are: (1) removing special group requirements; (2)
providing explicit samples in each computational assumption; (3) generalizing subgroup of bh∗ and eh∗.

Syntax. Our revised extended nested dual system group consists of eight (probabilistic) polynomial time
algorithms defined as follows:

– SampP(1k, n): On input (1k, n), output

– PP containing (1) group description (G,H,GT ) and an admissible bilinear map e :G×H→GT ; (2)
an efficient linear map µ defined on H; (3) an efficient sampler for H and Zord(H), respectively; (4)
public parameters for SampG and SampH.

– SP containing secret parameters forÛSampG,åSampG, ÛSampH
∗

and åSampH
∗
.

– SampGT: Im(µ)→GT .

– SampG(PP): Output g=
�

g0, g1, . . . , gn
�

∈Gn+1.

– SampH(PP): Output h=
�

h0, h1, . . . , hn
�

∈Hn+1.

– ÛSampG(PP, SP): Output bg=
�

bg0, bg1, . . . , bgn
�

∈Gn+1.

– åSampG(PP, SP): Output eg=
�

eg0, eg1, . . . , egn
�

∈Gn+1.

– ÛSampH
∗
(PP, SP): Output bh∗ ∈H.

– åSampH
∗
(PP, SP): Output eh∗ ∈H.

The first four algorithms are used in the real system, while the remaining ones are defined for the proof. The
notation SampG0 refers to the first element in the output of SampG, i.e., g0. The notational convention also

applies to SampH,ÛSampG, andåSampG.

Correctness. For all k, n ∈ Z+ and all (PP, SP) ∈ [SampP(1k, n)], it is required that:

(Projective.) For all h ∈H and all possible randomness s,

SampGT(µ(h); s) = e(SampG0(PP; s), h).

(Associative.) For all (g0, g1, . . . , gn) ∈ [SampG(PP)] and all (h0, h1, . . . , hn) ∈ [SampH(PP)],

e(g0, hi) = e(gi , h0), ∀i ∈ [n].

Security. For all k, n ∈ Z+ and all (PP, SP) ∈ [SampP(1k, n)], it is required that:

(Orthogonality.) For all bh∗ ∈ [ÛSampH
∗
(PP, SP)] and all eh∗ ∈ [åSampH

∗
(PP, SP)],

1. µ(bh∗) = µ(eh∗) = 1;

2. e(bg0,eh∗) = 1 for all bg0 ∈ [ÛSampG0(PP, SP)];

3. e(eg0,bh∗) = 1 for all eg0 ∈ [åSampG0(PP, SP)];

We note that the first requirement implies that e(g0,eh∗) = e(g0,bh∗) = 1 for all g0 ∈ [SampG0(PP)] by the
projective property (c.f. Section 3.2 in [CW13]).
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(Non-degeneracy.) Over the probability space defined by bg0 ←ÛSampG0(PP, SP), with overwhelming proba-

bility 1− 2−Ω(k), e(bg0,bh∗) is distributed uniformly over GT when sampling bh∗←ÛSampH
∗
(PP, SP).

(H-subgroup.) The output of SampH(PP) is distributed uniformly over some subgroup of Hn+1, while those

of ÛSampH
∗
(PP, SP) and åSampH

∗
(PP, SP) are distributed uniformly over some subgroup of H.

(Left subgroup indistinguishability 1 (LS1).) For any probabilistic polynomial time adversary A , the fol-
lowing advantage function is negligible in k,

AdvLS1
A (k, q) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D := (PP) , T0 :=
¦

g j

©

j∈[q] , T1 :=
�

g j · bg j

�

j∈[q]

and

g j ← SampG(PP), bg j ←ÛSampG(PP, SP), ∀ j ∈ [q].

(Left subgroup indistinguishability 2 (LS2).) For any probabilistic polynomial time adversary A , the fol-
lowing advantage function is negligible in k,

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j

o

j∈[q]

�

, T0 :=
¦

g j · bg j

©

j∈[q] , T1 :=
�

g j · eg j

�

j∈[q]

and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q+ q′];

g′j ← SampG(PP), bg′j ←ÛSampG(PP, SP), ∀ j ∈ [q];

g j ← SampG(PP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), ∀ j ∈ [q].

(Nested-hiding indistinguishability (NH).) For all η ∈ [bn/2c] and any probabilistic polynomial time adver-
saryA , the following advantage function is negligible in k,

AdvNH(η)
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
¦

(bg j)−(2η−1)

©

j∈[q] ,
¦

(eg j)−2η

©

j∈[q]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
�

h j · (bh∗∗j )
e2η−1 · (eh∗∗j )

e2η

�

j∈[q′]

and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q+ q′];

bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), ∀ j ∈ [q];

h j ← SampH(PP), bh∗∗j ←ÛSampH
∗
(PP, SP), eh∗∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q′].

We further define
AdvNH

A (k, q, q′) := max
η∈[bn/2c]

n

AdvNH(η)
A (k, q, q′)

o

.

Remark 2 (notations) The ENDSG is mainly defined for building identity based encryptions and thus has strong
connection to the security model for IBE. We remark that, in the description of LS1, LS2, and NH, the parameter
q roughly corresponds to the maximum number of challenge ciphertexts while the parameter q′ to the maximum
number of key extraction queries.
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Remark 3 (sampling bh∗ and eh∗, and H-subgroup) We model the process of sampling over subgroup generated

by bh∗ and eh∗ (in [HKS15]) as algorithm ÛSampH
∗

and åSampH
∗
, respectively. This allows us to employ more

complex algebra structure (say, extending the subspaces they located in from one dimension to higher one), which
is crucial for our prime-order instantiation in Section 4. Due to its generality, the H-subgroup property must be

extended to take both ÛSampH
∗

and åSampH
∗

into account.

Remark 4 (G-subgroup and H-subgroup) Since we provide adequate samples over group Gn+1 directly in the
last three computational security requirements and further re-randomization is not necessary in the proof, the
G-subgroup in the original definition could be safely removed. However this won’t let the revised ENDSG free from
H-subgroup property. The simulator still need the property to re-randomize T0 or T1 in NH(η) using SampH(PP)
to maintain the consistency of truly random functions on two identities sharing the same η-bit prefix.

On one hand, our revised definition for ENDSG is essentially consistent with Hofheinz et al.’s defini-
tion [HKS15]. In particular, it is not hard to see that one may use Hofheinz et al.’s ENDSG [HKS15] to
realize this revised version. Therefore their instantiation using composite-order bilinear groups can also be
taken as an instantiation of the revised version above. On the other hand, although our revised definition is
more general, it still implies an IBE in the multi-instance, multi-ciphertext setting. In fact, the construction,
the security result and its proof are nearly the same as those presented in [HKS15]. One may consider them as
rewriting Hofheinz et al.’s results [HKS15] in the language of our revised ENDSG. We present the construction
and sketch of the proof in Appendix B for completeness. It is worth noting that the construction only achieves
weak adaptive security. We will show how to further revised the definition of non-degeneracy to obtain an
ENDSG leading to full adaptive security in Section 6.

4 Instantiating ENDSG from d-Linear Assumption

We give an instantiating of our revised ENDSG (defined in Section 3) using prime-order bilinear groups
based on the technique of Chen and Wee [CW13]. Following the generic construction proposed in [HKS15]
(c.f. Appendix B), this yields the first IBE in the multi-instance, multi-ciphertext setting using prime-order
bilinear groups. We describe this IBE in Section 5.

The section begins with a brief review of prime-order bilinear groups and related computational assump-
tions. We define an natural extension of standard d-linear assumption in order to alleviate the complexity of
the proof. An instantiation of revised ENDSG in the prime-order setting is proposed with a series of proofs
showing that it indeed satisfies all correctness and security requirements.

4.1 Prime-order Bilinear Groups and Extended d-Linear Assumption

A prime-order (asymmetric) bilinear group generator GrpGen(1k) takes security parameter 1k as input
and outputs G := (p, G1, G2, GT , e), where G1, G2 and GT are finite cyclic groups of prime order p, and e :
G1×G2→ GT is a non-degenerated and efficiently computable bilinear map. We let g1, g2 and gT := e(g1, g2)
be a generator of G1, G2 and GT , respectively. We state the (standard) d-linear assumption (d-Lin for short) in
G1 (see Assumption 3), the analogous assumption in G2 can be defined by exchanging the role of G1 and G2.

Assumption 1 (d-Linear Assumption in G1) For any probabilistic polynomial time adversaryA , the following
advantage function is negligible in k,

Advd-Lin
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

G , g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 , ga1s1

1 , . . . , gad sd
1

�

, T0 := gad+1(s1+···+sd )
1 , T1 := g

ad+1(s1+···+sd )+ sd+1

1

and

G := (p, G1, G2, GT , e)← GrpGen(1k);

s1, . . . , sd ← Zp; a1, . . . , ad , ad+1, sd+1← Z∗p.
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“Matrix-in-the-exponent" Notation. For an m × n matrix X = (x i, j) over Zp and a group element g of G
(which may be G1, G2 or GT ), we define gX := (g x i, j ) which is an m× n matrix over G. We naturally extend
the domain of pairing e: given two matrices A and B over Zp whose multiplication is well-defined, we define

e(gA
1 , gB

2 ) := e(g1, g2)A
>B, which is a matrix (of proper size) over GT . As a special case, for vectors x and y

over Zp of the same length, we have e(gx
1 , gy

2) := e(g1, g2)x
>y ∈ GT , the standard inner product 〈x,y〉 in the

exponent. From now on, we will use 0 to denote both vectors and matrices with only zero entries when it’s
size is clear from the context; if necessary, we may give out its dimension or size in the subscript, like 0d (for
the d-dimensional zero vector) and 0d×d ′ (for the d × d ′ zero matrix) for some d, d ′ ∈ Z+.

An extended version of d-Linear Assumption. We describe an extended version of the d-linear assumption
for improving the readability of our proofs, which is called (d,`, q)-Linear Assumption (and (d,`, q)-Lin for
short, see Assumption 4). As usual, we just show the assumption in G1 and the counterpart in G2 is readily
derived. The extension is made in two steps:

1. `-extended: we first simultaneously consider ` independent challenges defined by ad+1, . . . , ad+` ← Z∗p
and sd+1, . . . , sd+`← Z∗p, which is implicitly used in [CW13];

2. q-fold: we then consider its q-fold form [EHK+13] since the tight security reduction relies the random
self-reducibility of the d-linear assumption.

We show that the (d,`, q)-Linear Assumption is tightly implied by the standard d-Linear Assumption (see
Lemma 1). From now on, we could prove all theorems and lemmas using the more expressive (d,`, q)-linear
assumption with relatively clean proofs, and finally base these results on the standard d-linear assumption.
We remark that, since ` corresponds to a fixed and relatively small parameter, say 2, in our construction and
q corresponds to the number of adversary’s queries which may be 230, we will prove Lemma 1 under the
assumption that ` < q for simplicity.

Assumption 2 ((d,`, q)-Linear Assumption in G1) For any probabilistic polynomial time adversaryA , the fol-
lowing advantage function is negligible in k,

Adv(d,`,q)-Lin
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[`] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q]

�

,

T0 :=
n

g
ad+i(s1, j+···+sd, j)
1

o

i∈[`], j∈[q]
, T1 :=

(

g
ad+i(s1, j+···+sd, j)+ sd+i, j

1

)

i∈[`], j∈[q]

and

G := (p, G1, G2, GT , e)← GrpGen(1k);

a1, . . . , ad , ad+i ← Z∗p, ∀i ∈ [`];

s1, j , . . . , sd, j ← Zp, sd+i, j ← Z∗p, ∀i ∈ [`], j ∈ [q].

Lemma 1 (d-Lin⇒ (d,`, q)-Lin) Assume ` < q. For any probabilistic polynomial time adversaryA , there exists
an adversaryB such that

Adv(d,`,q)-Lin
A (k)¶ ` ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (d + `)2q · poly(k) where poly(k) is independent of Time(A ).

Proof. We may prove the lemma in two steps. Using the technique used in [CW13] (c.f. the proof of Lemma 8
in [CW13]), one can prove that, for any probabilistic polynomial time adversaryA , there exists an adversary
B with Time(B)≈ Time(A ) + ` · poly(k) such that

Adv(d,`,1)-Lin
A (k)¶ Adv(d,1,1)-Lin

B (k) = Advd-Lin
B (k).

Then Lemma 1 in [EHK+13] implies that, for any probabilistic polynomial time adversary A , there exists an
adversaryB with Time(B)≈ Time(A ) + (d + `)2q · poly(k) such that

Adv(d,`,q)-Lin
A (k)¶ ` ·Adv(d,`,1)-Lin

B (k) + 1/(p− 1).

Putting them together, one may deduce the lemma immediately. �
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4.2 Construction

Our construction is based on the prime-order instantiation of NDSG by Chen and Wee [CW13] and works
with 3d×3d matrices under the d-linear assumption. (For more motivation, see Section 1). We let πL(·), πM(·),
and πR(·) be functions mapping from a 3d × 3d matrix to its left-most d columns, the middle d columns, and
the right-most d columns, respectively. Algorithms of our revised ENDSG are shown as follows.

– SampP(1k, n): On input (1k, n), do:

– generate (p, G1, G2, GT , e)← GrpGen(1k), and let G1 = 〈g1〉, G2 = 〈g2〉 and GT = 〈gT 〉;

– define (G,H,GT , e) := (G3d
1 , G3d

2 , GT , e);

– sample B,R← GL3d(Zp) and A1, . . . ,An← Z3d×3d
p , and define B∗ := (B−1)>;

– for all i ∈ [n], define

D := πL(B), Di = πL(BAi); E := πM(B), Ei = πM(BAi); F := πR(B), Fi = πR(BAi);
D∗ := B∗R, D∗i = B∗A>i R;

– for all k ∈ Z3d
p , define µ(gk

2) := e(gD
1 , gk

2) = e(g1, g2)D
>k;

and output

PP :=

 

p,G,H,GT , e,µ;
gD

1 , gD1
1 , . . . , gDn

1

gD∗
2 , g

D∗1
2 , . . . , g

D∗n
2

!

and SP :=

 

gπM(B∗)
2 , gE

1 , gE1
1 , . . . , gEn

1

gπR(B∗)
2 , gF

1 , gF1
1 , . . . , gFn

1

!

.

– SampGT(gp
T ): Sample s← Zd

p and output gs>p
T ∈ GT .

– SampG(PP): Sample s← Zd
p and output

�

gDs
1 , gD1s

1 , . . . , gDns
1

�

∈ (G3d
1 )

n+1.

– SampH(PP): Sample r← Z3d
p and output

�

gD∗r
2 , g

D∗1r
2 , . . . , g

D∗nr
2

�

∈ (G3d
2 )

n+1.

– ÛSampG(PP, SP): Sample bs← Zd
p and output

�

gEbs
1 , gE1bs

1 , . . . , gEnbs
1

�

∈ (G3d
1 )

n+1.

– åSampG(PP, SP): Sample es← Zd
p and output

�

gFes
1 , gF1es

1 , . . . , gFnes
1

�

∈ (G3d
1 )

n+1.

– ÛSampH
∗
(PP, SP): Sample br← Zd

p and output gπM(B∗)br
2 ∈ G3d

2 .

– åSampH
∗
(PP, SP): Sample er← Zd

p and output gπR(B∗)er
2 ∈ G3d

2 .

Correctness. We may check all correctness requirements as follows:

(Projective.) For all k ∈ Z3d
p and all s ∈ Zd

p , we have that

SampGT(µ(gk
2); s) = e(g1, g2)

s>(D>k) = e(gDs
1 , gk

2) = e(SampG0(PP; s), gk
2).

The second equality follows the fact that s>(D>k) = (Ds)>k.

(Associative.) For all s ∈ Zd
p and all r ∈ Z3d

p , we have that

e(gDs
1 , g

D∗i r
2 ) = e(g1, g2)

s̄>B>(B∗A>i R)r = e(g1, g2)
s̄>(BAi)>(B∗R)r = e(gDis

1 , gD∗r
2 ), ∀i ∈ [n],

where s̄ :=
� s

02d

�

∈ Z3d
p . The first and the last equality follow the definition of πL(·) while the second

equality uses the fact that

B>(B∗A>i R) = (B>B∗)A>i R= A>i R= A>i (B
>B∗)R= (BAi)

>(B∗R), ∀i ∈ [n].
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Security. We may check the following security requirements:

(Orthogonality.) For all br ∈ Zd
p and all er ∈ Zd

p , we check that

1. µ(gπM(B∗)br
2 ) = e(g1, g2)πL(B)

>πM(B∗)br = e(g1, g2)0d×dbr = (1, . . . , 1)> ∈ Gd
T ;

2. µ(gπR(B∗)er
2 ) = e(g1, g2)πL(B)

>πR(B∗)er = e(g1, g2)0d×der = (1, . . . , 1)> ∈ Gd
T ;

3. for all bs ∈ Zd
p , e(gπM(B)bs

1 , gπR(B∗)er
2 ) = e(g1, g2)

bs>πM(B)
>πR(B∗)er = e(g1, g2)

bs>0d×der = 1GT
;

4. for all es ∈ Zd
p , e(gπR(B)es

1 , gπM(B∗)br
2 ) = e(g1, g2)

es>πR(B)
>πM(B∗)br = e(g1, g2)

es>0d×dbr = 1GT
.

The second equality of them follows the fact that

πL(B)
>πM(B

∗) = πL(B)
>πR(B

∗) = πM(B)
>πR(B

∗) = πR(B)
>πM(B

∗) = 0d×d .

(Non-degeneracy.) For all bs ∈ Zd
p and br ∈ Zd

p , we have that

e(gEbs
1 , gπM(B∗)br

2 ) = e(g1, g2)
bs>πM(B)

>πM(B∗)br = e(g1, g2)
bs>br.

With overwhelming probability 1− 1/pd , sampling bs ← Zd
p results in bs 6= 0d , in which case the inner

product bs>br is distributed uniformly over Zp and therefore e(gEbs
1 , gπM(B∗)br

2 ) is distributed over GT when
picking br← Zd

p .

(H-subgroup.) This follows from the fact that Z3d
p (for algorithm SampH) and Zd

p (for algorithm ÛSampH
∗

and åSampH
∗
) are additive groups.

We check the remaining security properties (LS1, LS2, and NH) in the following subsections.

4.3 Left Subgroup Indistinguishability 1

We may rewrite the LS1 advantage function AdvLS1
A (k, q) as follows:

AdvLS1
A (k, q) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D := (PP), T0 :=

¦

g j

©

j∈[q] , T1 :=
¦

g j · bg j

©

j∈[q] ,

and

PP :=

 

p,G,H,GT , e,µ;
gπL(B)

1 , gπL(BA1)
1 , . . . , gπL(BAn)

1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

g j :=
�

g
B

 s j
0d
0d

!

1 , g
BA1

 s j
0d
0d

!

1 , . . . , g
BAn

 s j
0d
0d

!

1

�

, ∀ j ∈ [q];

g j · bg j :=
�

g
B





s j

bs j
0d





1 , g
BA1





s j

bs j
0d





1 , . . . , g
BAn





s j

bs j
0d





1

�

, ∀ j ∈ [q];

for s j ,bs j ← Zd
p for all j ∈ [q].

Lemma 2 ((d, d, q)-Lin⇒ LS1) For any probabilistic polynomial time adversary A , there exists an adversary
B such that

AdvLS1
A (k, q)¶ Adv(d,d,q)-Lin

B (k),

and Time(B)≈ Time(A ) + d2 · q · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given an instance of (d, d, q)-linear problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[d] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
ad+i(s1, j+···+sd, j)+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j with i ∈ [d] and j ∈ [q] are either 0 or uniformly chosen from Z∗p, adversaryB works
as follows:
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Programming s j and bs j for j ∈ [q]. AdversaryB implicitly sets

s j = (s1, j , . . . , sd, j)
> and bs j = (sd+1, j , . . . , s2d, j)

>, ∀ j ∈ [q].

Programming B,B∗,A1, . . . ,An,R. Define W as

W :=







































a1
. . .

ad

ad+1 · · · ad+1 1
...

...
. . .

a2d · · · a2d 1
1

...
1







































∈ Z3d×3d
p

and set W∗ := (W−1)>. Sample B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>. Also sample Ā1, . . . , Ān← Z3d×3d
p ,

and implicitly set

(B,B∗) := (B̄W, B̄∗W∗), R :=W>R̄, Ai :=W−1ĀiW, ∀i ∈ [n].

Observe that B,B∗,R and all Ai for i ∈ [n] are distributed properly, and we have

BAi = (B̄W)(W−1ĀiW) = B̄ĀiW, ∀i ∈ [n];

B∗R = (B̄∗W∗)(W>R̄) = B̄∗R̄;

B∗A>i R = (B̄∗W∗)(W−1ĀiW)
>(W>R̄) = B̄∗Ā>i R̄, ∀i ∈ [n].

Simulating PP. AlgorithmB can simulate

gπL(B)
1 = gπL(B̄W)

1 = g B̄πL(W)
1 and gπL(BAi)

1 = gπL(B̄ĀiW)
1 = g B̄ĀiπL(W)

1 , ∀i ∈ [n],

gB∗R
2 = g B̄∗R̄

2 and g
B∗A>1 R
2 = g

B̄∗Ā>i R̄
2 , ∀i ∈ [n],

using the knowledge of gπL(W)
1 and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating the challenge. AlgorithmB computes

g
B





s j

bs j
0d





1 = g
B̄W





s j

bs j
0d





1 = g

B̄



























a1s1, j

...
ad sd, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a2d (s1, j+···+sd, j)+s2d, j

0d



























1

and

g
BAi





s j

bs j
0d





1 = g
B̄ĀiW





s j

bs j
0d





1 = g

B̄Āi



























a1s1, j

...
ad sd, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a2d (s1, j+···+sd, j)+s2d, j

0d



























1 , ∀i ∈ [n], j ∈ [q].

Analysis. Observe that if sd+i, j = 0 for all i ∈ [d] and j ∈ [q], then bs j = 0 for all j ∈ [q] and the output
challenge is distributed as

¦

g j

©

j∈[q]; otherwise, if sd+i, j ← Z∗p for all i ∈ [d] and j ∈ [q], then bs j ← (Z∗p)
d

for all j ∈ [q] and the output challenge is distributed as
¦

g j · bg j

©

j∈[q]. Therefore we may conclude that

AdvLS1
A (k, q)¶ Adv(d,d,q)-Lin

B (k). �
We immediately have the following corollary from Lemma 1.
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Corollary 1 (d-Lin⇒ LS1) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

AdvLS1
A (k, q)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + d2 · q · poly(k, n) where poly(k, n) is independent of Time(A ).

4.4 Left Subgroup Indistinguishability 2

We may rewrite the LS2 advantage function AdvLS2
A (k, q, q′) as follows:

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j

o

j∈[q]

�

, T0 :=
¦

g j · bg j

©

j∈[q] , T1 :=
¦

g j · eg j

©

j∈[q] .

and

PP :=

 

p,G,H,GT , e,µ;
gπL(B)

1 , gπL(BA1)
1 , . . . , gπL(BAn)

1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

bh∗j ·eh
∗
j := g

B∗







0d
br j

er j







2 , ∀ j ∈ [q+ q′];

g′j · bg
′
j :=

�

g

B







s′j
bs′j
0d







1 , g

BA1







s′j
bs′j
0d







1 , . . . , g

BAn







s′j
bs′j
0d







1

�

, ∀ j ∈ [q];

g j · bg j :=
�

g
B





s j

bs j
0d





1 , g
BA1





s j

bs j
0d





1 , . . . , g
BAn





s j

bs j
0d





1

�

, ∀ j ∈ [q];

g j · eg j :=
�

g
B





s j
0d
es j





1 , g
BA1





s j
0d
es j





1 , . . . , g
BAn





s j
0d
es j





1

�

, ∀ j ∈ [q];

where br j ,er j ← Zd
p for all j ∈ [q+ q′], s′j ,bs

′
j , s j ,bs j ,es j ← Zd

p for all j ∈ [q].

Lemma 3 ((d, d, q)-Lin⇒ LS2) For any probabilistic polynomial time adversary A , there exists an adversary
B such that

AdvLS2
A (k, q, q′)¶ 2 ·Adv(d,d,q)-Lin

B (k),

and Time(B)≈ Time(A ) + d2 · (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Overview of the Proof. We will prove Lemma 3 using hybrid argument consisting of two steps with the help
of an auxiliary distribution T1/2 = {g j · bg j · eg j} j∈[q] where

g j · bg j · eg j := (g
B







s j

bs j

es j







1 , g

BA1







s j

bs j

es j







1 , . . . , g

BAn







s j

bs j

es j







1 ), ∀ j ∈ [q],

and s j ,bs j ,es j ← Zd
p for all j ∈ [q]. In particular, we prove that, given D, distribution T0 and T1/2 are com-

putational indistinguishable under the (d, d, q)-linear assumption (see Lemma 4), and so do T1/2 and T1 (see
Lemma 5). Because the proofs of them are quite similar, we completely describe the proof of Lemma 4 and
sketch the proof of Lemma 5 by pointing out the differences between them.

Lemma 4 (from T0 to T1/2) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1/2) = 1]
�

�¶ Adv(d,d,q)-Lin
B (k),

and Time(B)≈ Time(A ) + d2 · (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given an instance of (d, d, q)-linear problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[d] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
ad+i(s1, j+···+sd, j)+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j with i ∈ [d] and j ∈ [q] are either 0 or uniformly chosen from Z∗p, adversaryB works
as follows:
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Programming bs j and es j for j ∈ [q]. AdversaryB implicitly sets

bs j = (s1, j , . . . , sd, j)
> and es j = (sd+1, j , . . . , s2d, j)

>, ∀ j ∈ [q].

Programming B,B∗,A1, . . . ,An,R. We define W as

W :=







































1
...

1
a1

. . .
ad

ad+1 · · · ad+1 1
...

...
. . .

a2d · · · a2d 1







































∈ Z3d×3d
p

and set W∗ := (W−1)>. Sample B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>. Also sample Ā1, . . . , Ān← Z3d×3d
p ,

and implicitly set

(B,B∗) := (B̄W, B̄∗W∗), R :=W>R̄, Ai :=W−1ĀiW, ∀i ∈ [n].

Observe that B,B∗,R and all Ai for i ∈ [n] are distributed properly, and we have

BAi = (B̄W)(W−1ĀiW) = B̄ĀiW, ∀i ∈ [n];

B∗R = (B̄∗W∗)(W>R̄) = B̄∗R̄;

B∗A>i R = (B̄∗W∗)(W−1ĀiW)
>(W>R̄) = B̄∗Ā>i R̄, ∀i ∈ [n].

Simulating PP. B can simulate

gπL(B)
1 = gπL(B̄W)

1 = g B̄πL(W)
1 and gπL(BAi)

1 = gπL(B̄ĀiW)
1 = g B̄ĀiπL(W)

1 , ∀i ∈ [n],

gB∗R
2 = g B̄∗R̄

2 and g
B∗A>i R
2 = g

B̄∗Ā>i R̄
2 , ∀i ∈ [n],

using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating bh∗j ·eh
∗
j for j ∈ [q+ q′]. By a simple calculation, we have

W∗ :=







































1
...

1
a−1

1 −a−1
1 ad+1 · · · −a−1

1 a2d
. . .

...
...

a−1
d −a−1

d ad+1 · · · −a−1
d a2d

1
...

1







































∈ Z3d×3d
p .

Observe that the right-bottom 2d × 2d sub-matrix of W∗ is full-rank with overwhelming probability and






W∗







0d

br j

er j






:br j ,er j ← Zd

p







=















0d

br′j
er′j









:br′j ,er
′
j ← Z

d
p







,

which means thatB may properly produce

bh∗j ·eh
∗
j = g

B∗







0d
br j

er j







2 = g

B̄∗W∗







0d
br j

er j







2 , ∀ j ∈ [q+ q′]
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by sampling br′j ,er
′
j ← Z

d
p for all j ∈ [q+ q′] and setting

bh∗j ·eh
∗
j = g

B̄∗







0d
br′j
er′j







2 , ∀ j ∈ [q+ q′].

Simulating g′j · bg
′
j for j ∈ [q]. AlgorithmB can simulate

g

B







s′j
bs′j
0d







1 = g

B̄W







s′j
bs′j
0d







1 and g

BAi







s′j
bs′j
0d







1 = g

B̄ĀiW







s′j
bs′j
0d







1 , ∀i ∈ [n], j ∈ [q],

by sampling s′j ,bs
′
j ← Z

d
p for all j ∈ [q] and using the knowledge of gW

1 and B̄, Ā1, . . . , Ān.

Simulating the challenge. AlgorithmB samples s j ← Zd
p for all j ∈ [q] and computes

g

B







s j

bs j

es j







1 = g

B̄W







s j

bs j

es j







1 = g

B̄



























s j
a1s1, j

...
ad sd, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a2d (s1, j+···+sd, j)+s2d, j



























1

and

g

BAi







s j

bs j

es j







1 = g

B̄ĀiW







s j

bs j

es j







1 = g

B̄Āi



























s j
a1s1, j

...
ad sd, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a2d (s1, j+···+sd, j)+s2d, j



























1 , i ∈ [n], j ∈ [q].

Analysis. Observe that if sd+i, j = 0 for all i ∈ [d] and j ∈ [q], then es j = 0 for all j ∈ [q] and the output
challenge is distributed as

¦

g j · bg j

©

j∈[q]; in the other case, if sd+i, j ← Z∗p for all i ∈ [d] and j ∈ [q], then

es j ← (Z∗p)
d for all j ∈ [q] and the output challenge is distributed as

¦

g j · bg j · eg j

©

j∈[q]. Therefore we may

conclude that
�

�Pr[A (D, T0) = 1]− Pr[A (D, T1/2) = 1]
�

�¶ Adv(d,d,q)-Lin
B (k). �

Lemma 5 (from T1/2 to T1) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

�

�Pr[A (D, T1/2) = 1]− Pr[A (D, T1) = 1]
�

�¶ Adv(d,d,q)-Lin
B (k),

and Time(B)≈ Time(A ) + d2 · (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. The proof is similar to that for Lemma 4. Given an instance of (d, d, q)-linear problem
�

g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[d] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
ad+i(s1, j+···+sd, j)+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j with i ∈ [d] and j ∈ [q] are either 0 or uniformly chosen from Z∗p, adversary B
behaves as in the proof of Lemma 4 with the differences that:

Programming bs j and es j for j ∈ [q]. AdversaryB implicitly sets

bs j = (s2d, j , . . . , sd+1, j)
> and es j = (sd, j , . . . , s1, j)

>, ∀ j ∈ [q].
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Defining W. AdversaryB defines W as

W :=







































1
...

1
1 a2d · · · a2d

. . .
...

...
1 ad+1 · · · ad+1

ad
. . .

a1







































∈ Z3d×3d
p .

Then algoirthmB may program B,B∗,A1, . . . ,An,R and simulate all entries in PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j

o

j∈[q]
as well as the challenge by the strategies used in the proof of Lemma 4. �

Following hybrid argument, combining Lemma 4 and Lemma 5 proves Lemma 3. We further obtain the
following corollary from Lemma 1.

Corollary 2 (d-Lin⇒ LS2) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

AdvLS2
A (k, q, q′)¶ 2d ·Advd-Lin

B (k) + 2/(p− 1),

and Time(B)≈ Time(A ) + d2 · (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

4.5 Generalized Many-Tuple Lemma

The proof of the nested-hiding indistinguishability property requires a generalized version of many-tuple
lemma shown in [CW13]. Instead of the d-linear assumption, this subsection is going to establish a generalized
version from the (d, d, d)-linear assumption, i.e., (d,`, q)-linear assumption with `= q = d.

Lemma 6 (Generalized Many-Tuple Lemma) There exists an efficient algorithm that on input q ∈ Z+, a finite
cyclic group G generated by g ∈ G and

�

g, ga1 , . . . , gad ,
�

gad+i
	

i∈[d] ,
�

ga1 r1, j , . . . , gad rd, j
	

j∈[d] ,
¦

gad+i(r1, j+···+rd, j)+rd+i, j
©

i, j∈[d]

�

,

outputs
�

gVZ, gZ
�

for some matrix V ∈ Zd×d
p along with

¦�

gt j , gVt j+τ j
�©

j∈[q] ,

where t j ← Zd
p , Z is an invertible diagonal matrix, and all τ j for j ∈ [q] are either 0d or uniformly distributed

over Zd
p depending on whether all rd+i, j for i, j ∈ [d] are 0 or uniformly distributed over Zp.

Proof. The algorithm works as follows:

Programming V and Z. We implicitly define

V :=









r1,1 · · · rd,1
...

...
r1,d · · · rd,d









∈ Zd×d
p and Z :=









a1
. . .

ad









∈ Zd×d
p ,

and

P :=









a1 ad+1 · · · a2d
. . .

...
...

ad ad+1 · · · a2d









∈ Zd×2d
p .

It is not hard to see that we can compute gVZ, gZ, gP, and

gC :=









ga1 r1,1 · · · gad rd,1 gad+1(r1,1+···+rd,1)+rd+1,1 · · · ga2d (r1,1+···+rd,1)+r2d,1

...
...

...
...

ga1 r1,d · · · gad rd,d gad+1(r1,d+···+rd,d )+rd+1,d · · · ga2d (r1,d+···+rd,d )+r2d,d









∈ Gd×2d .
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Generating q tuples. For each j ∈ [q], sample et j ← Z2d
p and output

�

gt j , gVt j+τ j
�

:=
�

gPet j , gCet j

�

.

Analysis. Observe that, if rd+i, j = 0 for all i, j ∈ [d], we have known thatgC = gVP and thus τ j = 0d for all
j ∈ [q]; otherwise, when rd+i, j ← Zp for all i, j ∈ [d], we may write gC = gVP+T where

T=









0 · · · 0 rd+1,1 · · · r2d,1
...

...
...

...
0 · · · 0 rd+1,d · · · r2d,d









∈ Z2d×d
p ,

and thus implicitly set τ j = Tet j for all j ∈ [q]. Clearly, we have

�

t j

τ j

�

=

�

P
T

�

et j , ∀ j ∈ [q].

Since the left half of P (i.e., matrix Z) and the right half of T are full-rank (with overwhelming probability),
the matrix on the right side is also full-rank, and therefore all τ j for j ∈ [q] are distributed uniformly and
independent of all t j with j ∈ [q]. �

4.6 Nested-hiding Indistinguishability

We may rewrite the NH advantage function AdvNH(η)
A (k, q, q′) for all η ∈ [bn/2c] as follows:

AdvNH(η)
A (k, q, q′) := |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|,

where

D :=
�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
n

�

bg j

�

−(2η−1)

o

j∈[q]
,
n

�

eg j

�

−2η

o

j∈[q]

�

, T0 :=
¦

h j

©

j∈[q′] , T1 :=
n

h′j
o

j∈[q′]
.

and

PP :=

 

p,G,H,GT , e,µ;
gπL(B)

1 , gπL(BA1)
1 , . . . , gπL(BAn)

1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

bh∗j := g
πM(B∗)br j

2 , eh∗j := g
πR(B∗)er j

2 , ∀ j ∈ [q+ q′];

bg j :=
�

g
πM(B)bs j

1 , g
πM(BA1)bs j

1 , · · · , g
πM(BAn)bs j

1

�

, ∀ j ∈ [q];

eg j :=
�

g
πR(B)es j

1 , g
πR(BA1)es j

1 , . . . , g
πR(BAn)es j

1

�

, ∀ j ∈ [q];

h j :=
�

g
B∗Rr j

2 , g
B∗A>1 Rr j

2 , . . . , g
B∗A>2η−1Rr j

2 , g
B∗A>2ηRr j

2 , . . . , g
B∗A>n Rr j

2

�

, ∀ j ∈ [q′];

h′j :=
�

g
B∗Rr j

2 , g
B∗A>1 Rr j

2 , . . . , g
B∗A>2η−1Rr j+πM(B∗)bγ j

2 , g
B∗A>2ηRr j+πR(B∗)eγ j

2 , . . . , g
B∗A>n Rr j

2

�

, ∀ j ∈ [q′];

where br j ,er j ← Zd
p for all j ∈ [q+ q′], bs j ,es j ← Zd

p for all j ∈ [q], r j ← Z3d
p and bγ j ,eγ j ← Zd

p for all j ∈ [q′].

Lemma 7 ((d, d, d)-Lin⇒ NH) For all η ∈ [bn/2c] and for any probabilistic polynomial time adversary A ,
there exists an adversaryB such that

AdvNH(η)
A (k, q, q′)¶ Adv(d,d,d)-Lin

B (k),

and Time(B)≈ Time(A ) + d2 · (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given an instance of (d, d, d)-linear problem (on G2)
�

g1, g2, ga1
2 , . . . , gad

2 ,
¦

gad+i
2

©

i∈[d] ,
¦

g
a1 r1, j

2 , . . . , g
ad rd, j

2

©

j∈[d] ,
n

g
ad+i(r1, j+···+rd, j)+rd+i, j

2

o

i, j∈[d]

�

where all rd+i, j for i, j ∈ [d] are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:
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Generating 2q′ tuples. Algorithm B runs the algorithm described in Lemma 6 on the input 2q′, group G2,
and the (d, d, d)-linear instance, and obtains

�

gVZ
2 , gZ

2

�

and
n�

g
t j

2 , g
Vt j+τ j

2

�o

j∈[2q′]
.

Programming B,B∗,R,A1, . . . ,An. Sample B ← GL3d(Zp) and set B∗ := (B−1)>. Sample Ai ← Z3d×3d
p for all

i ∈ [n] \ {2η− 1,2η}. Sample Ā2η−1, Ā2η← Z3d×3d
p , R̄← GL3d(Zp) and implicitly set

A2η−1 := Ā2η−1 +







0 0 0
0 V> 0
0 0 0






, A2η := Ā2η +







0 0 0
0 0 0
0 0 V>






, and R :=







I 0 0
0 Z 0
0 0 Z






R̄,

where I is the d-by-d identity matrix and 0 is the d-by-d zero matrix.

Simulating PP. AlgorithmB can:

– simulate
gπL(B)

1 and gπL(BAi)
1 = gBπL(Ai)

1 , ∀i ∈ [n]

using the knowledge of B,πL(A1), . . . ,πL(An). Especially, we note that

πL(A2η−1) = πL(Ā2η−1) and πL(A2η) = πL(Ā2η),

which are known toB .

– simulate gB∗R
2 and g

B∗A>i R
2 for i ∈ [n] \ {2η− 1,2η} using the knowledge of gZ

2 and B∗, R̄ as well as
Ai for i ∈ [n] \ {2η− 1,2η}.

– simulate

g
B∗A>2η−1R

2 = g
B∗Ā>2η−1

� I 0 0
0 Z 0
0 0 Z

�

R̄+B∗
�0 0 0

0 VZ 0
0 0 0

�

R̄

2 and g
B∗A>2ηR

2 = g
B∗Ā>2η

� I 0 0
0 Z 0
0 0 Z

�

R̄+B∗
�0 0 0

0 0 0
0 0 VZ

�

R̄

2

using the knowledge of
�

gVZ
2 , gZ

2

�

and B∗, Ā2η−1, Ā2η and R̄.

Simulating bh∗j and eh∗j for j ∈ [q+ q′]. AlgorithmB can simulate

bh∗j = g
πM(B∗)br j

2 and eh∗j = g
πR(B∗)er j

2 , ∀ j ∈ [q+ q′],

by sampling br j ,er j ← Zd
p for j ∈ [q+ q′] and using the knowledge of B∗.

Simulating
n

�

bg j

�

−(2η−1)

o

j∈[q]
and

n

�

eg j

�

−2η

o

j∈[q]
for j ∈ [q]. AlgorithmB can simulate

g
πM(B)bs j

1 and g
πM(BAi)bs j

1 = g
BπM(Ai)bs j

1 , ∀i ∈ [n] \ {2η− 1}, j ∈ [q],

by sampling bs j ← Zd
p and using the knowledge of B and Ai for i ∈ [n] \ {2η − 1}. We note that

πM(A2η) = πM(Ā2η) is know toB , but πM(A2η−1) containing secret matrix V is not. In a similar manner,
algorithmB can also simulate

g
πR(B)es j

1 and g
πR(BAi)es j

1 = g
BπR(Ai)es j

1 , ∀i ∈ [n] \ {2η}, j ∈ [q],

by sampling es j ← Zd
p and using the knowledge of B and Ai for i ∈ [n] \ {2η}. We note that πR(A2η−1) =

πR(Ā2η−1) is know toB , but πR(A2η) containing secret matrix V is not.

Simulating the challenge. For each j ∈ [q′],B samples r̄ j ← Zd
p and implicitly sets

Rr j :=
�

r̄ j
t2 j−1
t2 j

�

,

and compute

g
B∗Rr j

2 = g

B∗







r̄ j
t2 j−1
t2 j







2 and g
B∗A>i Rr j

2 = g

B∗A>i







r̄ j
t2 j−1
t2 j







2 , ∀i ∈ [n] \ {2η− 1,2η},
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using the knowledge of g
t2 j−1

2 and g
t2 j

2 and B∗ and Ai for i ∈ [n] \ {2η− 1, 2η}, and produce

g
B∗A>2η−1Rr j+πM(B∗)bγ j

2 = g

B∗Ā>2η−1







r̄ j
t2 j−1
t2 j






+πM(B∗)(Vt2 j−1+τ2 j−1)

2 and g
B∗A>2ηRr j+πR(B∗)eγ j

2 = g

B∗Ā>2η







r̄ j
t2 j−1
t2 j






+πR(B∗)(Vt2 j+τ2 j)

2 ,

using the knowledge of
�

g
t2 j−1

2 , g
Vt2 j−1+τ2 j−1

2

�

and
�

g
t2 j

2 , g
Vt2 j+τ2 j

2

�

as well as B∗, Ā2η−1, Ā2η. Here we
implicitly set

bγ j = τ2 j−1 and eγ j = τ2 j .

Analysis. Observe that if rd+i, j = 0 for all i, j ∈ [d], then bγ j = eγ j = 0 for all j ∈ [q′] and the output challenge

is distributed as
¦

h j

©

j∈[q′]; otherwise, if rd+i, j ← Z∗p for all i, j ∈ [d], then bγ j ,eγ j ← (Z∗p)
d for all j ∈ [q′]

and the output challenge is distributed as
n

h′j
o

j∈[q′]
. Therefore we may conclude that AdvNH(η)

A (k, q, q′) ¶

Adv(d,d,d)-Lin
B (k). �
We immediately have the following corollary from Lemma 1.

Corollary 3 (d-Lin⇒ NH) For any probabilistic polynomial time adversaryA , there exists an adversaryB such
that

AdvNH(η)
A (k, q, q′)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + d2 · (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

5 Concrete IBE from d-Linear Assumption

We now show the concrete IBE scheme derived from our prime-order instantiation (in Section 4) follow-
ing Hofheinz et al.’s framework (c.f. Appendix B). Let GrpGen be the bilinear group generator described in
Section 4.1 and πL(·) be the function mapping from a 3d × 3d matrix to its left-most d columns, i.e., a 3d × d
sub-matrix.

– Param(1k, n): Run (p, G1, G2, GT , e)← GrpGen(1k). Sample B,R← GL3d(Zp) and A1, . . . ,A2n← Z3d×3d
p ,

and set B∗ := (B−1)>. Output

GP :=

 

p, G3d
1 , G3d

2 , GT , e;
gπL(B)

1 , gπL(BA1)
1 , . . . , gπL(BA2n)

1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>2nR
2

!

.

– Setup(GP): Sample k← Z3d
p and output

MPK :=
�

p, G3d
1 , G3d

2 , GT , e; e(g1, g2)
πL(B)

>k, gπL(B)
1 , gπL(BA1)

1 , . . . , gπL(BA2n)
1

�

;

MSK :=
�

gk
2 , gB∗R

2 , g
B∗A>1 R
2 , . . . , g

B∗A>2nR
2

�

.

– KeyGen(MPK, MSK,y): Let y= (y1, . . . , yn) ∈ {0, 1}n. Sample r← Z3d
p and output

SKy :=
�

K0 := gB∗Rr
2 , K1 := g

k+B∗(A>2−y1
+···+A>2n−yn

)Rr

2

�

.

– Enc(MPK,x, M): Let x= (x1, . . . , xn) ∈ {0,1}n and M ∈GT . Sample s← Zd
p and output

CTx :=
�

C0 := gπL(B)s
1 , C1 := g

πL(B(A2−x1
+···+A2n−xn ))s

1 , C2 := e(g1, g2)
s>πL(B)

>k · M
�

.

– Dec(MPK, SK, CT): Let SK = (K0, K1) and CT = (C0, C1, C2). Output

M := C2
e(C1, K0)
e(C0, K1)

.
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6 Achieving Stronger Security Guarantee

Hofheinz et al. [HKS15] pointed out that their extension of NDSG is seemingly not sufficient for achieving
IBE with full security. As a solution, they introduced a subgroup variant of the BDDH assumption (s-BDDH)
to enhance their ENDSG (in particular, the non-degeneracy property) and proved that the full security is now
available. We remark that our revised ENDSG in Section 3 is seemingly not sufficient for that purpose either.

This section will investigate two flavors of stronger adaptive security: B-weak and full adaptive security
(see Section 2). Following Hofheinz et al.’s methodology, we only need to revise the non-degeneracy prop-
erty in our ENDSG shown in Section 3 and upgrade the proof for the indistinguishability between Game3

and Game4 (c.f. Appendix B) accordingly. In detail, we extend the non-degeneracy requirement to B-bounded
non-degeneracy and computational non-degeneracy, which implies the B-weak and the full adaptive security,
respectively. Surprisingly, we can prove that our prime-order instantiation proposed in Section 4 has already
satisfied these two extended versions of non-degeneracy: it is proven to be d-bounded non-degenerated un-
conditionally and computational non-degenerated under the d-linear assumption. This means that the concete
IBE scheme shown in Section 5 which is derived from the construction in Section 4 achieves both the d-weak
and the full adaptive security.

A Brief Review. Before we begin to work, we first recall Game3 and Game4 (c.f. Appendix B). In Game3, chal-
lenger C answers all key extraction queries and all challenge queries using type-n semi-functional secret keys
and type-(∧, n) semi-functional ciphertexts, respectively. More formally, the experiment between challenger C
and adversaryA proceeds as follows:

Setup. C samples (PP, SP)← SampP(1k, 2n) and MSKι ←H (using PP) for all ι ∈ [λ], and returns
��

ι, MPKι := (PP,µ(MSKι))
�	

ι∈[λ]

to adversaryA . Then C picks a secret random bit β ← {0,1}. During the experiment, C maintains two
random functions

bRn : [λ]× {0,1}n→ [ÛSampH
∗
(PP, SP)] and eRn : [λ]× {0, 1}n→ [åSampH

∗
(PP, SP)]

which are defined in an on-the-fly manner. When we refer to bRn(ι,x) (resp. eRn(ι,x)) for some pair

(ι,x) ∈ [λ]×{0,1}n which has never been used, we samplebh←ÛSampH
∗
(PP, SP) (resp. eh←åSampH

∗
(PP, SP))

freshly and define bRn(ι,x) :=bh (resp. eRn(ι,x) :=eh).

Key extraction queries. On query (ι,y), let y = (y1, . . . , yn) ∈ {0,1}n.C samples h :=
�

h0, h1, . . . , h2n
�

←
SampH(PP) and outputs

SK :=

 

h0, MSKι · bRn(ι,y) · eRn(ι,y) ·
n
∏

i=1

h2i−yi

!

← KeyGen(PP, MSKι · bRn(ι,y) · eRn(ι,y),y;h),

and updates QK :=QK ∪
��

ι,y, SK
�	

.

Challenge queries. On query (ι∗,x∗, M∗0, M∗1), let x∗ = (x∗1, . . . , x∗n) ∈ {0,1}n.C samples
�

g0, g1, . . . , g2n
�

←
SampG(PP) and

�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP) and outputs

CT∗ :=

 

g0 · bg0,
n
∏

i=1

�

g2i−x∗i
· bg2i−x∗i

�

, e(g0 · bg0, MSKι∗) · e(bg0, bRn(ι
∗,x∗)) · M∗β

!

,

and updates QC :=QC ∪
¦

(ι∗,x∗, M∗0, M∗1, CT∗)
©

.

Guess. A outputs its guess β ′ ∈ {0, 1}.

Note that the boxed term have been re-written following the orthogonality property of our revised NDSG.
Game4 is identical to Game3 except that the boxed term is independently and uniformly distributed over GT

for each challenge ciphertext.
We also review that the unique difference between weak, B-weak, and full adaptive security is how many

challenge ciphertexts are permitted for each challenge identity in each instance, which is 1, at most B, and
polynomially-many, respectively. Therefore, all proofs for moving from Game0 to Game3 (c.f. Appendix B) still
work well for all three models.
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6.1 Warmup: Achieving B-weak Adaptive Security

Recall that the original non-degeneracy property said that:

(Non-degeneracy (Recalled).) Over the probability space defined by bg0←ÛSampG0(PP, SP), with overwhelm-

ing probability 1−2−Ω(k), e(bg0,bh∗) is distributed uniformly overGT when samplingbh∗←ÛSampH
∗
(PP, SP).

We observe that bh∗ in our prime-order instantiation (see Section 4) actually contains higher entropy than those
in Hofheinz et al.’s composite-order instantiation [HKS15]. In particular, bh∗ is uniformly distributed over a d
dimensional subspace of G3d

2 containing pd elements (vectors), while e(bg0,bh∗) is an element in GT containing
just p elements. This suggests that there may be leftover entropy in bh∗ given e(bg0,bh∗), and our prime-order
instantiation may achieve higher security level even relying on no additional computational assumption.

To formally investigate the above idea, we describe the notion of B-bounded non-degeneracy which roughly
ensures the non-degeneracy even when a single bh∗ is paired with at most B bg0’s.

(B-bounded non-degeneracy.) Over the probability space defined by (bg0,1, . . . , bg0,B)←ÛSampG
B

0 (PP, SP), with
overwhelming probability 1− 2−Ω(k), (e(bg0,1,bh∗), . . . , e(bg0,B,bh∗)) is distributed uniformly over GB

T when

sampling bh∗←ÛSampH
∗
(PP, SP).

It is a straightforward extension of the original non-degeneracy property. We now prove that our prime-order
instantiation in Section 4 indeed reaches this stronger version of non-degeneracy property.

Lemma 8 Our prime-order instantiation of ENDSG in Section 4 based on the d-linear assumption is d-bounded
non-degenerated.

Proof. The proof is just a simple statistical argument extended from the proof for the original non-degeneracy.
For all bs j ← Zd

p ( j ∈ [d]) and br← Zd
p , we have that











e(gEbs1
1 , gπM(B∗)br

2 )
...

e(gEbsd
1 , gπM(B∗)br

2 )











=











e(g1, g2)
bs>1 πM(B)

>πM(B∗)br

...

e(g1, g2)
bs>d πM(B)

>πM(B∗)br











=











e(g1, g2)
bs>1 br

...
e(g1, g2)

bs>d br











= e(g1, g2)











bs>1
...
bs>d











br

.

With probability at least 1−1/(p−1), the matrix (bs1, . . . ,bsd)> is full-rank over Zp, in which casebr>(bs1, . . . ,bsd)>

is distributed uniformly over Zd
p when picking br← Zd

p . �
On the other hand, one may readily show that the ENDSG with B-bounded non-degeneracy implies a

B-weak adaptively secure IBE in the multi-instance, multi-ciphertext setting. Therefore, when we build our
instantiation with parameter d > 1, we obtain an IBE with strictly stronger security guarantee which ensures
the confidentiality of at most d ciphertexts for a single identity. As a special case, if we set d = 1 (i.e., the
SXDH assumption), the resulting IBE is still weak adaptive secure as the basic scheme in [HKS15].

6.2 Computational Non-degeneracy and Full Adaptive Security

The attempt in the previous subsection more or less suggests that it is probably inevitable to introduce
additional computational argument in order to achieve fully adaptive security where a single bh∗ can be paired
with polynomially many bg0’s without violating the non-degeneracy property.

As a first step, we describe a computational version of non-degeneracy which is essentially similar to the
s-BDDH assumption used in [HKS15]. Following the style of our revised ENDSG (in Section 3), our definition
is more general than the s-BDDH assumption which involves some special algebra structure as their ENDSG.

(Computational non-degeneracy (ND).) For any probabilistic polynomial time adversary A , the following
advantage function is negligible in k,

AdvND
A (k, q, q′, q′′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q′]
,
¦

bg j, j′
©

j∈[q], j′∈[q′′]

�

, T0 :=
n

e(bg0, j, j′ ,bh
∗∗
j )
o

j∈[q], j′∈[q′′]
, T1 :=

¦

R j, j′
©

j∈[q], j′∈[q′′]
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and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q′];

bh∗∗j ←ÛSampH
∗
(PP, SP), ∀ j ∈ [q];

bg j, j′ =
�

bg0, j, j′ , bg1, j, j′ , . . . , bgn, j, j′
�

←ÛSampG(PP, SP), R j, j′ ←GT , ∀ j ∈ [q], j′ ∈ [q′′].

Let AdvGame3
A (k,λ, qK , qC , qR) and Adv

Game4
A (k,λ, qK , qC , qR) be the advantage function of adversary A in

Game3 and Game4, respectively, in the full adaptive security model. As defined in Section 2, parameters
λ, qK , qC , qR indicate the upper bound of the number of IBE instances, key extraction queries, challenge iden-
tities, and challenge ciphertexts for each identity in each instance, respectively. We prove (in Lemma 9) that
the computational non-degeneracy property implies that Game3 and Game4 are indistinguishable in the full
adaptive security model. As we have discussed, this suffice to conclude that an ENDSG with computational
non-degeneracy property (instead of the original one) implies a full adaptively secure IBE in the multi-instance,
multi-ciphertext setting.

Lemma 9 (from Game3 to Game4) For any probabilistic polynomial time adversary A , there exists an adver-
saryB such that

�

�

�Adv
Game3
A (k,λ, qK , qC , qR)−Adv

Game4
A (k,λ, qK , qC , qR)

�

�

�¶ AdvND
B (k, qK , qC , qR),

and Time(B)≈ Time(A ) + (qK + qCqR) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[qK ]
,
¦

bg j, j′
©

j∈[qC ], j′∈[qR]
,
¦

T j, j′
©

j∈[qC ], j′∈[qR]

�

where bg j, j′ =
�

bg0, j, j′ , bg1, j, j′ , . . . , bgn, j, j′
�

and each T j, j′ is either e(bg0, j, j′ ,bh
∗∗
j ) or uniformly distributed over GT ,

algorithmB does:

Setup. Sample MSKι ←H (using PP) for all ι ∈ [λ], and output

��

ι, MPKι := (PP,µ(MSKι))
�	

ι∈[λ] .

Then algorithmB picks a secret random bit β ← {0, 1}.

Key extraction queries. On the j-th query (ι,y), sample h ← SampH(PP). If query (ι,y) has been made
before, say the j′-th query ( j′ < j), set MSK = MSKι ·bh∗j′ ·eh

∗
j′ ; otherwise, set MSK = MSKι ·bh∗j ·eh

∗
j . Finally,B

outputs
SK← KeyGen(PP, MSK,y;h).

Here we implicitly set bRn(ι,y) :=bh∗j and eRn(ι,y) :=eh∗j if the query has not been made yet.

Challenge queries. On input (ι∗,x∗, M∗0, M∗1), we let the query be the j′-th occurrence of j-th query of the form
(ι∗,x∗,∗,∗) and x∗ = (x∗1, . . . , x∗n) ∈ {0,1}n. B samples (g0, g1, . . . , g2n)← SampG(PP) and outputs

CT∗ =

 

g0 · bg0, j, j′ ,
n
∏

i=1

(g2i−x∗i
· bg2i−x∗i , j, j′), e(g0 · bg0, j, j′ , MSKι∗) · T j, j′ · M∗β

!

.

Here we implicitly set bRn(ι∗,x∗) :=bh∗∗j . Due to the restriction of the security model, the assignment here
won’t conflict with the assignment when answering key extraction queries.

Guess. B outputs 1 ifA ’s guess equals β , and outputs 0 in the other case.

Analysis. Observe that, if T j, j′ = e(bg0, j, j′ ,bh
∗∗
j ), then the boxed term equals e(g0 ·bg0, j, j′ , MSKι∗)·e(bg0, j, j′ ,bh

∗∗
j )·M

∗
β ,

the simulation is identical to Game3; otherwise, if all T j, j′ are uniformly distributed over GT , then the boxed
term is independently and uniformly distributed over GT and the simulation is identical to Game4. Therefore

we may conclude that
�

�

�Adv
Game3
A (k,λ, qK , qC , qR)−Adv

Game4
A (k,λ, qK , qC , qR)

�

�

�¶ AdvND
B (k, qK , qC , qR). �
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6.3 Computational Non-degeneracy from d-Linear Assumption

We now prove that the prime-order instantiation proposed in Section 4 has realized the computational non-
degeneracy defined by the previous subsection. And this immediately implies that the concrete IBE scheme
shown in Section 5 is fully adaptively secure in the multi-instance, and multi-ciphertext setting.

We first rewrite the ND advantage function AdvND
A (k, q, q′, q′′) as follows:

AdvND
A (k, q, q′, q′′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q′]
,
¦

bg j, j′
©

j∈[q], j′∈[q′′]

�

,

T0 :=
n

e(bg0, j, j′ ,bh
∗∗
j )
o

j∈[q], j′∈[q′′]
, T1 :=

n

e(bg0, j, j′ ,bh
∗∗
j ) · bR j, j′

o

j∈[q], j′∈[q′′]

and

PP :=

 

p,G,H,GT , e,µ;
gπL(B)

1 , gπL(BA1)
1 , . . . , gπL(BAn)

1

gB∗R
2 , g

B∗A>1 R
2 , . . . , g

B∗A>n R
2

!

;

bh∗j ·eh
∗
j := g

B∗







0d
br′j
er′j







2 , ∀ j ∈ [q′];

bg j, j′ :=
�

g
πM(B)bs j, j′

1 , g
πM(BA1)bs j, j′

1 , . . . , g
πM(BAn)bs j, j′

1

�

, ∀ j ∈ [q], j′ ∈ [q′′];

e(bg0, j, j′ ,bh
∗∗
j ) := e(g

πM(B)bs j, j′

1 , g
πM(B∗)br j

2 ) = e(g1, g2)
bs>

j, j′
br j , ∀ j ∈ [q], j′ ∈ [q′′];

bR j, j′ := e(g1, g2)
bγ j, j′ , ∀ j ∈ [q], j′ ∈ [q′′];

where br′j ,er
′
j ← Z

d
p for all j ∈ [q′], and br j ,bs j, j′ ← Zd

p ,bγ j, j′ ← Zp for all j ∈ [q] and j′ ∈ [q′′].

Lemma 10 ((d, 1, qq′′)-Lin⇒ ND) For any probabilistic polynomial time adversaryA , there exists an adversary
B such that

AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-Lin

B (k),

and Time(B)≈ Time(A ) + d2 · (qq′′ + q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Overview of the Proof. From the observation that all bh∗∗j = g
πM(B∗)br j

2 are independently distributed and will
never be given toA individually, we essentially prove a stronger security result:

“Given D, g
bs>

j, j′
br j

1 are computationally indistinguishable from g
bs>

j, j′
br j+bγ j, j′

1 .”

The proof is quite direct in the case of q = 1, i.e., there exists only onebr j (or challenge identity in the context of
IBE). However more than one br j (or multiple challenge identity in the context of IBE) may arise O (q) security
loss if we continue to adopt this trivial proof strategy. In order to obtain a tight reduction in such a case, we
further rewrite the challenge term as

g
bs>

j, j′
br j

1 = g
bs>

j, j′
V> r̄ j

1 = g
r̄>j Vbs j, j′

1 , ∀ j ∈ [q], j′ ∈ [q′′]

where V may be any (d+1)×d matrix over Zp of rank d and r̄ j ← Zd+1
p . Clearly, we implicitly definebr j := V>r̄ j

for all j ∈ [q]. Since the matrix V is shared by all br j ’s in challenge terms, we could now deal with polynomially
many distinct br j ’s uniformly which results in a proof with constant security loss.
Proof. Given an instance of (d, 1, qq′′)-linear problem (i.e., set `= 1 and q = qq′′)

�

g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 ,

¦

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1

©

j∈[q], j′∈[q′′] ,
n

g
ad+1(s1, j, j′+···+sd, j, j′ )+sd+1, j, j′

1

o

j∈[q], j′∈[q′′]

�

as input where all sd+1, j, j′ for j ∈ [q] and j′ ∈ [q′′] are either 0 or uniformly chosen from Z∗p, adversary B
works as follows:

Programming bs j, j′ for j ∈ [q], j′ ∈ [q′]. AdversaryB implicitly sets

bs j, j′ = (s1, j, j′ , . . . , sd, j, j′)
>, ∀ j ∈ [q], j′ ∈ [q′].
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Programming B,B∗,A1, . . . ,An,R. Define W as

W :=







































1
...

1
a1

. . .
ad

1
...

1







































∈ Z3d×3d
p

and set W∗ := (W−1)>. Sample B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>. Also sample Ā1, . . . , Ān← Z3d×3d
p ,

and implicitly set

(B,B∗) := (B̄W, B̄∗W∗), R :=W>R̄, Ai :=W−1ĀiW, ∀i ∈ [n].

Observe that B,B∗,R and all Ai for i ∈ [n] are distributed properly, and we have

BAi = (B̄W)(W−1ĀiW) = B̄ĀiW, ∀i ∈ [n];

B∗R = (B̄∗W∗)(W>R̄) = B̄∗R̄;

B∗A>i R = (B̄∗W∗)(W−1ĀiW)
>(W>R̄) = B̄∗Ā>i R̄, ∀i ∈ [n].

Simulating PP. AlgorithmB can simulate

gπL(B)
1 = gπL(B̄W)

1 = g B̄πL(W)
1 and gπL(BAi)

1 = gπL(B̄ĀiW)
1 = g B̄ĀiπL(W)

1 , ∀i ∈ [n],

gB∗R
2 = g B̄∗R̄

2 and g
B∗A>1 R
2 = g

B̄∗Ā>i R̄
2 , ∀i ∈ [n],

using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating bh∗j ·eh
∗
j for j ∈ [q′]. By a simple calculation, we have

W∗ :=







































1
...

1
a−1

1
. . .

a−1
d

1
...

1







































∈ Z3d×3d
p .

Observe that the right-most 2d × 2d sub-matrix of W∗ is full-rank with overwhelming probability and






W∗









0d

br′j
er′j









:br′j ,er
′
j ← Z

d
p







=















0d

br′′j
er′′j









:br′′j ,er′′j ← Z
d
p







.

which means thatB may properly produce

bh∗j ·eh
∗
j = g

B∗







0d
br′j
er′j







2 = g

B̄∗W∗







0d
br′j
er′j







2 , ∀ j ∈ [q′]

by sampling br′′j ,er′′j ← Z
d
p for all j ∈ [q′] and setting

bh∗j ·eh
∗
j = g

B̄∗







0d
br′′j
er′′j







2 , ∀ j ∈ [q′].
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Simulating bg j, j′ for j ∈ [q], j′ ∈ [q′]. For all j ∈ [q], j ∈ [q′], algorithmB can simulate

g

B







0d
bs j, j′

0d







1 = g

B̄W







0d
bs j, j′

0d







1 = g

B̄

















0d
a1s1, j, j′

...
ad sd, j, j′

0d

















1 and g

BAi







0d
bs j, j′

0d







1 = g

B̄ĀiW







0d
bs j, j′

0d







1 = g

B̄Āi

















0d
a1s1, j, j′

...
ad sd, j, j′

0d

















1 , ∀i ∈ [n]

using the knowledge of
¦

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1

©

and B̄, Ā1, . . . , Ān.

Simulating the challenge. Define an additional matrix V of rank d as

V :=













a1
. . .

ad

ad+1 · · · ad+1













∈ Z(d+1)×d
p .

For all j ∈ [q], algorithmB samples r̄ j ← Zd+1
p and implicitly set br>j := r̄>j V. ThenB computes

g
br>j bs j, j′+bγ j, j′

1 = g

r̄>j













a1s1, j, j′

...
ad sd, j, j′

ad+1(s1, j, j′+···+sd, j, j′ )+sd+1, j, j′













1 , ∀ j ∈ [q], j′ ∈ [q′′]

using the knowledge of
n

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1 , g
ad+1(s1, j, j′+···+sd, j, j′ )+sd+1, j, j′

1

o

, and outputs the challenge as

e(g
br>j bs j, j′+bγ j, j′

1 , g2).

Analysis. Observe that, if sd+1, j, j′ = 0 for all j ∈ [q] and j′ ∈ [q′], then the output challenge is distributed as

e(g
r̄>j Vbs j, j′

1 , g2) = e(g1, g2)
bs>

j, j′
br j , ∀ j ∈ [q], j′ ∈ [q′],

which is identical to T0 where bγ j, j′ := 0; if sd+1, j, j′ ← Z∗p for all j ∈ [q] and j′ ∈ [q′], then the output challenge
is distributed as

e(g
r̄>j (Vbs j, j′+ed+1sd+1, j, j′ )
1 , g2) = e(g1, g2)

bs>
j, j′
br j · e(g1, g2)

sd+1, j, j′e
>
d+1 r̄ j , ∀ j ∈ [q], j′ ∈ [q′],

which is identical to T1 where bγ j, j′ := sd+1, j, j′e
>
d+1r̄ j (in the box) is uniformly distributed over Zp. Therefore

we may conclude that AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-Lin

B (k). �
We immediately have the following corollary from Lemma 1.

Corollary 4 (d-Lin⇒ ND) For any probabilistic polynomial time adversaryA , there exists an adversaryB such
that

AdvND
A (k, q, q′, q′′)¶ Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + d2 · (qq′′ + q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

7 Fine-Tuning Extended Nested Dual System Groups from Section 3

In this section, we begin our work on exploring more efficient instantiation of ENDSG leading to more
efficient IBE. Our fine-tuning is based the ENDSG shown in Section 3 equipped with computational non-
degeneracy defined in Section 6. Namely, instead of investigating the weak adaptive security as a stepping
stone, we are going to consider the full adaptive security directly. As discussed in Section 1, key points are (1)
updating computational non-degeneracy; (2) re-organizing the LS requirements; and (3) hiding parameters
for SampH from the adversary. We show in Appendix C that the ENDSG after fine-tuning still implies IBE in
the multi-instance, multi-ciphertext setting by showing the construction and the sketch of the proof.
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Syntax. The fine-tuned extended nested dual system group consists of eight (probabilistic) polynomial time
algorithms defined as follows:

– SampP(1k, n): On input (1k, n), output

– PP containing (1) group description (G,H,GT ) and an admissible bilinear map e :G×H→GT ; (2)
an efficient linear map µ defined on H; (3) an efficient sampler for H and Zord(H), respectively; (4)
public parameters for SampG.

– HP containing parameters for SampH.

– SP containing secret parameters forÛSampG,åSampG, ÛSampH
∗

and åSampH
∗
.

– SampGT: Im(µ)→GT .

– SampG(PP): Output g=
�

g0, g1, . . . , gn
�

∈Gn+1.

– SampH(PP, HP): Output h=
�

h0, h1, . . . , hn
�

∈Hn+1.

– ÛSampG(PP, SP): Output bg=
�

bg0, bg1, . . . , bgn
�

∈Gn+1.

– åSampG(PP, SP): Output eg=
�

eg0, eg1, . . . , egn
�

∈Gn+1.

– ÛSampH
∗
(PP, SP): Output bh∗ ∈H.

– åSampH
∗
(PP, SP): Output eh∗ ∈H.

The first four algorithms are used in the real system, while the remaining ones are defined for the proof. The
notation SampG0 refers to the first element in the output of SampG, i.e., g0. The notational convention also

applies to SampH,ÛSampG, andåSampG.

Correctness and Security. The projective, associative, orthogonality, and H-subgroup requirement are identi-
cal to those defined in Section 3.

(Left subgroup indistinguishability 1 (LS1).) For any probabilistic polynomial time adversary A , the fol-
lowing advantage function is negligible in k,

AdvLS1
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
¦

h j

©

j∈[q′]

�

, T0 :=
¦

g j

©

j∈[q] , T1 :=
�

g j · bg j · eg j

�

j∈[q]

and

g j ← SampG(PP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), ∀ j ∈ [q];

h j ← SampH(PP, HP), ∀ j ∈ [q′].

(Left subgroup indistinguishability 2 (LS2).) For any probabilistic polynomial time adversary A , the fol-
lowing advantage function is negligible in k,

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j · eg

′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

, T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · eg j

©

j∈[q]

and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q+ q′];

g′j ← SampG(PP), bg′j ←ÛSampG(PP, SP), eg′j ←åSampG(PP, SP), ∀ j ∈ [q];

g j ← SampG(PP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), ∀ j ∈ [q];

h j ← SampH(PP, HP), ∀ j ∈ [q′].
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(Left subgroup indistinguishability 3 (LS3).) For any probabilistic polynomial time adversary A , the fol-
lowing advantage function is negligible in k,

AdvLS3
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · eg
′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

, T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · bg j

©

j∈[q]

and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q+ q′];

g′j ← SampG(PP), eg′j ←åSampG(PP, SP), ∀ j ∈ [q];

g j ← SampG(PP), bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), ∀ j ∈ [q];

h j ← SampH(PP, HP), ∀ j ∈ [q′].

(Nested-hiding indistinguishability (NH).) For all η ∈ [bn/2c] and any probabilistic polynomial time adver-
saryA , the following advantage function is negligible in k,

AdvNH(η)
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
¦

(bg j)−(2η−1)

©

j∈[q] ,
¦

(eg j)−2η

©

j∈[q] , {h
′
j} j∈[q′]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
�

h j · (bh∗∗j )
e2η−1 · (eh∗∗j )

e2η

�

j∈[q′]

and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q+ q′];

bg j ←ÛSampG(PP, SP), eg j ←åSampG(PP, SP), ∀ j ∈ [q];

h j ← SampH(PP, HP), bh∗∗j ←ÛSampH
∗
(PP, SP), eh∗∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q′];

h′j ← SampH(PP, HP), ∀ j ∈ [q′].

We further define
AdvNH

A (k, q, q′) := max
η∈[bn/2c]

n

AdvNH(η)
A (k, q, q′)

o

.

(Computational non-degeneracy (ND).) For any probabilistic polynomial time adversary A , the following
advantage function is negligible in k,

AdvND
A (k, q, q′, q′′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j , h j

o

j∈[q′]
,
¦

bg j, j′ · eg j, j′
©

j∈[q], j′∈[q′′]

�

,

T0 :=
n

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j )
o

j∈[q], j′∈[q′′]
, T1 :=

¦

R j, j′
©

j∈[q], j′∈[q′′] .

and

bh∗j ←ÛSampH
∗
(PP, SP), eh∗j ←åSampH

∗
(PP, SP), h j ← SampH(PP, HP), ∀ j ∈ [q′];

bh∗∗j ←ÛSampH
∗
(PP, SP), eh∗∗j ←åSampH

∗
(PP, SP), ∀ j ∈ [q];

bg j, j′ =
�

bg0, j, j′ , bg1, j, j′ , . . . , bgn, j, j′
�

←ÛSampG(PP, SP), ∀ j ∈ [q], j′ ∈ [q′′];

eg j, j′ =
�

eg0, j, j′ , eg1, j, j′ , . . . , egn, j, j′
�

←åSampG(PP, SP), ∀ j ∈ [q], j′ ∈ [q′′];

R j, j′ ← GT , ∀ j ∈ [q], j′ ∈ [q′′].
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8 Instantiating ENDSG from d-Linear Assumption with Auxiliary Input

The section present an instantiation of fine-tuned ENDSG in Section 7 using prime-order bilinear groups.
This yields an IBE in the multi-instance, multi-ciphertext setting using prime-order bilinear groups following
the generic construction shown in Appendix C. We describe this IBE and its variants in Section 9.

The section begins with a definition of d-linear assumption with auxiliary input, which is an generaliza-
tion of d-linear assumption in Section 4. An instantiation of fine-tuned ENDSG in the prime-order setting is
proposed with a series of proofs showing that it indeed satisfies all correctness and security requirements.

8.1 d-Linear Assumption with Auxiliary Input

We assume a prime-order (asymmetric) bilinear group generator GrpGen(1k) as defined in Section 4, which
takes security parameter 1k as input and outputs group description G := (p, G1, G2, GT , e). We also assume
that d is an even positive integer greater than 1. The d-linear assumption in G1 with auxiliary input in G2 is
defined as follows, the analogous assumption in G2 can be defined by exchanging the role of G1 and G2.

Assumption 3 (d-Linear Assumption in G1 with Auxiliary Input in G2) For any probabilistic polynomial time
adversaryA , the following advantage function is negligible in k,

Advd-LinAI
A (k) :=

�

�Pr[A (D, AUX, T0) = 1]− Pr[A (D, AUX, T1) = 1]
�

� ,

where
D :=

�

G , g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 , ga1s1

1 , . . . , gad sd
1

�

, AUX :=
�

g
aa−1

1 ad+1

2 , . . . , g
aa−1

d/2ad+1

2 , ga
2

�

T0 := gad+1(s1+···+sd )
1 , T1 := g

ad+1(s1+···+sd )+ sd+1

1

and

G := (p, G1, G2, GT , e)← GrpGen(1k);

s1, . . . , sd ← Zp; a1, . . . , ad , ad+1, sd+1← Z∗p; a := a1 · · · ad/2.

As we have done in Section 4, we also define an natural extension of d-linear assumption with auxiliary
input in order to alleviate the complexity of the proof. The relation between them is shown in Lemma 11.

Assumption 4 ((d,`, q)-Linear Assumption in G1 with Auxiliary Input in G2) For any probabilistic polyno-
mial time adversaryA , the following advantage function is negligible in k,

Adv(d,`,q)-LinAI
A (k) :=

�

�Pr[A (D, AUX, T0) = 1]− Pr[A (D, AUX, T1) = 1]
�

� ,

where

D :=
�

G , g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[`] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q]

�

, AUX :=
�

§

g
aa−1

1 ad+i

2 , . . . , g
aa−1

d/2ad+i

2

ª

i∈[`]
, ga

2

�

T0 :=
n

g
ad+i(s1, j+···+sd, j)
1

o

i∈[`], j∈[q]
, T1 :=

(

g
ad+i(s1, j+···+sd, j)+ sd+i, j

1

)

i∈[`], j∈[q]

and

G := (p, G1, G2, GT , e)← GrpGen(1k);

a1, . . . , ad , ad+i ← Z∗p, ∀i ∈ [`], a := a1 · · · ad/2;

s1, j , . . . , sd, j ← Zp, sd+i, j ← Z∗p, ∀i ∈ [`], j ∈ [q].

Lemma 11 (d-LinAI⇒ (d,`, q)-LinAI) Assume ` < q. For any probabilistic polynomial time adversaryA , there
exists an adversaryB such that

Adv(d,`,q)-LinAI
A (k)¶ ` ·Advd-LinAI

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (d + `)2q · poly(k) where poly(k) is independent of Time(A ).
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8.2 Construction

The construction is based on prime-order instantiation of DSG by Chen, Gay and Wee [CGW15] and works
with 2d×2d matrix. Technically, we sample the basis by the dual pairing vector space technique introduced by
Okamoto and Takashima [OT08, OT09, LOS+10] instead of sampling from some specific matrix distribution.
This allows us to create one normal space and two semi-functional space with specific orthogonal relations.
The randomization of the basis follows the technique proposed by Chen, Gay and Wee [CGW15]. We let πL(·),
πM(·), and πR(·) be functions mapping from a 2d×2d matrix to its left-most d columns, the next d/2 columns,
and the right-most d/2 columns, respectively. Algorithms of the fine-tuned ENDSG are shown as follows.

- SampP(1k, n): On input (1k, n), the algorithm does

- generate (p, G1, G2, GT , e)← GrpGen(1k), and let G1 = 〈g1〉, G2 = 〈g2〉 and GT = 〈gT 〉;

- define (G,H,GT , e) := (G2d
1 , G2d

2 , GT , e);

- sample D← GL2d(Zp), define D∗ := (D−1)> and

A= πL(D), bA= πM(D), eA= πR(D);
B= πL(D∗), bB= πM(D∗), eB= πR(D∗);

- for all k ∈ Z2d
p , define µ(gk

2) := e(gA
1 , gk

2) = e(g1, g2)A
>k;

- sample W1, . . . ,Wn← Z2d×2d
p ;

and output

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

, HP :=
�

gB
2 , gW1B

2 , . . . , gWnB
2

�

SP :=





gbB2 , gbA1 , g
W>1 bA
1 , . . . , g

W>n bA
1

geB2 , geA1 , g
W>1 eA
1 , . . . , g

W>n eA
1



 .

- SampGT(gp
T ): Sample s← Zd

p and output gs>p
T ∈ GT .

- SampG(PP): Sample s← Zd
p and output

�

gAs
1 , g

W>1 As
1 , . . . , g

W>n As
1

�

∈ (G2d
1 )

n+1.

- SampH(PP, HP): Sample r← Zd
p and output

�

gBr
2 , gW1Br

2 , . . . , gWnBr
2

�

∈ (G2d
2 )

n+1.

- ÛSampG(PP, SP): Sample bs← Zd/2
p and output

�

gbAbs1 , g
W>1 bAbs
1 , . . . , g

W>n bAbs
1

�

∈ (G2d
1 )

n+1.

- åSampG(PP, SP): Sample es← Zd/2
p and output

�

geAes1 , g
W>1 eAes
1 , . . . , g

W>n eAes
1

�

∈ (G2d
1 )

n+1.

– ÛSampH
∗
(PP, SP): Sample br← Zd/2

p and output gbBbr2 ∈ G2d
2 .

– åSampH
∗
(PP, SP): Sample er← Zd/2

p and output geBer2 ∈ G2d
2 .

Correctness and Security. We may check several correctness and security properties as follows:

(Projective.) For all k ∈ Z2d
p and all s ∈ Zd

p , we have that

SampGT(µ(gk
2); s) = e(g1, g2)

s>(A>k) = e(g1, g2)
(As)>k = e(gAs

1 , gk
2) = e(SampG0(PP; s), gk

2).

(Associative.) For all s ∈ Zd
p and all r ∈ Zd

p , we have that

e(gAs
1 , gWiBr

2 ) = e(g1, g2)
s>A>WiBr = e(g1, g2)

(W>i As)>Br = e(g
W>i As
1 , gBr

2 ), ∀i ∈ [n].

(Orthogonality.) For all br ∈ Zd/2
p and all er ∈ Zd/2

p , we check that

1. µ(gbBbr2 ) = e(g1, g2)A
>
bBbr = e(g1, g2)0d×(d/2)br = (1, . . . , 1)> ∈ Gd

T ;
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2. µ(geBer2 ) = e(g1, g2)A
>
eBer = e(g1, g2)0d×(d/2)er = (1, . . . , 1)> ∈ Gd

T ;

3. for all bs ∈ Zd/2
p , e(gbAbs1 , geBer2 ) = e(g1, g2)

bs>bA>eBer = e(g1, g2)
bs>0(d/2)×(d/2)er = 1GT

;

4. for all es ∈ Zd/2
p , e(geAes1 , gbBbr2 ) = e(g1, g2)

es>eA>bBbr = e(g1, g2)
es>0(d/2)×(d/2)br = 1GT

.

(H-subgroup.) This follows from the fact that Zd
p (for algorithm SampH) and Zd/2

p (for algorithm ÛSampH
∗

and åSampH
∗
) are additive groups.

We check the remaining security properties (LS1, LS2, LS3, NH and ND) in the following subsections.

8.3 Left subgroup indistinguishability 1

We may rewrite the LS1 advantage function AdvLS1
A (k, q, q′) as follows:

AdvLS1
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
¦

h j

©

j∈[q′]

�

, T0 :=
¦

g j

©

j∈[q] , T1 :=
�

g j · bg j · eg j

�

j∈[q]

and

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

, ∀ j ∈ [q′];

g j :=
�

g
As j

1 , g
W>1 As j

1 , . . . , g
W>n As j

1

�

, ∀ j ∈ [q];

g j · bg j · eg j :=
�

g
As j+bAbs j+eAes j

1 , g
W>1 (As j+bAbs j+eAes j)
1 , . . . , g

W>n (As j+bAbs j+eAes j)
1

�

, ∀ j ∈ [q];

for r j ← Zd
p for all j ∈ [q′], s j ← Zd

p ,bs j ,es j ← Zd/2
p for all j ∈ [q].

Lemma 12 ((d, d, q)-Lin⇒ LS1) For any probabilistic polynomial time adversary A , there exists an adversary
B such that

AdvLS1
A (k, q, q′)¶ Adv(d,d,q)-Lin

B (k),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given an instance of (d, d, q)-linear problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[d] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
ad+i(s1, j+···+sd, j)+sd+i, j

1

o

i∈[d], j∈[q]

�

as input where all sd+i, j with i ∈ [d] and j ∈ [q] are either 0 or uniformly chosen from Z∗p, adversaryB works
as follows:

Programming s j , bs j and es j for j ∈ [q]. AdversaryB implicitly sets

s j =
�

s1, j , . . . , sd, j

�>
and bs j =

�

sd+1, j , . . . , s3d/2, j

�>
and es j =

�

s(3d/2+1), j , . . . , s2d, j

�>
, ∀ j ∈ [q].

Programming D,D∗,W1, · · · ,Wn. Define

V :=







































a1
. . .

ad

ad+1 · · · ad+1 1
...

...
. . .

a3d/2 · · · a3d/2 1
a3d/2+1 · · · a3d/2+1 1

...
...

. . .
a2d · · · a2d 1







































∈ Z2d×2d
p .
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Sample D̄← GL2d(Zp) and let D̄∗ := (D̄−1)>. Define

D := D̄V and D∗ := D̄∗V∗.

Sample W1, . . . ,Wn← Z2d×2d
p . Observe that D,D∗ and all Wi for i ∈ [n] are distributed properly.

Simulating PP. AlgorithmB can simulate

gA
1 = gπL(D̄V)

1 = gD̄πL(V)
1 and g

W>i A
1 = g

W>i πL(D̄V)
1 = g

W>i D̄πL(V)
1 , ∀i ∈ [n]

using the knowledge of gπL(V)
1 and D̄,W1, . . . ,Wn.

Simulating h j for j ∈ [q′]. By a simple calculation, we have

V∗ :=







































a−1
1 −a−1

1 ad+1 · · · −a−1
1 a3d/2 −a−1

1 a3d/2+1 · · · −a−1
1 a2d

. . .
...

...
...

...
a−1

d −a−1
d ad+1 · · · −a−1

d a3d/2 −a−1
d a3d/2+1 · · · −a−1

d a2d

1
...

1
1

.. .
1







































∈ Z2d×2d
p .

Observe that the upper-left d × d sub-matrix of πL(V∗) is full-rank with overwhelming probability and
therefore we have

n

πL(V
∗)r j : r j ← Zd

p

o

=

¨�

r̄ j

0d

�

: r̄ j ← Zd
p

«

,

which means thatB may simulate

g
Br j

2 = g
πL(D̄∗V∗)r j

2 = g
D̄∗πL(V∗)r j

2 and g
WiBr j

2 = g
WiπL(D̄∗V∗)r j

2 = g
Wi D̄

∗πL(V∗)r j

2 , ∀i ∈ [n],

by sampling r̄ j ← Zd
p for all j ∈ [q′] and setting

g
Br j

2 = g
D̄∗
� r̄ j

0d

�

2 and g
WiBr j

2 = g
Wi D̄

∗
� r̄ j

0d

�

2 , ∀i ∈ [n], j ∈ [q′].

Simulating the challenge. AlgorithmB computes the challenge as

g
As j+bAbs j+eAes j

1 = g

D̄V







s j

bs j

es j







1 = g

D̄

























a1s1, j

...
ad sd, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a2d (s1, j+···+sd, j)+s2d, j

























1

and

g
W>i (As j+bAbs j+eAes j)
1 = g

W>i D̄V







s j

bs j

es j







1 = g

W>i D̄

























a1s1, j

...
ad sd, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a2d (s1, j+···+sd, j)+s2d, j

























1 , ∀i ∈ [n], j ∈ [q].
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Analysis. Observe that if sd+i, j = 0 for all i ∈ [d] and j ∈ [q], then bs j = es j = 0d/2 for all j ∈ [q] and
the output challenge is distributed as

¦

g j

©

j∈[q]; otherwise, if sd+i, j ← Z∗p for all i ∈ [d] and j ∈ [q], then

bs j ,es j ← (Z∗p)
d/2 for all j ∈ [q] and the output challenge is distributed as

¦

g j · bg j · eg j

©

j∈[q]. Therefore we may

conclude that AdvLS1
A (k, q, q′)¶ Adv(d,d,q)-Lin

B (k). �
We immediately have the following corollary from Lemma 1.

Corollary 5 (d-Lin⇒ LS1) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

AdvLS1
A (k, q, q′)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

8.4 Left subgroup indistinguishability 2

We may rewrite the LS2 advantage function AdvLS2
A (k, q, q′) as follows:

AdvLS2
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · bg
′
j · eg

′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

, T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · eg j

©

j∈[q]

and

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j ·eh
∗
j := g

bBbr j+eBer j

2 , ∀ j ∈ [q+ q′];

g′j · bg
′
j · eg

′
j :=

�

g
As′j+bAbs

′
j+eAes

′
j

1 , g
W>1
�

As′j+bAbs
′
j+eAes

′
j

�

1 , . . . , g
W>n
�

As′j+bAbs
′
j+eAes

′
j

�

1

�

, ∀ j ∈ [q];

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

, ∀ j ∈ [q′];

g j · bg j · eg j :=
�

g
As j+bAbs j+eAes j

1 , g
W>1 (As j+bAbs j+eAes j)
1 , . . . , g

W>n (As j+bAbs j+eAes j)
1

�

, ∀ j ∈ [q];

g j · eg j :=
�

g
As j+eAes j

1 , g
W>1 (As j+eAes j)
1 , . . . , g

W>n (As j+eAes j)
1

�

, ∀ j ∈ [q];

for br j ,er j ← Zd/2
p for all j ∈ [q+ q′], r j ← Zd

p for all j ∈ [q′], s j , s
′
j ← Z

d
p , bs j ,es j ,bs

′
j ,es
′
j ← Z

d/2
p for all j ∈ [q].

Lemma 13 ((d, d/2, q)-LinAI⇒ LS2) For any probabilistic polynomial time adversary A , there exists an ad-
versaryB such that

AdvLS2
A (k, q, q′)¶ Adv(d,d/2,q)-LinAI

B (k),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given an instance of (d, d/2, q)-linear problem (i.e., set `= d)
�

g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[d/2] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
ad+i(s1, j+···+sd, j)+sd+i, j

1

o

i∈[d/2], j∈[q]

�

along with auxiliary input

AUX =
�

§

g
aa−1

1 ad+i

2 , . . . , g
aa−1

d/2ad+i

2

ª

i∈[d/2]
, ga

2

�

, (where a = a1 · · · ad/2)

as input where all sd+i, j with i ∈ [d/2] and j ∈ [q] are either 0 or uniformly chosen from Z∗p, adversary B
works as follows:

Programming s j , bs j and es j for j ∈ [q]. Sample s̄ j ← Zd/2
p for all j ∈ [q]. AdversaryB implicitly sets

s j =
�

s̄ j , s1, j , . . . , s(d/2), j
�>

and bs j =
�

s(d+1), j , . . . , s(3d/2), j

�>
and es j =

�

s(d/2+1), j , . . . , sd, j

�>
, ∀ j ∈ [q].
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Programming D,D∗,W1, · · · ,Wn. Define

V :=





















































1
...

1
a1

. . .
ad/2

ad+1 · · · ad+1 1 ad+1 · · · ad+1
...

...
. . .

...
...

a3d/2 · · · a3d/2 1 a3d/2 · · · a3d/2

ad/2+1
. . .

ad





















































∈ Z2d×2d
p .

Sample D̄← GL2d(Zp) and let D̄∗ := (D̄−1)>. Define

D := D̄V and D∗ := D̄∗V∗.

Sample W1, . . . ,Wn← Z2d×2d
p . Observe that D,D∗ and all Wi for i ∈ [n] are distributed properly.

Simulating PP. AlgorithmB can simulate

gA
1 = gπL(D̄V)

1 = gD̄πL(V)
1 and g

W>i A
1 = g

W>i πL(D̄V)
1 = g

W>i D̄πL(V)
1 , ∀i ∈ [n]

using the knowledge of gπL(V)
1 and D̄,W1, . . . ,Wn.

Simulating bh∗j ·eh
∗
j for j ∈ [q+ q′]. By a simple calculation, we have

V∗ :=





















































1
...

1
a−1

1 −a−1
1 ad+1 · · · −a−1

1 a3d/2
. . .

...
...

a−1
d/2 −a−1

d/2ad+1 · · · −a−1
d/2a3d/2

1
...

1
−a−1

d/2+1ad+1 · · · −a−1
d/2+1a3d/2 a−1

d/2+1
...

...
. . .

−a−1
d ad+1 · · · −a−1

d a3d/2 a−1
d





















































∈ Z2d×2d
p .

38



Observe that distribution
n

πM(V∗)br j +πR(V∗)er j :br j ,er j ← Zd/2
p

o

is identical to the following one









































































































































−aa−1
1 ad+1 · · · −aa−1

1 a3d/2
...

...
−aa−1

d/2ad+1 · · · −aa−1
d/2a3d/2

a
. . .

a
1

...
1



















































�

br′j
er′j

�

:br′j ,er
′
j ← Z

d/2
p























































































(1)

which means that algorithmB can simulate

bh∗j ·eh
∗
j = g

bBbr j+eBer j

2 = g
D̄∗(πM(V∗)br j+πR(V∗)er j)
2 , j ∈ [q+ q′];

by sampling br′j ,er
′
j ← Z

d/2
p and setting

bh∗j ·eh
∗
j = g

D̄∗V̄∗
�

br′j
er′j

�

2 , j ∈ [q+ q′];

where matrix V̄∗ refers to the matrix in Eq. 1 using the knowledge of AUX (i.e., g V̄∗
2 ) and D̄∗.

Simulating h j for j ∈ [q′]. Observe that the upper-left d×d sub-matrix of πL(V∗) is full-rank with overwhelm-
ing probability and therefore we have

n

πL(V
∗)r j : r j ← Zd

p

o

=

¨�

r̄ j

0d

�

: r̄ j ← Zd
p

«

,

which means thatB may simulate

g
Br j

2 = g
πL(D̄∗V∗)r j

2 = g
D̄∗πL(V∗)r j

2 and g
WiBr j

2 = g
WiπL(D̄∗V∗)r j

2 = g
Wi D̄

∗πL(V∗)r j

2 , ∀i ∈ [n],

by sampling r̄ j ← Zd
p for all j ∈ [q′] and setting

g
Br j

2 = g
D̄∗
� r̄ j

0d

�

2 and g
WiBr j

2 = g
Wi D̄

∗
� r̄ j

0d

�

2 , ∀i ∈ [n], j ∈ [q′].

Simulating g′j · bg
′
j · eg

′
j for j ∈ [q]. AlgorithmB can simulate

g
As′j+bAbs

′
j+eAes

′
j

1 = g

D̄V









s′j
bs′j
es′j









1 and g
W>i (As′j+bAbs

′
j+eAes

′
j)

1 = g

W>i D̄V









s′j
bs′j
es′j









1 , ∀i ∈ [n], j ∈ [q],

by sampling s′j ← Z
d
p ,bs′j ,es

′
j ← Z

d/2
p for all j ∈ [q] and using the knowledge of gV

1 and D̄,W1, . . . ,Wn.

Simulating the challenge. AlgorithmB computes

g
As j+bAbs j+eAes j

1 = g

D̄V







s j

bs j

es j







1 = g

D̄











































s̄ j
a1s1, j

...
ad/2sd/2, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a3d/2(s1, j+···+sd, j)+s3d/2, j

ad/2+1s(d/2+1), j

...
ad sd, j











































1
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and

g
W>i (As j+bAbs j+eAes j)
1 = g

W>i D̄V







s j

bs j

es j







1 = g

W>i D̄











































s̄ j
a1s1, j

...
ad/2sd/2, j

ad+1(s1, j+···+sd, j)+sd+1, j

...
a3d/2(s1, j+···+sd, j)+s3d/2, j

ad/2+1s(d/2+1), j

...
ad sd, j











































1 , ∀i ∈ [n], j ∈ [q].

Analysis. Observe that if sd+i, j = 0 for all i ∈ [d/2] and j ∈ [q], then bs j = 0d/2 for all j ∈ [q] and the output
challenge is distributed as

¦

g j · eg j

©

j∈[q]; in the other case, if sd+i, j ← Z∗p for all i ∈ [d/2] and j ∈ [q], then

bs j ← (Z∗p)
d/2 for all j ∈ [q] and the output challenge is distributed as

¦

g j · bg j · eg j

©

j∈[q]. Therefore we may

conclude that AdvLS2
A (k, q, q′)¶ Adv(d,d/2,q)-LinAI

B (k). �
We immediately have the following corollary from Lemma 11.

Corollary 6 (d-LinAI⇒ LS2) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

AdvLS2
A (k, q, q′)¶ d/2 ·Advd-LinAI

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

8.5 Left subgroup indistinguishability 3

We may rewrite the LS3 advantage function AdvLS3
A (k, q, q′) as follows:

AdvLS3
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

PP,
n

bh∗j ·eh
∗
j

o

j∈[q+q′]
,
n

g′j · eg
′
j

o

j∈[q]
,
¦

h j

©

j∈[q′]

�

, T0 :=
�

g j · bg j · eg j

�

j∈[q]
, T1 :=

¦

g j · bg j

©

j∈[q]

and

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j ·eh
∗
j := g

bBbr j+eBer j

2 , ∀ j ∈ [q+ q′];

g′j · eg
′
j :=

�

g
As′j+eAes

′
j

1 , g
W>1
�

As′j+eAes
′
j

�

1 , . . . , g
W>n
�

As′j+eAes
′
j

�

1

�

, ∀ j ∈ [q];

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

, ∀ j ∈ [q′];

g j · bg j · eg j :=
�

g
As j+bAbs j+eAes j

1 , g
W>1 (As j+bAbs j+eAes j)
1 , . . . , g

W>n (As j+bAbs j+eAes j)
1

�

, ∀ j ∈ [q];

g j · bg j :=
�

g
As j+bAbs j

1 , g
W>1 (As j+bAbs j)
1 , . . . , g

W>n (As j+bAbs j)
1

�

, ∀ j ∈ [q];

for br j ,er j ← Zd/2
p for all j ∈ [q+ q′], r j ← Zd

p for all j ∈ [q′], s j , s
′
j ← Z

d
p , bs j ,es j ,es

′
j ← Z

d/2
p for all j ∈ [q].

Lemma 14 ((d, d/2, q)-LinAI⇒ LS3) For any probabilistic polynomial time adversary A , there exists an ad-
versaryB such that

AdvLS3
A (k, q, q′)¶ Adv(d,d/2,q)-LinAI

B (k),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. The proof is similar to that for Lemma 13. Given an instance of (d, d/2, q)-linear problem (i.e., set
`= d)

�

g1, g2, ga1
1 , . . . , gad

1 ,
¦

gad+i
1

©

i∈[d/2] ,
¦

g
a1s1, j

1 , . . . , g
ad sd, j

1

©

j∈[q] ,
n

g
ad+i(s1, j+···+sd, j)+sd+i, j

1

o

i∈[d/2], j∈[q]

�
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along with auxiliary input

AUX =
�

§

g
aa−1

1 ad+i

2 , . . . , g
aa−1

d/2ad+i

2

ª

i∈[d/2]
, ga

2

�

, (where a = a1 · · · ad/2)

as input where all sd+i, j with i ∈ [d/2] and j ∈ [q] are either 0 or uniformly chosen from Z∗p, adversary B
behaves as in the proof of Lemma 13 with the differences that:

Programming s j , bs j and es j for j ∈ [q]. Sample s̄ j ← Zd/2
p for all j ∈ [q]. AdversaryB implicitly sets

s j =
�

s̄ j , s1, j , . . . , s(d/2), j
�>

and bs j =
�

s(d/2+1), j , . . . , sd, j

�>
and es j =

�

s(d+1), j , . . . , s(3d/2), j

�>
, ∀ j ∈ [q].

Programming V. Define

V :=





















































1
...

1
a1

. . .
ad/2

ad/2+1
. . .

ad

ad+1 · · · ad+1 ad+1 · · · ad+1 1
...

...
...

...
. . .

a3d/2 · · · a3d/2 a3d/2 · · · a3d/2 1





















































∈ Z2d×2d
p .

Algorithm B may program D,D∗ and W1, . . . ,Wn, then simulate PP,
n

bh∗j ·eh
∗
j

o

,
n

g′j · eg
′
j

o

,
¦

h j

©

as well as the
challenge by the strategies used in the proof of Lemma 13. �

We immediately have the following corollary from Lemma 11.

Corollary 7 (d-LinAI⇒ LS3) For any probabilistic polynomial time adversary A , there exists an adversary B
such that

AdvLS3
A (k, q, q′)¶ d/2 ·Advd-LinAI

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

8.6 Nested-hiding indistinguishability

We may rewrite the NH advantage function AdvNH(η)
A (k, q, q′) for all η ∈ [bn/2c] as follows:

AdvNH(η)
A (k, q, q′) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where
D :=

�

PP,
n

bh∗j
o

j∈[q+q′]
,
n

eh∗j
o

j∈[q+q′]
,
¦

(bg j)−(2η−1)

©

j∈[q] ,
¦

(eg j)−2η

©

j∈[q] , {h
′
j} j∈[q′]

�

,

T0 :=
¦

h j

©

j∈[q′] , T1 :=
�

h j · (bh∗∗j )
e2η−1 · (eh∗∗j )

e2η

�

j∈[q′]

and

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j := g
bBbr′j
2 , eh∗j := g

eBer′j
2 , ∀ j ∈ [q+ q′];

bg j :=
�

g
bAbs j

1 , g
W>1 bAbs j

1 , . . . , g
W>n bAbs j

1

�

, ∀ j ∈ [q];

eg j :=
�

g
eAes j

1 , g
W>1 eAes j

1 , . . . , g
W>n eAes j

1

�

, ∀ j ∈ [q];

h′j :=
�

g
Br′j
2 , g

W1Br′j
2 , . . . , g

WnBr′j
2

�

, ∀ j ∈ [q′];

h j · (bh∗∗j )
e2η−1 · (eh∗∗j )

e2η :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
W2η−1Br j+bBbr j

2 , g
W2ηBr j+eBer j

2 , . . . , g
WnBr j

2

�

, ∀ j ∈ [q′];
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for br′j ,er
′
j ← Z

d/2
p for all j ∈ [q+ q′], bs j ,es j ← Zd/2

p for all j ∈ [q], and r j , r
′
j ← Z

d
p , br j ,er j ← Zd/2

p for all j ∈ [q′].

Lemma 15 ((d, d, d)-Lin⇒ NH) For all η ∈ [bn/2c] and for any probabilistic polynomial time adversary A ,
there exists an adversaryB such that

AdvNH(η)
A (k, q, q′)¶ Adv(d,d,d)-Lin

B (k),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. Given an instance of (d, d, d)-linear problem (on G2)
�

g1, g2, ga1
2 , . . . , gad

2 ,
¦

gad+i
2

©

i∈[d] ,
¦

g
a1 r1, j

2 , . . . , g
ad rd, j

2

©

j∈[d] ,
n

g
ad+i(r1, j+···+rd, j)+rd+i, j

2

o

i, j∈[d]

�

where all rd+i, j for i, j ∈ [d] are either 0 or uniformly chosen from Z∗p, adversaryB works as follows:

Generating q′ tuples. Algorithm B runs the algorithm described in Lemma 6 on the input q′, group G2, and
the (d, d, d)-linear instance, and obtains

�

gVZ
2 , gZ

2

�

and
n�

g
t j

2 , g
Vt j+τ j

2

�o

j∈[q′]
.

Recall that V,Z ∈ Zd×d
p and t j ,τ j ∈ Zd

p . Then sample q′ tuples

§�

g
t′j
2 , g

Vt′j
2

�ª

j∈[q′]

where t′j ∈ Z
d
p using

�

gVZ
2 , gZ

2

�

. In the simulation, we will not use
�

gVZ
2 , gZ

2

�

anymore.

Programming D,D∗ and W1, . . . ,Wn. Algorithm B samples (D,D∗)← GL2d(Zp) such that D>D∗ = I. Sample
W1, . . . ,W2(η−1),W̄2η−1,W̄2η,W2(η+1)−1 . . . ,Wn← Z2d×2d

p and implicitly set

W2η−1 = W̄2η−1 +
�

bB
�

�02d×(d/2)
��

V
�

�0d×d

�

and W2η = W̄2η +
�

02d×(d/2)
�

�
eB
��

V
�

�0d×d

�

We note that the resulting W2η−1 and W2η are uniformly distributed over Z2d×2d
p .

Programming PP. AlgorithmB can simulate

gA
1 = gπL(D)

1 and g
W>i A
1 = g

W>i πL(D)
1 , ∀i ∈ [n] \ {2η− 1,2η}

using the knowledge of D and W1, . . . ,W2η−2,W2η+1, . . . ,Wn. Observe that

W>2η−1A= W̄>2η−1A+

�

V>

0d×d

��

bB>

0d/2×2d

�

A= W̄>2η−1A,

and

W>2ηA= W̄>2ηA+

�

V>

0d×d

��

0d/2×2d
eB>

�

A= W̄>2ηA,

following the fact that bB>A= eB>A= 0(d/2)×d . HenceB can also simulate

g
W>2η−1A

1 = g
W>2η−1πL(D)
1 and g

W>2ηA

1 = g
W>2ηπL(D)
1

just using the knowledge of W̄2η−1, W̄2η and D.

Simulating bh∗j and eh∗j for j ∈ [q+ q′]. AlgorithmB can simulate

bh∗j = g
bBbr′j
2 = g

πM(D∗)br′j
2 and eh∗j = g

eBer′j
2 = g

πR(D∗)er′j
2 , ∀ j ∈ [q+ q′],

by sampling br′j ,er
′
j ← Z

d/2
p and using the knowledge of D∗.
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Simulating (bg j)−(2η−1) for j ∈ [q]. AlgorithmB can simulate

g
bAbs j

1 = g
πM(D)bs j

1 and g
W>i bAbs j

1 = g
W>i πM(D)bs j

1 , ∀i ∈ [n] \ {2η− 1, 2η}, j ∈ [q]

by sampling bs j ← Zd/2
p and using the knowledge of D and W1, . . . ,W2η−2,W2η+1, . . . ,Wn. Observe that

W>2ηbA= W̄>2ηbA+

�

V>

0d×d

��

0d/2×2d
eB>

�

bA= W̄>2ηbA,

from the fact that eB>bA= 0(d/2)×(d/2). Therefore the algorithmB can simulate

g
W>2ηbAbs j

1 = g
W̄>2ηbAbs j

1 = g
W̄>2ηπM(D)bs j

1 , ∀ j ∈ [q]

using the knowledge of W̄2η and D as well as bs j we have picked. We note that algorithm B can not

compute g
W>2η−1

bAbs j

1 since

W>2η−1
bA= W̄>2η−1

bA+

�

V>

0d×d

��

bB>

0d/2×2d

�

bA= W̄>2η−1
bA+

�

V>

0d×d

��

I(d/2)×(d/2)
0(d/2)×(d/2)

�

which contains the upper d/2 rows of secret matrix V.

Simulating (eg j)−2η for j ∈ [q]. The simulation strategy is similar to the above. In particular, algorithm B
can simulate

g
eAes j

1 = g
πR(D)es j

1 and g
W>i eAes j

1 = g
W>i πR(D)es j

1 , ∀i ∈ [n] \ {2η− 1, 2η}, j ∈ [q]

by sampling es j ← Zd/2
p and using the knowledge of D and W1, . . . ,W2η−2,W2η+1, . . . ,Wn. Observe that

W>2η−1
eA= W̄>2η−1

eA+

�

V>

0d×d

��

bB>

0d/2×2d

�

eA= W̄>2η−1
eA,

from the fact that bB>eA= 0(d/2)×(d/2). Therefore the algorithmB can simulate

g
W>2η−1

eAes j

1 = g
W̄>2η−1

eAes j

1 = g
W̄>2η−1πR(D)es j

1 , ∀ j ∈ [q]

using the knowledge of W̄2η−1 and D as well as es j we have picked. We note that algorithm B can not

compute g
W>2ηeAes j

1 since

W>2ηeA= W̄>2ηeA+

�

V>

0d×d

��

0d/2×2d
eB>

�

eA= W̄>2ηeA+

�

V>

0d×d

��

0(d/2)×(d/2)
I(d/2)×(d/2)

�

which contains the lower d/2 rows of secret matrix V.

Simulating h′j for all j ∈ [q′]. Let T := BB
−1

where B and B are the upper and lower d × d sub-matrix of
B. Because B = πL(D∗) is sampled by the simulator, it can efficiently compute the matrix T. Since the
sub-matrix B is full-rank with overwhelming probability, we may implicitly sample

Br′j =

�

t′j
Tt′j

�

, ∀ j ∈ [q′].

In such a case, algorithmB can simulate

g
Br′j
2 = g

�

t′j
Tt′j

�

2 and g
WiBr′j
2 = g

Wi

�

t′j
Tt′j

�

2 , ∀i ∈ [n] \ {2η− 1,2η}, j ∈ [q′]

using g
t′j
2 and the knowledge of T,W1, . . . ,W2η−2,W2η+1, . . . ,Wn. For all j ∈ [q′], observe that

W2η−1Br′j = W̄2η−1

�

t′j
Tt′j

�

+
�

bB
�

�02d×(d/2)
��

V
�

�0d×d

�

�

t′j
Tt′j

�

= W̄2η−1

�

t′j
Tt′j

�

+
�

bB
�

�02d×(d/2)
�

Vt′j;

W2ηBr′j = W̄2η

�

t′j
Tt′j

�

+
�

02d×(d/2)
�

�
eB
��

V
�

�0d×d

�

�

t′j
Tt′j

�

= W̄2η

�

t′j
Tt′j

�

+
�

02d×(d/2)
�

�
eB
�

Vt′j .

43



Therefore algorithmB can simulate

g
W2η−1Br′j
2 = g

W̄2η−1

�

t′j
Tt′j

�

+(bB|02d×(d/2) )Vt′j

2 and g
W2ηBr′j
2 = g

W̄2η

�

t′j
Tt′j

�

+( 02d×(d/2)|eB)Vt′j

2

using
�

g
t′j
2 , g

Vt′j
2

�

and the knowledge of W̄2η−1,W̄2η and D∗ which is used to derive bB, eB and T.

Simulating the challenge. The challenge is produced following the method for simulating h′j but using tuples
n�

g
t j

2 , g
Vt j+τ j

2

�o

j∈[q′]
instead of

§�

g
t′j
2 , g

Vt′j
2

�ª

j∈[q′]
. In particular, we implicitly set

Br j =

�

t j

Tt j

�

, ∀ j ∈ [q′].

Following the above observation, algorithmB can simulate

g
Br j

2 = g

�

t j
Tt j

�

2 and g
WiBr j

2 = g
Wi

�

t j
Tt j

�

2 , ∀i ∈ [n] \ {2η− 1,2η}, j ∈ [q′]

using g
t j

2 and the knowledge of T,W1, . . . ,W2η−2,W2η+1, . . . ,Wn, and simulate

g
W2η−1Br j+bBbr j

2 = g
W̄2η−1

�

t j
Tt j

�

+(bB|02d×(d/2) )(Vt j+τ j)
2 and g

W2ηBr j+eBer j

2 = g
W̄2η

�

t j
Tt j

�

+( 02d×(d/2)|eB)(Vt j+τ j)
2 , ∀ j ∈ [q′]

using
�

g
t j

2 , g
Vt j+τ j

2

�

and the knowledge of W̄2η−1,W̄2η and D∗ which is used to derive bB, eB and T.

Analysis. Observe that, we implicitly set
�

br j

er j

�

= τ j , ∀ j ∈ [q′],

when producing the challenge. Therefore, if rd+i, j = 0 for all i, j ∈ [d], then τ j = 0d for all j ∈ [q′] and the
output challenge has the same distribution as

¦

h j

©

j∈[q′]; on the other hand, if rd+i, j ← Z∗p for all i, j ∈ [d],

then τ j ← (Z∗p)
d for all j ∈ [q′] and the output challenge is distributed as

n

h j · (bh∗∗j )
e2η−1 · (eh∗∗j )

e2η

o

j∈[q′]
. We

may conclude that AdvNH(η)
A (k, q, q′)¶ Adv(d,d,d)-Lin

B (k). �
We immediately have the following corollary from Lemma 1.

Corollary 8 (d-Lin⇒ NH) For any probabilistic polynomial time adversaryA , there exists an adversaryB such
that

AdvNH
A (k, q, q′)¶ d ·Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (q+ q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

8.7 Computational Non-degeneracy

We may rewrite the ND advantage function as:

AdvND
A (k, q, q′, q′′) := |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|,

where
D :=

�

PP,
n

bh∗j ·eh
∗
j , h j

o

j∈[q′]
,
¦

bg j, j′ · eg j, j′
©

j∈[q], j′∈[q′′]

�

,

T0 :=
n

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j )
o

j∈[q], j′∈[q′′]
, T1 :=

n

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j ) · bR j, j′

o

j∈[q], j′∈[q′′]
.
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and

PP :=
�

p,G,H,GT , e,µ; gA
1 , g

W>1 A
1 , . . . , g

W>n A
1

�

;

bh∗j ·eh
∗
j := g

bBbr′j+eBer
′
j

2 , ∀ j ∈ [q′];

h j :=
�

g
Br j

2 , g
W1Br j

2 , . . . , g
WnBr j

2

�

, ∀ j ∈ [q′];

bg j, j′ · eg j, j′ :=
�

g
bAbs j, j′+eAes j, j′

1 , g
W>1 (bAbs j, j′+eAes j, j′ )
1 , . . . , g

W>n (bAbs j, j′+eAes j, j′ )
1

�

, ∀ j ∈ [q], j′ ∈ [q′′];

e(bg0, j, j′ · eg0, j, j′ ,bh
∗∗
j ·eh

∗∗
j ) := e(g

bAbs j, j′+eAes j, j′

1 , g
bBbr j+eBer j

2 ) = e(g1, g2)
(bs>

j, j′
,es>

j, j′
)
�

br j

er j

�

, ∀ j ∈ [q], j′ ∈ [q′′];

bR j, j′ := e(g1, g2)
bγ j, j′ , ∀ j ∈ [q], j′ ∈ [q′′];

for br′j ,br
′
j ← Z

d/2
p and r j ← Zd

p for all j ∈ [q′], bs j, j′ ,br j ,es j, j′ ,er j ← Zd/2
p and bγ j, j′ for all j ∈ [q], j ∈ [q′′].

Lemma 16 ((d, 1, qq′′)-Lin⇒ ND) For any probabilistic polynomial time adversaryA , there exists an adversary
B such that

AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-Lin

B (k),

and Time(B)≈ Time(A ) + (qq′′ + q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

Proof. The proof follows the main idea of that of Lemma 10. Given an instance of (d, 1, qq′′)-linear problem
(i.e., set `= 1 and q = qq′′)

�

g1, g2, ga1
1 , . . . , gad

1 , gad+1
1 ,

¦

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1

©

j∈[q], j′∈[q′′] ,
n

g
ad+1(s1, j, j′+···+sd, j, j′ )+sd+1, j, j′

1

o

j∈[q], j′∈[q′′]

�

as input where all sd+1, j, j′ for j ∈ [q] and j′ ∈ [q′′] are either 0 or uniformly chosen from Z∗p, adversary B
works as follows:

Programming bs j, j′ and es j, j′ for j ∈ [q], j′ ∈ [q′′]. AdversaryB implicitly sets

bs j, j′ =
�

s1, j, j′ , . . . , sd/2, j, j′
�>

and es j, j′ =
�

sd/2+1, j, j′ , . . . , sd, j, j′
�>

, ∀ j ∈ [q], j′ ∈ [q′′].

Programming D,D∗,W1, · · · ,Wn. We define U as

U :=







































1
...

1
a1

. . .
ad/2

ad/2+1
. . .

ad







































∈ Z2d×2d
p .

Sample D̄← GL2d(Zp) and let D̄∗ := (D̄−1)>. Define

D := D̄U and D∗ := D̄∗U∗.

Sample W1, . . . ,Wn← Z2d×2d
p . Observe that D,D∗ and all Wi for i ∈ [n] are distributed properly.

Simulating PP. AlgorithmB can simulate

gA
1 = gπL(D̄U)

1 = gD̄πL(U)
1 and g

W>i A
1 = g

W>i πL(D̄U)
1 = g

W>i D̄πL(U)
1 , ∀i ∈ [n]

using the knowledge of πL(U) and D̄,W1, . . . ,Wn.

45



Simulating bh∗j ·eh
∗
j for j ∈ [q′]. By a simple calculation, we have

U∗ :=







































1
...

1
a−1

1
. . .

a−1
d/2

a−1
d/2+1

. . .
a−1

d







































∈ Z2d×2d
p .

Observe that the right-most d × d sub-matrix of U∗ is full-rank with overwhelming probability and
¨

U∗
�

0d
br′j
er′j

�

:br′j ,er
′
j ← Z

d/2
p

«

=

¨�

0d
br′′j
er′′j

�

:br′′j ,er′′j ← Z
d/2
p

«

.

which means thatB may properly produce

bh∗j ·eh
∗
j = g

bBbr′j+eBer
′
j

2 = g

D̄∗U∗







0d
br′j
er′j







2 , ∀ j ∈ [q′]

by sampling br′′j ,er′′j ← Z
d/2
p for all j ∈ [q′] and setting

bh∗j ·eh
∗
j = g

D̄∗







0d
br′′j
er′′j







2 , ∀ j ∈ [q′].

Simulating h j for all j ∈ [q′]. AlgorithmB may compute

HP :=
�

gB
2 , gW1B

2 , . . . , gWnB
2

�

where
gB

2 = gπL(D̄∗U∗)
2 = gD̄∗πL(U∗)

2 and gWiB
2 = gWiπL(D̄∗U∗)

2 = gWi D̄
∗πL(U∗)

2 , ∀i ∈ [n]

using the knowledge of D̄∗, πL(U∗) and W1, . . . ,Wn. This allows it to simulate
¦

h j

©

j∈[q′]← SampHq′(PP, HP).

Simulating bg j, j′ · eg j, j′ for j ∈ [q], j′ ∈ [q′]. AlgorithmB can simulate

g
bAbs j, j′+eAes j, j′

1 = g

D̄U







0d
bs j, j′

es j, j′







1 = g

D̄













0d
a1s1, j, j′

...
ad sd, j, j′













1

and

g
W>i
�

bAbs j, j′+eAes j, j′
�

1 = g

W>i D̄U







0d
bs j, j′

es j, j′







1 = g

W>i D̄













0d
a1s1, j, j′

...
ad sd, j, j′













1 ,∀i ∈ [n], j ∈ [q], j ∈ [q′],

using the knowledge of
¦

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1

©

and D̄,W1, . . . ,Wn.

Simulating the challenge. Define an additional matrix V of rank d as

V :=













a1
. . .

ad

ad+1 · · · ad+1













∈ Z(d+1)×d
p .
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For all j ∈ [q], algorithmB samples r̄ j ← Zd+1
p and implicitly set

�

br>j ,er>j
�

:= r̄>j V. ThenB computes

g

�

br>j ,er>j
�

�

bs j, j′

es j, j′

�

+bγ j, j′

1 = g

r̄>j













a1s1, j, j′

...
ad sd, j, j′

ad+1(s1, j, j′+···+sd, j, j′ )+sd+1, j, j′













1 , ∀ j ∈ [q], j′ ∈ [q′′]

using the knowledge of
n

g
a1s1, j, j′

1 , . . . , g
ad sd, j, j′

1 , g
ad+1(s1, j, j′+···+sd, j, j′ )+sd+1, j, j′

1

o

, and outputs the challenge as

e(g

�

br>j ,er>j
�

�

bs j, j′

es j, j′

�

+bγ j, j′

1 , g2).

Analysis. Observe that, if sd+1, j, j′ = 0 for all j ∈ [q] and j′ ∈ [q′], then the output challenge is distributed as

e(g
r̄>j V

�

bs j, j′

es j, j′

�

1 , g2) = e(g1, g2)
(bs>

j, j′
,es>

j, j′
)
�

br j

er j

�

, ∀ j ∈ [q], j′ ∈ [q′],

which is identical to T0 where bγ j, j′ := 0; if sd+1, j, j′ ← Z∗p for all j ∈ [q] and j′ ∈ [q′], then the output challenge
is distributed as

e(g
r̄>j

�

V

�

bs j, j′

es j, j′

�

+ed+1sd+1, j, j′

�

1 , g2) = e(g1, g2)
(bs>

j, j′
,es>

j, j′
)
�

br j

er j

�

· e(g1, g2)
sd+1, j, j′e

>
d+1 r̄ j , ∀ j ∈ [q], j′ ∈ [q′],

which is identical to T1 where bγ j, j′ := sd+1, j, j′e
>
d+1r̄ j (in the box) is uniformly distributed over Zp. Therefore

we may conclude that AdvND
A (k, q, q′, q′′)¶ Adv(d,1,qq′′)-Lin

B (k). �
We immediately have the following corollary from Lemma 1.

Corollary 9 (d-Lin⇒ ND) For any probabilistic polynomial time adversaryA , there exists an adversaryB such
that

AdvND
A (k, q, q′, q′′)¶ Advd-Lin

B (k) + 1/(p− 1),

and Time(B)≈ Time(A ) + (qq′′ + q′) · poly(k, n) where poly(k, n) is independent of Time(A ).

9 Concrete IBE from d-Linear Assumption with Auxiliary Input

This section present an concrete IBE scheme derived from our prime-order instantiation (in Section 8) and
the generic construction in Appendix C which is an adaptation of Hofheinz et al.’s (c.f. Section B). Let GrpGen
be the bilinear group generator described in Section 4.1 and πL(·) be the function mapping from a 2d × 2d
matrix to its left-most d columns, i.e., a 2d × d sub-matrix.

– Param(1k, n): Run (p, G1, G2, GT , e)← GrpGen(1k). Sample D← GL2d(Zp) and W1, . . . ,W2n ← Z2d×2d
p ,

and set D∗ := (D−1)>. Output

GP :=

 

p, G2d
1 , G2d

2 , GT , e;
gπL(D)

1 , g
W>1 πL(D)
1 , . . . , g

W>2nπL(D)
1

gπL(D∗)
2 , gW1πL(D∗)

2 , . . . , gW2nπL(D∗)
2

!

.

– Setup(GP): Sample k← Z2d
p and output

MPK :=
�

p, G2d
1 , G2d

2 , GT , e; e(g1, g2)
πL(D)

>k, gπL(D)
1 , g

W>1 πL(D)
1 , . . . , g

W>2nπL(D)
1

�

;

MSK :=
�

gk
2 , gπL(D∗)

2 , gW1πL(D∗)
2 , . . . , gW2nπL(D∗)

2

�

.

– KeyGen(MPK, MSK,y): Let y= (y1, . . . , yn) ∈ {0, 1}n. Sample r← Zd
p and output

SKy :=
�

K0 := gπL(D∗)r
2 , K1 := g

k+(W2−y1
+···+W2n−yn )πL(D∗)r

2

�

.
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– Enc(MPK,x, M): Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample s← Zd
p and output

CTx :=
�

C0 := gπL(D)s
1 , C1 := g

(W2−x1
+···+W2n−xn )πL(D)s

1 , C2 := e(g1, g2)
s>πL(D)

>k · M
�

.

– Dec(MPK, SK, CT). Let SK = (K0, K1) and CT = (C0, C1, C2). Output

M := C2
e(C1, K0)
e(C0, K1)

.

One may argue that the d-linear assumption with auxiliary input is not standard and quite complex. We show
that, when setting d = 2, we obtain the following concrete assumption.

Assumption 5 (2-Linear Assumption in G1 with Auxiliary Input in G2) For any probabilistic polynomial time
adversaryA , the following advantage function is negligible in k,

Adv2-LinAI
A (k) :=

�

�Pr[A (D, AUX, T0) = 1]− Pr[A (D, AUX, T1) = 1]
�

� ,

where

D :=
�

G , g1, g2, ga1
1 , ga2

1 , ga3
1 , ga1s1

1 , ga2s2
1

�

, AUX :=
�

ga3
2 , ga1

2

�

, T0 := ga3(s1+s2)
1 , T1 := g

a3(s1+s2)+ s3

1

and G := (p, G1, G2, GT , e)← GrpGen(1k) and s1, s2← Zp, a1, a2, a3, s3← Z∗p.

It is easy to verify that this special instantiation is implied by the External Decision Linear Assumption [ACD+12]
(c.f. Appendix A.1). Motivated by this observation, we remark that we may build the above IBE system using
symmetric bilinear pairings and base the security on the well-known and standard Decisional Linear Assump-
tion (c.f. Appendix A.2), where G1 = G2 and auxiliary input AUX in G2 is automatically revealed to the
adversary.
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A More about Bilinear Groups and Related Assumptions

A.1 External Decision Linear Assumption [ACD+12]

We assume a prime-order (asymmetric) bilinear group generator GrpGen(1k) taking security parameter 1k

as input and outputting G := (p, G1, G2, GT , e). We state the external decisional linear assumption in G1 as
follows, the analogous assumption in G2 can be defined by exchanging the role of G1 and G2.

Assumption 6 (External Decision Linear Assumption in G1) For any probabilistic polynomial time adversary
A , the following advantage function is negligible in k,

AdvEDLIN
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=

�

G , g1, g2,
ga1

1 , ga2
1 , ga3

1 , ga1s1
1 , ga2s2

1
ga1

2 , ga2
2 , ga3

2 , ga1s1
2 , ga2s2

2

�

, T0 := ga3(s1+s2)
1 , T1 := g

a3(s1+s2)+ s3

1

and

G := (p, G1, G2, GT , e)← GrpGen(1k);

s1, s2← Zp; a1, a2, a3, s3← Z∗p.
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A.2 Symmetric Bilinear Groups and Decisional Linear Assumption

A prime-order symmetric bilinear group generator sGrpGen(1k) takes security parameter 1k as input and
outputs G := (p, G, GT , e), where G and GT are finite cyclic groups of prime order p, and e : G × G → GT is a
non-degenerated and efficiently computable bilinear map. We let g and gT := e(g, g) be a generator of G and
GT , respectively. We state the decisional linear assumption as follows.

Assumption 7 (Decisional Linear Assumption) For any probabilistic polynomial time adversary A , the fol-
lowing advantage function is negligible in k,

AdvDLIN
A (k) :=

�

�Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]
�

� ,

where

D :=
�

G , g, ga1 , ga2 , ga3 , ga1s1 , ga2s2
�

, T0 := ga3(s1+s2), T1 := g
a3(s1+s2)+ s3

and

G := (p, G, GT , e)← sGrpGen(1k);

s1, s2← Zp; a1, a2, a3, s3← Z∗p.

B IBE from Revised ENDSG in Section 3

We have claimed that our revised ENDSG (in Section 3) implies an almost-tight IBE in the multi-instance,
multi-ciphertext setting. Both construction and its security proof are nearly the same as those described
in [HKS15]. For completeness and future reference, we present both the construction and the organization of
its proof in this section.

B.1 Construction

We assume the identity space is {0,1}n for some n ∈ Z+ and let n be system-level parameter SYS.

– Param(1k, n)→ GP. Sample (PP, SP)← SampP(1k, 2n) and output

GP := PP.

We assume that GP also contains k and n.

– Setup(GP)→ (MPK, MSK). Sample MSK←H and output

MPK :=
�

PP,µ(MSK)
�

and MSK.

– KeyGen(MPK, MSK,y)→ SKy. Let y= (y1, . . . , yn) ∈ {0,1}n. Sample

�

h0, h1, . . . , h2n
�

← SampH(PP)

and output
SKy :=

�

K0 := h0, K1 := MSK · h2−y1
· · ·h2n−yn

�

.

– Enc(MPK,x, M)→ CTx. Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample random coin s and compute

�

g0, g1, . . . , g2n
�

← SampG(PP; s) and g ′T ← SampGT(µ(MSK); s).

Output
CTx :=

�

C0 := g0, C1 := g2−x1
· · · g2n−xn

, C2 := g ′T · M
�

.

– Dec(MPK, SK, CT)→ M. Let SK =
�

K0, K1
�

and CT =
�

C0, C1, C2
�

. Output

M := C2 ·
e(C1, K0)
e(C0, K1)

.
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Correctness. For any x= (x1, . . . , xn) ∈ {0,1}n, one may check that

e(C1, K0)
e(C0, K1)

=
e(g2−x1

· · · g2n−xn
, h0)

e(g0, MSK · h2−y1
· · ·h2n−yn

)
=
�

e(g0, MSK)
�−1 =

�

g ′T
�−1

,

where the second equality follows the associative property, and the last one follows the projective property.

B.2 Security Proof

We just present here the main theorem and the sequence of games with definitions for various auxil-
iary algorithms and distributions. One may easily derive the detailed proofs according to Hofheinz et al.’s
proof [HKS15].

Theorem 1 Assuming an extended nested dual system group defined as Section 3, the IBE scheme shown above
is weak adaptively secure in the multi-instance, multi-ciphertext setting. More concretely, for any adversary A
making at most qK key extraction queries and at most qC challenge queries for pairwise distinct challenge identity
against at most λ instances, there exist adversariesB1,B2, andB3 such that

AdvIBE
A (k,λ, qK , qC , 1)¶ AdvLS1

B1
(k, qC) + 2n ·AdvLS2

B2
(k, qC , qK) + n ·AdvNH

B3
(k, qC , qK) + 2−Ω(k),

where maxi∈[3]Time(Bi)≈ Time(A ) + (λ+ qC + qK) · poly(k, n) and poly(k, n) is independent of Time(A ).

Auxiliary Algorithms. We describe two auxiliary algorithms:

– KeyGen(PP, MSK,y; t). Let MSK ∈H, y=
�

y1, . . . , yn
�

∈ {0,1}n, and t=
�

T0, T1, . . . , T2n
�

, output

SKy :=
�

K0 := T0, K1 := MSK · T2−y1
· · · T2n−yn

�

.

– Enc(PP,x, M; MSK, t). Let MSK ∈H, x=
�

x1, . . . , xn
�

∈ {0,1}n, M ∈GT , and t=
�

T0, T1, . . . , T2n
�

, output

CTx :=
�

C0 := T0, C1 := T2−x1
· · · T2n−xn

, C2 := e(T0, MSK) · M
�

.

Auxiliary Distributions. We first define two families of random functions {bRi}i∈[0,n] and {eRi}i∈[0,n] where

bRi : [λ]× {0, 1}i → [ÛSampH
∗
(PP, SP)] and eRi : [λ]× {0,1}i → [åSampH

∗
(PP, SP)]

for all i ∈ [0, n]. For simplicity, we may feed a n-bit string into bRi(ι, ·) and eRi(ι, ·). In such a case, we view the
i-bit prefix of the input as actual input and simply neglect the remaining bits.

Secondly, for all (PP, SP) ∈ [SampP(1k, 2n)], all MSK ∈ H, all ι ∈ [λ], all x =
�

x1, . . . , xn
�

∈ {0,1}n, and all
M ∈GT , we define four forms of ciphertext Enc(MPK,x, M) in the ι-th instance with MPK := (PP,µ(MSK)):

(Normal ciphertext.)
Enc(PP,x, M; MSK,g),

where g← SampG(PP); more explicitly, the distribution is
 

g0,
n
∏

i=1

g2i−x i
, e(g0, MSK) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP). By the projective property, the distribution is indeed identical to
the output of real encryption algorithm Enc.

(Pseudo-normal ciphertext.)
Enc(PP,x, M; MSK,g · bg),

where g← SampG(PP) and bg←ÛSampG(PP, SP); more explicitly, the distribution is
 

g0 · bg0,
n
∏

i=1

�

g2i−x i
· bg2i−x i

�

, e(g0 · bg0, MSK) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP) and
�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP).
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(Semi-functional type-(∧, i) ciphertexts for i ∈ [0, n].)

Enc(PP,x, M; MSK · bRi(ι,x) · eRi(ι,x),g · bg),

where g← SampG(PP) and bg←ÛSampG(PP, SP); more explicitly, the distribution is
 

g0 · bg0,
n
∏

i=1

�

g2i−x i
· bg2i−x i

�

, e(g0 · bg0, MSK · bRi(ι,x)) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP) and
�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP). We note that eRi(ι,x)
vanishes due to the orthogonality property.

(Semi-functional type-(∼, i) ciphertexts for i ∈ [0, n].)

Enc(PP,x, M; MSK · bRi(ι,x) · eRi(ι,x),g · eg),

where g← SampG(PP) and eg←åSampG(PP, SP); more explicitly, the distribution is
 

g0 · eg0,
n
∏

i=1

�

g2i−x i
· eg2i−x i

�

, e(g0 · eg0, MSK · eRi(ι,x)) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP) and
�

eg0, eg1, . . . , eg2n
�

←åSampG(PP, SP). We note that bRi(ι,x)
vanishes due to the orthogonality property.

Finally, for all (PP, SP) ∈ [SampP(1k, 2n)], all MSK ∈ H, all ι ∈ [λ], and all y =
�

y1, . . . , yn
�

∈ {0, 1}n, we
define two forms of secret key KeyGen(MPK, MSK,y) in the ι-th instance with MPK := (PP,µ(MSK)):

(Normal secret key.)
KeyGen(PP, MSK,y;h),

where h← SampH(PP); more explicitly, the distribution is
 

h0, MSK ·
n
∏

i=1

h2i−yi

!

,

where
�

h0, h1, . . . , h2n
�

← SampH(PP).

(Semi-functional type-i secret key for i ∈ [0, n].)

KeyGen(PP, MSK · bRi(ι,y) · eRi(ι,y),y;h),

where h← SampH(PP); more explicitly, the distribution is
 

h0, MSK · bRi(ι,y) · eRi(ι,y) ·
n
∏

i=1

h2i−yi

!

,

where
�

h0, h1, . . . , h2n
�

← SampH(PP).

Game Sequence. The proof requires a sequence of games defined as follows.

– Game0 is identical to the original experiment in Section 2.

– Game1 is identical to Game0 except that all challenge ciphertexts are pseudo-normal.

– Game2.i.0 (i ∈ [n+ 1]) is identical to Game1 except that all secret keys are type-(i − 1) semi-functional
and all challenge ciphertexts are type-(∧, i− 1) semi-functional.

– Game2.i.1 (i ∈ [n]) is identical to Game2.i.0 except that

– all challenge ciphertexts for identities whose i-th bit is 1 are type-(∼, i− 1) semi-functional.

– Game2.i.2 (i ∈ [n]) is identical to Game2.i.1 except that
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– all secret keys are type-i semi-functional;

– all challenge ciphertexts for identities whose i-th bit is 0 are type-(∧, i) semi-functional;

– all challenge ciphertexts for identities whose i-th bit is 1 are type-(∼, i) semi-functional.

– Game3 is identical to Game2.(n+1).0.

– Game4 is identical to Game3 except that all challenge ciphertexts are for random messages.

We sketch the proof. We first move from Game0 to Game1 using the LS1 property. We note that Game2.1.0

is the same as Game1 just with conceptual difference. For i ∈ [n], we move from Game2.i.0 to Game2.i.1 using
the LS2 property, and move from Game2.i.1 to Game2.i.2 using the NH property, and move from Game2.i.2 to
Game2.(i+1).0 again using the LS2 property. Then we stop the loop at Game2.(n+1).0 which is defined as Game3.
We finally prove that Game3 and Game4 are statistically indistinguishable from the non-degeneracy property. It
is clear that all challenge ciphertexts in the last game are irrelevant to challenge messages and the adversary’s
advantage is exactly 0. The main theorem is now proved by combining all above results together.

C IBE from Fine-tuned ENDSG in Section 7

We fine-tuned our revised ENDSG in Section 7. This section is devoted to showing that it also implies an
almost-tight IBE in the multi-instance, multi-ciphertext setting. In particular, the construction is almost the
same as those shown in Appendix B and thus similar to that in [HKS15], but the proof is slightly different.

C.1 Construction

We assume the identity space is {0,1}n for some n ∈ Z+ and let n be system-level parameter SYS. Compared
with the construction in Appendix B, the improvement here is that we explicitly put parameters only used to
generate secret keys into the master secret key and only parameters for the encryption algorithm are published.

– Param(1k, n)→ GP. Sample (PP, HP, SP)← SampP(1k, 2n) and output

GP := (PP, HP).

We assume that GP also contains k and n.

– Setup(GP)→ (MPK, MSK). Sample MSK0←H and output

MPK :=
�

PP,µ(MSK0)
�

and MSK =
�

HP, MSK0
�

.

– KeyGen(MPK, MSK,y)→ SKy. Let y= (y1, . . . , yn) ∈ {0,1}n. Sample

�

h0, h1, . . . , h2n
�

← SampH(PP, HP)

and output
SKy :=

�

K0 := h0, K1 := MSK0 · h2−y1
· · ·h2n−yn

�

.

– Enc(MPK,x, M)→ CTx. Let x= (x1, . . . , xn) ∈ {0, 1}n and M ∈GT . Sample random coin s and compute

�

g0, g1, . . . , g2n
�

← SampG(PP; s) and g ′T ← SampGT(µ(MSK0); s).

Output
CTx :=

�

C0 := g0, C1 := g2−x1
· · · g2n−xn

, C2 := g ′T · M
�

.

– Dec(MPK, SK, CT)→ M. Let SK = (K0, K1) and CT = (C0, C1, C2). Output

M := C2
e(C1, K0)
e(C0, K1)

.
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Correctness. For any x= (x1, . . . , xn) ∈ {0,1}n, one may check that

e(C1, K0)
e(C0, K1)

=
e(g2−x1

· · · g2n−xn
, h0)

e(g0, MSK0 · h2−y1
· · ·h2n−yn

)
=
�

e(g0, MSK0)
�−1 =

�

g ′T
�−1

,

where the second equality follows the associative property, and the last one follows the projective property.

C.2 Security Proof

As before, we just present here the main theorem and the sequence of games. One may easily derive the
detailed proofs according to Hofheinz et al.’s proof [HKS15]. Due to the similarity, we will borrow a lot of
definitions from Appendix B.

Theorem 2 Assume an extended nested dual system group defined as Section 7, the IBE scheme shown above is
full-adaptively secure in the multi-instance, multi-ciphertext setting. More concretely, for any adversaryA making
at most qK key extraction queries and at most qR challenge queries for each of qC distinct challenge identity against
at most λ instances, there exist adversariesB1,B2,B3,B4 andB5 such that

AdvIBE
A (k,λ, qK , qC , qR) ¶ AdvLS1

B1
(k, qCqR, qK) + 2n ·

�

AdvLS2
B2
(k, qCqR, qK) +AdvLS3

B3
(k, qCqR, qK)

�

+n ·AdvNH
B4
(k, qCqR, qK) +AdvND

B5
(k, qC , qK , qR) + 2−Ω(k),

where maxi∈[5]Time(Bi)≈ Time(A )+ (λ+qCqR+qK) ·poly(k, n) and poly(k, n) is independent of Time(A ).

Auxiliary Algorithms and Distributions. The auxiliary algorithms KeyGen and Enc and the truly random
functions {bRi}i∈[0,n] and {eRi}i∈[0,n] we needed here are identical to those defined in Appendix B.

For all (PP, HP, SP) ∈ [SampP(1k, 2n)], all MSK0 ∈ H, all ι ∈ [λ], all x =
�

x1, . . . , xn
�

∈ {0, 1}n, and all
M ∈ GT , we define four forms of ciphertext Enc(MPK,x, M) in the ι-th instance with MPK := (PP,µ(MSK0)).
The normal ciphertext, semi-functional type-(∧, i) ciphertexts (for i ∈ [0, n]) and semi-functional type-(∼, i)
ciphertexts (for i ∈ [0, n]) are defined as in Appendix B and the last form is defined as follows:

(Semi-functional type-i ciphertexts for i ∈ [0, n].)

Enc(PP,x, M; MSK0 · bRi(ι,x) · eRi(ι,x),g · bg · eg),

where g← SampG(PP), bg←ÛSampG(PP, SP) and eg←åSampG(PP, SP); more explicitly, the distribution is
 

g0 · bg0 · eg0,
n
∏

i=1

�

g2i−x i
· bg2i−x i

· eg2i−x i

�

, e(g0 · bg0 · eg0, MSK0 · bRi(ι,x) · eRi(ι,x)) · M

!

,

where
�

g0, g1, . . . , g2n
�

← SampG(PP),
�

bg0, bg1, . . . , bg2n
�

←ÛSampG(PP, SP) and
�

eg0, eg1, . . . , eg2n
�

←åSampG(PP, SP).

For all (PP, HP, SP) ∈ [SampP(1k, 2n)], all MSK0 ∈ H, all ι ∈ [λ], and all y =
�

y1, . . . , yn
�

∈ {0,1}n, we
define two forms of secret key KeyGen(MPK, MSK,y) in the ι-th instance with MPK := (PP,µ(MSK0)), the normal
secret key and the semi-functional type-i secret key for i ∈ [0, n], as in Appendix B.

Game Sequence. The proof requires a sequence of games defined as follows.

– Game0 is identical to the original experiment in Section 2.

– Game1 is identical to Game0 except that all challenge ciphertexts and secret keys are type-0 semi-
functional.

– Game2.i.0 (i ∈ [n+ 1]) is identical to Game1 except that all challenge ciphertexts and secret keys are
type-(i− 1) semi-functional.

– Game2.i.1 (i ∈ [n]) is identical to Game2.i.0 except that

– all challenge ciphertexts for identities whose i-th bit is 1 are type-(∼, i− 1) semi-functional.

– Game2.i.2 (i ∈ [n]) is identical to Game2.i.1 except that
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– all challenge ciphertexts for identities whose i-th bit is 0 are type-(∧, i− 1) semi-functional.

– Game2.i.3 (i ∈ [n]) is identical to Game2.i.2 except that

– all secret keys are type-i semi-functional;

– all challenge ciphertexts for identities whose i-th bit is 0 are type-(∧, i) semi-functional;

– all challenge ciphertexts for identities whose i-th bit is 1 are type-(∼, i) semi-functional.

– Game2.i.4 (i ∈ [n]) is identical to Game2.i.3 except that

– all challenge ciphertexts for identities whose i-th bit is 0 are type-i semi-functional.

– Game2.i.5 (i ∈ [n]) is identical to Game2.i.4 except that

– all challenge ciphertexts for identities whose i-th bit is 1 are type-i semi-functional.

– Game3 is identical to Game2.n+1.0.

– Game4 is identical to Game3 except that all challenge ciphertexts are for random messages.

We sketch the proof. We first move from Game0 to Game1 using the LS1 property and an conceptual trans-
formation. We note that Game2.1.0 is the same as Game1. For i ∈ [n], we move from Game2.i.0 to Game2.i.1

using the LS2 property, and move from Game2.i.1 to Game2.i.2 using the LS3 property, the indistinguishability
of Game2.i.2 and Game2.i.3 relies on the NH propoerty, then we move from Game2.i.3 to Game2.i.5 again using
the LS3 and LS2 property. Note that Game2.i.5 is the same as Game2.i+1.0. Then we stop the loop at Game2.i+1,0

which is defined as Game3. We finally prove that Game3 and Game4 are indistinguishable using the ND prop-
erty. It is clear that all challenge ciphertexts in the last game are irrelevant to challenge messages and the
adversary’s advantage is exactly 0. The main theorem is now proved by combining all above results together.
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