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Abstract

Designing a keystream generator which utilizes Linear Feedback
Shift Registers (LFSRs) against correlation, linear attacks is a highly
challenging task. In this paper, a new framework for keystream gen-
erators is proposed. It is comprised of a set of Linear Feedback Shift
Registers (LFSRs), a Multiplicative Congruential Generator (MCG),
a vector linear function and, a Boolean function which outputs the
keystream. The framework is more generally discussed against corre-
lation attacks, linear attacks and distinguishing (linear) attacks. It is
shown that such attacks which are applicable to LFSR based keystream
generators are not possible on the proposed framework.

Key words: Correlation attack, combination generators, distinguish-
ing attack, lfsr, linear attack, multiplicative congruential generator.

1 Introduction

A binary additive stream cipher is a synchronous stream cipher in which the
keystream, the plaintext and the ciphertext are sequences of binary digits.
The output of the keystream generator z1, z2, . . . is xored to the plaintext
bit sequence m1, m2, . . . to produce the ciphertext bit sequence c1, c2, . . . .

The goal of a stream cipher is to imitate the one-time pad [1]. Equiv-
alently, the stream cipher must efficiently produce random-looking like se-
quence that is indistinguishable from a true-random sequence.

A general assumption in cryptanalysis of stream ciphers is Kerckhoff’s
principle which defines that the adversary knows everything about the cipher
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Figure 1: Nonlinear Combination Generator

except the secret information (called key K). From cryptanalysis point of
view, a good stream cipher should be resistant against a known-plaintext
attack. In a known-plaintext attack, adversary/cryptanalyst is given a plain-
text and corresponding ciphertext, and the job is to determine the key K.
For a synchronous stream cipher, this is equivalent to the problem of finding
the key K that produced the given keystream z1, z2, . . . , zn.

Linear Feedback Shift Registers (LFSR) are the most frequently used
building blocks of stream ciphers and the secret key K forms the initial
states of LFSRs. Desired properties of an output sequence of an LFSR based
keystream generator are large period (to imitate the one-time pad), large
linear complexity (to resist Berlekamp-Massey attack [1]) and good statisti-
cal properties (to imitate true-random binary sequence). These properties
are necessary but not sufficient.

In literature, nonlinear combination generator (simple combiner or com-
biner without memory) [1] is a framework for LFSR based keystream gen-
erators where several maximum-length LFSRs are combined by a nonlinear
boolean function. The generator is shown in Fig. 1. The keystream gener-
ated by this generator possesses the above three desired properties. But this
generator is vulnerable to an important cryptanalytic technique known as
correlation attack [1], [2], [3], [4], [5]. A correlation attack may be successful,
if there are found linear relations that hold with non-negligible probabili-
ties, between single output bit and a subset of state bits of the LFSR’s
involved [6]. But a well-known fact for any boolean function is its output is
always correlated to at least one linear function of its inputs. This helps a
cryptanalyst to always find such linear relations. Hence the attack always
exists against the framework irrespective of the function used.

To overcome this correlation attack, combiners with single bit memory
can be used. For such combiner, the output bit is correlated to none of the
linear functions of input bits. However, in this case sum of the two successive
output bits is shown to be correlated to at least one linear function of the
input sequences [7]. Combiner with M -bit memory is shown in Fig. 2. It
employs two functions, an output function f and a memory update function
δ. For a combiner with M -bit memory, in [7], it is shown that the existence
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Figure 2: Combiner with M-bit Memory

of a linear function of at most M + 1 successive outputs that is correlated
to a linear function of at most M + 1 successive inputs. Linear attacks [8]
exploit such correlations [6], [7], [9]. It shows that for any pair of functions
(f ,δ), such correlations always exist and hence linear attacks are always
possible against the framework of combiners with memory.

A distinguishing attack is a cryptanalytic technique in which the adver-
sary tries to determine whether a given sequence is produced by a known
cipher or if it appears to be a random sequence. In some cases a distin-
guishing attack can be used to create a key recovery attack. An overview
of distinguishing attacks against stream ciphers, in particular against the
non-linear combination generator, can be found in [10], [11], [12].

The above description shows that, using a single & simple boolean func-
tion, how difficult it is to prevent or avoid cryptanalytic techniques which
exploit correlations. For this reason, complex output functions and/or build-
ing blocks are used in the design of keystream generators. Some designers
rather choose more than one primitive to build a stream cipher; SSC2 [13]
is one such stream cipher. In this paper, following a similar approach, a
new model is proposed for keystream generator. The rest of the paper is
organized as follows: In section 2, the new framework is presented and de-
scribed. In Section 3, the model is discussed against correlation attacks,
linear attacks and distinguishing (linear) attacks and Section 4 concludes
the paper.

2 Proposed Model

The proposed model is shown in Fig. 3. It consists of k LFSRs, a multi-
plicative congruential Generator (MCG), a vector linear function F and a
Boolean function f which outputs the keystream.

A linear congruential generator (LCG) can produce a sequence {Qt}t≥0
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Figure 3: Proposed model for keystream generator

of uniform random numbers recursively by

Qt+1 = a0Qt + c0 (mod m) ∀t ≥ 0 (1)

where the variables a0, c0,m are constants: a0 is the multiplier, c0 is the
increment, m is the modulus and Q0 is the initial value or seed. When
c0 = 0, the generator is called multiplicative congruential generator (MCG).

Although these congruential generators are efficient and has good sta-
tistical properties, they are not cryptographically secure. It is proved that
with a sufficiently long run of the pseudo random sequence - one can recover
the seed in time polynomial in the bit-size of m and this is also the case
even if one outputs only the most significant bits of each Qt [14].

However, as it is said in [15], use of a linear congruential generator in
a cryptographic algorithm does not mean that the algorithm is breakable,
since it is possible none of the bits of the random numbers used by the
algorithm are ever made public.

Regardless of the various cryptanalytic techniques against these congru-
ential generators, the proposed framework, in addition to the LFSRs, uses
a multiplicative congruential generator (MCG) as another primitive by en-
suring that the keystream bits are statistically independent of the output bits
of the MCG so that the keystream bits will never reveal any information
about the output bits of MCG.

For any non-zero initial value Q0 (< m), the output sequence {Qt}t≥0

of a multiplicative congruential generator attains its maximal period m− 1
when m is a prime and a0 is a primitive root modulo m [16]. In particular,
if the modulus m is a Mersenne prime (i.e., m = 2w − 1 is a prime for some
integer w ≥ 2), in one cycle, the periodic sequence {Qt}m−2

t=0 visits each non-
zero w-bit number exactly once (except m). The description of the proposed
framework for keystream generators is below.

Let Li, Pi(x), xi,t denote length, primitive connection polynomial and
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the output bit at time t for ith LFSR respectively for all i ∈ {0, 1, · · · , k−1}.
For each t ≥ 0, output bits of all LFSRs are denoted by the vector Xt =
(x0,t, x1,t, . . . , xk−1,t). For the MCG, let the modulus m be a w-bit Mersenne
prime i.e., m = 2w−1 is a prime for some integer w ≥ 2 and the multiplier a0

be a primitive root modulo m. Then the output sequence {Qt}t≥0 with non-
zero initial value Q0 obtains full period m− 1 and each sequence {qt,j}m−2

t=0

for j ∈ {0, 1, . . . , w − 1} is balanced where Qt = (qt,w−1, qt,w−2, . . . , qt,0) for
all t ≥ 0. If the primitive polynomials for LFSRs, the multiplier & the
Mersenne prime for the modulus of the MCG are properly chosen then large
period can be obtained for the keystream sequence.

The output Qt from the MCG is passed to a vector-valued function F
which outputs an l-bit vector Bt = (bt,l−1, bt,l−2, · · · , bt,0). Assume all l
component functions of F are linear boolean functions on w-variables de-
noted by S0 = (s0,w−1, s0,w−2, . . . , s0,0), S1 = (s1,w−1, s1,w−2, . . . , s1,0), . . . ,
Sl−1 = (sl−1,w−1, sl−1,w−2, . . . , sl−1,0)1. Therefore, each bt,j is a linear com-
bination of qt,w−1, qt,w−2, . . . , qt,0. The keystream bit zt is obtained by ap-
plying the output boolean function f on (Xt, Bt). Also, assume for each
j ∈ {0, 1, . . . , l − 1}, weight of Sj is at least two (ensures that no bit qt,j is
directly passed to the output function instead xor-sum of at least two qt,js
are passed) and weights of S0, S1, . . . , Sl−1 are all distinct (ensures that not
only all component functions of F are distinct linear functions but also any
non-zero linear combination of l′(1 ≤ l′ ≤ l) component functions of F must
involve at least l′ distinct variables). Further, it is assumed that k > l ≥ 1
and the output boolean function f : {0, 1}k+l → {0, 1} (with k > l ≥ 1) is
balanced and correlation immune of order k. Of course, f must have other
cryptographic properties such as good nonlinearity, algebraic degree et al.

In any LFSR based keystream generator, such as nonlinear combination
generator, avoiding correlations between keystream bits and the input bits
of the output function is a highly challenging task and it is impossible for
the nonlinear combination generator. Further, it is a well-known fact that
various types of correlation attacks exploit such correlations to recover states
of the LFSRs involved. To avoid such correlations between keystream bits
and the input bits (which are output from LFSRs) of the output function,
in the proposed framework, the keystream bit is carefully defined from the
well-chosen output function f . The central idea in defining the keystream
bit zt is that for each zt, the output function must involve output bits of all

1Given any n-bit vector S = (sn−1, sn−2, . . . , s0), a linear function ls : {0, 1}n →
{0, 1} is defined as ls(xn−1, . . . , x0) = sn−1xn−1 ⊕ sn−2xn−2 ⊕ · · · ⊕ s0x0) for all x =
(xn−1, xn−2, . . . , x0) ∈ {0, 1}n.
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LFSRs and one or more independent binary uniform random variables. For
this reason,

1. the output of MCG is filtered using distinct linear boolean functions
to produce binary independent uniform random variables2.3

2. the output function f (with k > l ≥ 1) is assumed to be a resilient
function of order k so that any linear approximation (that use single
or multiple keystream bits) must involve one or more independent
uniform random variables along with the output of at least one LFSR.

The following assumptions are made about the proposed framework:

1. for each j ∈ {0, 1, . . . , w − 1}, as the sequence {qt,j}m−2
t=0 is balanced

(number of zeros and number of ones are same), Pr[qt,j = 0] = 1
2 =

Pr[qt,j = 1].

2. the k-bit random variables Xt1 , Xt2 , . . . , XtM all are independent,
where t1, t2, . . . tM are not necessarily be consecutive.

3. the w-bit random variables Qt1 , Qt2 ,. . .QtM all are independent, where
t1, t2, . . . tM are not necessarily be consecutive.

4. the l-bit random variables Bt1 , Bt2 , . . . , BtM all are independent, where
Bt = F (Qt) for all t, and t1, t2, . . . tM are not necessarily be consecu-
tive.

5. for a given Bt = (bt,l−1, bt,l−2, . . . , bt,0), bt,l−1, bt,l−2, . . . , bt,0 all are in-
dependent binary uniform random variables because they are output
from different linear functions on the same input Qt.

6. from the 5th assumption, given any l-bit vector D = (dl−1, . . . , d1, d0)
and any Bt, from piling-up principle, the variable defined by the dot
product bt = D · Bt = dl−1bl−1,t ⊕ · · · ⊕ d0b0,t is a binary uniform
random variable.

As the output function f is resilient of order k, no linear function of the
output bits of LFSRs is correlated to any keystream bit. Further, k > l
implies that no linear function of Bt = (bt,l−1, bt,l−2, · · · , bt,0) is also cor-
related to any keystream bit. Hence, the keystream bit zt is statistically

2Correlation between two distinct linear functions is zero.
3The output of MCG is linearly filtered because if it is nonlinearly filtered, linear

approximations are possible on the nonlinear filter F of MCG.
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independent of both the output bits LFSRs and linearly filtered bits from
the output of MCG. It ensures that, despite the amount of keystream bits
available, either the LFSRs alone or MCG alone can not be crypt-analyzed.

3 Proposed model against Correlation, Linear and
Linear Distinguishing Attacks

In this section, the proposed model is discussed against correlation, linear
and distinguishing (linear) attacks. Against LFSR based keystream genera-
tors, in the literature standard frameworks are available to perform these at-
tacks and all of them exploit linear relations between one or more keystream
bits and the corresponding inputs of the output function (that come from
LFSRs) that hold with non-negligible probability. For the proposed gener-
ator, it is shown that such linear relations are always true with probability
exactly half and it is achieved by the way the keystream bit is defined.

3.1 Correlation Attacks

As the output function f is resilient of order k, the keystream bit zt can not
be linearly approximated by any of at most k inputs of f . In particular, zt

can not be approximated by any linear combination of outputs of LFSRs
i.e., for any non-zero C = (ck−1, · · · , c1, c0) ∈ {0, 1}k,

Pr[ck−1xk−1,t ⊕ · · · ⊕ c0x0,t = zt] =
1
2

(2)

and hence the keystream bit is statistically independent of the output bits
of all LFSRs. It ensures that the proposed framework avoids any correlation
(fast) attack.

As f is resilient of order k, any linear approximation to zt must involve
at least k +1 input variables of f . Consider a vector A = (C, D) ∈ {0, 1}k+l

with hamming weight u + v > k, u > 0, v > 0, where C = (ck−1, . . . , c1, c0),
D = (dl−1, . . . , d1, d0). Further assume that weight of C is u so that weight
of D becomes v. Then,

Pr[ck−1xk−1,t⊕· · ·⊕c0x0,t⊕dl−1bl−1,t⊕· · ·⊕d0b0,t = zt] =
1
2

+ε, ε > 0 (3)

As weight D is v (> 0), in (3), at least one bj,t is always exist.
Let σt = ck−1xk−1,t ⊕ · · · ⊕ c0x0,t and bt = dl−1bl−1,t ⊕ · · · ⊕ d0b0,t.

Then σt can be generated by using a single LFSR, denote it as LFSRπ,
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with the connection polynomial π(x) = π0 + π1x + · · · + πLπxLπ of degree
Lπ =

∑k−1
i=0 ciLi which is the lcm of the connection polynomials of LFSRs

for which ci = 1. Hence4,

Pr[σt ⊕ bt = zt] =
1
2

+ ε, ε > 0 (4)

As Bt, Bt+1, Bt+2, . . . are independent, bt, bt+1, bt+2, . . . are independent uni-
form random variables. Hence given any t1, t2, . . . tN , need not be consecu-
tive, the set of linear approximations

Pr[σt1 ⊕ bt1 = zt1 ] = 1
2 + ε,

Pr[σt2 ⊕ bt2 = zt2 ] = 1
2 + ε,

... (5)
Pr[σtN ⊕ btN = ztN ] = 1

2 + ε,

must involve N independent uniform random variables viz., bt1 , bt2 , . . . , btN .
A cryptanalyst may try to exploit (4) to recover a state of the LFSRπ

by performing a correlation attack. However, as bt1 , bt2 , . . . , btN are inde-
pendent uniform random variables, the framework defeats any correlation
(fast) attack (because he must decode the bits bt1 , bt2 , . . . , btN ).

3.2 Linear Attacks

In linear attacks, a cryptanalyst tries to find a linear function of some suc-
cessive keystream bits that is correlated to a linear function of some succes-
sive (linear) inputs of the function f . However, for the proposed generator,
given any M keystream bits zt1 , zt2 , . . . , ztM (not necessarily be consecutive)
and corresponding inputs Xt1 , Xt2 , . . . XtM , it is shown that xor-sum of the
keystream bits is not correlated to the xor-sum of corresponding inputs.

As f is resilient of order k, for any non-zero Ct = (ct,k−1, ct,k−2, . . . , ct,0) ∈
{0, 1}k, Pr[Ct · Xt = zt] = 1

2 . Define a random variable Yt = Ct · Xt ⊕ zt.
Then Yt is a uniform random variable. As it is assumed that the variables
Xt1 , Xt2 , . . . , XtM are independent (and hence Yt1 , Yt2 , . . . , YtM are also),
from piling-up principle,

Pr[Yt1 ⊕ Yt2 ⊕ · · · ⊕ YtM = 0] =
1
2

(6)

4In correlation (fast) attacks, in general, the term bt does not exist in (4)
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i.e., P r[Ct1 ·Xt1 ⊕ Ct2 ·Xt2 ⊕ · · · ⊕ CtM ·XtM =

zt1 ⊕ zt2 ⊕ · · · ⊕ ztM ] =
1
2

(7)

It shows that the proposed framework avoids linear attacks which exploit
linear relations between keystream bits and corresponding linear inputs of
the output function f which are true with probability different from half.

3.3 Linear Distinguishing Attacks

In linear distinguishing attacks against LFSR based generators, a crypt-
analyst tries to find a linear approximation to the nonlinear output func-
tion (which is always possible for any nonlinear boolean function). He/she
also tries to find a linear combination of the linear process that vanishes
(one such linear relation always exists for any LFSR sequence). Finally,
the cryptanalyst applies the linear combination to the ciphers output, and
tries to find traces of the distinguishing property. In particular, a crypt-
analyst looks for some linear combination of keystream bits which vanishes
with non-negligible probability (and in this process, the LFSR’s connection
polynomial helps the cryptanalyst in obtaining such a linear combination).
Nevertheless for the proposed framework, it is shown that any such linear
combination of keystream bits vanishes with probability exactly half and
hence the framework avoids standard linear distinguishing attacks available
for LFSR based generators.

Consider a linear approximation to the output function f defined by the
vector A = (C, D) ∈ {0, 1}k+l with hamming weight u + v > k, u > 0, v > 0
and weight of C = (ck−1, · · · , c1, c0) is u and weight of D = (dl−1, · · · , d1, d0)
is v. Then, the output sequence {σt} of the LFSR, LFSRπ, with connection
polynomial π(x) = π0 + π1x + · · ·+ πLπxLπ satisfies the recurrence relation

Lπ⊕

j=0

πjσt−j = 0 ∀t ≥ Lπ (8)

and from (4), σt ⊕ bt ⊕ et = zt where et is a random (noise) variable with
Pr[et = 0] 6= 1

2 6= Pr[et = 1]. Therefore,

Lπ⊕

j=0

πjzt−j =
Lπ⊕

j=0

πjbt−j ⊕
Lπ⊕

j=0

πjet−j (9)

Let the noise variables ej be independent and Y1 =
⊕Lπ

j=0 πjbt−j , Y2 =⊕Lπ
j=0 πjet−j . It is apparent that Y1, Y2 are independent and Pr[Y1 = 0] = 1

2
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(because bjs are independent), Pr[Y2 = 0] 6= 1
2 . Hence, from piling-up prin-

ciple, Pr[
⊕Lπ

j=0 πjzt−j = 0] = 1
2 . This is true not only for the polynomial

π(x) but also for any connection polynomial of the LFSR that generates
the sequence {σt}. Hence, any linear combination of keystream bits that is
defined by the LFSR’s (involved in the attack) connection polynomial van-
ishes with probability exactly half 5 and therefore the framework avoids any
linear distinguishing attack that exist for LFSR based keystream generators
.

Finally, as the keystream bit zt is statistically independent of Bt =
(bt,l−1, bt,l−2, · · · , bt,0), it will not reveal any information about bt,js. In par-
ticular, zt will never reveal any information about Qt = (qt,w−1, qt,w−2, · · · , qt,0).
Similarly, as above, it can be shown that

Pr[Dt1 ·Bt1 ⊕Dt2 ·Bt2 ⊕ · · · ⊕DtM ·BtM =

zt1 ⊕ zt2 ⊕ · · · ⊕ ztM ] =
1
2

(10)

where Dt1 , Dt2 , . . . , DtM are non-zero l-bit vectors and t1, t2, . . . , tM are need
not be consecutive.

As the equations (4), (7),(9) are not exploitable to utilize the existing
frameworks of correlation, linear and linear distinguishing attacks, it is con-
cluded that the proposed framework avoids all of these attacks.

4 Conclusion

A new framework for keystream generators is proposed. In addition to
the conventional LFSRs, the framework also uses another primitive viz.,
Multiplicative Congruential Generator. The framework is described and the
keystream bit is carefully defined from the output function which is resilient
of order k (where k is the number of LFSRs in the framework) so that any
linear relation between a single keystream bit and outputs of one or more
LFSRs which holds with non-negligible probability must involve one or more
independent uniform random variables. It makes the proposed generator to
avoid any correlation (fast) attack which tries to recover states of the LFSRs
involved in the attack.

Against linear attacks, it is shown that the xor-sum of the keystream bits
(not necessarily be consecutive) is not correlated to the xor-sum of the corre-
sponding linear inputs of the output function. Against linear distinguishing

5In linear distinguishing attacks, in general, the term
⊕Lπ

j=0 πjbt−j does not exist in
(9).
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attacks, it is shown that any xor-combination of the keystream bits that
is defined by the LFSR involved in the distinguishing attack vanishes with
probability exactly half. As a result, the standard frameworks of both linear
and linear distinguishing attacks for LFSR based keystream generators are
not applicable to the proposed.

It is also shown that the xor-sum of the keystream bits is not correlated
to the xor-sum of the corresponding inputs (outputs from MCG) of the
output function.

Despite the amount of keystream bits available, the proposed framework
ensures that the keystream bit is statistically independent of the output bits
of all LFSRs and the output of MCG so that crypt-analyzing either LFSRs
alone or MCG alone is not possible.
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