
Unbounded Hierarchical Identity-Based Encryption
with Efficient Revocation

Geumsook Ryu∗ Kwangsu Lee† Seunghwan Park‡ Dong Hoon Lee§

Abstract

Hierarchical identity-based encryption (HIBE) is an extension of identity-based encryption (IBE)
where an identity of a user is organized as a hierarchical structure and a user can delegate the private key
generation to another user. Providing a revocation mechanism for HIBE is highly necessary to keep a
system securely. Revocable HIBE (RHIBE) is an HIBE scheme that can revoke a user’s private key if
his credential is expired or revealed. In this paper, we first propose an unbounded HIBE scheme where
the maximum hierarchy depth is not limited and prove its selective security under a q-type assumption.
Next, we propose an efficient unbounded RHIBE scheme by combining our unbounded HIBE scheme
and a binary tree structure, and then we prove its selective security. By presenting the unbounded RHIBE
scheme, we solve the open problem of Seo and Emura in CT-RSA 2015.

Keywords: Identity-based encryption, Hierarchical identity-based encryption, Revocation, Unbounded hi-
erarchy depth, Bilinear maps

∗Korea University, Korea. Email: madeby r@korea.ac.kr.
†Korea University, Korea. Email: kwangsu.lee@korea.ac.kr.
‡Korea University, Korea. Email: sgusa@korea.ac.kr.
§Korea University, Korea. Email: donghlee@korea.ac.kr.

1

1 Introduction

Identity-based encryption (IBE) is a kind of public key encryption (PKE) that uses any bit-string (e.g., e-mail
address, phone number, or identity) as a public key of a user. Although the concept of IBE was introduced
by Shamir [26], the first realization of IBE was achieved by Boneh and Franklin [4] by using bilinear maps.
In IBE, a single key generation center (KGC) should issue private keys and establish secure channels to
transmit private keys of users. To reduce the cost of private key generation of the KGC in IBE, the concept
of hierarchical IBE (HIBE) was introduced such that the KGC delegates the key generation functionality
to a lower level KGC [8, 9]. After that, many IBE and HIBE schemes were suggested with additional
functionalities [2, 3, 5, 15, 27, 28].

To maintain a whole system securely, a revocation mechanism is absolutely necessary when a user’s
contract is expired or the user’s private key is revealed. Boldyreva, Goyal and Kumar [1] introduced the
concept of revocable IBE (RIBE) and proposed a scalable RIBE scheme by combining a fuzzy IBE scheme
of Sahai Waters [21] and a tree based revocation system of Naor et al. [17]. In RIBE, each user initially
obtains a private key from a KGC, and then the KGC periodically publishes an update key for non-revoked
users. If a user is not revoked in the update key, then he can derive a decryption key from his private
key and the update key. After the work of Boldyreva et al., many different RIBE scheme were proposed
[12, 16, 18, 23].

It is a natural research direction to devise an efficient revocation mechanism for HIBE. By following
the design strategy of Boldyreva et al. [1], Seo and Emura proposed efficient revocable HIBE (RHIBE)
schemes [22, 24]. In RHIBE, a KGC can delegate the key generation functionality and the revocation
functionality to a lower level KGC or a user. Seo and Emura [22] first proposed a concrete RHIBE scheme
by combining the HIBE scheme of Boneh and Boyen and a binary tree structure. After that, they also
proposed new efficient RHIBE schemes by using the history-free update approach to reduce the size of
private keys [24]. Although they proposed efficient RHIBE schemes, their RHIBE schemes have the inherent
limitation that the size of public parameters linearly grows to the maximum hierarchy depth. Thus, they left
it as an interesting problem to devise an unbounded RHIBE scheme [24].

1.1 Our Contributions

In this paper, we give an answer to the above problem of Seo and Emura by presenting an unbounded RHIBE
scheme. Before presenting an unbounded RHIBE scheme, we first propose an HIBE scheme with no limita-
tion in maximum hierarchy, denoted by unbounded HIBE. Our unbounded HIBE scheme is derived from the
key-policy attribute-based encryption (KP-ABE) scheme of Rouselakis and Waters [19]. We use the obser-
vation that an HIBE scheme can be derived from a KP-ABE scheme if the KP-ABE scheme can be modified
to support the delegation of private key generation. We prove the selective security of our unbounded HIBE
scheme under the q-type assumption introduced by Rouselakis and Waters. Next, we propose an unbounded
RHIBE scheme by combining our unbounded HIBE scheme and a tree-based revocation system. Mainly we
follow the design strategy of the previous RHIBE scheme of Seo and Emura [24]. To prove the selective
security of our RHIBE scheme, we show that our RHIBE scheme is selectively secure if our HIBE scheme
is selectively secure.

1.2 Related Work

IBE and Its Extensions. As mentioned before, the concept of IBE was introduced by Shamir [26] where
a public key can be the identity string of a user such as an e-mail address. The first IBE scheme that uses

2

bilinear maps was constructed by Boneh and Franklin [4]. Since the pioneering work of Boneh and Franklin,
many IBE schemes were proposed in bilinear maps [2, 6, 27]. The notion of IBE has been extended to
several other encryption systems like HIBE [9], attribute-based encryption (ABE) [21], predicate encryption
(PE), and functional encryption (FE). The concept of HIBE was introduced by Horwitz and Lynn [9] and it
additionally provides a key delegation mechanism by which the private key of a low level user is generated
by a upper level user. After the introduction of HIBE, many HIBE schemes with different properties have
been suggested in bilinear maps [2, 3, 5, 7, 8, 13, 14, 25, 28]. One inherent limitation of previous HIBE
schemes is that the maximum hierarchy depth should be fixed in the setup phase. To remove this restriction,
an unbounded HIBE scheme was proposed by Lewko and Waters [15].

Revocation in IBE. Boneh and Franklin [4] proposed the first IBE scheme that supports key revocation, but
their scheme is not scalable since each user periodically connects to a KGC to receive a new private key.
Boldyreva et al. [1] proposed a scalable RIBE scheme by combining the fuzzy IBE scheme of Sahai and
Waters [21] and the tree based revocation system of Naor et al. [17]. Libert and Vergnaud [16] proposed
first fully secure RIBE scheme by using a fully secure IBE scheme that is a variant of the Waters IBE [27].
Seo and Emura [23] refined the security model of RIBE by considering decryption key exposure attacks
and proposed a fully secure RIBE scheme in their security model. To improve the efficiency of RIBE,
Lee et al. [12] proposed a new RIBE scheme based on the subset difference method and Park et al. [18]
proposed an RIBE scheme from multilinear maps. An efficient RHIBE scheme was first presented by Seo
and Emura [22] and its improvement was also proposed by using the history-free update approach [24]. In
RIBE, revoked user on the time T is still accessible to ciphertext that were encrypted before the time T in
the cloud storage environment. To solve this problem, Sahai et al. [20] introduced revocable storage ABE
(RS-ABE) for cloud storage by using the idea of RIBE. The improved RS-ABE schemes were presented
in [10, 11].

2 Preliminaries

In this section, we introduce the complexity assumption for our schemes and define the syntax of RHIBE
and its security model.

2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p and g be a generator of G. The bilinear map
e : G×G→GT has the following properties:

• Bilinearity: for all u,v ∈G and for all a,b ∈ Zp, e(ua,vb) = e(u,v)ab

• Non-degeneracy: for generator g ∈G, e(g,g) 6= 1GT , where 1GT is an identity element in GT

Furthermore, we assume the existence of a group generator algorithm G which takes as input a security
parameter λ and outputs a bilinear group (p,G,GT ,e) where p is a prime of Θ(λ) bits.

2.2 Complexity Assumption

For the proof of our schemes, we introduce the q-RW2 assumption of Rouselakis and Waters [19] that was
used to prove the security of their attribute-based encryption schemes.

3

Assumption 2.1 (q-RW2, [19]). Let (p,G,GT ,e) be a description of the bilinear grouops of prime order p.
Let g be a random generator of G. The q-RW2 assumption is that if the challenge tuple

D =
(
(p,G,GT ,e),g,gx,gy,gz,g(xz)2

,
{

gbi ,gxzbi ,gxz/bi ,gx2zbi ,gy/b2
i ,gy2/b2

i
}
∀ i∈[q],{

gxzbi/b j ,gybi/b2
j ,gxyzbi/b2

j ,g(xz)2bi/b j
}
∀ i, j∈[q],i 6= j

)
and Z

are given, no probabilistic polynomial time (PPT) algorithm A can distinguish Z = Z0 = e(g,g)xyz from
Z = Z1 = e(g,g) f with more than a negligible advantage. The advantage of A is defined as Advq-RW2

A (λ) =∣∣Pr[A(D,Z0)= 0]−Pr[A(D,Z1)= 0]
∣∣where the probability is taken over random choices of x,y,z,{bi}i∈[q], f ∈

Zp.

Lemma 2.2 ([19]). The q-RW2 assumption holds in the generic group model.

2.3 Hierarchical IBE

HIBE is an extension of IBE where an identity of a user is represented as a hierarchical structure such as
ID|k = (I1, . . . , Ik) [8]. In HIBE, a user with an identity ID|k can receives his private key SKID|k from a KGC
and he can also delegate his private key to lower level users with an identity ID|k+1 = (I1, . . . , Ik, Ik+1). A
ciphertext of HIBE is associated with a receiver’s identity ID|` and a user with a private key SKID|k can
decrypt this ciphertext if ID|k is a prefix of ID|`. The syntax of HIBE is given as follows:

Definition 2.3 (HIBE). An HIBE scheme consists of five algorithms Setup, GenKey, Delegate, Encrypt, and
Decrypt, which are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK and
public parameters PP.

GenKey(ID|k,MK,PP). The key generation algorithm takes as input an identity ID|k = (I1, . . . , Ik) ∈ Ik,
the master key MK, and the public parameters PP. It outputs a private key SKID|k for ID|k.

Delegate(ID|k,SKID|k−1 ,PP). The delegation algorithm takes as input an identity ID|k, a private key
SKID|k−1 for an identity ID|k−1, and the public parameters PP. It outputs a delegated private key
SKID|k for ID|k.

Encrypt(ID|k,M,PP). The encryption algorithm takes as input an identity ID|k, a message M ∈M, and
the public parameters PP. It outputs a ciphertext CTID|k for ID|k and M.

Decrypt(CTID|k ,SKID′|` ,PP). The decryption algorithm takes as input a ciphertext CTID|k for an identity
ID|k, a private key SKID′`

for an identity ID′`, and the public parameters PP. It outputs an encrypted
message M.

The correctness of HIBE is defined as follows: For all MK,PP generated by Setup, all ID|k, ID′|`, any
SKID|k generated by GenKey, and any M, it is required that

• If ID|k is a prefix of ID′|`, then Decrypt(Encrypt(ID′|`,M,PP),SKID|k ,PP) = M.

• If ID|k is not a prefix of ID′|`, then Decrypt(Encrypt(ID′|`,M,PP),SKID,PP) =⊥.

4

The security model of HIBE that provides collusion resistance was defined by Gentry and Silverberg [8].
We follow the selective security model of Boneh and Boyen [2]. In this model, an adversary initially submits
a challenge identity ID∗|` and he may request private key queries for some identities that are not a prefix
of ID∗|`. In the challenge step, the adversary submits two challenge messages and receives a challenge
ciphertext. Finally, the adversary outputs a guess of an encrypted message in the challenge ciphertext.
The adversary wins the game if he correctly guesses the encrypted message. The detailed definition of the
security model is given as follows:

Definition 2.4 (Selective IND-CPA Security). The selective IND-CPA security of HIBE is defined in terms
of the following experiment between a challenger C and a PPT adversary A:

1. Init: A initially submits a challenge identity ID∗|`.

2. Setup: C runs Setup(1λ) to generate a master key MK and public parameters PP. It keeps MK to
itself and gives PP to A.

3. Phase 1: A may adaptively request a polynomial number of private key queries. If this is a private
key query for an identity ID|k with the restriction that ID|k is not a prefix of ID∗|`, then it creates a
private key SKID|k by calling GenKey(ID|k,MK,PP).

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 with equal length. C flips a random coin

µ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running Encrypt(ID∗|`,M∗µ ,PP).

5. Phase 2: A continues to request a polynomial number of private key queries subject to the restriction
as before.

6. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage ofA is defined as AdvHIBE
A (λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the experiment. An HIBE scheme is selectively secure under a chosen plaintext attack if for
all PPT adversary A, the advantage of A in the above experiment is negligible in the security parameter λ .

2.4 Revocable HIBE

RHIBE is an extension of HIBE that provides revocation functionality [22]. In RHIBE, a user with an
identity ID|k−1 can generate a private key SK for any lower level users and he also broadcasts an update
key UKT,R for non-revoked users per each time period T where R is the set of revoked users. A lower level
user with an identity ID|k can derive a decryption key DKID|k,T from his private key SKID|k and the update
key UKT,R if his private key is not revoked in the update key. By using DKID|k,T , the user can decrypt a
ciphertext that matches to his decryption key. The syntax of RHIBE is given as follows:

Definition 2.5 (Revocable HIBE). An RHIBE scheme for the identity space I, the time space T , and the
message spaceM, consists of seven algorithms Setup, GenKey, UpdateKey, DeriveKey, Encrypt, Decrypt,
and Revoke, which are defined as follows:

Setup(1λ): This algorithm takes as input a security parameter 1λ . It outputs a master key MK, an (empty)
revocation list RL, a state information ST , and public parameters PP.

GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input an identity ID|k = (I1, . . . , Ik) ∈ Ik, the state
STID|k−1 , and public parameters PP. It outputs a private key SKID|k .

5

UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈ T , the revocation
list RLID|k−1 , the decryption key DKID|k−1,T , and public parameters PP. It outputs an update key
UKID|k−1,T .

DeriveKey(SKID|k ,UKID|k−1,T ,PP): This algorithm takes as input a private key SKID|k for an identity ID|k,
an update key UKID|k−1,T for time T , and the public parameters PP. It outputs a decryption key
DKID|k,T .

Encrypt(ID|`,T,M,PP): This algorithm takes as input an identity ID|` = (I1, . . . , I`) ∈ I`, time T , a mes-
sage M, and the public parameters PP. It outputs a ciphertext CTID|`,T .

Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T , a decryption key
DKID′|k,T ′ and the public parameters PP. It outputs an encrypted message M.

Revoke(ID|k,T,RLID|k−1 ,STID|k−1): This algorithm takes as input an identity ID|k, revocation time T , the
revocation list RLID|k−1 , and the state STID|k−1 . It outputs the updated revocation list RLID|k−1 .

The correctness of RHIBE is defined as follows: For all MK, RL, ST , and PP generated by Setup(1λ), SKID

generated by GenKey(ID,MK,ST,PP) for any ID, UKT,R generated by UpdateKey(T,RL,MK,ST,PP) for
any T and RL, CTID′,T ′ generated by Encrypt(ID′,T ′,M,PP) for any ID′, T ′, and M, it is required that

• If ID|k is not revoked on time T , then DeriveKey(SKID|k ,UKID|k−1,T ,PP) = DKID|k,T .

• If ID|k is revoked on time T , then DeriveKey(SKID|k ,UKID|k−1,T ,PP) =⊥.

• If (ID′ = ID)∧ (T ′ = T), then Decrypt(CTID′,T ′ ,DKID,T ,PP) = M.

• If (ID′ 6= ID)∨ (T ′ 6= T), then Decrypt(CTID′,T ′ ,DKID,T ,PP) =⊥.

The security model of RHIBE was introduced by Seo and Emura [22]. We follow the stronger security
model of Seo and Emura [24] that considers decryption key exposure attackers and inside attackers. In this
model, an adversary initially submits a challenge identity, a challenge time. After that, the adversary can
request private key, update key, decryption key, and revocation queries with some restrictions to prevent
obvious attacks. In the challenge step, the adversary submits two challenge messages and receives a chal-
lenge ciphertext that is an encryption of one challenge message. The adversary wins the game if he correctly
guesses the encrypted message. The detailed definition of the security model is given as follows:

Definition 2.6 (Selective IND-CPA Security). The selective IND-CPA security of RHIBE is defined in terms
of the following experiment between a challenger C and a PPT adversary A:

1. Init: A initially submits a challenge identity ID∗|k = (I∗1 , . . . , I
∗
k) and challenge time T ∗.

2. Setup: C runs Setup(1λ) and obtains a master key MK, a revocation list RL, a state information ST ,
and public parameters PP. It keeps MK,RL,ST to itself and gives PP to A.

3. Phase 1: A adaptively requests a polynomial number of queries. These queries are processed as
follows:

• If it is a private key query for an identity ID|k, then C gives a private key SKID|k and a state
information STID|k by running GenKey(ID|k,STID|k−1 ,PP). There is a restriction: IfA requested
a private key query for ID∗|k′ that is a prefix of ID∗|k where k′ ≤ k, then the identity ID∗|k′ or
one of its ancestors should be revoked at some time T where T ≤ T ∗.

6

• If it is an update key query for an identity ID|k−1 and time T , then C gives an update key
UKID|k−1,T by running UpdateKey(T,RLID|k−1 ,DKID|k−1 ,STID|k−1 ,PP).
• If it is a decryption key query for an identity ID|k and time T , then C gives a decryption key

DKID|k,T by running DeriveKey(SKID|k ,UKID|k−1 ,PP). There is a restriction: A cannot request
a private key query for the challenge identity ID∗|k or its ancestors on the challenge time T ∗.
• If it is a revocation query for an identity ID|k and time T , then C updates a revocation list

RLID|k−1 by running Revoke(ID|k,T,RLID|k−1 ,STID|k−1). There is a restriction: A cannot request
a revocation query for ID|k on time T if he already requested an update key query for ID|k on
time T .

Note that we assume that update key, decryption key, and revocation queries are requested in non-
decreasing order of time.

4. Challenge: A submits two challenge messages M∗0 ,M
∗
1 with the same length. C flips a random coin

µ ∈ {0,1} and gives the challenge ciphertext CTID∗|k,T ∗ to A by running Encrypt(ID∗|`,T ∗,M∗µ ,PP).

5. Phase 2: A may continue to request a polynomial number of queries subject to the same restrictions
as before.

6. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvRHIBE
A (λ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. An RHIBE scheme is selectively secure under a chosen plaintext attack if
for all PPT adversaryA, the advantage ofA in the above experiment is negligible in the security parameter
λ .

3 Hierarchical Identity-Based Encryption

In this section, we propose an unbounded HIBE scheme from the key-policy ABE scheme of Rouselakis
and Waters [19] and prove its security.

3.1 Construction

Let I = {0,1}λ be the identity space where λ is a security parameter. Our unbounded HIBE scheme is
described as follows:

HIBE.Setup(1λ): This algorithm takes as input a security parameter λ . It first runs the group generator G
and obtains a bilinear group (p,G,GT ,e). Let g be a generator of G. Next, it selects random elements
g,u,h ∈ G and random exponents x,y ∈ Zp. It sets w = gx,v = gy,α = xy. It outputs a master key
MK = α and public parameters

PP =
(
(p,G,GT ,e), g, u, h, w, v, Ω = e(g,g)α

)
.

HIBE.GenKey(ID|k,MK,PP): This algorithm takes as input an identity ID|k = (I1, . . . , Ik)∈ Ik, the master
key MK, and the public parameters PP. It chooses random exponents r1, . . . ,rk ∈ Zp and outputs a
private key

SKID|k =
(

K0 = gα
k

∏
i=1

wri ,
{

Ki,1 = (uIih)−ri , Ki,2 = gri
}k

i=1

)
.

7

HIBE.RandKey(ID|k,γ,SKID|k ,PP): This algorithm takes as input an identity ID|k = (I1, . . . , Ik) ∈ Ik, an
exponent γ ∈Zp, a private key SKID|k = (K′0,{K′i,1,K′i,2}k

i=1), and the public parameters PP. It chooses
random exponents r1, . . . ,rk ∈ Zp and outputs a re-randomized private key

SKID|k =
(

K0 = K′0 ·gγ
k

∏
i=1

wri ,
{

Ki,1 = K′i,1 · (uIih)−ri , Ki,2 = K′i,2 ·gri
}k

i=1

)
.

HIBE.Delegate(ID|k,SKID|k−1 ,PP): This algorithm takes as input an identity ID|k = (I1, . . . , Ik) ∈ Ik, a
private key SKID|k−1 = (K′0,{K′i,1,K′i,2}

k−1
i=1) for ID|k−1, and the public parameters PP. It chooses a

random exponent rk ∈ Zp and creates a temporal delegated private key

T SKID|k =
(

K0 = K′0 ·wrk ,
{

Ki,1 = K′i,1, Ki,2 = K′i,2
}k−1

i=1 ,
{

Kk,1 = (uIk h)−rk ,Kk,2 = grk
})

.

Next, it outputs a delegated private key SKID|k by running HIBE.RandKey(ID|k,0,T SKID|k ,PP).

HIBE.Encrypt(ID|`,M,PP): This algorithm takes as input an identity ID|` = (I1, . . . , I`) ∈ I`, a message
M ∈M, and the public parameters PP. It chooses random exponents t,s1, . . . ,sk ∈ Zp and outputs a
ciphertext

CTID|` =
(

C = Ω
t ·M, C0 = gt ,

{
Ci,1 = gsi , Ci,2 = (uIih)siw−t}`

i=1

)
.

HIBE.Decrypt(CTID|` ,SKID′|k ,PP): This algorithm takes as input a ciphertext CTID|` = (C,C0,{C1,C2}`i=1)

for ID|`, a private key SKID′|k = (K0,{Ki,1,Ki,2}k
i=1) for ID′|k, and the public parameters PP. If ID′|k

is a prefix of ID|`, it outputs an encrypted message by computing

M =C · e(C0,K0)
−1 ·

k

∏
i=1

(
e(Ci,1,Ki,1) · e(Ci,2,Ki,2)

)−1
.

Otherwise, it outputs ⊥.

3.2 Correctness

We have to check the correctness of the scheme. Let CTID|` be a ciphertext for an identity ID|` and SKID′|k
be a private key for an identity ID′|k. If ID|` = ID′|k, then the decryption algorithm correctly computes as
follows:

e(C0,K0) ·
k

∏
i=1

(
e(Ci,1,Ki,1) · e(Ci,2,Ki,2)

)
= e(gt ,gα

k

∏
i=1

wri) ·
k

∏
i=1

(
e(gsi ,(uIih)−ri) · e((uIih)siw−t ,gri)

)
= Ω

t .

3.3 Security Analysis

Theorem 3.1. The above HIBE scheme is selectively IND-CPA secure if the q-RW2 assumption holds.

8

Proof. Suppose that there exists an adversary A that attacks the above HIBE scheme with a non-negligible
advantage. A simulator B that solves the q-RW2 assumption using A is given: a challenge tuple D =(
(p,G,GT ,e),g,gx,gy,gz,g(xz)2

,
{

gbi ,gxzbi ,gxz/bi ,gx2zbi ,gy/b2
i ,gy2/b2

i
}
,
{

gxzbi/b j ,gybi/b2
j ,gxyzbi/b2

j ,g(xz)2bi/b j
})

and
Z where Z = Z0 = e(g,g)xyz or Z = Z1 ∈R GT . B that interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗|` = (I∗1 , . . . , I
∗
`) for the selective IND-CPA experiment of

HIBE where `≤ q.
Setup: B chooses random exponents u′,h′ ∈ Zp. It implicitly sets α = xy and creates public parameters PP
as

g, u = gu′
`

∏
i=1

gy/b2
i , h = gh′

`

∏
i=1

(
gxz/bi(gy/b2

i)−I∗i
)
, w = gx, v = gy, Ω = e(w,v).

Phase 1: A adaptively requests a polynomial number of private key queries. Consider a query for the
private key of ID|k. There exist at least one I j ∈ ID|k(1 ≤ j ≤ k) such that I j /∈ ID∗|` by the restriction
of the private key query. If B can generate SKID| j , then it can also generate SKID|k using HIBE.Delegate
algorithm. Therefore, B generates SKID| j at first. It chooses random exponents r1, . . . ,r j−1, r̃ j from Zp and
set r j =−y+Σ`

i=1
xzbi

I j−I∗i
+ r̃ j. It computes

K0 =
`

∏
i=1

{
(gx2zbi)

1
I j−I∗i ·wr̃ j

}
·

j−1

∏
i=1

wri =
`

∏
i=1

{
(gx2zbi)

1
I j−I∗i ·wr̃ j

}
·gxy ·g−xy ·

j−1

∏
i=1

wri

= gxy · (gx)
−y+Σ`

i=1
xzbi

I j−I∗i
+r̃ j ·

j−1

∏
i=1

wri = gxy ·
j

∏
i=1

wri ,{
Ki,1 = (uIih)−ri , Ki,2 = gri

} j−1
i=1 ,

K j,1 = (v ·g−r̃ j)u′I j+h′ ·
`

∏
i=1

[
(gxzbi)

−u′I j+h′

I j−I∗i ·
{
(gy2/b2

i) · (gy/b2
i)−r̃ j ·

`

∏
τ=1
τ 6=i

(gxyzbτ/b2
i)

−1
I j−I∗τ
}I j−I∗i ·

`

∏
τ=1

(g(xz)2bτ/bi)
− 1

I j−I∗τ · (gxz/bi)−r̃ j
]

=
[
gu′I j+h′ ·

`

∏
i=1

{
(gy/b2

i)I j−I∗i ·gxz/bi
}]y−Σ`

i=1
xzbi

I j−I∗i
−r̃ j

= (uI j h)
y−Σ`

i=1
xzbi

I j−I∗i
−r̃ j

= (uI j h)−r j ,

K j,2 = v−1 ·
`

∏
i=1

(gxzbi)
1

I j−I∗i ·wr̃ j = g
−y+Σ`

i=1
xzbi

I j−I∗i
+r̃ j

= gr j .

Next, it sets SKID| j =
(
K0,
{

Ki,1,Ki,2
} j

i=1

)
and obtains SKID|k by running HIBE.Delegate(ID|k,SKID| j ,PP).

It gives SKID|k to A.
Challenge: A submits two challenge messages M∗0 ,M

∗
1 . B chooses a random bit µ ∈ {0,1} and computes

for all i ∈ {1, . . . , `}

Ci,1 = gbi ,

Ci,2 = (gbi)u′I∗i +h′ ·
`

∏
τ=1
τ 6=i

{(gybi/b2
τ)I∗i −I∗τ ·gxzbi/bτ}=

[
gu′I∗i +h′ ·

`

∏
τ=1

{
(gy/b2

τ)I∗i −I∗τ ·gxz/bτ
}]bi
·g−xz

= (uI∗i h)bi ·w−z

9

B gives the challenge ciphertext CTID∗|` =
(
C = Z ·M∗µ ,C0 = gz,{Ci,1,Ci,2}`i=1

)
to A.

Phase 2: A may continue to request private key queries as the same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. If µ = µ ′, then B outputs 0. Otherwise, it outputs 1.

4 Revocable Hierarchical Identity-Based Encryption

In this section, we propose an unbounded RHIBE scheme by using our unbounded HIBE scheme in the
previous section. To provide the revocation functionality, we basically follow the design strategy of previous
RIBE (or RHIBE) schemes that use a binary tree structure [1, 22, 24].

4.1 KUNode Algorithm

We use the KUNode algorithm of Boldyreva et al. [1] for our RHIBE scheme.

Definition 4.1 (KUNode Algorithm). This algorithm takes as input a binary tree BT , a revocation list RL,
and time T . It outputs a set of nodes. If η is a non-leaf node, then the left and right child node of η is
denoted by ηle f t and ηright , respectively. Users are assigned to leaf nodes, and Path(η) means the set of
nodes on the path from η to the root node. If a user assigned to η is revoked on time T , then (η ,T) ∈ RL.
The algorithm is given below.

KUNode(BT ,RL,T):
X ,Y ← /0
∀(ηi,Ti) ∈ RL

If Ti ≤ T then add Path(ηi) to X
∀x ∈ X

If xle f t /∈ X then add xle f t to Y
If xright /∈ X then add xright to Y

If Y 6= /0 then add root to Y
Return Y

When a user requests a private key to a KGC, the KGC assigns a user to the leaf node η of a binary
tree BT , and generates a private key. A private key is associated with the set of nodes Path(η). The KGC
publishes the update key for a set KUNode(BT,RL,T) at time T , then only unrevoked users have at least
one node in Path(η) ∩ KUNode(BT,RL,ST). Unrevoked users can derive the decryption key combining
the secret key and the update key in that node.

4.2 Construction

Let I = {0,1}λ be the identity space and T = {0,1}λ be the time space where λ is a security parameter.
Our RHIBE scheme from our HIBE scheme is described as follows:

RHIBE.Setup(1λ): This algorithm takes as input a security parameter 1λ . It first runs the group generator
G and obtains a bilinear group (p,G,GT ,e). Let g be a generator of G. Next, it selects random
elements u,h,u0,h0 ∈ G and random exponents x,y ∈ Zp. It sets w = gx,v = gy,α = xy. It outputs a
master key MK = α and public parameters PP =

(
(p,G,GT ,e),g,u,h,w,v,Ω = e(g,g)α , u0,h0

)
.

10

RHIBE.GenKey(ID|k,STID|k−1 ,PP): This algorithm takes as input an identity ID|k = (I1, . . . , Ik) ∈ Ik, the
state STID|k−1 , and public parameters PP. Note that the state STID|k−1 contains BTID|k−1 .

1. It first assigns ID|k to a random leaf node in BTID|k−1 . Let Path be a path node set defined by
Path(ID|k) ∈ BTID|k−1 .

2. For each node θ ∈ Path, it performs the following steps: It first retrieves γθ ∈ Zp from BTID|k−1

where γθ is associated to the node θ . Note that if γθ is not defined, then it chooses a random
exponent γθ ∈ Zp and stores it to the node θ . Next, it creates a partial private key PSKθ =(
K0,{Ki,1,Ki,2

}k
i=1

)
by running HIBE.GenKey(ID|k,γθ ,PP).

3. Finally, it outputs a private key SKID|k =
(
{θ ,PSKθ}θ∈Path

)
.

RHIBE.UpdateKey(T,RLID|k−1 ,DKID|k−1,T ,STID|k−1 ,PP): This algorithm takes as input time T ∈ T , the
revocation list RLID|k−1 , the decryption key DKID|k−1,T , the state STID|k−1 where it contains BTID|k−1 ,
and public parameters PP. Recall that RLID|0 = RL0 and STID|0 = ST0. Note that DKID|0,T =

(
D0 =

gα(uT
0 h0)

−r0 ,D1 = gr0
)

can be easily generated by using MK.

1. Let KUNode be a covering set that is obtained by running KUNode(BTID|k−1 ,RLID|k−1 ,T).
2. For each node θ ∈ KUNode, it performs the following steps: It first retrieves γθ ∈ Zp from

BTID|k−1 where γθ is associated to the node θ . It obtains DK′ID|k−1,T
=
(
D′0,D

′
1,{D′i,1,D′i,2}

k−1
i=1

)
by running RHIBE.RandDK(DKID|k−1,T ,PP). Next, it creates a time-constrained update key

TUKθ =
(

U0 = g−γθ ·D′0, U1 = D′1,
{

Ui,1 = D′i,1, Ui,2 = D′i,2
}k−1

i=1

)
.

3. Finally, it outputs an update key UKID|k−1,T =
(
{θ ,TUKθ}θ∈KUNode

)
.

RHIBE.DeriveKey(SKID|k ,UKID|k−1,T ,PP): This algorithm takes as input a private key SKID|k for an iden-
tity ID|k, an update key UKID|k−1,T for time T and the public parameters PP.

1. If ID|k 6∈ RLID|k−1 , then it finds a unique node θ ∗ ∈ Path(ID|k)∩KUNode(BTID|k−1 ,RLID|k−1 ,T).
Otherwise, it outputs ⊥.

2. It derives PSKθ ∗ =
(
K0,{Ki,1,Ki,2}k

i=1

)
from SKID|k and TUKθ ∗ =

(
U0,U1,{Ui,1,Ui,2}k−1

i=1

)
from

UKID|k−1,T for the node θ ∗. Next, it creates a decryption key

DKID|k,T =
(

D0 = K0 ·U0, D1 =U1,
{

Di,1 = Ki,1 ·Ui,1, Di,2 = Ki,2 ·Ui,2
}k−1

i=1 ,{
Dk,1 = Kk,1, Dk,2 = Kk,2

})
and re-randomizes it by running RHIBE.RandDK.

3. Finally, it outputs a (re-randomized) decryption key DKID|k,T =
(
D0,D1,{Di,1,Di,2}k

i=1

)
.

RHIBE.RandDK(DKID|k,T ,PP): This algorithm takes as input a decryption key DKID|k =
(
D′0,D

′
1,{D′i,1,

D′i,2}k
i=1

)
for an identity ID|k = (I1, I2, . . . , Ik)∈Ik and time T , and the public parameters PP. It selects

random exponents r0,r1, . . . ,rk ∈ Zp and outputs a re-randomized decryption key

DKID|k,T =
(

D0 = D′0 · (uT
0 h0)

−r0 ·
k

∏
i=1

wri , D1 = D′1 ·gr0 ,
{

Di,1 = D′i,1 · (uIih)−ri , Di,2 = D′i,2 ·gri
}k

i=1

)
.

11

RHIBE.Encrypt(ID|`,T,M,PP): This algorithm takes as input an identity ID|` = (I1, . . . , I`) ∈ Ik, time T ,
a message M, and the public parameters PP. It first chooses random exponents t,s1, . . . ,s` ∈ Zp and
outputs a ciphertext

CTID|k,T =
(

C = Ω
t ·M, C0 = gt , C1 = (uT

0 h0)
t ,
{

Ci,1 = gsi , Ci,2 = w−t(uIih)si
}`

i=1

)
.

RHIBE.Decrypt(CTID|`,T ,DKID′|k,T ′ ,PP): This algorithm takes as input a ciphertext CTID|`,T = (C,C0,C1,

{Ci,1,Ci,2}`i=1), a decryption key DKID′|k,T ′ = (D0,D1,{Di,1,Di,2}k
i=1) and the public parameters PP.

If ID′|k is a prefix of ID|` and T = T ′, then it outputs an encrypted message

M =C ·
(

e(C0,D0) · e(C1,D1) ·
k

∏
i=1

(
e(Ci,1,Di,1) · e(Ci,2,Di,2)

))−1

Otherwise, it outputs ⊥.

RHIBE.Revoke(ID|k,T,RLID|k−1 ,STID|k−1): This algorithm takes as input an identity ID|k, revocation time
T , the revocation list RLID|k−1 , and the state STID|k−1 . If (ID|k,−) /∈ STID|k−1 , then it outputs ⊥ since
the private key of ID|k was not generated. Otherwise, it adds (ID|k,T) to RLID|k−1 and outputs the
updated revocation list RLID|k−1 .

4.3 Correctness

We have to check the correctness of the scheme. If a user’s private key is not revoked in an update key, then
the algorithm RHIBE.DeriveKey correctly derives a decryption key DKID|k,T since there exists a unique
common node θ in path nodes Path in a private key and a covering nodes KUNode in an update key. Since
the decryption key DKID|k,T for an identity ID|k at time T has the following form

DKID|k,T =
(

D0 = gα(u0
T h0)

−r0
k

∏
i=1

wri , D1 = gr0 ,
{

Di,1 = (uIih)−ri , Di,2 = gri
}k

i=1

)
,

we can easily check that the ciphertext CTID|k,T can be correctly decrypted by using DKID|k,T .

4.4 Security Analysis

Theorem 4.2. The above RHIBE scheme is selectively IND-CPA secure if the underlying HIBE scheme is
selectively IND-CPA secure.

Proof. To prove the theorem, we will show that a polynomial time algorithm B that breaks selective IND-
CPA security of HIBE in Section 3 can be built by using an adversary A that breaks the selective IND-CPA
security of the proposed RHIBE scheme. B that interacts with A is described as follows:

Init: A initially submits a challenge identity ID∗|` = (I∗1 , . . . , I
∗
`) and challenge time T ∗. B also submits

ID∗|` as a challenge identity for the IND-CPA experiment of HIBE.
Setup: B receives PPHIBE = ((p,G,GT ,e),g,u,h,w,v,Ω). It chooses random exponents a,b ∈ Zp and sets
u0 = wb,h0 = gau−T ∗

0 . It sets PPRHIBE =
(
PPHIBE ,u0,h0

)
and gives PPRHIBE to A.

For update key and private key queries, B classifies the type of adversaries and responds depending on
his guess of the adversarial type. B guesses i∗ ∈ {1, . . . , `, `+ 1}. In case of i∗ = `+ 1, B supposes A has

12

no private key queries for ID∗| j for all j ∈ [`]. Otherwise, in case of i∗ ∈ [`], B assumes that A queries a
private key of some ID∗| j for i∗ ≤ j ≤ `, it means that ID∗|i∗ is the oldest ancestor of ID∗|` which is queried
before time T ∗. If B discovers the guess is wrong, then B aborts the simulation and outputs a random bit. If
B guesses correctly, then we can believe that A cannot get any information about ST0, ...,STID∗|i∗−1

.
Phase 1: A adaptively requests a polynomial number of queries. These queries are processed as follows:
If this is a private key query for ID|k = (I1, . . . , Ik), then B proceeds as follows: B has to output STID|k , then
B generates STID|k properly. Also, the private key of ID|k is related to STID|k−1 .

• Case ID|k−1 is not a prefix of ID∗|i∗ : In this case, the state information STID|k−1 is normally generated.
It easily creates SKID|k by running RHIBE.GenKey(ID|k,STID|k−1 ,PP) since it knows STID|k−1 . It also
normally generates STID|k . Note that it sets γθ as the master key of PSK where γθ is associated to a
node θ . Finally, it gives SKID|k and STID|k to A.

• Case ID|k−1 is a prefix of ID∗|i∗ : In this case,A does not know STID∗|k−1 , so it does not need to generate
STID∗|k−1 properly. If BTID∗|k−1 is already generated, then it use this. Otherwise, it has to generate
BTID∗|k−1 . Next, it assigns a random leaf node of BTID∗|k−1 to ID∗|k. Let Path=Path(ID|k)⊂BTID∗|k−1 .
Note that it can retrieve γθ ∈ Zp by loading from BTID|k−1 if it is already selected or selecting γθ ∈ Zp

otherwise. It generates SKID|k as following:

– Case k < i∗: In this case, we have ID|k 6= ID∗|k since A is a type i∗ adversary. It first request an
HIBE private key query for ID|k and receives SKHIBE =

(
K′0,{K′i,1,K′i,2}k

i=1

)
. For each θ ∈ Path,

it retrieves γθ and creates PSKθ by running HIBE.RandKey(ID|k,γθ ,SKHIBE ,PP). It creates
SKID|k =

(
{θ ,PSKθ}

)
θ∈Path. Note that it sets α + γθ as the master key of PSK.

– Case k = i∗ and ID|k 6= ID∗|i∗ : It first requests an HIBE private key for ID|k and receives
SKHIBE =

(
K′0,{K′i,1,K′i,2}k

i=1

)
. For each θ ∈ Path, it retrieves γθ and proceeds as follows: If

θ ∈ Path(ID∗|k), it creates PSKθ by running HIBE.GenKey(ID|k,γθ ,PP). Otherwise, it creates
PSKθ by running HIBE.RandKey(ID|k,γθ ,SKHIBE ,PP). It creates SKID|k =({θ ,PSKθ}θ∈Path).
Note that it sets γθ as the master key of PSK if θ ∈ Path(ID∗|i∗) or α + γθ as the master key
otherwise.

– Case k = i∗ and ID|k = ID∗|i∗ : For each θ ∈ Path, it retrieves γθ and creates PSKθ by running
HIBE.GenKey(ID|k,γθ ,PP). It creates SKID|k =

(
{θ ,PSKθ}θ∈Path

)
. Note that it simply sets γθ

as the master key of PSK.

Finally, it gives SKID|k and STID|k to A.

If this is an update key query for ID|k−1 = (I1, . . . , Ik−1) and T , then B proceeds as follows:

• Case ID|k−1 is not a prefix of ID∗|i∗ : In this case, the decryption key DKID|k−1,T can be obtained and the
state information STID|k−1 is normally generated. It first obtains DKID|k−1,T by requesting a decryption
key query for ID|k−1 and T to himself. Next, it retrieves STID|k−1 if it is already generated or normally
generates STID|k−1 otherwise. It creates UKID|k−1,T by running RHIBE.UpdateKey(T,RLID|k−1 ,DKIDk−1,T ,
STID|k−1 ,PP). Note that it sets α − γθ as the master key of TUK where γθ is associated to a node θ .
Finally, it gives UKID|k−1,T to A.

• Case ID|k−1 is a prefix of ID∗|i∗ : Let KUNode = KUNode(BTID|k−1 ,RLID|k−1 ,T). In this case, it
generates UKID|k−1,T as follows:

13

– Case ID|k−1 is a prefix of ID∗|i∗−1: For each θ ∈ KUNode, it retrieves γθ and proceeds as fol-
lows: It first obtains SKHIBE =

(
K′0,{K′i,1,K′i,2}

k−1
i=1

)
by running HIBE.GenKey(ID|k−1,−γθ ,PP).

Next, it creates TUKθ by selecting a random exponent r0 ∈Zp as TUKθ =
(
U0 =K′0 ·(uT

0 h0)
−r0 ,

U1 = gr0 , {Ui,1 = K′i,1, Ui,2 = K′i,2}
k−1
i=1

)
. It creates UKID|k−1,T =

(
{θ ,TUKθ}θ∈KUNode

)
. Note

that it sets −γθ as the master key of TUK.

– Case ID|k−1 = ID∗|i∗−1: In this case, we have T 6= T ∗ by the restriction that ID∗|k should be
revoked before the time T ∗.

1. If k = 1, it creates DKID|0,T =
(
D0 = v−

a
b(T−T∗) ·g−ar0 ·u−r0(T−T ∗)

0 ,D1 = v
1

b(T−T∗) ·gar0
)
. Other-

wise, it creates DKID|k−1,T =
(
D0,D1,{Di,1,Di,2}k−1

i=1

)
by requesting a decryption key query

to himself.
2. For each θ ∈ KUNode, it retrieves γθ and proceeds as follows: If θ ∈ Path(ID∗|k), it

obtains a re-randomized decryption key DK′ID|k−1,T
=
(
D′0,D

′
1,{D′i,1,D′i,2}

k−1
i=1

)
by running

RHIBE.RandDK(DKID|k−1,T ,PP) and creates TUKθ = (U0 = g−γθ ·D′0, U1 = D′1, {Ui,1 =

D′i,1, Ui,2 = D′i,2}
k−1
i=1). Otherwise, it obtains SKHIBE =

(
K′0,{K′i,1,K′i,2}

k−1
i=1

)
by running

HIBE.GenKey(ID|k−1,−γθ ,PPHIBE) and creates TUKθ =
(
U0 =K′0 ·(uT

0 h0)
−r0 , U1 = gr0 ,

{Ui,1 = K′i,1, Ui,2 = K′i,2}
k−1
i=1

)
.

3. It creates UKID|k−1,T =
(
{θ ,TUKθ}θ∈KUNode

)
. Note that it sets α− γθ as the master key of

TUK if θ ∈ Path(ID∗|k) or −γθ as the master key otherwise.

Finally, it gives UKID|k−1,T to A.

If this is a decryption key query for ID|k = (I1, . . . , Ik) and T , then B proceeds as follows:

• Case T 6= T ∗: In this case, it can easily generate DKID|0,T since T 6= T ∗ and then delegates it
to generate DKID|k,T . It first selects a random exponent r0 ∈ Zp and creates DKID|0,T =

(
D′0 =

v−
a

b(T−T∗) g−ar0u−r0(T−T ∗)
0 ,D′1 = v

1
b(T−T∗) gr0

)
. Next, it selects random exponents r1, . . . ,rk ∈ Zp and

creates DKID|k,T =
(
D0 = D′0 ·∏k

i=1 wri , D1 = D′1, {Di,1 = (uIih)−ri , Di,2 = gri}k
i=1

)
.

• Case T = T ∗: In this case, there exists at least one I j ∈ ID|k such that I j /∈ ID∗|k by the restriction of
the decryption key query. It first queries the private key query for ID|k since I j 6∈ ID∗|k and receives
SKHIBE =

(
K′0,{K′i,1,K′i,2}k

i=1

)
. Next, it selects a random exponent r0 ∈ Zp and creates DKID|k,T =(

D0 = K′0 ·g−ar0 ,D1 = gr0 ,
{

Di,2 = K′i,1,Di,2 = K′i,1
}k

i=1

)
.

If this is a revocation query for ID|k = (I1, . . . , Ik) and T , then B proceeds as follows: It adds a pair (ID|k,T)
into a revocation list RLID|k−1 by running RHIBE.Revoke algorithm. Note that A cannot query to revoke
ID|k on time T if he already requested an update key query for ID|k on time T .
Challenge: In the challenge step, A submits two challenge messages M∗0 ,M

∗
1 with the same length. B

also submits M∗0 ,M
∗
1 as challenge messages and receives CTHIBE =

(
C′,C′0,{C′i,1,C′i,2}`i=1

)
. Next, B sets the

challenge ciphertext CTID∗|`,T ∗ =
(
C = C′, C0 = C′0, C1 = (C′0)

a, {Ci,1 = C′i,1, Ci,2 = C′i,2}`i=1
)

and gives it
to A.
Phase 2: A may continue to request a polynomial number of queries as the same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs the same guess µ ′.

14

5 Conclusion

In this paper, we proposed the first unbounded RHIBE scheme using proposed HIBE and the history-free
approach of Seo and Emura [24]. To achieve our scheme, we first proposed an unbounded HIBE scheme
from the KP-ABE scheme of Rouselakis and Waters [19]. Our proposed RHIBE scheme makes it efficient to
generate private keys in IBE for a large number of users since it allows the delegation of the key generation
using a hierarchical structure among users and provides the revocation functionality. Furthermore it solves
the open problem of removing the limitation on maximum hierarchy.

The security of our RHIBE scheme was proved in the selective model. It will be interesting to construct
a fully secure RHIBE scheme with no limitations on maximum hierarchy. Our RHIBE scheme essentially
uses the complete subtree (CS) method for revocation. We expect that the subset difference (SD) method
also can be applied to our RHIBE scheme since Seo and Emura [24] also proposed an RHIBE scheme that
uses the SD method by following the methodology of Lee et al. [12].

Acknowledgements

The first two authors (Geumsook Ryu and Kwangsu Lee) contributed equally to this work.

References

[1] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Computer
and Communications Security, pages 417–426. ACM, 2008.

[2] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

[3] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size
ciphertext. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pages 440–456. Springer, 2005.

[4] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[5] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 290–307. Springer, 2006.

[6] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 445–464. Springer, 2006.

[7] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many levels.
In Omer Reingold, editor, Theory of Cryptography - TCC 2009, volume 5444 of Lecture Notes in
Computer Science, pages 437–456. Springer, 2009.

15

[8] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, 2002.

[9] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen,
editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 466–481. Springer, 2002.

[10] Kwangsu Lee. Self-updatable encryption with short public parameters and its extensions. Designs
Codes Cryptogr., 2015. http://dx.doi.org/10.1007/s10623-015-0039-9.

[11] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable
encryption: Time constrained access control with hidden attributes and better efficiency. In Kazue
Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, volume 8269 of Lecture
Notes in Computer Science, pages 235–254. Springer, 2013.

[12] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based encryption via
subset difference methods. Cryptology ePrint Archive, Report 2014/132, 2014. http://eprint.
iacr.org/2014/132.

[13] Kwangsu Lee, Jong Hwan Park, and Dong Hoon Lee. Anonymous hibe with short ciphertexts: full
security in prime order groups. Designs Codes Cryptogr., 74(2):395–425, 2015.

[14] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In Daniele Micciancio, editor, Theory of Cryptography - TCC 2010, volume
5978 of Lecture Notes in Computer Science, pages 455–479. Springer, 2010.

[15] Allison B. Lewko and Brent Waters. Unbounded hibe and attribute-based encryption. In Kenneth G.
Paterson, editor, Advances in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 547–567. Springer, 2011.

[16] Benoı̂t Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In Marc
Fischlin, editor, Topics in Cryptology - CT-RSA 2009, volume 5473 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2009.

[17] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 41–62. Springer, 2001.

[18] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable identity-based
encryption from multilinear maps. IEEE Trans. Inf. Forensic Secur., 10(8):1564–1577, 2015.

[19] Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large universe
attribute-based encryption. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
Conference on Computer and Communications Security, pages 463–474. ACM, 2013.

[20] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for
attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
- CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 199–217. Springer, 2012.

16

http://dx.doi.org/10.1007/s10623-015-0039-9
http://eprint.iacr.org/2014/132
http://eprint.iacr.org/2014/132

[21] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, Advances in
Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 457–473.
Springer, 2005.

[22] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities
in identity-based encryption. In Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013, volume 7779
of Lecture Notes in Computer Science, pages 343–358. Springer, 2013.

[23] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and
construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key Cryptography - PKC
2013, volume 7778 of Lecture Notes in Computer Science, pages 216–234. Springer, 2013.

[24] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption: History-free update,
security against insiders, and short ciphertexts. In Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA
2015, volume 9048 of Lecture Notes in Computer Science, pages 106–123. Springer, 2015.

[25] Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In Stanislaw Jarecki and Gene Tsudik, editors,
Public-Key Cryptography - PKC 2009, volume 5443 of Lecture Notes in Computer Science, pages
215–234. Springer, 2009.

[26] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, Advances in Cryptology - CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1984.

[27] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 114–127. Springer, 2005.

[28] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in
Computer Science, pages 619–636. Springer, 2009.

17

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Bilinear Groups
	Complexity Assumption
	Hierarchical IBE
	Revocable HIBE

	Hierarchical Identity-Based Encryption
	Construction
	Correctness
	Security Analysis

	Revocable Hierarchical Identity-Based Encryption
	KUNode Algorithm
	Construction
	Correctness
	Security Analysis

	Conclusion

