
Reducing Multilinear Map Levels in Constrained Pseudorandom
Functions and Attribute-based Encryption

Nishanth Chandran1? Srinivasan Raghuraman2?? Dhinakaran Vinayagamurthy3? ? ?

1 Microsoft Research, India
2 Indian Institute of Technology, Madras

3 University of Toronto

Abstract. The candidate construction of multilinear maps by Garg, Gentry, and Halevi (Eurocrypt
2013) has lead to an explosion of new cryptographic constructions ranging from attribute-based en-
cryption (ABE) for arbitrary polynomial size circuits, to program obfuscation, and to constrained
pseudorandom functions (PRFs). Many of these constructions require κ-linear maps for large κ. In this
work, we focus on the reduction of κ in certain constructions of access control primitives that are based
on κ-linear maps; in particular, we consider the case of constrained PRFs and ABE. We construct the
following objects:

- A constrained PRF for arbitrary circuit predicates based on (n+ `OR − 1)−linear maps (where n is
the input length and `OR denotes the OR-depth of the circuit).

- For circuits with a specific structure, we also show how to construct such PRFs based on (n+ `AND−
1)−linear maps (where `AND denotes the AND-depth of the circuit).

- We then give a black-box construction of a constrained PRF for NC1 predicates, from any bit-fixing
constrained PRF that fixes only one of the input bits to 1; we only require that the bit-fixing PRF
have certain key homomorphic properties. This gives us a constrained PRF for NC1 predicates that
is based only on n-linear maps, with no dependence on the predicate.
In contrast, the previous constructions of constrained PRFs (Boneh and Waters, Asiacrypt 2013)
required (n+ `+ 1)−linear maps for circuit predicates (where ` is the total depth of the circuit) and
n-linear maps even for bit-fixing predicates.

- We also show how to extend our techniques to obtain a similar improvement in the case of ABE
and construct ABE for arbitrary circuits based on (`OR + 1)−linear (respectively (`AND + 1)−linear)
maps.

1 Introduction

The breakthrough work on multilinear maps [GGH13a] has found tremendous applications in various areas
of cryptography. It has lead to attribute-based encryption (ABE) for all polynomial size circuits [GGH+13c],
indistinguishability obfuscation and functional encryption for general circuits [GGH+13b], constrained pseu-
dorandom functions [BW13], and so on. Many of these constructions require κ-linear maps for large κ. Larger
κ leads to more inefficient schemes and stronger hardness assumptions. In this work, we are interested in
exploring the reduction of κ in such constructions – specifically, we consider the case of constrained PRFs
and ABE.

Constrained Pseudorandom Functions. A pseudorandom function (PRF) is a keyed function, Fk(x), that
is computationally indistinguishable from a truly random function, even to an adversary who has or-
acle access to the function (but has no knowledge about the key k). Constrained PRFs (introduced
in [BW13,BGI14,KPTZ13]), allow the owner of k to give out a constrained key kf , for a predicate f , such
that any user who has kf can evaluate Fk(x) iff f(x) = 1. The security requirement on all points x, such
that f(x) = 0 is the same as that of standard PRFs.

? Email: nichandr@microsoft.com
?? Email: rsrini@cse.iitm.ac.in. Work done while at Microsoft Research, India.

? ? ? Email: dhinakaran5@cs.toronto.edu. Work done while at Microsoft Research, India.

mailto:nichandr@microsoft.com
mailto:rsrini@cse.iitm.ac.in
mailto:dhinakaran5@cs.toronto.edu

Boneh and Waters [BW13] show how to construct constrained PRFs for bit-fixing predicates using an
n−linear map (where n is the input length to the PRF), and also how to construct constrained PRFs
for arbitrary circuit predicates using an (n + ` + 1)−linear map (where ` is the total depth of the circuit
predicate). Constrained PRFs can be used to construct broadcast encryption with small ciphertext length,
identity-based key exchange, and policy-based key distribution.

Attribute Based Encryption. Attribute based encryption (ABE) [SW05] allows a more fine-grained access
policy to be embedded into public-key encryption. In more detail, in ABE schemes, there is a master authority
who owns sk and publishes public parameters as well as a relation R(x, y). A user who encrypts a message m,
creates a ciphertext under some string x (that can specify some policy), to obtain Encpk(m,x). The master
authority can give a user a secret key sky. Now, this user can use sky to decrypt Encpk(m,x) and obtain m
iff R(x, y) = 1; otherwise, the user obtains no information about m. ABE, for the class of relations R ∈ NC1

can be constructed based on bilinear maps [GPSW06]. Recently, the work of [GGH+13c] shows how to
construct ABE for arbitrary circuits based on (` + 1)−linear maps (where ` is the depth of the relation R
when expressed as a boolean circuit), while [GVW13] also show how to construct ABE for arbitrary circuits
based on the Learning with Errors (LWE) hardness problem.

1.1 Our Results

In this work, we show the following results:

– We construct constrained PRFs for arbitrary circuit predicates using an (n+ `OR− 1)−linear map, where
n is the input length to the PRF and `OR denotes the OR-depth of the constraint f when expressed as
a boolean circuit (informally, the OR-depth of a circuit is defined to be the maximum number of OR
gates from input wires to the output wire along any path in the circuit). We believe that the reduction in
linearity is important even in cases when it is not an asymptotic improvement as lower linearity results in
a weaker hardness assumption.

– Next, we construct constrained PRFs for circuit predicates using an (n + `AND − 1)−linear map, where
`AND denotes the AND-depth of the constraint f (informally, the AND-depth of a circuit is defined to be
the maximum number of AND gates from input wires to the output wire along any path in the circuit).
Although in this construction, we require the circuit to be of a specific structure, we show that for several
circuits, our construction reduces the number of levels of multilinear map needed.

– Then, we show (in a black-box manner) how to convert any bit-fixing constrained PRF that fixes only one
bit4 to 1 into a constrained PRF for NC1 circuits; we only require that the bit-fixing PRF have certain
additive key-homomorphic properties. From this, we obtain a constrained PRF for all predicates f ∈ NC1

using an n−linear map. In particular, the number of levels in our construction has no dependence on f .
We believe this construction to be of independent interest as the only known (non-trivial) constructions
of constrained PRFs are based on multilinear maps.

– Finally, we show how to extend our techniques to construct ABE schemes from lesser levels of multi-linear
maps.

Similar to [BW13], all our constructions are based on the κ-Multilinear Decisional Diffie-Hellman (κ-
MDDH) assumption and achieve selective security (i.e., the adversary must commit to the challenge query
at the beginning of the security game); as in [BW13], we can achieve standard security via complexity
leveraging. We remark that our techniques can be extended to the constructions of verifiable constrained
PRFs [Fuc14,CRV], thereby leading to a similar lowering of κ.

Other related works. The work of [FKPR14] considers the prefix-fixing constrained PRF from the classical
GGM construction [GGM86], and shows how to avoid an exponential (in n) loss in security when going from
selective security to adaptive security. Their work also shows that any “simple”’ reduction, that proves full

4 By symmetry, we can also start with a bit-fixing constrained PRF that fixes only one bit to 0.

2

security of the bit-fixing constrained PRF of [BW13], from a non-interactive hardness assumption, must incur
an exponential security loss. The work of [HKKW] shows how to construct adaptively secure constrained
PRFs for circuits from indistinguishability obfuscation in the random oracle model. More recently, key-
homomorphic constrained PRFs were constructed in [BV15,BFP+15]5. Banerjee et al. [BFP+15] also note
that [BW13] is “key-homomorphic”.

Security of multilinear maps. After the initial work of Garg et al. [GGH13a], Coron, Lepoint and Tibouchi
proposed a multilinear maps construction over the integers [CLT13] also based on ideal lattices. But, Cheon,
Han, Lee, Ryu and Stehlé [CHL+15] proposed an attack which completely broke the CLT scheme by recov-
ering the secret parameters of the scheme in polynomial time. After some failed attempts to fix the CLT
scheme by various groups, Coron et al. [CLT15] proposed another candidate construction which remains un-
broken. Recently, Hu and Jia [HJ15] showed that the κ-MDDH assumption in [GGH13a] does not hold when
encodings of zero are provided. Independent of these, Gentry, Gorbunov and Halevi [GGH15] proposed a
multilinear maps construction based on random lattices but with the map defined with respect to a directed
acyclic graph.

To instantiate our constructions, any multilinear maps scheme which is “secure” under the κ-MDDH
assumption can be used.

1.2 Our Techniques

Our starting point is the constrained PRF construction of [BW13] for arbitrary circuit predicates. We first
view this construction differently as follows. Let the PRF in [BW13] be denoted by PRFn+`(u, x), where u is
the key of the PRF, x, an n-bit string, is the input to the PRF, and PRFn+` denotes that the PRF output is
at the (n+ `)−level of the multilinear map (where ` denotes the depth of the constraint f). Now, in order to
give out a constrained key for f , we first pick a random value rw for every wire w in the circuit. Let j denote
the depth of this wire in the circuit. Now, for a given x such that f(x) = 1, the idea is to give a key that will
enable the user to compute PRFn+j(rw, x) for all wires w in the circuit that evaluate to 1 on x. Doing this
inductively will allow the compution of PRFn+`(u, x). Let w be an output to some gate in the circuit and
let A(w), B(w) be the input wires corresponding to this gate. If this gate is an AND (respectively OR) gate,
we give a key, that will allow a user to compute PRFn+j(rw, x) from the values PRFn+j−1(rA(w), x) AND
(respectively OR) PRFn+j−1(rB(w), x).

Free AND construction. Our first observation is that for AND gates, one must be able to compute the
PRF value corresponding to w wire iff one has the PRF values corresponding to both A(w) and B(w). Now,
suppose the PRF under consideration is “additively homomorphic” in some sense. Then, we observe that
given PRFn+j−1(rA(w), x) and PRFn+j−1(rB(w), x), one can compute PRFn+j−1(rw, x), without the need
for additional keys and without jumping a level in the multilinear map as long as we set rA(w) and rB(w)

to be random additive shares of rw. Now, this ensures that AND gates are “free” in the circuit. The OR
gates are handled exactly as in the case of [BW13]. This leads to a construction that only makes use of a
(n+ `OR − 1)−linear map.

While this is the main change made to the construction, the proof of security now requires attention.
At a very high level, [BW13] could embed a part of the “hard problem” from the hardness assumption at
every layer of the circuit as they give out keys for all gates in the circuits. In our case, we do not have that
luxury. In particular, since we do not give any keys for AND gates, the structure of the hard problem may be
distorted after multiple evaluations of AND gates. In order to overcome this, we must carefully give out the
keys at OR levels to “reset” the problem to be of our preferred form. This enables us to then prove security.

Free OR construction. Now, suppose we turn our attention towards the OR gates alone. Note, that one
must be able to compute the PRF value corresponding to wire w iff one has the PRF values corresponding
to either A(w) or B(w). Now, suppose we set rw = rA(w) = rB(w), then this enables the computation of

5 We note that these works are concurrent to our work, which was also submitted to TCC.

3

PRFn+j−1(rw, x) from either PRFn+j−1(rA(w), x) or PRFn+j−1(rB(w), x), without the need for additional
keys and without jumping a level in the multilinear map. However, doing this näıvely would lead to a similar
“backtracking attack” as the attack described by [GGH+13c] in the context of ABE. In more detail, note that
if A(w) = 0 and B(w) = 1, one can indeed (rightly) compute PRFn+j−1(rw, x) from PRFn+j−1(rB(w), x) as
both B(w) and w are 1. However, this also enables the (unauthorized) computation of PRFn+j−1(rA(w), x),
and if this wire had a fan-out greater than 1, this would lead to an attack on the security of the PRF. Here,
we show that if the circuit had a specific structure, then such a construction can still be made to work.
We show that several circuits can be converted to this form (with a polynomial blowup) that results in a
reduction in the number of multilinear levels needed. We remark that for the construction (and proof) to
succeed, one must carefully select the random key values on the circuit for the constrained key , starting
backwards, from the output wire in the circuit.

NC1 construction. While we obtain our construction of constrained PRF for NC1 circuits by combining the
above two techniques, we note that the proof of security is tricky and requires the simulator to carefully set
the random keys in the simulation. In particular, let x∗ be the challenge input to the PRF. Now, suppose,
the simulator must give out a constrained key for a circuit f such that f(x∗) = 0. The simulator must choose
all the random keys of the PRFs on each wire in such a way that for all wires that evaluate to 1 on x∗, the
key is either chosen randomly by the simulator or can be computed from values that are chosen randomly by
the simulator. We show that this can be indeed done by the simulator, thus resulting in the proof of security.

We then show how to generalize this construction to obtain a constrained PRF for NC1 circuits from
any constrained PRF for bit-fixing predicates that fixes only one bit and has certain additively homomorphic
properties. We believe this construction to be of independent interest as till date, constrained PRFs for any
non-trivial predicate, are known only based on multilinear maps.

Finally, we show how to extend our Free AND/OR techniques to the case of ABE. This gives an
ABE based on (`OR + 1)−linear and (`AND + 1)−linear maps respectively, improving upon the (`+ 1)−linear
map construction of [GGH+13c].

1.3 Organization

In Section 2, we define constrained PRFs and ABE as well as state the hardness assumption that we make.
We also present circuit notation that is used in the rest of the paper. In Section 3, we describe our (n+`OR−
1)−linear map construction of constrained PRF for arbitrary circuits. We outline our (n+ `AND − 1)−linear
map construction in Section 4. We present our n−linear map construction of constrained PRF for NC1

circuits in Section 5 and the black-box construction of constrained PRF for NC1 circuits from bit-fixing
constrained PRFs in Section 6. We finally show the extension of our results to ABE in Appendix D.

2 Preliminaries

2.1 Definitions

Constrained Pseudorandom Functions. A pseudorandom function (PRF) F : K×X → Y, is a deterministic
polynomial (in security parameter λ) time algorithm, that on input a key k ∈ K and an input x ∈ X , outputs
F (k, x) ∈ Y. F has a setup algorithm Setup(1λ) that on input λ, outputs a key k ∈ K.

Definition 1. A PRF F : K × X → Y is said to be constrained with respect to a set system S ⊆ X if there
is an additional key space Kc, and there exist algorithms (F.Constrain, F.Evaluate) such that

– F.Constrain(k, S) is a randomized polynomial time algorithm that takes as input a PRF key k ∈ K and
the description of a set S ∈ S. It outputs a constrained key kS ∈ Kc which enables the evaluation of
F (k, x) for all x ∈ S and no other x;

4

– F.Evaluate(kS , x) is a deterministic polynomial time algorithm that takes as input a constrained key
kS ∈ Kc and an input x ∈ X . If kS is the output of F.Constrain(k, S) for some k ∈ K, then
F.Evaluate(kS , x) outputs F (k, x) if x ∈ S and ⊥ otherwise, where ⊥6∈ Y. We will use the shorthand
F (kS , x) for F.Evaluate(kS , x).

The security of constrained PRFs informally states that given several constrained keys, as well as the
output of the PRF on several points of the adversary’s choice, the PRF looks random at all points that the
adversary could not have computed himself. Let F : K×X → Y be a constrained PRF with respect to a set
system S. Define two experiments Exp0 and Exp1. For b ∈ {0, 1}, Expb proceeds as follows:

1. First, a random key k ∈ K is chosen, and two sets C, V ⊆ X are initialized to ∅. C will keep track of
points on which the adversary will be challenged and V will keep track of points on which the adversary
can compute the PRF himself. The experiments will maintain the invariant that C ∩ V = ∅.

2. The adversary is given access to the following oracles:

– F.Constrain: Given a set S ∈ S, if S ∩ C = ∅, the oracle returns F.Constrain(k, S) and updates
V ← V ∪ S; otherwise, it returns ⊥.

– F.Evaluate: Given an input x ∈ X , if x 6∈ C, the oracle returns F (k, x) and updates V ← V ∪ x;
otherwise, it returns ⊥.

– Challenge: Given x ∈ X where x 6∈ V , if b = 0, the oracle returns F (k, x); if b = 1, the oracle returns
a random (consistent) y ∈ Y. C is updated as C ← C ∪ x.

3. The adversary finally outputs a bit b′ ∈ {0, 1}.
4. For b ∈ {0, 1}, define Wb to be the event that that b′ = 1 in experiment Expb. The adversary’s advantage

AdvA,F,S(λ) is defined to be |Pr[W0]− Pr[W1]|.

Definition 2. A constrained PRF F : K × X → Y, is said to be secure, if for all PPT adversaries A, we
have that AdvA,F,S(λ), is negligible in λ.

Remark. When constructing constrained pseudorandom functions, it will be more convenient to work with
the definition where the adversary is allowed to issue only a single challenge query. A standard hybrid
argument shows that this definition is equivalent to the one where an adversary is allowed to issue multiple
challenge queries. A constrained PRF is selectively secure if the adversary commits to this single challenge
query at the beginning of the experiment.

Attribute-based Encryption. An attribute-based encryption (ABE) scheme has the following algorithms:

– Setup(1λ, n, `): This algorithm takes as input the security parameter λ, the length n of input descriptors
in the ciphertext, and a bound ` on the circuit depth. It outputs the public parameters PP and the
master secret key MSK.

– Encrypt(PP, x,M): This algorithm takes as input the public parameters, x ∈ {0, 1}n (representing the
assignment of boolean variables) and a message M . It outputs a ciphertext CT .

– KeyGen(MSK, f): This algorithm takes as input the master secret key and a circuit f . It outputs a secret
key SK.

– Decrypt(SK,CT): This algorithm takes as input a secret key and ciphertext and outputs either M or ⊥.

The correctness of the ABE requires that for all messages M , for all x ∈ {0, 1}n, for all depth ` circuits f ,
with f(x) = 1, if Encrypt(PP, x,M) outputs CT , and KeyGen(MSK, f) outputs SK, where PP and MSK
were obtained as the output of Setup(1λ, n, `), then Decrypt(SK,CT) = M . The security of an ABE scheme
is defined through the following game between a challenger Chall and adversary Adv as described below:

– Setup. Chall runs Setup(1λ, n, `) and gives PP to Adv; it keeps SK to itself.
– Phase 1. Adv makes any polynomial number of queries for circuit descriptions f of its choice. Chall

returns KeyGen(MSK, f).

5

– Challenge. Adv submits two equal length messages M0 and M1 as well as an x∗ ∈ {0, 1} such that for
all f queried in Phase 1, f(x∗) = 0. Chall flips a bit b and returns CT ∗ = Encrypt(PP, x∗,Mb) to Adv.

– Phase 2. Phase 1 is repeated with the restriction that f(x∗) = 0 for all queried f .
– Guess. Adv outputs a bit b′.

Definition 3. The advantage of Adv in the above game is defined to be |Pr[b′ = b]− 1
2 |. An ABE for circuits

is secure if for all PPT adversaries Adv, the advantage of Adv is negligible in the security parameter λ. An
ABE scheme is said to be selectively secure, if Adv commits to x∗ at the beginning of the security game.

2.2 Assumptions

Leveled multilinear groups. We assume the existence of a group generator G, which takes as input a security
paramter 1λ and a positive integer κ to indicate the number of levels. G(1λ, κ) outputs a sequence of groups
G = (G1, . . . ,Gκ) each of large prime order p > 2λ. In addition, we let gi be a canonical generator of Gi that is
known from the group’s description. We let g = g1. We assume the existence of a set of multilinear maps {ei,j :
Gi×Gj → Gi+j |i, j ≥ 1; i+j ≤ κ}. The map ei,j satisfies the following relation: ei,j(g

a
i , g

b
j) = gabi+j ,∀a, b ∈ Zp.

When the context is obvious, we will drop the subscripts i, j. For example, we may simply write e(gai , g
b
j) =

gabi+j . We define the κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) assumption [GGH13a] as follows:

Assumption 21 (κ-Multilinear Decisional Diffie-Hellman: κ-MDDH) The κ-Multilinear Decisional Diffie-
Hellman (κ-MDDH) problem is as follows: A challenger runs G(1λ, κ) to generate groups and generators of
order p. Then it picks random c1, . . . , cκ+1 ∈ Zp. The assumption states that given g = g1, g

c1 , . . . , gcκ+1 ,

it is hard to distinguish the element T = g
∏
j∈[κ+1] cj

κ from a random group element in Gκ with better than
negligible advantage in λ.

2.3 Circuit Notation

We will consider layered circuits, where a gate at6 depth j will receive both of its inputs from wires at depth
j − 1. We also assume that all NOT gates are restricted to the input level. Similar to [BW13], we restrict
ourselves to monotonic circuits where gates are either AND or OR gates of two inputs.7

Formally, our circuits will be a five tuple f = (n, q,A,B, GateType). We let n be the number of inputs
and q be the number of gates. We define inputs = [n], Wires = [n+q] and Gates = [n+q]\[n]. The wire n+q is
designated as the output wire, outputwire. A : Gates→Wires\{outputwire} is a function where A(w) identifies
w’s first incoming wire and B : Gates → Wires\{outputwire} is a function where B(w) identifies w’s second
incoming wire. Finally, GateType : Gates→ {AND,OR} is a function that identifies a gate as either an AND
gate or an OR gate. We let w > B(w) > A(w). Also, define three functions: tot-depth(w), AND-depth(w),
and OR-depth(w) that are all 1, when w ∈ inputs, and in general are equal to the number of gates (respectively
AND and OR gates) on the shortest path to an input wire plus one. We let f(x) be the evaluation of f on
the input x ∈ {0, 1}n, and fw(x) be the value of the wire w on the input x.

3 A Free-AND Circuit-predicate Construction

We show how to construct a constrained PRF for arbitrary polynomial size circuit predicates, without giving
any keys for AND gates, based on κ = (n+ `OR − 1)−linear maps, where `OR denotes the OR-depth of the
circuit. The starting point of our construction is the constrained PRF construction of [BW13] which is based
on the ABE for circuits [GGH+13c]. [BW13] works with layered circuits. For ease of exposition, we assume a
layered circuit where all gates in a particular layer are of the same type (either AND or OR). Circuits have
a single output OR gate. Also a layer of gates is not followed by another layer of the same type. We stress
that these are only for the purposes of exposition and can be removed as outlined later on in the section.

6 When the term depth is used, it is synonymous to the notion of tot-depth described ahead.
7 These restrictions are mostly useful for exposition and do not impact functionality.

6

3.1 Construction

F .Setup(1λ, n, `OR):
The setup algorithm takes as input the security parameter λ, the bit length, n, of PRF inputs and `OR, the
maximum OR-depth8 of the circuit. The algorithm runs G(1λ, κ = n + `OR − 1) and outputs a sequence of
groups G = (G1, . . . ,Gκ) of prime order p with canonical generators g1, . . . , gκ, where g = g1. It chooses
random exponents u ∈ Zp and (d1,0, d1,1), . . . , (dn,0, dn,1) ∈ Z2

p and computes Dm,β = gdm,β for m ∈ [n] and
β ∈ {0, 1}. It then sets the key of the PRF as:

k = (G, p, g1, . . . , gκ, u, d1,0, d1,1, . . . , dn,0, dn,1, D1,0, D1,1, . . . , Dn,0, Dn,1)

The PRF is F (k, x) = g
u
∏
m∈[n] dm,xm

κ , where xm is the mth bit of x ∈ {0, 1}n.

F .Constrain(k, f = (n, q,A,B, GateType)):
The constrain algorithm takes as input the key k and a circuit description f . The circuit has n + q wires
with n input wires, q gates and the wire n+ q designated as the output wire.

To generate a constrained key kf , the key generation algorithm chooses random r1, . . . , rn ∈ Zp, where
we think of the random value rw as being associated with the wire w. For each w ∈ [n + q − 1]\[n], if
GateType(w) = AND, it sets rw = rA(w) + rB(w) (where + denotes addition in the group Zp); otherwise, it
chooses rw ∈ Zp at random. Finally, it sets rn+q = u.

The first part of the constrained key is given out as simply all Di,β for i ∈ [n] and β ∈ {0, 1}. Next, the
algorithm generates key components. The structure of the key components depends on whether w is an input
wire or an output of an OR gate. For AND gates, we do not need to give out any keys. The key components
in each case are described below.

– Input wire. By convention, if w ∈ [n], then it corresponds to the w-th input. The key component is:
Kw = grwdw,1 .

– OR gate. Let j = OR-depth(w). The algorithm chooses random aw, bw ∈ Zp. Then, the algorithm creates
key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)

j−1 ,Kw,4 = g
rw−bw·rB(w)

j−1

The constrained key kf consists of all these key components along with {Di,β} for i ∈ [n] and β ∈ {0, 1}.

F .Evaluate(kf , x):
The evaluate algorithm takes as input a constrained key kf for the circuit f and an input x ∈ {0, 1}n. The
algorithm first checks that f(x) = 1, and if not, it aborts. Consider the wire w at OR-depth j. If fw(x) = 1,

then, the algorithm computes Ew = g
rw

∏
m∈[n] dm,xm

n+j−1 . If fw(x) = 0, then nothing is computed for that wire.
The algorithm proceeds iteratively starting with computing E1 and proceeds, in order, to compute En+q.
Computing these values in order ensures that the computation on a lower-depth wire that evaluates to 1

will be defined, before the compution on a higher-depth wire. Since rn+q = u, En+q = g
u
∏
m∈[n] dm,xm

n+`OR−1 . We
show how to compute Ew for all w where fw(x) = 1, case-wise, according to whether the wire is an input,

an OR gate or an AND gate. Define D = D(x) = g
∏
m∈[n] dm,xm

n , which is computable through pairings.

– Input wire. Suppose fw(x) = 1. Through pairing operations, the algorithm computes g
∏
m∈[n]\{w} dm,xm

n−1 . It
then computes:

Ew = e
(
Kw, g

∏
m∈[n]\{w} dm,xm

n−1

)
= g

rw
∏
m∈[n] dm,xm

n

8 We can define OR-depth of a circuit which is in our specified form as the number of layers comprising of OR gates,
plus 1.

7

– OR gate. Let j = OR-depth(w). The computation is performed if fw(x) = 1. Note that in this case, at
least one of fA(w)(x) and fB(w)(x) must be 1. If fA(w)(x) = 1, the algorithm computes:

Ew = e(EA(w),Kw,1) · e(Kw,3, D)

= e
(
g
rA(w)

∏
m∈[n] dm,xm

n+j−2 , gaw
)
· e
(
g
rw−aw·rA(w)

j−1 , g
∏
m∈[n] dm,xm

n

)
= g

rw
∏
m∈[n] dm,xm

n+j−1

Otherwise, we have fB(w)(x) = 1 and the algorithm computes Ew from EB(w),Kw,2,Kw,4 in a similar
manner.

– AND gate. Let j = OR-depth(w). The computation is performed if fw(x) = 1. Note that in this case,
fA(w)(x) = fB(w)(x) = 1. The algorithm computes:

Ew = EA(w) · EB(w) = g
rA(w)

∏
m∈[n] dm,xm

n+j−1 · g
rB(w)

∏
m∈[n] dm,xm

n+j−1 = g
rw

∏
m∈[n] dm,xm

n+j−1

The procedures above are evaluated in order for all w for which fw(x) = 1. Thus, the algorithm computes

En+q = g
u
∏
m∈[n] dm,xm

n+`OR−1 = F (k, x).

3.2 Proof of Pseudorandomness

The correctness of the constrained PRF is verifiable in a straightforward manner. The security proof is in
the selective security model (where the adversary commits to the challenge input x∗ at the beginning of the
game). To get full security, the proof will use the standard complexity leveraging technique of guessing the
challenge x∗; this guess will cause a loss of a 1/2n-factor in the reduction.

Theorem 1. If there exists a PPT adversary A that breaks the pseudorandomness of our circuit-predicate
construction for n-bit inputs with advantage ε(λ), then there exists a PPT algorithm B that breaks the
κ = (n+ `OR − 1)−Multilinear Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Proof. The algorithm B first receives a κ = (n+ `OR−1)−MDDH challenge consisting of the group sequence

description G and g = g1, g
c1 , . . . , gcκ+1 along with T , where T is either g

∏
m∈[κ+1] cm

κ or a random group
element in Gκ.

Setup:
It chooses an x∗ ∈ {0, 1}n uniformly at random. Next, it chooses random z1, . . . , zn ∈ Zp and sets Dm,β = gcm

when x∗m = β and gzm otherwise, for m ∈ [n] and β ∈ {0, 1}. This corresponds to setting dm,β = cm when
x∗m = β and zm otherwise. It then sets u = cn+1 ·cn+2 ·. . .·cn+`OR

. The setup is executed as in the construction.

Constrain:
Suppose a query is made for a secret key for a circuit f = (n, q,A,B, GateType). If f(x∗) = 1, then B
aborts. Otherwise, B generates key components for every wire w, case-wise, according to whether w is an
input wire or an OR gate as described below.

Input wire. By convention, if w ∈ [n], then it corresponds to the w-th input. If x∗w = 1, then B chooses
ηw = rw at random. The key component is:

Kw = (Dw,1)rw = grwdw,1

If x∗w = 0, then B implicitly sets rw = cn+1 + ηw, where ηw ∈ Zp is a randomly chosen element. The key
component is:

Kw = (gcn+1 · gηw)zw = grwdw,1

8

OR gate. Suppose that w ∈ Gates and that GateType(w) = OR. In addition, let j = OR-depth(w). In order
to show that B can simulate all the key components, we shall additionally show the following property:

Property 1. For any gate w ∈ Gates, B will be able to compute grwj , where j = OR-depth(w).

We will prove the above property through induction on the OR-depth j; doing this will enable us to
prove that B can compute all the key components required to give out the constrained key . The base case
of the input wires (j = 1) follows as we know that for an input wire w, B can compute grw , where rw is of
the form ηw or cn+1 + ηw. We now proceed to show the computation of the key-components. In each case,
we show that property 1 is satisfied.

CASE 1: If fw(x∗) = 1, then B chooses ψw = aw, φw = bw and ηw = rw at random. Then, B
creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)

j−1 ,Kw,4 = g
rw−bw·rB(w)

j−1

By virtue of of property 1, since OR-depth(A(w)) = OR-depth(B(w)) = j − 1, by the induction hypoth-
esis, we know that B can compute g

rA(w)

j−1 and g
rB(w)

j−1 . Hence, B can compute the above key-components, as
the remaining exponents were all chosen at random by B. Further, since rw was chosen at random, note
that grwj can be be computed for this wire, and hence property 1 holds for this wire as well (at OR-depth j).

CASE 2: If fw(x∗) = 0, then B implicitly sets rw = cn+1 · . . . · cn+j + ηw, where ηw ∈ Zp is a ran-
domly chosen element. Since ηw was chosen at random, note that grwj can be be computed for this wire

(since g
cn+1·...·cn+j

j can be computed using j pairings of gcm , n+ 1 ≤ m ≤ n+ j), and hence property 1 holds
for this wire as well. For computing the key-components, the choices of aw and bw are done more carefully.

1. Suppose the level before the current level consists of the inputs. B would know the values of ηA(w) and
ηB(w), since for input wires, these values are always chosen at random. In this case, B implicitly sets
aw = cn+j + ψw and bw = cn+j + φw, where ψw, φw ∈ Zp are randomly chosen elements. Then, B creates
key components:

Kw,1 = gcn+j+ψw = gaw ,Kw,2 = gcn+j+φw = gbw ,

Kw,3 = g
ηw−cn+j ·ηA(w)−ψw(cn+1·...·cn+j−1+ηA(w))

j−1 = g
rw−aw·rA(w)

j−1 ,

Kw,4 = g
ηw−cn+j ·ηB(w)−φw(cn+1·...·cn+j−1+ηB(w))

j−1 = g
rw−bw·rB(w)

j−1

B is able to create the last two key components due to a cancellation. Since fA(w)(x
∗) = fB(w)(x

∗) = 0,
B would have set rA(w) = cn+1 · . . . · cn+j−1 + ηA(w) and rB(w) = cn+1 · . . . · cn+j−1 + ηB(w). Further,

g
cn+1·...·cn+j−1

j−1 can be computed using j − 1 pairings of gcm , n+ 1 ≤ m ≤ n+ j − 1.
2. Suppose the level before the current level consists of AND gates. Since fA(w)(x

∗) = 0, we have two cases:
either one of fA(A(w))(x

∗) and fB(A(w))(x
∗) is zero, or both of them are zero. B sets aw = cn+j + ψw in

the former case, and aw = 1
2cn+j + ψw in the latter case, where ψw ∈ Zp is a randomly chosen element.

Similarly, since fB(w)(x
∗) = 0, we have two cases: either one of fA(B(w))(x

∗) and fB(B(w))(x
∗) must be

zero, or both of them must be zero. B sets bw = cn+j + φw in the former case, and bw = 1
2cn+j + φw in

the latter case, where φw ∈ Zp is a randomly chosen element. Then, B creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)

j−1 ,Kw,4 = g
rw−bw·rB(w)

j−1

We now show that these components can indeed be computed in every case. Note that the first two
components can be computed in every case. Consider Kw,3 (a similar argument holds for Kw,4).

(a) Consider the first case, where one of fA(A(w))(x
∗) and fB(A(w))(x

∗) is zero. In particular, without
loss of generality, assume that fA(A(w))(x

∗) = 0 and fB(A(w))(x
∗) = 1. Hence, B must have set

9

rA(A(w)) = cn+1 · . . . · cn+j−1 + ηA(A(w)) and rB(A(w)) = ηB(A(w)). Since A(w) is an AND gate, we
would have rA(w) = rA(A(w)) + rB(A(w)) = cn+1 · . . . · cn+j−1 + ηA(A(w)) + ηB(A(w)). Hence, we have:

Kw,3 = g
ηw−cn+j(ηA(A(w))+ηB(A(w)))−ψw(cn+1·...·cn+j−1+ηA(A(w))+ηB(A(w)))

j−1

= g
rw−aw·rA(w)

j−1

which can be computed as follows. We know the values of ηA(A(w)) and ηB(A(w)). Further,

g
cn+1·...·cn+j−1

j−1 can be computed using j − 1 pairings of gcm , n + 1 ≤ m ≤ n + j − 1. Hence the
key component can be computed.

(b) Consider the second case, where fA(A(w))(x
∗) = fB(A(w))(x

∗) = 0. Hence, B must have set rA(A(w)) =
cn+1 · . . . · cn+j−1 + ηA(A(w)) and rB(A(w)) = cn+1 · . . . · cn+j−1 + ηB(A(w)). Since A(w) is an AND
gate, we would have rA(w) = rA(A(w)) + rB(A(w)) = 2cn+1 · . . . · cn+j−1 + ηA(A(w)) + ηB(A(w)). Hence,
we have:

Kw,3 = g
ηw− 1

2 cn+j(ηA(A(w))+ηB(A(w)))−ψw(2cn+1·...·cn+j−1+ηA(A(w))+ηB(A(w)))

j−1

= g
rw−aw·rA(w)

j−1

which can be computed as outlined in the former case.

Thus, the four key components can be given out in every case.

AND gate. We now discuss the case of the AND gate. Suppose that w ∈ Gates and that GateType(w) =
AND. In addition, let j = OR-depth(w). B implicitly sets rw = rA(w) + rB(w). Note that we need not choose
any aw or bw. In fact, rw is being chosen because the key components being given out for the OR gates
involve rA(w), etc., which may potentially be from AND gates. Clearly, property 1 holds here as well, i.e.,

grwj = g
rA(w)

j · grB(w)

j can be be computed for this wire, since g
rA(w)

j and g
rB(w)

j can be computed by virtue of
of property 1.

Finally, we set, for the output wire w = n+ q, ηw = 0, so that rw = u in B’s internal view. It is easy to
see that aw and bw have the same distribution in the real game and the game executed by B. In the real
game, they are chosen at random and in the game executed by B, they are either chosen at random or are
values offset by some random values ψw and φw, respectively. For w ∈ [n + q − 1], rw also has the same
distribution in the real game and the game executed by B. This is true, since in the real game, they are
chosen so that randomness on the input wires of an AND gate add up to the randomness on its output
wire, and they are chosen at random for an OR gate, while in the game executed by B, they are chosen
in the exact same way, where being “chosen at random” is either truly satisfied or are fixed values are
offset by random ηw values. Now, we look at rn+q. In the real game, it is a fixed value u, and in the game
executed by B, by setting ηn+q = 0, rn+q = cn+1 · cn+2 · . . . · cn+`OR

= u internally. Hence, they too have the
same distribution. Hence all the parameters in the real game and game executed by B have the identical
distribution.

Evaluate:
Suppose a query is made for a secret key for an input x ∈ {0, 1}n. If x = x∗, then B aborts. Otherwise,
B identifies an arbitrary t such that xt 6= x∗t . Through `OR pairings of gcm , n + 1 ≤ m ≤ n + `OR,
it computes H = gu`OR

= g
cn+1·...·cn+`OR

`OR
. Then, through pairing of Dm,xm∀m ∈ [n]\{t}, it com-

putes g
∏
m∈[n]\{t} dm,xm

n−1 and raises it to dt,xt = zt to get H ′ = g
∏
m∈[n] dm,xm

n−1 . Finally, it computes

H ′′ = e(H,H ′) = g
u
∏
m∈[n] dm,xm

n+`OR−1 = F (k, x) and outputs it. Eventually, A will issue a challenge input x̃. If
x̃ = x∗, B will return the value T and output the same bit as A does as its guess. If x̃ 6= x∗, B outputs a
random bit as its guess.

This completes the description of the adversary B. We first note that in the case where T is part of a
MDDH tuple, the real game and game executed by B have the identical distribution. Secondly, in both cases

10

(i.e., whether or not T is part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output of B on the challenge query
x∗. We now analyze the probability that B’s guess was correct. Let δ′ denote B’s output and let δ denote
whether T is an MDDH tuple or not, δ, δ′ ∈ {0, 1}. Now

Pr[δ′ = δ] = Pr[δ′ = δ|abort] Pr[abort] + Pr[δ′ = δ|abort] Pr[abort]

=
1

2
(1− 2−n) + Pr[δ′ = δ|abort] · (2−n)

=
1

2
(1− 2−n) +

(
1

2
+ ε

)
· (2−n) =

1

2
+ ε · (2−n)

The set of equations shows that the advantage of B is ε(λ)/2n. This completes the proof of the theorem, which
establishes the pseudorandomness property of the construction. Hence, the constrained PRF construction
for the circuit-predicate case is secure under the κ-MDDH assumption.

Removing the restrictions. The restriction that GateType(n+ q) = OR enables us to set randomness as we
do in the scheme above. But this restriction can be easily removed by setting the randomness corresponding
to the last level of OR gates (or the input wires in case there is no OR gate in the circuit) appropriately so
that rn+q ends up being u.

The restriction that a layer of gates cannot follow another layer of the same type of gates can also be
overcome. The case of several consecutive layers of OR gates poses no threat since we move up one level in the
multilinear maps for layers of OR gates and hence the current proof method works as is. The case of several
consecutive layers of AND gates can be handled by even more careful choices of the randomness aw and bw.
When we had only one layer of AND gate (before a layer of OR gates), for an OR gate at OR-depth j, we set aw
to be either 1·cn+j+ψw or 1

2 ·cn+j+ψw depending on whether rA(w) = 1·cn+1·. . .·cn+j−1+ηA(A(w))+ηB(A(w))

or rA(w) = 2 · cn+1 · . . . · cn+j−1 + ηA(A(w)) + ηB(A(w)). Similarly, we set bw in accordance with rB(w). Now,
when there are more than one layers of AND gates consecutively, for an OR gate at OR-depth j just after
these AND gates, we set aw (resp. b(w)) to be 1

k cn+j + ψw where k is the coefficient of cn+1 · . . . · cn+j−1 in
rA(w) (resp. rB(w)). We present an illustration of this technique in Appendix A.

Regarding the first assumption, any layered circuit can be trivially converted into a “homogeneous”
layered circuit by “splitting” each layer in the layered circuit into two layers: one with only AND gates and
the other with only OR gates. This doubles the depth of the circuit. But if we are a bit more careful and
do the splitting such that the odd layers are split into an AND-layer followed by an OR-layer and the even
layers are split into an OR-layer followed by an AND-layer, the resulting circuit will have layers of the form
(AND-OR)-(OR-AND)-(AND-OR)-· · · . Now, we can merge the consecutive OR layers into a single OR layer
(because our scheme supports gates with arbitrary fan-in) with just a polynomial increase in the number
of wires. So, we can convert a layered circuit of depth d into a layered circuit with each layer consisting of
only AND or OR gates with depth d+ 1 but with the OR-depth of the circuit being d/2 now. So even in the
worst case we get improvements in parameters using our scheme.

4 A Free-OR Circuit-predicate Construction

In this section, we show how to construct a constrained random function for polynomial size circuit predicates
of a specific form, without giving any keys for the OR gates. Once again, we base our construction on
multilinear maps and on the κ-MDDH assumption; however κ in our construction will only depend on n
(the size of the input to the PRF) and now, the AND-depth of the circuit (informally, this is the maximum
number of AND gates from input wires to the output wire along any path). Once again, the starting point
of our construction is the constrained PRF construction of Boneh and Waters [BW13] which is based on the
attribute-based encryption construction for circuits [GGH+13c]. We restrict the class of boolean circuits to
be of a specific form. We assume layered circuits and that all gates in a particular layer are of the same type

11

(either AND or OR). We assume that a layer of gates is not followed by another layer of the same type of
gates. We also assume that all AND gates have a fanout of 19.

We introduce here a “gadget” which we call a “FANOUT-gate”. This is done in order to deal with OR
gates in the circuit that have a fanout greater than 1. To this end, we assume that a FANOUT-gate is placed
just after the OR gate under consideration. We view such OR gates also to have a fanout of 1 and without
loss of generality assume that the FANOUT-gate alone has a fanout greater than 1. However, we do not
treat the FANOUT-gate while calculating the total depth of the circuit, etc. It is merely a construct which
allows us to deal only with OR gates having fanout 1.

4.1 Construction

The setup and the PRF construction is identical to the construction in Section 3. We now outline the
constrain and evaluate algorithms.
F .Constrain(k, f = (n, q,A,B, GateType)):
The constrain algorithm takes as input the key k and a circuit description f . The circuit has n + q wires
with n input wires, q gates and the wire n + q designated as the output wire. Assume that all gates have
fanout 1 and that FANOUT-gates have been inserted at places where the gates have a fanout greater than
1.

To generate a constrained key kf , the key generation algorithm sets rn+q = u, where we think of the
random value rw as being associated with the wire w. Hence, in notation, if a gate w has fanout greater than
1, then, notation-wise, rw would have mutliple values: one associated with each of the fanout wires of the
FANOUT-gate and one associated with the wire leading out of the gate w itself. We introduce notation for
the same below.

rLw

rR,1w
...

rR,iw
...

rR,∆w

Fig. 1. FANOUT-gate

Consider a FANOUT-gate placed after wire w, as shown in Figure 1. We denote by rLw the randomness
on the wire going as input to the FANOUT-gate (the actual output wire of the gate under consideration)
and by rR,iw the randomness on the ith fanout wire of the FANOUT-gate (there would be as many of these
as the fanout of the gate w), where i ∈ [∆] and ∆ is the fanout of the wire w.

We now describe how the randomness for each wire is set. For each w ∈ [n+q]\[n], if GateType(w) = OR,
it sets rA(w) = rB(w) = rw, otherwise, it chooses rA(w) and rB(w) at random. The case of FANOUT-gates
is handled as follows. Note that the above description already takes care of setting randomness on all the
fanout wires of the FANOUT-gate. The randomness for the input wire to the FANOUT-gate (the output
wire of the gate with fanout greater than 1) is chosen at random. Note that this completely describes how
randomness on all wires in the circuit are chosen.

The first part of the constrained key is given out as simply all Di,β for i ∈ [n] and β ∈ {0, 1}. Next,
the algorithm generates key components. The structure of the key components depends on whether w is an
input wire or an output of an AND gate. For OR gates, we do not need to give out any keys, hence the name

9 This can always be ensured for circuits that have alternating AND and OR layers. Suppose there is an AND gate
with fanout ∆ > 1. We simply replace it with ∆ AND gates having the same inputs and now we have ∆ wires with
the required output as before. Note that this process would have forced us to make the fanout of gates driving the
AND gate to be ∆ times as large, but since a gate driving an AND gate would only be an OR gate by our imposed
circuit structure, this blows up the size of the circuit by only a polynomial factor.

12

Free-OR. But, we also need to give out special key components for the FANOUT-gates. The key components
in each case are described below.

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. The key component is:

Kw = grwdw,1

– AND gate
Suppose that w ∈ Gates and that GateType(w) = AND. In addition, let j = AND-depth(w). The algorithm
chooses random aw, bw ∈ Zp. Then, the algorithm creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j−1

– FANOUT-gate
Suppose that w ∈ Gates, GateType(w) = OR and that the fanout of w is greater than 1. In addition,
let j = AND-depth(w). In this case, a FANOUT-gate would have been placed after w. Let rLw denote the
randomness on the wire going as input to the FANOUT-gate (the actual output wire of the gate under
consideration) and let rR,iw denote the randomness on the ith fanout wire of the FANOUT-gate (there
would be as many of these as the fanout of the gate w). The keys given out are:

Kw,w′,i = g
(rR,iw −r

L
w)

j−1

for all i ∈ [∆], where ∆ is the fanout of the gate w.

The constrained key kf consists of all these key components along with {Di,β} for i ∈ [n] and β ∈ {0, 1}.

F .Evaluate(kf , x):
The evaluate algorithm takes as input a constrained key kf for the circuit f = (n, q,A,B, GateType) and
an input x ∈ {0, 1}n. The algorithm first checks that f(x) = 1, and if not, it aborts.

Consider the wire w at AND-depth j. If fw(x) = 1, then, the algorithm computes Ew = g
rw

∏
m∈[n] dm,xm

n+j−1 .
If fw(x) = 0, then nothing needs to be computed for that wire. The algorithm proceeds iteratively starting
with computing E1 and proceeds, in order, to compute En+q. Computing these values in order ensures that
the computation on a lower-depth wire that evaluates to 1 will be defined before the computation for a

higher-depth wire. Since rn+q = u, En+q = g
u
∏
m∈[n] dm,xm

n+`AND−1 .

We show how to compute Ew for all w where fw(x) = 1, case-wise, according to whether the wire is an

input, an OR gate, an AND gate or a fanout wire of a FANOUT-gate. Define D = D(x) = g
∏
m∈[n] dm,xm

n ,
which is computable through n pairing operations.

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. Suppose fw(x) = 1. Through pairing

operations, the algorithm computes g
∏
m∈[n]\{w} dm,xm

n−1 . It then computes:

Ew = e
(
Kw, g

∏
m∈[n]\{w} dm,xm

n−1

)
= g

rw
∏
m∈[n] dm,xm

n

– OR gate
Consider a wire w ∈ Gates with GateType(w) = OR. The computation is performed if fw(x) = 1. Note that
in this case, at least one of fA(w)(x) and fB(w)(x) must be 1. Hence, we must have been able to evaluate at
least one of EA(w) and EB(w). Since, for an OR gate, rA(w) = rB(w) = rw, we have Ew = EA(w) = EB(w),
which can now be computed.

13

– AND gate
Consider a wire w ∈ Gates with GateType(w) = AND. In addition, let j = AND-depth(w). The computation
is performed if fw(x) = 1. Note that in this case, both fA(w)(x) and fB(w)(x) must be 1. The algorithm
computes:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, D)

= e
(
g
rA(w)

∏
m∈[n] dm,xm

n+j−2 , gaw
)
· e
(
g
rB(w)

∏
m∈[n] dm,xm

n+j−2 , gbw
)
·

e
(
g
rA(w)−aw·rA(w)−bw·rB(w)

j−1 , g
u
∏
m∈[n] dm,xm

n

)
= g

rw
∏
m∈[n] dm,xm

n+j−1

– FANOUT-gate
Let rLw denote the randomness on the wire going as input to the FANOUT-gate (the actual output wire of
the gate under consideration) and let rR,iw denote the randomness on the ith fanout wire of the FANOUT-
gate (there would be as many of these as the fanout of the gate w). The computation is performed if
fw(x) = 1. In coherence with the previous notation, we define the quantities EL

w and ER,i
w . Note that the

EL
w would have been computed. It then computes:

ER,i
w = e (Kw,w′,i, D) · EL

w = g
rR,iw

∏
m∈[n] dm,xm

n+j−1

The procedures above are evaluated in order for all w for which fw(x) = 1. Thus, the algorithm computes

En+q = g
u
∏
m∈[n] dm,xm

n+`−1 = F (k, x).

5 Combining the Free-AND and Free-OR Techniques

In this section, we show that for the case of NC1, we can indeed combine the Free-AND and Free-OR
techniques to obtain a construction that has Free-ANDs and Free-ORs. While the main reason that the
technique works is that for NC1 circuits we can consider only boolean formulas, proving that our construction
is secure is non-trivial (and different from the case of ABE).

5.1 An NC1-predicate Construction

We construct a constrained PRF for arbitrary NC1 circuit predicates, without giving any keys for AND as
well as OR gates. Again, we base our construction on the κ-MDDH assumption; however κ in our construction
will only depend on n (the size of the input to the PRF) and not on the circuit in any way. We will be
dealing with circuits of the form described in Section 2.3.

5.2 Construction

F .Setup(1λ, 1n):
The setup algorithm that defines the master secret key and the PRF is identical to the setup algorithm
from Section 3 with κ = n instead of n+ `OR − 1.

F .Constrain(k, f = (n, q,A,B, GateType)):
The algorithm sets rn+q = u. For each w ∈ [n + q]\[n], if GateType(w) = OR, it sets rA(w) = rB(w) = rw,
otherwise, it chooses rA(w) at random and sets rB(w) = rw − rA(w). Since the fanout of all gates is 1, for any
wire w ∈ [n + q]\[n], rw would have been uniquely set. However, since the same inputs may be re-used in
multiple gates, for any wire w ∈ [n], rw may have multiple values (as many as the fanout of the input wire),
i.e., different randomness values for each use of the input wire (to different gates). Note that this procedure
sets randomness on all wires in the circuit. The first part of the constrained key (kf) is given out as simply

14

all Di,β for i ∈ [n] and β ∈ {0, 1}. The remaining key components are: Kw,i = grw,idw,1 ,∀i ∈ [∆], where ∆ is
the fanout of the input wire w.

F .Evaluate(kf , x):
The evaluate algorithm takes as input a constrained key kf and an input x ∈ {0, 1}n. The algorithm first
checks that f(x) = 1, and if not, it aborts. Consider the wire w. If fw(x) = 1, then, we show how to

compute10 Ew = g
rw

∏
m∈[n] dm,xm

n , case-wise, according to whether the wire is an input, an OR gate or an
AND gate.

– Input wire. Through pairing operations, compute g
∏
m∈[n]\{w} dm,xm

n−1 . Then compute: Ew,i =

e
(
Kw,i, g

∏
m∈[n]\{w} dm,xm

n−1

)
= g

rw,i
∏
m∈[n] dm,xm

n ∀i ∈ [∆], where ∆ is the fanout of the input wire w.

– OR gate. In this case, at least one of fA(w)(x) and fB(w)(x) must be 1. Hence, we can evaluate at least
one of EA(w) and EB(w). Since, for an OR gate, rA(w) = rB(w) = rw, Ew = EA(w) = EB(w), can now be
computed.

– AND gate. In this case, fA(w)(x) = fB(w)(x) = 1. The algorithm computes:

Ew = EA(w) · EB(w) = g
rA(w)

∏
m∈[n] dm,xm

n · g
rB(w)

∏
m∈[n] dm,xm

n = g
rw

∏
m∈[n] dm,xm

n

The procedures above are evaluated, in order, for all w for which fw(x) = 1. Thus, the algorithm computes

En+q = g
u
∏
m∈[n] dm,xm

n = F (k, x).

5.3 Proof of Pseudorandomness

The correctness of the constrained PRF is verifiable in a straightforward manner. To show pseudorandomness,
given an algorithm A that breaks security of the constrained PRF, we will construct algorithm B that
breaks security of the κ = n−MDDH assumption. B receives a κ−MDDH challenge consisting of the group

sequence description G and g = g1, g
c1 , . . . , gcκ+1 along with T , where T is either g

∏
m∈[κ+1] cm

κ or a random
group element in Gκ. The security proof is in the selective security model (where the adversary commits to
the challenge input x∗ at the beginning of the game). To get full security, the proof will use the standard
complexity leveraging technique of guessing the challenge x∗; this guess will cause a loss of a 1/2n-factor in
the reduction. We formally show:

Theorem 2. If there exists a PPT adversary A that breaks the pseudorandomness property of our NC1-
predicate construction for n-bit inputs with advantage ε(λ), then there exists a PPT algorithm B that breaks
the κ = n−Multilinear Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Proof. The algorithm B first receives a κ = n−MDDH challenge consisting of the group sequence description

G and g = g1, g
c1 , . . . , gcκ+1 along with T , where T is either g

∏
m∈[κ+1] cm

κ or a random group element in Gκ.

Setup:
It chooses an x∗ ∈ {0, 1}n uniformly at random. Next, it chooses random z1, . . . , zn ∈ Zp and sets
Dm,β = gcm if x∗m = β and gzm otherwise, for m ∈ [n] and β ∈ {0, 1}. It then implicitly sets u = cn+1. The
setup is executed as in the construction.

Constrain:
Suppose a query is made for a secret key for a circuit f = (n, q,A,B, GateType). If f(x∗) = 1, then B
aborts.

10 For input wires w ∈ [n], we have Ew,i = g
rw,i

∏
m∈[n] dm,xm

n for all i ∈ [∆], where ∆ is the fanout of the input wire
w. This feature has been present in our Free-OR construction as well. We pay attention to it specifically in this
construction because of the absence of fanout for any wire other than the input wires.

15

Otherwise, B sets the randomness on each wire in the circuit in the following way. It sets, for the output
wire w = n+ q, rw = u = cn+1. For each w ∈ [n+ q]\[n], if GateType(w) = OR, it sets rA(w) = rB(w) = rw.
Suppose GateType(w) = AND. If fw(x∗) = 1, then fA(w)(x

∗) = fB(w)(x
∗) = 1 and B chooses rA(w) at

random and sets rB(w) = rw − rA(w). Suppose fw(x∗) = 0. Then we know that at least one of fA(w)(x
∗) and

fB(w)(x
∗) must be zero. If fA(w)(x

∗) = 0, it chooses rB(w) at random and sets rA(w) = rw − rB(w), while if
fA(w)(x

∗) = 1 and hence fB(w)(x
∗) = 0, it chooses rA(w) at random and sets rB(w) = rw− rA(w). As we shall

see later, such a choice of randomness is critical for the security proof. Since the fanout of all gates is 1, for
any wire w ∈ [n+ q]\[n], rw would have been uniquely set. However, since the same inputs may be re-used
in multiple gates, for any wire w ∈ [n], rw may have multiple values (as many as the fanout of the input
wire), i.e., different randomness values for each use of the input wire (to different gates), which we denote
by rw,i for all i ∈ [∆], where ∆ is the fanout of the input wire w. Note that this procedure sets randomness
on all wires in the circuit.

To show that B can indeed compute all the key components, our proof will follow a similar structure to
the Free-OR case (Section 4). We shall prove that for all wires in the circuit, B can compute grw . To prove
this, we shall prove the above statement, both when the wire w is such that fw(x∗) = 1 (Lemma 2), and
when the wire w is such that fw(x∗) = 0 (Lemma 3). To prove Lemma 2, we shall first prove the following
fact (Lemma 1): consider all wires in the circuit that evaluate to 1 on x∗ and consider those wires among
these that have maximum total depth; then, these wires must all be input wires to AND gates.

Lemma 1. Define:

– S1 = {w : w ∈ [n+ q] ∧ fw(x∗) = 1}
– Smax-tot-depth

1 = {w : w ∈ S1 ∧ tot-depth(w) ≥ tot-depth(w′) ∀w′ ∈ S1}

Then w is an input wire to an AND gate ∀w ∈ Smax-tot-depth
1 .

Proof. This fact is very easy to easy. Clearly, w 6= n + q, since fn+q(x
∗) = 0 while fw(x∗) = 1. Hence

there exist layers of gates after the one containing w. Suppose w is an input wire to an OR gate. Since
fw(x∗) = 1, for some OR gate w′ in the next layer of gates, fw′(x

∗) = 1. Hence, ∃w′ ∈ S1 such that

tot-depth(w) < tot-depth(w′) which contradicts the fact that w ∈ Smax-tot-depth
1 .

Lemma 2. For any wire w ∈ [n+ q], if fw(x∗) = 1, then rw is known.

Proof. We prove this by observing the randomness we have set on each wire, from the output wire to the
input wires. From Lemma 1, we know that the first such wire we would see would be an input to an AND gate.
For an input wire A(w), of an AND gate, satisfying fA(w)(x

∗) = 1, first consider the case when fw(x∗) = 111.
In this case, B explicitly chooses all random values associated with this gate and hence B chose rA(w). When
fw(x∗) = 0, note that B carefully chose the randomness on the input wires which may potentially evaluate to
1 on x∗ at random (and set the value on the other input wire B(w) based on this). Hence, if fA(w)(x

∗) = 1,
rA(w) is known to B. This forms the base case for the induction. Now, consider any other wire A(w) such
that fA(w) = 1. Now, if A(w) were an input to an AND gate, then by the same argument as above, rA(w)

is known to B. Suppose, A(w) were an input to an OR gate w and fA(w)(x
∗) = 1, then fw(x∗) = 1. By the

induction hypothesis, rw is known. We know that since w is an OR gate, rA(w) = rw and hence rA(w) is
known. This completes the proof.

Lemma 3. For any wire w ∈ [n+ q], if fw(x∗) = 0, then grw is known.

Proof. We can prove this by observing the randomness we have set on each wire, from the output wire to
the input wires. The statement is true for the output wire w = n+ q, since gcn+1 is known. This forms the
base case. We can now argue inductively.

11 It is true that the first such wire when we go from output to input level would be an AND gate with fw(x∗) = 0.
However, the discussion on the case of fw(x∗) = 1 is more a general one for all AND gates in the circuit.

16

– Case 1: If w is an input to an OR gate w′, then rw = rw′ . If fw′(x
∗) = 1, then by Lemma 2, rw′ is known

and hence grw is known. If fw′(x
∗) = 0, then by the induction hypothesis, grw′ is known and hence grw is

known.

– Case 2: If w is an input to an AND gate w′, then fw′(x
∗) = 0. Now, by the induction hypothesis, grw′

is known. If w = A(w′), then rB(w′) was chosen at random and is known, and hence grw = grw′−rB(w′) is
known. Suppose w = B(w′). If fA(w′)(x

∗) = 0, rw was chosen at random and is known, and hence grw is

known. If fA(w′)(x
∗) = 1, then rA(w′) was chosen at random and is known, and hence grw = grw′−rA(w′) is

known.

Finally, B generates key components for input wires w ∈ [n]. By convention, if w ∈ [n], then it corresponds
to the w-th input. If x∗w = 1, then rw,i is known, from Lemma 2, for all i ∈ [∆], where ∆ is the fanout of the
input wire w. The key components are: Kw,i = (Dw,1)rw,i = grw,idw,1 , for all i ∈ [∆]. If x∗w = 0, then grw,i

is known, from Lemma 3, for all i ∈ [∆]. The key components are: Kw,i = (grw,i)
zw = grw,idw,1 , for all i ∈ [∆].

Evaluate:
Suppose a query is made for a secret key for an input x ∈ {0, 1}n. If x = x∗, then B aborts. Oth-
erwise, B identifies an arbitrary t such that xt 6= x∗t . Through pairing of Dm,xm∀m ∈ [n]\{t}, it

computes g
∏
m∈[n]\{t} dm,xm

n−1 and raises it to dt,xt = zt to get H = g
∏
m∈[n] dm,xm

n−1 . Finally, it computes

H ′ = e(U,H) = g
u
∏
m∈[n] dm,xm

n = F (k, x) and outputs it. Eventually, A will issue a challenge input x̃. If
x̃ = x∗, B will return the value T and output the same bit as A does as its guess. If x̃ 6= x∗, B outputs a
random bit as its guess.

This completes the description of the adversary B. We first note that in the case where T is part of a
MDDH tuple, the real game and game executed by B have the identical distribution. Secondly, in both cases
(i.e., whether or not T is part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output of B on the challenge query x∗.
Similar to the analysis in Section 3, the probability that B’s guess was correct can be shown to be ε(λ)/2n.

6 From Bit-fixing PRFs to NC1 PRFs

In this section, we show that from any constrained PRF scheme supporting bit-fixing predicates that has
certain additive homomorphic properties (let this be Fbf), we can construct a constrained PRF scheme
supporting NC1 circuit predicates (FNC1) in a black-box manner. We will be dealing with circuits of the
form described in Section 2.3. It is sufficient if the PRF is able to fix a single bit to just one of the possibilities
(i.e., either fixing the bits only to 0 or only to 1). The homomorphic properties that we require from the
bit-fixing scheme are:

1. The PRF must have an additive key-homomorphism property. In other words, there exists a public
algorithm Fbf .KeyEval, such that, for all k1, k2 ∈ K, Fbf .KeyEval outputs Fbf(k1+k2, x) on inputs Fbf(k1, x)
and Fbf(k2, x).

2. Let Fbf .Constrain(k, i) be the constrain algorithm that takes in a key and the position of the bit to be
fixed to 1.12 An additive key-homomorphism property should also exist among the constrained keys, that
is, there exists a public algorithm, Fbf .AddKeys, such that13, for all k1, k2 ∈ K and index i,

Fbf .AddKeys(Fbf .Constrain(k1, i),Fbf .Constrain(k2, i)) = Fbf .Constrain(k1 + k2, i)

12 By symmetry, the construction also works if the constrain algorithm fixes a bit to 0.
13 We note here that Fbf .Constrain(k, i) could, in general, be a randomized algorithm and in this case, we require

the distributions on the left and the right of the equality to be computationally indistinguishable. For ease of
exposition, we assume that Fbf .Constrain(k, i) is deterministic and state our results accordingly.

17

6.1 Construction

We follow the same template as in our NC1-predicate construction in Section 5.1. We observe that the
component Kw,i at the input level can be replaced with a constrained key from any bit-fixing scheme
which satisfies the properties mentioned above. Fbf ,FNC1 denote the bit-fixing and NC1 schemes respectively.

FNC1.Setup(1λ, 1n):
The setup algorithm runs Fbf .Setup(1λ, 1n) to get the PRF Fbf and key k. It sets the key as k. The keyed
pseudo-random function is defined as Fbf(k, x).

FNC1.Constrain(k, f = (n, q,A,B, GateType)):
The constrain algorithm sets up randomness on the wires of the circuit using the procedure in the construc-
tion in Section 5.1 and computes key components for the input wires as Kw = Fbf .Constrain(rw, w)14. The
constrained key kf consists of all these key components.

FNC1.Evaluate(kf , x):
The algorithm first checks that f(x) = 1, and if not, it aborts. As in the construction in Section 5.1, for
every wire w, if fw(x) = 1, then, the algorithm computes Fbf(rw, x). The algorithm proceeds iteratively and
computes Fbf(rn+q, x) = Fbf(k, x). Fbf(rw, x) can be computed, case-wise, according to whether the wire is
an input, an OR gate or an AND gate.

– Input wire
If fw(x) = 1, it computes Fbf(rw, x) = Fbf .Eval(Kw, x).

– OR gate
If fw(x) = 1, at least one of fA(w)(x) and fB(w)(x) must be 1. Hence, we must have been able to evaluate
at least one of Fbf(rA(w), x) and Fbf(rB(w), x). Since, rA(w) = rB(w) = rw, Fbf(rw, x) = Fbf(rA(w), x) =
Fbf(rB(w), x), which can be computed.

– AND gate
If fw(x) = 1, fA(w)(x) = fB(w)(x) = 1. Hence, we must have been able to evaluate both Fbf(rA(w), x) and
Fbf(rB(w), x). The algorithm computes Fbf(rw, x) = Fbf .KeyEval(Fbf(rA(w), x),Fbf(rB(w)x)), since, rA(w) +
rB(w) = rw.

The procedures above are evaluated, in order, for all w for which fw(x) = 1. Thus, the algorithm computes
Fbf(rn+q, x) = Fbf(k, x).

6.2 Proof of Pseudorandomness

The correctness of the scheme is straightforward from the key-homomorphism property of the bit-fixing PRF
scheme. We now prove the security.

Theorem 3. If there exists a PPT adversary A that breaks the selective security of our construction for
n-bit inputs supporting NC1-predicates with an advantage ε(λ), then there exists a PPT algorithm B that
breaks the selective security of the underlying bit-fixing predicate construction with the same advantage ε(λ).

Proof. Let A be the adversary which breaks the selective security of our NC1 construction. We will construct
an adversary B which will use A to break the selective security of the bit-fixing construction Fbf . Thus, B
plays a dual role: one as an adversary in the security game breaking the bit-fixing construction and also as
a challenger in the security game breaking the NC1 construction.

– First A provides its challenge x∗ to B which in turn forwards it to its challenger. B receives the public
parameters of the bit-fixing scheme from its challenger along with either Fbf(k, x

∗) or a random value which
it forwards to A. B is going to answer queries as though the PRF evaluated by the NC1 construction is
the same as that evaluated by the bit-fixing construction Fbf used by the challenger. When A asks a query
f to NC1.Constrain oracle with f(x∗) = 0, B follows a procedure similar to the one in Section 5.1.

14 As in Section 5.1, the fanout of the input wires can be easily incorporated.

18

• B carefully sets the randomness on all wires in the circuit as in the proof in Section 5.1. By virtue of
this careful setting, the same properties hold: for any wire w ∈ [n+ q], if fw(x∗) = 1, then rw is known,
and if fw(x∗) = 0, then rw would either be known or of the form k+

∑
r, where each r is known. Note

that rn+q = k which is the key of PRF used by B as well as B’s challenger.
• To give out keys for the input wires, B does the following. For those wires w with fw(x∗) = 1, rw

is known and hence B obtains Kw = Fbf .Constrain(rw, w) by running Fbf .Constrain(rw, w) by itself.
For wires w with fw(x∗) = 0, if rw is known, then B obtains Kw = Fbf .Constrain(rw, w) by run-
ning Fbf .Constrain(rw, w) by itself. Otherwise, rw is of the form k +

∑
r, where each r is known. For

each r, B obtains K ′r,w = Fbf .Constrain(r, w) by running Fbf .Constrain(r, w) by itself. Through repeated
use of Fbf .AddKeys, and by virtue of the homomorphism property of the constrained keys, B obtains
K ′∑ r,w = Fbf .Constrain (

∑
r, w). B then queries its challenger for the constrained key fixing the wth

bit, i.e., it obtains K ′k,w = Fbf .Constrain(k,w) by querying its challenger. Finally, through the use of

Fbf .AddKeys
(
K ′k,w,K

′∑
r,w

)
, B obtains Kw = Fbf .Constrain (rw, w).

• When answering A’s queries to NC1.Constrain, it is important to note that B does not query for any
predicate that allows it to evaluate F (k, x∗) by itself. We achieve this because all queries by B to the
challenger, Fbf .Constrain(k,w), fix the wth bit to 1, while if the query were made, fw(x∗) = 0, i.e., the
wth bit of x∗ is 0.

– When A outputs a bit b′, B outputs the same.

In the above game, if A breaks the selective security of the NC1 construction with an advantage of ε(λ)
then B breaks the underlying bit-fixing construction with the same advantage.

References

BFP+15. A. Banerjee, G. Fuchsbauer, C. Peikert, K. Pietrzak, and S. Stevens. Key-homomorphic constrained
pseudorandom functions. In TCC(II), pages 31–60, 2015.

BGG+14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Gar-
bled Circuits. In EUROCRYPT, pages 533–556, 2014.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional Signatures and Pseudorandom Functions. In Public Key
Cryptography, pages 501–519, 2014.

BV15. Z. Brakerski and V. Vaikuntanathan. Constrained key-homomorphic prfs from standard lattice assump-
tions - or: How to secretly embed a circuit in your PRF. In TCC(II), pages 1–30, 2015.

BW13. D. Boneh and B. Waters. Constrained Pseudorandom Functions and Their Applications. In ASIACRYPT
(2), pages 280–300, 2013.

CHL+15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of
the multilinear map over the integers. In EUROCRYPT I, pages 3–12, 2015.

CLT13. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the
integers. In CRYPTO I, pages 476–493, 2013.

CLT15. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the integers.
In CRYPTO I, pages 267–286, 2015.

CRV. N. Chandran, S. Raghuraman, and D. Vinayagamurthy. Constrained Pseudorandom Functions: Verifiable
and Delegatable. Cryptology ePrint Archive, Report 2014/522.

FKPR14. G. Fuchsbauer, M. Konstantinov, K. Pietrzak, and V. Rao. Adaptive security of constrained prfs. In
ASIACRYPT, pages 82–101, 2014.

Fuc14. G. Fuchsbauer. Constrained Verifiable Random Functions. In SCN, pages 95–114, 2014.
GGH13a. S. Garg, C. Gentry, and S. Halevi. Candidate Multilinear Maps from Ideal Lattices. In EUROCRYPT,

pages 1–17, 2013.
GGH+13b. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate Indistinguishability

Obfuscation and Functional Encryption for all Circuits. In FOCS, pages 40–49, 2013.
GGH+13c. S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-Based Encryption for Circuits from

Multilinear Maps. In CRYPTO (2), pages 479–499, 2013.
GGH15. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In TCC

II, pages 498–527, 2015.

19

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. J. ACM, 33(4):792–
807, 1986.

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption for Fine-grained Access
Control of Encrypted Data. In ACM Conference on Computer and Communications Security, pages
89–98, 2006.

GVW13. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-Based Encryption for Circuits. In STOC, pages
545–554, 2013.

HJ15. Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint Archive, 2015:301, 2015.
HKKW. D. Hofheinz, A. Kamath, V. Koppula, and B. Waters. Adaptively Secure Constrained Pseudorandom

Functions. Cryptology ePrint Archive, Report 2014/720.
KPTZ13. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable Pseudorandom Functions

and Applications. In ACM Conference on Computer and Communications Security, pages 669–684, 2013.
SW05. A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In EUROCRYPT, pages 457–473, 2005.

20

A Dealing with consecutive AND gate Layers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Fig. 2. Circuit with consecutive layers of AND gates

Consider the circuit shown in Figure 2. We present here a sketch of how the simulator would work for this
circuit for choice x∗ = 01001111 on which the circuit evaluates to 0. The wires are numbered as in Figure 2.
The simulator sets randomness as described in the proof of Theorem 1:

– rw = cn+1 + ηw for w ∈ {1, 3, 4}; rw = ηw for w ∈ {2, 5, 6, 7, 8};
– r9 = cn+1 + η1 + η2, r10 = 2cn+1 + η3 + η4, r11 = η5 + η6, r12 = η7 + η8
– r13 = 3cn+1 + η1 + η2, r14 = 2cn+1 + η3 + η4 + η5 + η6, r15 = η5 + η6 + η7 + η8
– r16 = 5cn+1 + η1 + η2 + η3 + η4 + η5 + η6, r17 = 2cn+1 + η3 + η4 + 2η5 + 2η6 + η7 + η8
– r18 = cn+1cn+2

B computes the key components for the input wires as in the proof of Theorem 1. Key components need to
be given out for the OR gate as well. To this end, B sets a18 = 1

5cn+2 + ψ18 and b18 = 1
2cn+2 + φ18. Then,

B creates key components:

K18,1 = ga18 ,K18,2 = gb18 ,K18,3 = gr18−a18·r16 ,K18,4 = gr18−b18·r17

As was shown in the proof of Theorem 1, it is easy to see that the components can indeed be computed.

When there is no OR gate following these layers of AND gates, we engineer the randomness coming into the
first layer (which is either the input randomness or that from the layer of OR gates before these layers of
AND gates) such that the output randomness ends up being u = rn+q.

B Proof of pseudorandomness of the Free-OR Construction

The correctness of the constrained PRF is verifiable in a straightforward manner from the construction. The
pseudorandomness property of the constrained PRF is proved ahead. The security proof is in the selective
security model (where the adversary commits to the challenge input x∗ at the beginning of the game). To
get full security, the proof will use the standard complexity leveraging technique of guessing the challenge
x∗; this guess will cause a loss of a 1/2n-factor in the reduction.

21

Theorem 4. If there exists a PPT adversary A that breaks the pseudorandomness property of our circuit-
predicate construction for n-bit inputs with advantage ε(λ), then there exists a PPT algorithm B that breaks
the κ = (n+ `AND − 1)−Multilinear Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Proof. The algorithm B first receives a κ = (n + `AND − 1)−MDDH challenge consisting of the group

sequence description G and g = g1, g
c1 , . . . , gcκ+1 along with T , where T is either g

∏
m∈[κ+1] cm

κ or a random
group element in Gκ.

Setup:
It chooses an x∗ ∈ {0, 1}n uniformly at random. Next, it chooses random z1, . . . , zn ∈ Zp and sets

Dm,β =

{
gcm x∗m = β

gzm x∗m 6= β

for m ∈ [n] and β ∈ {0, 1}. This corresponds to setting

dm,β =

{
cm x∗m = β

zm x∗m 6= β

It then sets u = cn+1 · cn+2 · . . . · cn+`AND . The setup is executed as in the construction.

Constrain:
Suppose a query is made for a secret key for a circuit f = (n, q,A,B, GateType). If f(x∗) = 1, then B
aborts.

Otherwise, B sets the randomness on each wire in the circuit in the following way. For the output wire
w = n+q, it implicitly sets rw = u = cn+1 ·cn+2 ·. . .·cn+`AND . For each w ∈ [n+q]\[n], if GateType(w) = OR, it
sets rA(w) = rB(w) = rw. Suppose GateType(w) = AND. In addition, let j = AND-depth(w). If fA(w)(x

∗) = 0,
it sets rA(w) = cn+1 · . . . · cn+j−1 + ηA(w), while if fA(w)(x

∗) = 1, it sets rA(w) = ηA(w), where ηA(w) ∈ Zp
is a randomly chosen element. Similarly, if fB(w)(x

∗) = 0, it sets rB(w) = cn+1 · . . . · cn+j−1 + ηB(w),
while if fB(w)(x

∗) = 1, it sets rB(w) = ηB(w), where ηB(w) ∈ Zp is a randomly chosen element. Suppose that
w ∈ Gates, GateType(w) = OR and that the fanout of w is greater than 1. In addition, let j = AND-depth(w).
In this case, a FANOUT-gate would have been placed after w. Let rLw denote the randomness on the wire
going as input to the FANOUT-gate (the actual output wire of the gate under consideration) and let rR,iw
denote the randomness on the ith fanout wire of the FANOUT-gate (there would be as many of these as the
fanout of the gate w). Since the process of setting the randomness on the wires inherently proceeds from the
output gate to the inputs by description, B would have already set rR,iw for all i ∈ [∆], where ∆ denotes the
fanout of the gate. If fw(x∗) = 0, it sets rLw = cn+1 · . . . · cn+j + ηLw, while if fw(x∗) = 1, it sets rLw = ηLw,
where ηLw ∈ Zp is a randomly chosen element.

To show that B can indeed compute all the key components we shall prove (Lemma 7) that for all wires in
the circuit, B can compute grwj , where j is AND-depth(w). To prove this, we shall prove the above statement,
both when the wire w is such that fw(x∗) = 1 (Lemma 5), and when the wire w is such that fw(x∗) = 0
(Lemma 6). To prove Lemma 5, we shall first prove the following fact (Lemma 4): consider all wires in the
circuit that evaluate to 1 on x∗ and consider those wires among these that have maximum total depth; then,
these wires must all be input wires to AND gates.

Lemma 4. Define:

– S1 = {w : w ∈ [n+ q] ∧ fw(x∗) = 1}
– Smax-tot-depth

1 = {w : w ∈ S1 ∧ tot-depth(w) ≥ tot-depth(w′) ∀w′ ∈ S1}

Then w is an input wire to an AND gate ∀w ∈ Smax-tot-depth
1 .

22

Proof. This fact is very easy to easy. Clearly, w 6= n + q, since fn+q(x
∗) = 0 while fw(x∗) = 1. Hence

tot-depth(w) < ` and there exist layers of gates after the one containing w. Suppose w is an input wire to
an OR gate. Since fw(x∗) = 1, for some OR gate w′ in the next layer of gates, fw′(x

∗) = 1. Hence, ∃w′ ∈ S1

such that tot-depth(w) < tot-depth(w′) which contradicts the fact that w ∈ Smax-tot-depth
1 .

Lemma 5. For any wire w ∈ [n+ q], if fw(x∗) = 1, then rw is known to B.

Proof. We can prove this by observing the randomness we have set on each wire, from the output wire to
the input wires. From Lemma 4, the first such wire we would see would be an input to an AND gate, which
by our imposed circuit structure would be an OR gate. For an input wire w, of an AND gate, satisfying
fw(x∗) = 1, rw was chosen at random and hence is known. This forms the base case for the induction. The
previous argument also holds for any OR gate15. If w were an AND gate and fw(x∗) = 1, then it feeds an
OR gate w′ in the next layer of gates, with fw′(x

∗) = 1. By induction hypothesis, rw′ is known. We also
know that since w′ is an OR gate, rw = rw′ and hence rw is known. This completes the proof.

Lemma 6. For any wire w ∈ [n+ q], if fw(x∗) = 0, then grwj is known, where j = AND-depth(w).

Proof. We can prove this by observing the randomness we have set on each wire, from the output wire to the
input wires. The statement is true for the output wire w = n+ q, since g

cn+1·cn+2·...·cn+`AND

`AND
can be computed

using `AND pairings of gcm , n+ 1 ≤ m ≤ n+ `AND. This forms the base case. We can now argue inductively.
If w is an input to an OR gate w′, then rw = rw′ and AND-depth(w) = j. If fw′(x

∗) = 1, then by Lemma
5, rw′ is known and hence grwj is known. If fw′(x

∗) = 0, then by the induction hypothesis, g
rw′
j is known

and hence grwj is known. If w is an input to an AND gate, then rw = cn+1 · . . . · cn+j + ηw and grwj can be

computed since g
cn+1·cn+2·...·cn+j

j can be computed using j pairings of gcm , n + 1 ≤ m ≤ n + j and ηw is

known16. Hence, this completes the proof.

Lemma 7. For any wire w ∈ [n+ q], grwj is known, where j = AND-depth(w).

Proof. The statement follows directly from Lemmas 5 and 6.

We now describe how B generates key components for wires w, case-wise, according to whether w is an
input wire, and AND gate or a FANOUT-gate as described below.

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. If x∗w = 1, then rw is known from Lemma
5. The key component is:

Kw = (Dw,1)rw = grwdw,1

If x∗w = 0, then grw is known from Lemma 6. The key component is:

Kw = (grw)
zw = grwdw,1

– AND gate
Suppose that w ∈ Gates and that GateType(w) = AND. In addition, let j = AND-depth(w).
• If fw(x∗) = 1, then rw is known from Lemma 5. Further, g

rA(w)

j−1 and g
rB(w)

j−1 are known from Lemma 7.
B chooses ψw = aw, φw = bw at random. The key components are:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j−1

15 This is inclusive even of randomness on either side of potential FANOUT-gates because if the wire is 1, the
randomness on the wire going as input to the FANOUT-gate (the actual output wire of the gate under consideration)
is chosen at random.

16 This is inclusive even of randomness on either side of potential FANOUT-gates because if the wire is 0, the
randomness on the wire going as input to the FANOUT-gate (the actual output wire of the gate under consideration)
is chosen in a similar fashion to the randomness on the output wires of the FANOUT-gate, except for the η-
component which is known.

23

• If fw(x∗) = 0, we know that at least one of fA(w)(x
∗) and fB(w)(x

∗) must be zero.
∗ If fA(w)(x

∗) = 0, B implicitly sets aw = cn+j +ψw and bw = φw, where ψw, φw ∈ Zp are randomly
chosen elements.

∗ If fA(w)(x
∗) = 1 and hence fB(w)(x

∗) = 0, B implicitly sets aw = ψw and bw = cn+j + φw, where
ψw, φw ∈ Zp are randomly chosen elements.

Then, B creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j−1

We now show that these components can indeed be computed in every case. Note that the first two
components can be computed in both cases. Consider Kw,3.
∗ Consider the former case, where fA(w)(x

∗) = 0. Hence, B must have set rA(w) = cn+1 · . . . ·cn+j−1+
ηA(w). Hence, we have:

Kw,3 = g
ηw−cn+j ·ηA(w)−ψw(cn+1·...·cn+j−1+ηA(w))−φw·rB(w)

j−1 = g
rw−aw·rA(w)−bw·rB(w)

j−1

which can be computed as follows. ηA(w) is known, and from Lemma 7, g
rB(w)

j−1 can be computed.

Further, g
cn+1·...·cn+j−1

j−1 can be computed using j− 1 pairings of gcm , n+ 1 ≤ m ≤ n+ j− 1. Hence
the key component can be computed.

∗ Consider the latter case, where fA(w)(x
∗) = 1 and fB(w)(x

∗) = 0. Hence, B must have set rB(w) =
cn+1 · . . . · cn+j−1 + ηB(w). Hence, we have:

Kw,3 = g
ηw−cn+j ·ηB(w)−φw(cn+1·...·cn+j−1+ηB(w))−ψw·rA(w)

j−1 = g
rw−aw·rA(w)−bw·rB(w)

j−1

which can be computed as outlined in the former case.
– FANOUT-gate

Suppose that w ∈ Gates, GateType(w) = OR and that the fanout of w is greater than 1. In addition,
let j = AND-depth(w). In this case, a FANOUT-gate would have been placed after w. Let rLw denote the
randomness on the wire going as input to the FANOUT-gate (the actual output wire of the gate under
consideration) and let rR,iw denote the randomness on the ith fanout wire of the FANOUT-gate (there
would be as many of these as the fanout of the gate w). If fw(x∗) = 1, then by Lemma 5, rLw and rR,iw are
known for all i ∈ [∆], where ∆ is the fanout of the gate w. The key components are:

Kw,w′,i = g
(rR,iw −r

L
w)

j−1

for all i ∈ [∆], where ∆ is the fanout of the gate w.
Suppose fw(x∗) = 0. Then, by our imposed circuit structure, each wire fanning out of w is an input to
an AND gate and hence rR,iw = cn+1 · . . . · cn+j + ηR,iw for all i ∈ [∆], where ∆ is the fanout of the gate w.
Also, rLw = cn+1 · . . . · cn+j + ηLw. Hence, the key components:

Kw,w′,i = g
(ηR,iw −η

L
w)

j−1 = g
(rR,iw −r

L
w)

j−1

can be computed for all i ∈ [∆], where ∆ is the fanout of the gate w, since ηLw and ηR,iw are known for all
i ∈ [∆].

We set, for the output wire w = n+ q, ηw = 0, so that rw = u in B’s internal view. It is easy to see that
aw and bw have the same distribution in the real game and game executed by B, since in the real game,
they are chosen at random and in the game executed by B, they are either chosen at random or are values
offset by some random values ψw and φw, respectively. For w ∈ [n+ q− 1], rw also has the same distribution
in the real game and the game executed by B, since in the real game, they are chosen so that randomness
on the input wires of an OR gate are the same as the randomness on its output wire, and they are chosen
at random for an AND gate, and in the game executed by B, they are chosen in the exact same way, where

24

being “chosen at random” is either truly satisfied or fixed values are offset by random ηw values. Now, we
look at rn+q. In the real game, it is a fixed value u, and in the game executed by B, by setting ηn+q = 0,
rn+q = cn+1 · cn+2 · . . . · cn+`AND

= u internally. Hence, they too have the same distribution. Hence all the
parameters in the real game and game executed by B have the identical distribution.

Evaluate:
Suppose a query is made for a secret key for an input x ∈ {0, 1}n. If x = x∗, then B aborts. Otherwise,
B identifies an arbitrary t such that xt 6= x∗t . Through `AND pairings of gcm , n + 1 ≤ m ≤ n + `AND,
it computes H = gu`AND

= g
cn+1·...·cn+`AND

`AND
. Then, through pairing of Dm,xm∀m ∈ [n]\{t}, it com-

putes g
∏
m∈[n]\{t} dm,xm

n−1 and raises it to dt,xt = zt to get H ′ = g
∏
m∈[n] dm,xm

n−1 . Finally, it computes

H ′′ = e(H,H ′) = g
u
∏
m∈[n] dm,xm

n+`AND−1 = F (k, x) and outputs it.

Eventually, A will issue a challenge input x̃. If x̃ = x∗, B will return the value T and output the same
bit as A does as its guess. If x̃ 6= x∗, B outputs a random bit as its guess.

This completes the description of the adversary B. We first note that in the case where T is part of a
MDDH tuple, the real game and game executed by B have the identical distribution. Secondly, in both cases
(i.e., whether or not T is part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output of B on the challenge query
x∗. We now analyze the probability that B’s guess was correct. Let δ′ denote B’s output and let δ denote
whether T is an MDDH tuple or not, δ, δ′ ∈ {0, 1}. Now

Pr[δ′ = δ] = Pr[δ′ = δ|abort] Pr[abort] + Pr[δ′ = δ|abort] Pr[abort]

=
1

2
(1− 2−n) + Pr[δ′ = δ|abort] · (2−n)

=
1

2
(1− 2−n) +

(
1

2
+ ε

)
· (2−n)

=
1

2
+ ε · (2−n)

The set of equations shows that the advantage of B is ε(λ)/2n. The second equation is true since the
probability of B not aborting is 2−n. The third equation comes from the fact that the probability of the
adversary winning conditioned on not aborting is the same as the original probability of winning.

This completes the proof of the theorem, which establishes the pseudorandomness property of the con-
struction. Hence, the constrained PRF construction for the circuit-predicate case is secure under the κ-MDDH
assumption.

Remarks. We illustrate that this technique has use inspite of the restrictions on the structure of the circuit.
There are several circuits for which the technique provides a reduction in the number of levels of multilinear
maps used, even if it means the circuit is blown up because of our requirements. Consider the example circuit
given ahead.

The circuit in Figure 3 would require 12 levels of multilinear maps without the use of the Free-OR
technique. For applying the technique, we require that the inputs of OR gates do not fanout. To this end,
the circuit has to be re-drawn as shown in Figure 4. After applying the Free-OR technique on the circuit
in Figure 4, only 8 levels of multilinear maps are required, i.e., both layers of OR gates become “free”. The
consequence is that since the number of AND gates in the circuit has increased, the number of keys to be
given out has gone up at the cost of decreasing the number of levels required. However, giving out keys is
cheaper than moving up levels in multilinear maps. Also note that having successive levels of AND gates
is not an issue and we need not blow up the circuit. Also, inputs of AND can fanout and this requires no
additional blow-up. Thus, even for a small circuit such as the one in Figure 3, we obtain a reduction in the

25

1

2

3

4

5

6

Fig. 3. Circuit illustrating use of the Free-OR technique

number of levels of multilinear maps (after the blow-up). Note that, even using our Free-AND technique
would result in a scheme using 9 levels of multilinear maps.

C Backtracking attack in Constrained PRFs for Arbitrary Circuits

We first outline the intuition behind the Free-AND and Free-OR techniques and why they work in our setting.
The constrained PRF construction for arbitrary circuits of Boneh and Waters [BW13] works by enabling the
owner of the constrained key to learn some value associated with every wire in the circuit which evaluates
to 1. On input x, when fw(x) = 1 for some wire w, this value can be viewed as the PRF output on input x,
with rw as the PRF key. Proceeding in this manner, an evaluator can learn the PRF output on input x with
u as the PRF key (which is the desired output), as rn+q = u. In the [BW13] construction, the randomness
on no two wires were correlated. To bridge that gap, one had to move up a level in the multilinear maps at
every gate. Our techniques show that it is possible to have some of the randomness values on different wires
correlated without compromising the security of the scheme. The exact correlation between the randomness
follows from the structure of the gate under consideration.

AND gates. An AND gate evaluates to 1 if and only if both of its inputs evaluate to 1. In some sense,
one must learn the value associated with the output wire of an AND gate if and only if one has already
learnt the values associated with its two input wires. Informally, let PRF(k, x) denote the output of a PRF
on input x and key k. Then, an evaluator who knows both PRF(rA(w), x) and PRF(rB(w), x), must be able to
learn PRF(rw, x). While this is possible in [BW13], by moving up a level in the multilinear maps, since the
PRF under consideration is key homomorphic, we show that we can do so without moving up a level and
simply by multiplying PRF(rA(w), x) and PRF(rB(w), x) to get PRF(rw, x). This was possible, since we chose
rw = rA(w) + rB(w). In general, it is easy to see that our technique can be extended to AND-gates having
arbitrary17 fan-in greater than 1, as we are simply secret sharing rw among its input wires rA(w) and rB(w).

Now, note that this structure gives rise to the following property: if an evaluator knows the val-
ues associated with any two of the three wires connected to the AND gate (i.e. any two out of
PRF(rA(w), x), PRF(rB(w), x), and PRF(rw, x)), then the evaluator can compute the third value as well. If
the (malicious) evaluator did indeed learn PRF(rw, x), it must be the case that the AND gate evaluated to 1
and hence both its inputs must have been 1. In this case, no harm is done if the malicious evaluator indeed
learned both PRF(rA(w), x) and PRF(rB(w), x).

17 The fan-in of a gate is the number of inputs to it.

26

1

2

3

4

5

6

Fig. 4. Circuit in Figure 3 blown-up to apply the Free-OR technique

OR gates. Now, let us consider an OR gate. It evaluates to 1 if and only if any of its inputs evaluate to 1.
Here, an evaluator must learn PRF(rw, x) iff he learns either PRF(rA(w), x) or PRF(rB(w), x). Note, that we
achieved this by setting rw = rA(w) = rB(w). Again, it is easy to see that the technique can be extended to
OR-gates having arbitrary fan-in greater than 1.

Now, note that this structure gives rise to the following property: if an evaluator knows the
value associated with any one of the three wires connected to the AND gate (i.e. any one out of
PRF(rA(w), x), PRF(rB(w), x), and PRF(rw, x)), then the evaluator can compute the other two values as well.
Now, note that if the (malicious) evaluator did indeed learn PRF(rw, x), it must be the case that the OR
gate evaluated to 1, and hence at least one of its inputs must have been 1. As was in the AND gate case,
if fA(w)(x) = 1, then no harm is done if the malicious evaluator indeed learns PRF(rA(w), x). On the other
hand, if fB(w)(x) = 0 and yet fw(x) = 1, the evaluator would learn PRF(rB(w), x). This leads to an explicit
attack when we consider circuits that have fan-out greater than 1 and hence we are unable to combine the
Free-AND and Free-OR techniques for arbitrary circuits. This attack is similar in spirit to the “backtracking
attack” described by Garg et al. [GGH+13c] in the context of attribute-based encryption. For a more detailed
exposition of this attack in the context of constrained PRFs, we refer the reader to Appendix C.

Let us first describe the attack encountered when trying to combine Free-AND and Free-OR in more
detail. The notion of backtracking, as discussed earlier, is that from the value associated with the output
wire (PRF(rw, x)), an adversarial evaluator can go backwards and learn the value associated with an input
wire that actually evaluates to 0. This leads to an attack as illustrated ahead.

27

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 5. Circuit with backtracking-attack

Consider the circuit shown in Figure 5. Assume that we try to use both Free-AND and Free-OR tech-
niques, i.e., for AND gates, the randomness of the output wire is secret-shared between the randomness of
the input wires, and for OR gates, all three wires have the same randomness. Suppose we have obtained the
constrained key for this circuit. On input x = 000011, the circuit evaluates to 0 and hence we should not be
able to evalute the PRF on x using the constrained key. However, we show that we indeed can.

The wires are numbered as in Figure 5. First, since we are employing both techniques, the depth of all
gates as well as the final output wire is assumed to be the same. Let us refer to this common depth by γ.
Secondly, we note that in the spirit of our Free-OR technique, a FANOUT-gate would have been placed at
the output wire numbered 8, and we would have obtained keys for the FANOUT-gate, which would be of the

form g
(rR,18 −r

L
8)

γ and g
(rR,28 −r

L
8)

γ , where rR,18 is the randomness on an input wire to the AND gate with output

wire 10, and rR,28 is the randomness on an input wire to the AND gate with output wire 11. On x = 000011,
wire 9 evaluates to 1, while wires 7 and 8 evaluate to 0. Hence, we learn the value associated with wire 9.
However, since wire 9 is an input wire to an OR gate, we also implicity learn the value associated with
wire 818. Since wire 8 is again an input to the OR gate with output wire 10, we implicity learn the value
associated with wire 10, which should not have been the case since wire 10 evaluates to 0 on x. Since we
have learnt the value associated with wire 9, we have also learnt the value associated with wire 11. Now
that we have learnt the values associated with wires 10 and 11, we can learn the value associated with
wire 12, which would be the PRF output on x. In other words, we have used the constrained key to ob-
tain the PRF output on an x which does not satisfy the circuit, which compromises the security of the scheme.

We would like to draw attention to the following observations:

1. The attack discussed above was possible only because the value associated with 8 which was learnt only
implicitly, and could not have been learnt otherwise, could be used in another part of the circuit, in other
words, the attack was possible because the fanout of the AND gate with output wire 8 was more than 1.
If this were not the case, the value learnt implicitly would have no further use and this would not be an
attack. Since NC1 circuits have this property of fanout of every gate being restricted to 1, we can apply
both techniques for NC1 circuits as shown ahead.

2. When only one of the techniques is used, such attacks do not occur since we, in some sense, re-set
randomness at gates for which the technique is not used. For instance, when we use the Free-AND
technique, we jump a level at OR gates and do a re-set on the randomness. In the Free-OR technique,

18 Note that due to the presence of the FANOUT-gate, there are in fact three values associated with wire 8 due to
the three randomness values rL8, rR,18 and rR,28 . However, it is easy to see that all three of them can be learnt using
the keys given out for the FANOUT-gate.

28

we explicitly avoid such attacks by requiring the circuit to have the property that AND gates have a
fanout of 1. Hence, such attacks are prevented when only one of the techniques is applied on arbitrary
circuits.

D Applications

In this section, we explain the application of our techniques to attribute-based encryption (ABE). Garg et
al. [GGH+13c] proposed an ABE scheme for all polynomial size circuits based on multilinear maps. This
construction and its follow up works [BGG+14] lend themselves to our optimisations. Hence, we get:

– an ABE scheme for arbitrary circuit predicates using an (`OR + 1)−linear map, where `OR denotes the
OR-depth of the predicate f when expressed as a boolean circuit. The security is provided under the
(`OR + 1)−MDDH assumption.

– an ABE scheme for circuit predicates using an (`AND + 1)−linear map, where `AND denotes the AND-
depth of the circuit predicate f . The security is provided under the (`AND + 1)−MDDH assumption. In
this construction, as in constrained PRFs, we require the circuit to be of a specific structure.

– an ABE scheme for all predicates f ∈ NC1 using an bilinear maps under the Decisional Bilinear Diffie-
Hellman assumption. Our construction has some gains over the ABE construction for NC1 predicates
of [GPSW06] that, during decryption, our construction involves only multiplications and additions over
group elements and no exponentiations whereas [GPSW06] involves as many as lx exponentiations (lx
represents the number of bits of x having the value 1)19.

– The underlying hardness assumption is the (κ, n)−Multilinear Diffie-Hellman Exponent (MDHE) As-
sumption with n being the length of the attribute vector. This assumption states that when an adversary
is given (

gc1 , . . . , gc
n
1 , gc

n+2
1 , . . . , gc

2n
1 , gc2 , . . . , gcκ , β

)
distinguishing between β = g

cn+1
1

∏
2≤i≤κ ci

κ and β
$← Gκ is hard. Here, κ = `OR + 1 in the Free-AND case,

κ = `AND + 1 in the Free-OR case and κ = 1 for the NC1 construction. Note that (1, n)−MDHE is same
as the ‘standard’ Bilinear Diffie-Hellman Exponent (BDHE) assumption.

D.1 Attribute-based encryption for circuits

Here, we present an ABE scheme which is the modified form of the one in [GGH+13c] applying our “Free-
AND” optimisation in detail. 20 The advantages provided by the resulting ABE scheme can be viewed in
two ways.

– When a multilinear maps of κ = `OR + 1 levels is used, our scheme can support circuits of “OR depth”
`OR (and arbitrary levels of AND gates), whereas the scheme in [GGH+13c] can only support circuits of
total depth atmost `OR.

– Also, if the circuit family that needs to be supported by the ABE scheme has circuits whose OR depth
is lesser than their overall depth, our scheme only requires lesser levels in multilinear maps. Thus, the
public parameters, the keys and the ciphertexts are shorter.

In addition, no secret key components are required for the AND gates in any case. Now we present our
“Free-AND” ABE construction.

19 However, [GPSW06] can support any k out of n threshold gate, for k ∈ [n], whereas our scheme can support only
n out of n and 1 out of n threshold gates.

20 All the other versions of ABE provided above can be obtained in a similar manner.

29

Construction ABE.Setup(1λ, n, `OR):
The setup algorithm takes as input the security parameter λ, the bit length, n, of the attribute vector and
`OR, the maximum OR-depth of the circuit. The algorithm runs G(1λ, κ = `OR + 1) and outputs a sequence
of groups G = (G1, . . . ,Gκ) of prime order p with canonical generators g1, . . . , gκ, where g = g1. It chooses
an exponent α ∈ Zp and group elements h1, . . . , hn at random. It then sets the keys as:

mpk = (G, p, g1, . . . , gκ, gακ , h1, . . . , hn);msk = (gκ−1)α

ABE.Enc(mpk, x ∈ {0, 1}n,M ∈ {0, 1}):
The encryption algorithm takes as input the attribute vector x and a message M ∈ {0, 1}. The encryption
algorithm chooses a random s ∈ Zp and sets CM = (gακ)s if M = 1, otherwise CM = grκ for a random r ∈ Zp.
Let S ⊆ [n] be the set of i such that xi = 1. The ciphertext is

CT = (CM , g
s,∀i ∈ S Ci = hsi)

ABE.KeyGen(msk, f = (n, q,A,B, GateType)):
The key generation algorithm takes as input the master secret key msk and a circuit description f . The
circuit has n+ q wires with n input wires, q gates and the wire n+ q designated as the output wire.

To generate the secret key kf , the key generation algorithm chooses random r1, . . . , rn ∈ Zp and
z1, . . . , zn ∈ Zp, where we think of the random values rw and zw as being associated with the input wire w.
For each w ∈ [n+ q]\[n], if GateType(w) = AND, it sets rw = rA(w) + rB(w), otherwise, it chooses rw ∈ Zp
at random.

Next, the algorithm generates key components. The structure of the key components depends on whether
w is an input wire or an output of an OR gate. For AND gates, we do not need to give out any keys. The
key components in each case are described below.

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. The key component is:

Kw,1 = grwhzww ,Kw,2 = g−zw

– OR gate
Suppose that w ∈ Gates and that GateType(w) = OR. In addition, let j = depth(w) be the OR-depth of
the wire w. The algorithm chooses random aw, bw ∈ Zp. Then, the algorithm creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)

j ,Kw,4 = g
rw−bw·rB(w)

j

In addition to these, the algorithm also creates a “header” component KH = (gκ−1)α−rn+q The secret key
kf consists of all these key components.

ABE.Decrypt(kf , CT):
The decryption algorithm takes as input a secret key kf for the circuit f = (n, q,A,B, GateType) and an
input x ∈ {0, 1}n. The algorithm first checks that f(x) = 1, and if not, it aborts.

The goal of decryption is to compute gαsκ using which M can be obtained from CM . Hence, first using
the header component the algorithm computes

E′ = e(KH , g
s) = e(g

α−rn+q

κ−1 , gs) = gαsκ g−rn+q·s
κ

Now the goal is reduced to computing g
−rn+q·s
κ .

The algorithm evaluates the circuit from input level to the output level. Consider the wire w at OR-depth
j. If fw(x) = 1, then, the algorithm computes Ew = gsrwj+1. If fw(x) = 0, then nothing needs to be computed
for that wire. The algorithm proceeds iteratively starting with computing E1 and proceeds, in order, to
compute En+q. Computing these values in order ensures that the computation on a wire with OR-depth
j − 1 that evaluates to 1, will be defined before computing for a wire with OR-depth j.

We show how to compute Ew for all w where fw(x) = 1, case-wise, according to whether the wire is an
input, an OR gate or an AND gate.

30

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. Suppose fw(x) = 1. The algorithm
computes:

Ew = e (Kw,1, g
s) · e (Kw,2, Cw) = e (grwhzww , gs) · e

(
g−zw , hsw

)
= gsrw2

– OR gate
Consider a wire w ∈ Gates with GateType(w) = OR. In addition, let j = OR-depth(w) be the OR-depth
of the wire w. The computation is performed if fw(x) = 1. Note that in this case, at least one of fA(w)(x)
and fB(w)(x) must be 1. If fA(w)(x) = 1, the algorithm computes:

Ew = e(EA(w),Kw,1) · e(Kw,3, g
s)

= e
(
g
srA(w)

j , gaw
)
· e
(
g
rw−aw·rA(w)

j , gs
)

= gsrwj+1

Otherwise, fB(w)(x) = 1 and the algorithm computes:

Ew = e(EB(w),Kw,2) · e(Kw,4, g
s)

= e
(
g
srB(w)

j , gbw
)
· e
(
g
rw−bw·rB(w)

j , gs
)

= gsrwj+1

– AND gate
Consider a wire w ∈ Gates with GateType(w) = AND. In addition, let j = OR-depth(w) be the depth of
the wire w. The computation is performed if fw(x) = 1. Note that in this case, fA(w)(x) = fB(w)(x) = 1.
The algorithm computes:

Ew = EA(w) · EB(w) = g
srA(w)

j+1 · gsrB(w)

j+1 = gsrwj+1

If the output wire f(x) = fn+q(x) = 1, then the algorithm would have computed g
rn+q·s
κ . It finally computes

E′ · En+q = gαsκ . If CM = gαsκ output M = 1, otherwise output M = 0.

Proof of ABE scheme

Theorem 5. If there exists a PPT adversary A that breaks the security of our ABE construction for cir-
cuits21 of OR-depth κ− 1 and input length n with advantage ε(λ), then there exists a PPT algorithm B that
breaks the κ- Multilinear Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Proof. The proof of this theorem is exactly the same as in [GGH+13c], except for the KeyGen oracle which
works in a similar manner to the Constrain oracle in our Free-AND scheme. The algorithm B first receives a
κ = (`OR + 1)−MDDH challenge consisting of the group sequence description G and g = g1, g

c1 , . . . , gcκ+1

along with T , where T is either g
∏
i∈[κ+1] ci

κ or a random group element in Gκ.

Setup:
B chooses an x∗ ∈ {0, 1}n uniformly at random. Next, it chooses random y1, . . . , yn ∈ Zp and sets

hi =

{
gyi if x∗i = 1

gyi+c1 if x∗i = 0

for i ∈ [n] and β ∈ {0, 1}.
It then sets gακ = g

ζ+
∏
i∈[κ] ci

κ and gs = gcκ+1 , where ζ ∈ Zp is chosen randomly.

KeyGen phase:
Suppose a query is made for a secret key for a circuit f = (n, q,A,B, GateType). If f(x∗) = 1, then B aborts.
Otherwise, B generates key components for every wire w, case-wise, according to whether w is an input wire
or an OR gate as described below.

21 The circuits should also satisfy the properties specified in our Free-AND Constrained PRF scheme, but note that
those are not restrictions; they are just for making the exposition of our scheme simpler.

31

– Input wire
By convention, if w ∈ [n], it corresponds to the w-th input.
If x∗w = 1, then B chooses ηw = rw and νw = zw at random. The key components are:

Kw,1 = grwhzww ,Kw,2 = g−zw

If x∗w = 0, then B implicitly sets rw = c1c2 + ηw, zw = −c2 + νw, where ηw, νw ∈ Zp are randomly chosen
elements. The key components are:

(Kw,1,Kw,2) =
(
gc1c2+ηwh−c2+νww , gc2−νw

)
=
(
g−c2yw+ηw+(yw+c1)νw , gc2−νw

)
Note that these components can be generated by B from the components known to it.

– OR gate
Suppose that w ∈ Gates and that GateType(w) = OR. In addition, let j = OR-depth(w). In order to show
that B can simulate all the key components, we shall additionally show the following property:

Property 2. For any gate w ∈ Gates, B will be able to compute grwj+1, where j = OR-depth(w).

We will prove the above property through induction on the OR-depth j; doing this will enable us to
prove that B can compute all the key components required to give out the secret key. The base case of
the input wires (j = 1) follows as we know that for an input wire w, B can compute grw2 , where rw is of
the form ηw or c1c2 + ηw. We now proceed to show the computation of the key-components. In each case,
we show that property 2 is satisfied.

CASE 1: If fw(x∗) = 1, then B chooses ψw = aw, φw = bw and ηw = rw at random. Then, B
creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)

j ,Kw,4 = g
rw−bw·rB(w)

j

By virtue of property 2, since OR-depth(A(w)) = OR-depth(B(w)) = j − 1, by the induction hypothesis,
we know that B can compute g

rA(w)

j and g
rB(w)

j . Hence, B can compute the above key-components, as the
remaining exponents were all chosen at random by B. Further, since rw was chosen by B, grwj+1 can be be
computed for this wire, and hence property 2 holds for this wire as well (at OR-depth j).

CASE 2: If fw(x∗) = 0, then B implicitly sets rw = c1 · · · cj+1 + ηw, where ηw ∈ Zp is a ran-
domly chosen element. Since ηw was chosen at random, note that grwj+1 can be be computed for this wire

(since g
c1···cj+1

j+1 can be computed using j + 1 pairings of gcm , 1 ≤ m ≤ j + 1), and hence property 2
holds for this wire as well. For computing the key-components, the choices of aw and bw are done more
carefully.

1. If the level before the current level consists of the inputs, then B would know the values of ηA(w) and
ηB(w), since for input wires, these values are always chosen at random. In this case, B implicitly sets
aw = cj+1+ψw and bw = cj+1+φw, where ψw, φw ∈ Zp are randomly chosen elements. Then, B creates
key components:

Kw,1 = gcj+1+ψw = gaw ,Kw,2 = gcj+1+φw = gbw ,

Kw,3 = g
ηw−cj+1·ηA(w)−ψw(c1···cj+ηA(w))

j = g
rw−aw·rA(w)

j ,

Kw,4 = g
ηw−cj+1·ηB(w)−ψw(c1···cj+ηB(w))

j = g
rw−bw·rB(w)

j

B is able to create the last two key components due to a cancellation. Since fA(w)(x
∗) = fB(w)(x

∗) = 0,
B would have set rA(w) = c1 · · · cj + ηA(w) and rB(w) = c1 · · · cj + ηB(w).

32

2. Suppose the level before the current level consists of AND gates. Since fA(w)(x
∗) = 0, we have two cases:

either one of fA(A(w))(x
∗) and fB(A(w))(x

∗) is zero, or both of them are zero. B sets aw = cj+1 +ψw in

the former case, and aw = 1
2cj+1 +ψw in the latter case, where ψw ∈ Zp is a randomly chosen element.

Similarly, since fB(w)(x
∗) = 0, we have two cases: either one of fA(B(w))(x

∗) and fB(B(w))(x
∗) must be

zero, or both of them must be zero. B sets bw = cj+1 + φw in the former case, and bw = 1
2cj+1 + φw in

the latter case, where φw ∈ Zp is a randomly chosen element. Then, B creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)

j ,Kw,4 = g
rw−bw·rB(w)

j

We now show that these components can indeed be computed in every case. Note that the first two
components can be computed in every case. Consider Kw,3 (a similar argument holds for Kw,4).

(a) Consider the first case, where one of fA(A(w))(x
∗) and fB(A(w))(x

∗) is zero. In particular, without
loss of generality, assume that fA(A(w))(x

∗) = 0 and fB(A(w))(x
∗) = 1. Hence, B must have set

rA(A(w)) = c1 · · · cj + ηA(A(w)) and rB(A(w)) = ηB(A(w)). Since A(w) is an AND gate, we would
have rA(w) = rA(A(w)) + rB(A(w)) = c1 · · · cj + ηA(A(w)) + ηB(A(w)). Hence, we have:

Kw,3 = g
ηw−cj+1(ηA(A(w))+ηB(A(w)))−ψw(c1···cj+ηA(A(w))+ηB(A(w)))

j = g
rw−aw·rA(w)

j

which can be computed as follows. Since A(w) is an AND gate, A(A(w)) and B(A(w)) must be
OR gates, in which case, we would know the values of ηA(A(w)) and ηB(A(w)). Further, g

c1···cj
j can

be computed using j pairings of gcm , 1 ≤ m ≤ j. Hence the key component can be computed.
(b) Consider the second case, where fA(A(w))(x

∗) = fB(A(w))(x
∗) = 0. Hence, B must have set

rA(A(w)) = c1 · · · cj + ηA(A(w)) and rB(A(w)) = c1 · · · cj + ηB(A(w)). Since A(w) is an AND gate, we
would have rA(w) = rA(A(w)) + rB(A(w)) = 2c1 · · · cj + ηA(A(w)) + ηB(A(w)). Hence, we have:

Kw,3 = g
ηw− 1

2 cj+1(ηA(A(w))+ηB(A(w)))−ψw(c1···cj+ηA(A(w))+ηB(A(w)))

j = g
rw−aw·rA(w)

j

which can be computed as outlined in the former case.

Thus, the four key components can be given out in every case.
– AND gate

Suppose that w ∈ Gates and that GateType(w) = AND. Let j = OR-depth(w). B sets rw = rA(w) + rB(w).

Clearly, property 2 holds here as well, i.e., grwj+1 = g
rA(w)

j+1 + g
rB(w)

j+1 can be be computed for this wire, since

both g
rA(w)

j+1 , g
rB(w)

j+1 are known due to property 2.

Finally, for the output wire w = n+ q, we will have rn+q = c1 · · · cκ + ηn+q. Now the header component

KH can be computed as g
α−rn+q

κ−1 = g
ζ−ηn+q

κ−1 .

Challenge ciphertext:
A chooses an attribute vector x̃ at some point and gives it to B. B first chooses Mb ∈ {0, 1}. Let S ⊆ {0, 1}
be the set of indices i such that x̃i = 1. B now sets the challenge ciphertext as

CT =
(
Mb · T · gsζκ , gs,∀i ∈ S Ci = (gs)yj

)
When T = g

∏
i∈[κ+1] ci

κ , CT is an encrpytion of 1, otherwise it is an encryption of 0.

Guess:
If x̃ = x∗, B will output the same bit as A does as its guess. If x̃ 6= x∗, B outputs a random bit as its guess.

This completes the description of the adversary B. We first note that in the case where T is part of a
MDDH tuple, the real game and game executed by B are statistically indistinguishable. Secondly, in both
cases (i.e., whether or not T is part of the MDDH tuple), as long as B does not abort, once again, the real
game and game executed by B are statistically indistinguishable, except for the output of B on the challenge

33

query x∗. We now analyze the probability that B’s guess was correct. Let δ′ denote B’s output and let δ
denote whether T is an MDDH tuple or not, δ, δ′ ∈ {0, 1}. Now

Pr[δ′ = δ] = Pr[δ′ = δ|abort] Pr[abort] + Pr[δ′ = δ|abort] Pr[abort]

=
1

2
(1− 2−n) + Pr[δ′ = δ|abort] · (2−n)

=
1

2
(1− 2−n) +

(
1

2
+ ε

)
· (2−n)

=
1

2
+ ε · (2−n)

The set of equations shows that the advantage of B is ε(λ)/2n. The second equation is true since the
probability of B not aborting is 2−n. The third equation comes from the fact that the probability of the
adversary winning conditioned on not aborting is the same as the original probability of winning.

34

	Reducing Multilinear Map Levels in Constrained Pseudorandom Functions and Attribute-based Encryption

