
DA-Encrypt: Homomorphic Encryption

via Non-Archimedean Diophantine

Approximation — Preliminary Report

Jeff Hoffstein1⋆, Jill Pipher1, John M. Schanck2,3,
Joseph H. Silverman1⋆, William Whyte3, Zhenfei Zhang3

1 Mathematics Department, Brown University, Providence, RI 02912 USA
{jhoff,jpipher,jhs}@math.brown.edu,

2 University of Waterloo, Waterloo, Canada,
3 Security Innovation, Wilmington, MA 01887, USA

{jschanck,wwhyte,zzhang}@securityinnovation.com

Abstract. We give a theoretical description of a new homomorphic en-
cryption scheme DA-Encrypt that is based on (non-archimedean) Dio-
phantine Approximation.

1 Introduction

The concept of Fully Homomorphic Encryption (FHE) was intro-
duced almost 40 years ago [25], and an efficient embodiment of such
a scheme is a holy grail of cryptography. It would allow one to arbi-
trarily carry out computations on a plaintext without the necessity
of decrypting the ciphertext first. In his breakthrough work, Gentry
[11–13] presented the very first homomorphic encryption scheme in
the context of ideal lattices. Moreover, he presented a framework for
achieving such schemes. It has been an active field of research in
cryptography since then, due to many potential applications (such
as verifiable computing [10]) and its use in cryptographic tools (such
as multi-linear maps [9] and program obfuscation [8]).

Gentry’s framework consists of two steps. In the first step, one
constructs a somewhat homomorphic encryption scheme (sometimes
known as partial homomorphic encryption or leveled homomorphich
encryption), a homomorphic scheme that allows a limited number of
multiplication and addition gates. Ciphertexts in these schemes con-
tain noise that grows with homomorphic operations. In the second

⋆ Research partially supported by NSF EAGER DMS-1349908

2

step, one bootstraps the scheme by converting a noisy ciphertext
into an almost noise free ciphertext. Repeating the above steps, one
is able to evaluate a circuit with arbitrary depth, and hence one
achieves a fully homomorphic encryption scheme.

To date, there have been three types of fully homomorphic en-
cryption schemes that have followed Gentry’s framework. There have
been schemes based on ideal lattices [11–14, 27, 28], based on inte-
gers [6, 7, 29], and based on Learning With Error [1, 2, 15]. To the
best of our knowledge, there have been three implementations [14,
6, 16], corresponding to each type. Cryptanalysis of the first two im-
plementations can be found in [3, 23, 24, 4].

A crucial point in Gentry’s theoretical framework is the ability
to bootstrap. While a somewhat homomorphic encryption scheme
can be simple and efficient, the introduction of bootstrapping makes
fully homomorphic schemes impractical for the foreseeable future.
Because of this, it has been proposed that the notion of fully homo-
morphic public key encryption should be relaxed for practical use.
In particular, the following questions have been asked:

– Would a practical somewhat homomorphic encryption scheme be
sufficient for many purposes?

– Would an efficient symmetric somewhat homomorphic encryption
scheme have practical applications?

The first question has been studied intensively, for instance, in
[22]. It has certainly been shown that somewhat homomorphic en-
cryption schemes enable important applications; see [17] for a survey
of such applications.

Concerning the second question, in many applications, only a
symmetric homomorphic encryption scheme is required. This often
occurs in multi-party (2 party) computation scenarios, where one
party contributes sensitive data, while the other contributes algo-
rithms and public data.

In a two party computation scenario, for instance, Alice might
want to outsource some computations to Bob, but not want Bob to
learn the relevant data. She would encrypt her data using a sym-
metric homomorphic encryption scheme and send the ciphertexts to
Bob. Bob would operate on this data using his (public or private)

3

algorithm and his public data. A crucial point here is that Bob would
not need to possess the ability to encrypt his own data. In almost all
homomorphic encryptions a plaintext is already a ciphertext with no
noise injected. Thus, Bob would be able to do computations using
both confidential encrypted data from Alice and public data of his
own. Upon receipt of the encrypted results from Bob, Alice could
decrypt it with her secret key.

During this procedure, Alice’s confidential data remains hidden
from Bob. There are, however, other issues beyond the scope of ho-
momorphic encryption that arise. These include fairness (Alice learns
everything, Bob learns almost nothing), as well as other aspects, such
as Bob proving that he has computed honestly, etc.

1.1 Our contribution

In this paper, we present a theoretical description of a new sym-
metric somewhat homomorphic encryption scheme inspired by ideas
from the theory of (non-archimedean) Diophantine approximation.
We also show how, with a few modifications, it can be turned into
a public key system. At a high level, our construction is a sort of
inverse of schemes based on principal ideal lattices [14, 27]. In [14]
and [27], the public keys are a bad basis (Hermite normal form basis)
of a principal ideal lattice, while the secret key is a good basis (the
generator) of the principal ideal lattice. In this preliminary note we
have not attempted to quantify specific parameters that give par-
ticular security levels, nor do we give operating characteristics of an
implementation.

In our construction, we use a good basis (with some noise in-
jected) to generate the ciphertexts, while the secret key is the lattice
itself (in the form of a bad basis). We ensure that an attacker is not
able to obtain a noise-free basis from a noisy basis, which can be seen
as an analogue of the learning with error problem over a principal
ideal lattice.

The ciphertexts that an attacker sees are points close to an un-
known principal ideal lattice. We conjecture that even if an attacker
is able to solve the shortest vector problem in a principal ideal lat-
tice, he will not be able to break our scheme, because our lattice is
secret. This allows our scheme to operate on lattices with smaller

4

dimensions. We note that the relevance of this remark stems from
several recent results which suggest that the shortest vector problem
in principal ideal lattice may be solvable with a quantum computer,
and that the shortest vector problem in certain types of principal
ideal lattices may be solvable sub-exponentially using classic com-
puters. If these algorithms work, they will allow an attacker to break
earlier principal ideal lattice based cryptosystems such as [14, 27].

2 Background

We begin by recalling some background.

2.1 Notation

A vector from Rn is represented as n-tuple v = ⟨v1, . . . vn⟩. We use
|v| =

√
v21 + · · ·+ v2n and |v|∞ = max |vi| for the Euclidean norm

and infinity norm, respectively. We use row vectors of a matrix to
represent a lattice basis. A basis B of a lattice L is thus a ma-
trix (b1, . . . , bn) whose rows are the vectors b1, . . . , bn. We often
identify a vector f = ⟨f1, f2, . . . , fn⟩ with the polynomial f(x) =
f1 + f2x+ f3x

2 + · · ·+ fnx
n−1 whose coefficients are the coordinates

of f . When there is no ambiguity, we will mix these two notations
without further clarification.

Table 1 presents a list of notation used throughout the paper.
The definitions and further explanation are given later.

n A parameter for the degree of polynomials and dimension of lattices.

F (x) a polynomial with integer coefficients.
(In this paper, we use F (x) = xn + 1 as an example.)

Zq the ring Z/qZ of integers modulo q.

R The truncated polynomial ring Zq(x)/(F (x)).

f(x), β, q A polynomial and integers satisfying F (β) ≡ f(β) ≡ 1 (mod q).
(Used to define a principal ideal lattice.)

t The number of public polynomials. (Used for asymmetric version.)
Table 1. A list of notation

5

2.2 Lattices

Lattice theory, also known as the geometry of numbers, was intro-
duced by Minkowski in 1896 [21]. We refer readers to [18, 20] for a
more detailed account.

A lattice L is a discrete sub-group of Rn, or equivalently the set
of all the integral combinations of a set of R-linearly independent
vectors b1, . . . , bm over R:

L = Zb1 + Zb2 + · · ·+ Zbm.

A basis of L is denoted B = (b1, . . . , bm), and m is called the di-
mension of L and denoted dim(L). In this paper we deal with ideal
lattices which are full rank lattices, i.e., m equals n.

Let F (x) ∈ Z[x] be a monic irreducible polynomial of degree n
and let R be the quotient polynomial ring Z[x]/(F (x)), which we view
as a copy of Zn sitting inside Rn. An ideal lattice L over R is, as its
name suggests, simply an ideal of the ring R; cf. [19]. Alternatively,
an ideal lattice is a Z-submodule L of R with the property that
for for every v ∈ L, the vector corresponding to the polynomial
xv mod F (x) also belongs to L. An ideal lattice that is generated by
a single element (as an ideal) is called a principal ideal lattice.

Let L1 and L2 be lattices in Rn. Then L1 is a sub-lattice of L2

if all points of L1 are also in L2, i.e., if L1 ⊆ L2. We denote the
intersection of two lattices by L1 ∩ L2. It is a lattice, and if L1

and L2 are have dimension n, then so does L1 ∩ L2.

2.3 Homomorphic encryption

A homomorphic encryption scheme ξ consists of four algorithms:

KeyGen, Encrypt, Decrypt and Eval.

– KeyGen(λ): Input a security parameter λ; output a pair of keys
k1 and k2.

– Encrypt(m, k1): Input a plaintext m and k1; output a corre-
sponding ciphertext c.

– Decrypt(c, k2): Input a ciphertext c and k2; output a corre-
sponding plaintext m.

6

– Eval(c1, c2, . . . , ct, Ct,k1): Input n ciphertexts c1, c2, . . . , ct, a per-
mitted circuit Ct, and an optional key k1; output Ct(c1, c2, . . . , ct).

The first three algorithms follow the definition of an encryption
scheme. In a public key scheme, k1 is public and k2 is secret, while
in a symmetric encryption scheme, both k1 and k2 are secret, and in
most cases k1 = k2. The last algorithm Eval is defined as follows:
input a set of ciphertexts {ci} whose corresponding plaintexts are
{mi} and a circuit C, and output another ciphertext c. (The key
used to encrypt the mi is an optional input to the algorithm.) The
homomorphic scheme is correct if it satisfies the following:

Decrypt
(
Eval

(
C, {ci},k1

)
,k2

)
= C(m1, . . . ,mt). (1)

Definition 1 (Homomorphic Encryption). The scheme

ξ = (KeyGen,Encrypt,Decrypt,Eval)

is homomorphic for a class C of circuits if Equation (1) is valid for
all circuits C ∈ C. The scheme ξ is fully homomorphic if it is correct
for all boolean circuits. It is somewhat homomorphic if it is correct
for boolean circuits up to a certain depth. It is compact if, for any
circuit C ∈ C with the number of inputs polynomial in λ, the size of
ciphertexts output by Eval is bounded by a polynomial function of
λ.

Looking ahead, we will show that our proposed scheme is some-
what homomorphic. We conjecture our scheme can also be fully ho-
momorphic using Gentry’s bootstrapping technique. However, such
modification would require larger parameters and hence would be
less practical. Since our goal is practical homomorphic encryption,
we focus on efficient somewhat homomorphic encryption schemes.

3 The DA-Encrypt symmetric encryption
scheme

3.1 Overview

Let F (x) be the monic irreducible polynomial that defines our poly-
nomial ring R = Z[x]/(F (x)). For simplicity, we use F (x) = xn + 1.

7

Our scheme starts by finding a polynomial f(x) and integers β and
q satisfying

f(β) ≡ F (β) ≡ 0 mod q.

The polynomial f(x) is a generator of a principal ideal lattice, which
is spanned as a Z-module by the vectors xif(x) mod F (x). (These
are more-or-less the rotations of the vector f , with some negative
signs due to the fact that we’re using xn + 1 instead of xn − 1.)
We show in Section 5 how to generate such a principal ideal lattice
efficiently. The coefficients of f(x) have size on the order of q1/n, i.e.,
|f |∞ ≈ q1/n.

We choose a random integer p that is smaller than and relatively
prime to q. The encryption and decryption keys are then given by:

Encrypt: k1 = (f(x), p) Decrypt: k2 = (β, q).

To encrypt a plaintext m ∈ Z, one randomly generates a polynomial
a(x) with (small) coefficients1 and a small integer b, and computes

c(x) = a(x)f(x) + bp+m mod F (x).

To decrypt a ciphertext c(x), one computes

m =
(
c(β) mod q

)
mod p.

During decryption we perform computations over Zq, but since
f(β) ≡ 0 (mod q) and since b, p, and m are small, a restricted
number of multiplications of ciphertexts over Z will not cause any
wraparound of the coefficients modulo q. It is quite straightfor-
ward to see that

(
c(β) mod q

)
mod p is equal to m mod p, provided

that b, p, and m are sufficiently small compared with q.
The scheme that we have described is somewhat homomorphic.

A ciphertext is a vector that is close to being in a (secret) principal
ideal lattice, where the distance to the lattice is the message plus
some noise. This property is sufficient to perform a limited number
of homomorphic operations.

1 It is not necessary for a(x) to have small coefficients if one merely wants decryption
to work properly; but there will be coefficient explosion in the product of ciphertexts
if the coefficients are chosen to be very large.

8

3.2 The DA-Encrypt algorithm (symmetric version)

DAE SYM is a symmetric somewhat homomorphic encryption scheme
that uses four PPT algorithms:

DAE SYM.KeyGen, DAE SYM.Encrypt,
DAE SYM.Decrypt, DAE SYM.Eval.

– DAE SYM.KeyGen: Input a security parameter λ. Output
keys (k1,k2):

• Generate {f(x), β, q} ∈ R× Z× Z such that

f(β) ≡ F (β) ≡ 0 mod q.

• Pick a random integer p that is co-prime with q and sufficiently
small compared to q.

• Output keys k1 = {f(x), q} and k2 = {β, q, p}.

– DAE SYM.Encrypt: Input a plaintext m from plaintext space
and a key k1. Output a ciphertext e(x):

• Choose a random polynomial a(x) and a random integer b
such that |a|∞ and |b| are small and use them to generate the
polynomial

e(x) = a(x)f(x) + bp+m mod F (x).

• Output e(x) as the ciphertext.

– DAE SYM.Decrypt: Input a ciphertext, and a secret key. Out-
put a plaintext using the formula

m =
(
e(β) mod q

)
mod p.

– DAE SYM.Eval: Input two ciphertexts e1, e2 and an evaluation
circuit Eval(· , ·). Output a new ciphertext e(x) that encrypts
Eval(m1,m2):

e(x) = Eval(e1(x), e2(x)).

9

3.3 Correctness of decryption

For decryption, we have

e(β) = a(β)f(β) + bp+m

≡ bp+m (mod q)

≡ m (mod p),

where the last line is valid provided that |bp+m| < q/2, so the least
residue of bp + m modulo q is exactly equal to bp + m. Therefore
under this assumption, we have

m =
(
e(β) mod q

)
mod p.

3.4 Homomorphic correctness of evaluation

The DAE SYM scheme is partially homomorphic, i.e., it supports a
limited number of additions and multiplications.

Wet take two ciphertexts

e1 = a1(x)f(x) + b1p+m1,

e2 = a2(x)f(x) + b2p+m2.

Their sum is

e+ = e1 + e2 =
(
a1(x) + a2(x)

)
f(x) + (b1 + b2)p+m1 +m2.

Then

e+(β) =
(
a1(β) + a2(β)

)
f(β) + (b1 + b2)p+m1 +m2

≡ (b1 + b2)p+m1 +m2 (mod q).

If
∣∣(b1+b2)p+m1+m2

∣∣ < q/2, then the least residue of e+(β) mod q
is exactly equal to (b1 + b2)p +m1 +m2, which leads to the correct
decryption(
e+(β) mod q

)
mod p =

(
(b1+b2)p+m1+m2

)
mod p = m1+m2.

10

Similarly for multiplication,

e×(β) = e1(β)e2(β)

≡
(
a1(β)f(β) + b1p+m1

)(
a2(β)f(β) + b2p+m2

)
(mod q)

≡ (b1p+m1)(b2p+m2) (mod q)

≡ b1b2p
2 + b1pm2 + b2pm1 +m1m2 (mod q).

If |b1b2p2 + b1pm2 + b2pm1 +m1m2| < q/2, then we see that(
e×(β) mod q

)
mod p = (b1b2p

2 + b1pm2 + b2pm1 +m1m2) mod p

= m1m2 mod p.

Clearly, the error term grows with the number of operations, par-
ticularly multiplications. At some point, the error becomes greater
than q/2, and then decryption fails to give the correct plaintext.
To be more specific, when evaluating a circuit C over many cipher-
texts e1, e2, . . . , if the noise term is greater than q, then the message
is totally destroyed and decrypting C(e1, e2, . . .) does not lead to
any useful information. We also note that plaintexts are only known
modulo p, so if a computation C(m1,m2, . . .) gives a value larger
than p, then the decrypted value is really C(m1,m2, . . .) mod p.

3.5 Security Analysis

We assume that an attacker has access to an arbitrarily long list of
encryptions of 0, which we denote by e(1), e(2), e(2), We write e(j)

as
e(j)(x) = a

(j)
0 + a

(j)
1 x+ · · ·+ a

(j)
n−1x

n−1.

The attacker would like to determine integers β and q such that some
(large) subset of the numbers

e(1)(β) mod q, e(2)(β) mod q, e(3)(β) mod q, . . .

has a moderately large greatest common divisor, which will be the
secret value of p. In fact, rather than searching for β and q, an
attacker could search for a vector of integers (β0, β1, . . . , βn−1, q) such
that for each j there exists an integer ℓ(j) such that the quantity∣∣∣a(j)0 β0 + a

(j)
1 β1 + · · ·+ a

(j)
n−1βn−1 − ℓ(j)q

∣∣∣

11

is considerably smaller than q. Such a vector of integers will, if it
exists, with high probability be unique and will give the actual β,
with βi necessarily equal to β8. However there does not appear to be
a way to set up such a search as a lattice problem. If q were public,
we could search for the vector (β0, . . . , βn−1) as the solution to a
closest vector problem, but with q also private, the problem seems
to be moved outside of the realm of lattice problems.

3.6 Connection with the Approximate GCD problem

Definition 2 (Approximate GCD problem). An approximate
greatest common divisor problem, parameterized by (α, γ, δ), is given
a set of integers {X1, . . . , Xn} where Xi = gip + ri, log |gi| < α,
log |p| < γ and log |ri| < δ, find p.

Given many ciphertexts e1(x), . . . , et(x), one can extract the con-
stant terms ei(0). Note that ei(0) is in the form of zi + mi + bip,
where zi is the constant term of ai(x)f(x) mod F (x) and mi is the
message. Given those integers e1(0), . . . , et(0), finding p is an approx-
imate greatest common divisor problem.

Proposition 1. If there exists an algorithm A that finds the secret
key p from the ciphertexts {ei(x)}, where log |p| < γ, log |fi(x)| < α
and log |bi| < δ, then there exists another algorithm B that solves the
Approximate GCD problem with (α, γ, δ).

Proof.

A lattice attack from this point of view would take the following
form: we know that

e1(0)c2 − e2(0)c1 = z1c2 − z2c1.

This tells us that within the lattice spanned by the row vectors of
B, where

B =

∣∣∣∣∣∣∣∣∣∣∣

1 e2(0) e3(0) . . . et(0)
0 e1(0) 0 . . . 0
0 0 e1(0) . . . 0
...

...
...

. . .
...

0 0 0 . . . e1(0)

∣∣∣∣∣∣∣∣∣∣∣
,

12

there exists a vector

v = ⟨b1, (z1b2 − z2b1), (z1b3 − z3b1), . . . , (z1bt − ztb1)⟩ .
From v one should be able to recover the secret key p. Hence, we need
our parameters to ensure that lattice reduction on basis B will not
be able to find v. This problem has been recently analyzed by Cohn
and Henninger, [5], and our parameters are chosen to be resistant to
this type of attack.

4 Conversion to a public key scheme

4.1 Overview

In this section we explain show how to build a public key scheme
using DA-Encrypt. Such a conversion is reasonably standard and has
been adopted in other integer based and lattice-based FHE schemes.
The process is essentially to publish a collection of encryptions of 0.

So to create a PKC, we start by publishing a list of encrypions
of 0, say

gi(x) = ai(x)f(x) + bip mod F (x) for 1 ≤ i ≤ t.

Thus each gi(x) is a ciphertext corresponding to an encryption of 0
in the symmetric scheme. The public key is the set of polynomials
{gi(x) : 1 ≤ i ≤ t}, and the secret key is {β, q, p} as before. The
security of the symmetric scheme ensures that the attacker does not
gain useful information from the public key.

To encrypt a plaintext m, choose small integers ri and compute
the ciphertext as

c(x) =

(t∑
i=1

rigi(x)

)
+m (mod F)(x).

To decrypt it, compute as usual(
c(β) mod q

)
mod p.

As in the symmetric setting, a ciphertext is a vector close to the
unknown principal ideal lattice, where the distance to the lattice is
the plaintext plus some noise. However, due to the introduction of ri,
this distance is greater than in the symmetric setting, so the number
of allowable homomorphic operations is reduced to some extent.

13

4.2 The DA-Encrypt algorithm (asymmetric version)

DAE ASY is an asymmetric homomorphic encryption scheme that
uses four PPT algorithms:

DAE ASY.KeyGen, DAE ASY.Encrypt,
DAE ASY.Decrypt, DAE ASY.Eval.

– DAE ASY.KeyGen: input a security parameter λ, output a pub-
lic key and a security key;

• Generate {f(x), β, q} ∈ R×Z×Z such that f(β) = 0 mod q;

• Pick a random integer p that is co-prime with q and sufficiently
small compared to q;

• Generate t polynomials

gi(x) = ai(x)f(x) + bip mod q,

where ai(x) and bi are picked at random such that the coeffi-
cients of ai and the bi are small;

• Publish {gi(x)} as the public key;

• Keep β, p, q as the secret key;

– DAE ASY.Encrypt: input a message m ∈ Z, and a public key,
output a ciphertext;

• Randomly choose t small integers ri ∈ Z;
• Compute

e(x) =
t∑

i=1

rigi(x) +m;

• Output e(x) as the ciphertext;

– DAE ASY.Decrypt: input a ciphertext, and a secret key, output
a message;

• Output

m = e(β) mod q mod p;

– DAE ASY.Eval: input two ciphertexts e1, e2 and an evaluation
circuit Eval(∗, ∗), return a new ciphertext that encryptsEval(m1,m2);

• Return e(x) = Eval(e1(x), e2(x)).

14

4.3 Correctness of decryption

For decryption, we have

e(β) =
t∑

i=1

rigi(β) +m

=
t∑

i=1

(riai(β)f(β) + ricip) +m

≡ ricip+m (mod q)

≡ m (mod p)

Therefore, we have

m = e(β) mod p mod q.

4.4 Correctness of evaluation, homomorphism

For two ciphertexts:

e1 =
t∑

i=1

(r1,ia1,i(x)f(x) + r1,ic1,ip) +m1,

e2 =
t∑

i=1

(r2,ia2,i(x)f(x) + r2,ic2,ip) +m2

The addition of the two is:

e+ = e1 + e2 = m1 +m2 +
t∑

i=1

(r1,ia1,i(x) + r2,ia2,i(x))f(x)

+
t∑

i=1

(r1,ic1,i + r2,ic2,i)p

So the evaluation e+(β) = m1 +m2 mod q mod p is correct as long
as all noise terms are small. We omit the details as it is similar to
DAE SYM.

15

4.5 Security analysis

Identifying an encryption of 0. The major difference between
DAE ASY and DAE SYM is that in the asymmetric setting, a ci-
phertext is a linear combination of a finite list of encrypted 0’s and
the plaintext. Hence, it is important that an attacker should not able
to determine the plaintext by recovering the linear combination.

Recall that a ciphertext has the form

e(x) =
t∑

i=1

rigi(x) +m.

We let L(B) be the lattice spanned by the rows of the following
matrix, where ei denotes the ith coeffcient of e.

B =

∣∣∣∣∣∣∣∣∣∣∣

g1,0 g1,1 . . . g1,n−1 1 0 . . . 0
g2,0 g2,1 . . . g2,n−1 0 1 . . . 0
...

...
...

...
...
...

...
...

gt,0 gt,1 . . . gt,n−1 0 0 . . . 1
e0 e1 . . . en−1 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
.

Then one easily sees that the vector

r = ⟨, 0, . . . , 0, r1, r2, . . . rk⟩

is in L(B). If |r| is small enough, then it can be found via reduction
of the lattice basis B. One may view this problems as a general-
ized knapsack problem where elements are polynomials rather than
integers.

Remark 1. Semantic security can be reduced to a shortest vector
problem of this particular lattice L(B). However, unlike earlier ideal
lattice-based cryptosystems, the basis of L(B) is the basis of a princi-
pal ideal lattice perturbed by some random noise. So an ideal lattice
SVP solver will not directly break our scheme. However, at this point
we do now know how to establish a reduction to a generic lattice,
since our lattices have some special structure.

16

5 Key generation technique

5.1 Generating a single principal ideal lattice

As mentioned before, for simplicity, we use F (x) = xn + 1. For a
randomly chosen f(x), we need to compute the resultant of f and
F , find a large prime factor of the resultant, which we will call q, and
then factor f and F mod q to find a common root β. The approach
to this we are currently using, which does not involve factoring,
requires the computation of the inverse of f over Z(2ℓ)n+1. We need
to pick suitable ℓ, for instance, to ensure that (2ℓ)n is greater than
the resultant of f(x) and F (x). In our case, we can safely use ℓ = 1.
We chose this ring since it guarantees that F (x) has n integer roots
in this field, and locating these roots is almost free,i.e, when n is
even, the roots are simply {±2,±23,±25, . . . ,±2n−1}.

We wish to find a polynomial w(x) such that w(x) ·f(x) = d mod
F (x). We sample f(x) at all the roots as computing f(ζi) for 0 ≤
i < n, where ζi is the (i+ 1)-th root of F (x).

Recall that since w(x)·f(x) = q mod F (x), we know that (ζi,
d

f(ζi)
)

are valid points on w(x). Thus, one can construct w(x) in a whole
as computing

Lag

(
(ζ1,

q

f(ζ1)
), (ζ2,

q

f(ζ2)
), . . . , (ζn,

q

f(ζn)
)

)
,

where Lag() is the Lagrange interpolation function.

However, also notice that wi = −awi+1 mod q for 0 ≤ i ≤ n− 2,
therefore we only need to compute two non-zero coefficients of w(x),
rather than the whole interpolated polynomial. Now let’s take a deep
look at the interpolation:

w(x) ≡ q

f(ζ1)
×(

∏
j ̸=1

x− ζj
ζ1 − ζj

)+· · ·+ q

f(ζn)
×(

∏
j ̸=n

x− ζi
ζn − ζj

) mod (2n+1)

therefore, the leading coefficient is

wn−1 ≡
q

f(ζ1)
×(

∏
j ̸=1

1

ζ1 − ζj
)+· · ·+ q

f(ζn)
×(

∏
j ̸=n

1

ζn − ζj
) mod (2n+1)

17

and the constant coefficient is

w0 ≡
q

f(ζ1)
× (

∏
i̸=1

−ζj
ζ1 − ζj

)+ · · ·+ q

f(ζn)
× (

∏
i̸=n

−ζj
ζn − ζj

) mod (2n+1)

To ease the notation, denote

ai =
1∏

j ̸=i(ζi − ζj)
mod (2n + 1),

bi =

∏
j ̸=i ζi∏

j ̸=i(ζi − ζj)
mod (2n + 1).

Then,

wn−1 =
q

f(ζ1)
× a1 +

q

f(ζ2)
× a2 + · · ·+ q

f(ζn)
× an mod(2n + 1),

w0 =
q

f(ζ1)
× b1 +

q

f(ζ2)
× b2 + · · ·+ q

f(ζn)
× bn mod(2n + 1).

Now, if w0 is invertible over Zq, then from w0 and wn−1, and having
the relation wi = −βwi+1 mod q, one is able to recover the whole
w(x) as well as β.

5.2 Forming the final lattice

In our scheme, we derive the final principal ideal lattice from many
smaller principal ideal lattices. We start with finding k small prin-
cipal ideal lattices {fi(x), βi, qi} where fi(x) are sparse binary (or
trinary) polynomials. Then, we set q = LCM(q1, . . . , qk), i.e., q is
the least common multiple of q1, . . . , qk. We derive β and f(x) by ap-
plying the Chinese reminder theorem. For simplification, we assume
all qi are pair wise co-prime, in which case we have,

q =
k∏

i=1

qi,

f =
k∏

i=1

fi,

β = CRT(⟨β1, . . . , βk⟩ , ⟨q1, . . . , qk⟩).

This assures us that F (β) ≡ f(β) ≡ 0 mod q.

18

Lemma 1. Let L1, . . . ,Lk be principal ideal lattices whose determi-
nants are pairwise co-prime, and let f1(x), . . . , fk(x) be generators.
Then

∏k
i=1 fi(x) mod F (x) generates a principal ideal lattice L. In

particular L = L1 ∪ L2 . . .Lk.

Proof. Elementary.

Remark 2. This is a somewhat new method for generating principal
ideal lattices efficiently. In our method, we find many principal ideal
sup-lattices first, and then we derive the final lattice by intersect-
ing those sup-lattices. Our method is fully compatible with previous
methods, i.e., we can use either [14] or [26] to find those sup-lattices
({fi, βi, qi}).

It is interesting to note that when generating a principal ideal
lattice, many operations can be pre-computed, such as computing ai
and bi. Once computed, they can be used through out the generating
of all principal ideal lattices. What remains to be costly is to compute
the resultant of two polynomials. To accelerate this computation, we
use very sparse polynomials.

5.3 The algorithm

Remark 3. The generator polynomial f(x) in our selection is very
sparse. We make this choice for two reasons. Firstly, it makes eval-
uation of f(ζi) very efficient. Evaluating a binary polynomial at a
power of two is merely reordering the position of binaries. Although
this makes a minor difference as this evaluation is negligible com-
pare with other costs. Secondly, and most importantly, it makes
computing the resultant much faster. This is the main reason our
new technique is faster than all previous methods.

5.4 Security consideration of key generation

We wish to compare the lattice generated using our approach and
generic principal ideal lattices. Note that in the actual scheme, q is
kept secret from the attacker. However, for comparison’s sake, we
assume that q is known.

19

Algorithm 1 Generate a principal ideal lattice with a large deter-
minant
Input: parameters t, T and n
Output: a principal ideal lattice L;
1: {Beginning of pre-processing}
2: Find all the roots {ζ1, . . . , ζn} of xn + 1 over Z2n+1

3: for i = 1 to n do
4: Compute ai =

1∏
j ̸=i(ζi−ζj)

over Z2n+1

5: Compute bi =
∏

j ̸=i ζi∏
j ̸=i(ζi−ζj)

over Z2n+1

6: end for
7: {End of pre-processing}
8: Set q = 1, f(x) = 1, N = ⌊T

t
⌉ and k = 1

9: while i ≤ k do
10: Sample a sparse binary polynomial fi(x) with |f i|2 ≤ 2t

11: Set qk = resultant(fi(x), F (x))
12: if gcd(qi, q) = 1 then
13: wi,0 = q

fi(ζ1)
× b1 +

q
fi(ζ2)

× b2 + · · ·+ q
fi(ζn)

× bn mod (2n + 1)

14: if gcd(qi, wi,0) = 1 then
15: wi,n−1 = q

fi(ζ1)
× a1 +

q
fi(ζ2)

× a2 + · · ·+ q
fi(ζn)

× an mod (2n + 1)
16: i = i+ 1
17: d = di × d
18: βi = (

wi,n−1

w0
)n mod qi

19: end if
20: end if
21: end while
22: f(x) =

∏N
i=1 fi(x) mod (xn + 1)

23: β = CRT((β1, β2, . . . , βN), (q1, q2, . . . , qN))
24: return f(x), β, q

20

In a principal idea lattice based cryptosystem, where the public
key is given in the form of a bad basis (often β and q), it is crucial
that the attacker is not able to find vector shorter than certain bound
in this lattice. While the ability to recover a short vector implies
the ability to solve an (approximate) shortest vector problem for a
principal ideal lattice in the worst cases, it is not the case for the
principal ideal lattice generated using our technique, when assuming
factorization is easy.

With our method, the determinant of the lattice is a composite
number that can be factorized into k integers of similar length. An
attacker cannot distinguish a principal ideal lattice generated using
our approach from a random one if he/she cannot factorize. However,
to preserve the quantum-safe feature of lattice based cryptography,
we also give the attacker the ability to factorize q. Therefore, we
must ensure that the attacker cannot derive fi(x) from (qi, βi). In
other words, we must ensure that the attacker cannot solve the ap-
proximate shortest vector problem for those small lattices.

Note that the hardness of an approximate shortest vector prob-

lem is determined by
(

log qi
log |f i|

)1/n

, and we have log qi
log |f i| ∼

log q
log |f | . The at-

tacker does not gain significant advantage solving short vector prob-
lems for small lattices, since the ratio is approximately constant. In
addition, the attacker needs to solve the approximate SVP for most
of the k small lattices. So it is safe to assume that the principal
ideal lattice generated using our method does not have significant
weakness compared with previous methods.

We stress again that these considerations are only relevant if the
modulus q is revealed. We will return to this analysis in the future
if there appears to be an advantage to doing this.

5.5 Bootstrapping

We would like to say a few words on bootstrapping. Our scheme is
a homomorphic system over Zq that can be broken into many sub-
systems over Zqi . This modification does not reduces the number
of homomorphic multiplications that we can do, but it reduces the
decryption circuit depth (roughly from log q to log qi). It can be
seen as a squashing technique without the reliance on sparse subset

21

sum problem as in Gentry’s original construction. Hence, it is very
interesting to see how bootstappable our scheme is.

References

1. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, pages 97–106, 2011.

2. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-
LWE and security for key dependent messages. In CRYPTO, pages 505–524, 2011.

3. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASI-
ACRYPT, pages 1–20, 2011.

4. Y. Chen and P. Q. Nguyen. Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers. In EURO-
CRYPT, pages 502–519, 2012.

5. H. Cohn and N. Heninger. Approximate common divisors via lattices. IACR
Cryptology ePrint Archive, 2011:437, 2011.

6. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic en-
cryption over the integers with shorter public keys. In CRYPTO, pages 487–504,
2011.

7. J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In EUROCRYPT,
pages 446–464, 2012.

8. S. Garg. Program obfuscation via multilinear maps. In Security and Cryptography
for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September
3-5, 2014. Proceedings, pages 91–94, 2014.

9. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lat-
tices. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 1–17, 2013.

10. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

11. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

12. C. Gentry. A Fully Homomorphic Encyrption Scheme. PhD thesis, Stanford Uni-
versity, September 2009.

13. C. Gentry. Computing arbitrary functions of encrypted data. Commun. ACM,
53(3):97–105, 2010.

14. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, pages 129–148, 2011.

15. C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Ring switching in BGV-style
homomorphic encryption. In SCN, pages 19–37, 2012.

16. S. Halevi and V. Shoup. Algorithms in helib. In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part I, pages 554–571, 2014.

17. K. E. Lauter. Practical applications of homomorphic encryption. In Proceedings
of the 2012 ACM Workshop on Cloud computing security, CCSW 2012, Raleigh,
NC, USA, October 19, 2012., pages 57–58, 2012.

22

18. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50
of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM Publi-
cations, 1986.

19. D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity, 16(4):365–411, 2007.

20. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems, A Cryptographic
Perspective. Kluwer Academic Publishers, 2002.

21. H. Minkowski. Geometrie der Zahlen. B. G. Teubner, Leipzig, 1896.
22. M. Naehrig, K. E. Lauter, and V. Vaikuntanathan. Can homomorphic encryption

be practical? In Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011, Chicago, IL, USA, October 21, 2011, pages 113–124, 2011.

23. P. Q. Nguyen. Breaking fully-homomorphic-encryption challenges. In CANS, pages
13–14, 2011.

24. T. Plantard, W. Susilo, and Z. Zhang. LLL for ideal lattices: re-evaluation of the
security of GentryHalevi’s FHE scheme. Designs, Codes and Cryptography, pages
1–20, 2014.

25. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–177. Academic Press,
1978.

26. P. Scholl and N. P. Smart. Improved key generation for gentry’s fully homomorphic
encryption scheme. In IMA Int. Conf., pages 10–22, 2011.

27. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography, pages 420–443, 2010.

28. D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT,
pages 377–394, 2010.

29. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

