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Abstract

Leakage-resilient cryptography builds systems that withstand partial
adversary knowledge of secret state. Ideally, leakage-resilient systems
withstand current and future attacks; restoring confidence in the secu-
rity of implemented cryptographic systems. Understanding the relation
between classes of leakage functions is an important aspect.

In this work, we consider the memory leakage model, where the leak-
age class contains functions over the system’s entire secret state. Standard
classes include functions with bounded output length, functions that re-
tain (pseudo) entropy in the secret, and functions that leave the secret
computationally unpredictable.

Standaert, Pereira, and Yu (Crypto, 2013) introduced a new class of
leakage functions they call simulatable leakage. A leakage function is
simulatable if a simulator can produce indistinguishable leakage without
access to the true secret state. We extend their notion to general appli-
cations and consider two versions. For weak simulatability: the simulated
leakage must be indistinguishable from the true leakage in the presence of
public information. For strong simulatability, this requirement must also
hold when the distinguisher has access to the true secret state. We show
the following:

e Weakly simulatable functions retain computational unpredictability.
e Strongly simulatability functions retain pseudoentropy.

e There are bounded length functions that are not weakly simulatable.
e There are weakly simulatable functions that remove pseudoentropy.

e There are leakage functions that retain computational unpredictabil-
ity are not weakly simulatable.
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and recommendations are those of the author and are not necessarily endorsed by the United
States Government.

tBoston University and MIT Lincoln Laboratory Email: bfuller@cs.bu.edu.

fMIT Lincoln Laboratory Email: ariel.hamlin@ll.mit.edu



1 Introduction

Cryptography relies on secret randomness, such as keys. It is crucial to properly
model how an adversary can interact with and observe this secret state. As an
example, when defining security of a block cipher, an adversary may ask for
encryption of arbitrary plaintexts and see the corresponding ciphertext.. The
secret key and randommness used by the algorithm are assumed to be hidden
from the adversary.

Unfortunately, the adversary rarely uses cryptographic systems as black-
boxes, exploiting side-channel information when possible. As many works have
shown, side-channel attacks have been devastating to existing deployed cryp-
tosystems [Koc96), [KJJ99, BBO5, BMO0G, [(OST06l TOS10], [GST13].

Completely eliminating side-channel attacks seems hopeless. The crypto-
graphic community began designing systems that remain secure in the presence
of side-channel attacks. In the theory community, the work of Ishai, Sahai, and
Wagner [ISW03] showed how to transform any circuit into one that withstood
adversarial knowledge of some constant fraction of the wire values. The work
of Micali and Reyzin [MR04] considered arbitrary leakage functions of bounded
output length.

There are two crucial aspects to defining a leakage function: what the func-
tion computes on, and what type of computations the function can perform.
We refer to these aspects as the leakage model and leakage class respectively.

Leakage Models There are two commons models: circuit leakage assumes
the leakage function operates on a particular circuit implementation of a com-
putation. The leakage function is allowed (with restrictions) to compute on
individual gates and wires in the circuit. Memory leakage allows the leakage
function to leak on secret state and ignores the intermediate states of compu-
tation specific to the implementation of the algorithmE Circuit leakage is used
in conjunction with leakage classes restricted to local computations. Memory
leakage is used in conjunction with functions that access all state simultane-
ously (but with some restriction on the output). Results in these models are
not easily compared. We focus on the memory leakage model but briefly discuss
simulatable leakage in the context of circuit leakage in Appendix [A]

Leakage Classes We now describe common leakage classes in the memory
leakage model.

e Bounded Length [MR04]. The leakage function is an arbitrary function
L of input, secret state and randomness. The only limitation on the
function is a bounded output length. A natural broadening of this class is

LIf the leakage class is sufficiently powerful, the particular implementation of an algorithm
is irrelevant. The leakage function can recompute a given implementation of the functionality.
This is the case for all leakage classes we consider in the memory leakage model.



the set of all functions that preserve min-entropy of the secret stateE| We
denote this class of leakage functions by bLEN.

e Indistinguishable [DP0§|] Bounded length leakage is easy to reason about
because secret state has entropy conditioned on the output of the leakage
function. Unfortunately, many leakage functions (such as the power trace
of computation) are quite long. Furthermore, in many applications the
secret key does not have information-theoretic entropy (for example, a
Diffie-Hellman key conditioned on the public transcript). A leakage func-
tion L is an indistinguishable leakage function if the secret state looks
like it has entropy conditioned on £ (we use HILL entropy [HILL99]).
Note this class contains bounded length functions. We denote this class
of leakage functions by Indist. We also use a weaker notion of pseudoen-
tropy called relaxed HILL entropy [Reyll] and denote the class of leakage
functions that preserve relaxed HILL entropy as rIndist.

e Hard-to-invert [DKL09]. The indistinguishable leakage model is too
restrictive for many applications. As an example, a symmetric cipher key
is often uniquely determined conditioned on a few plaintext/ciphertext
pairs. It is usually possible to verify a guess for the key and thus, it is
not indistinguishable from any high entropy distribution. A minimum
condition is that secret state is hard to guess given leakage. This is known
as hard-to-invert leakage. We denote this class of functions as hINV.

e Simulatable [SPY13]. Standaert, Pereira, and Yu recently introduced
simulatable leakage. Consider some private state K with some public in-
formation Y (such as a public key or plaintext/ciphertex pairs). A leakage
function is simulatable if a simulator S can create a random variable S(Y)
that is indistinguishable from £(K). Simulatable leakage is a combination
of ideas from practice and theory. It allows simulators to be proposed for
actual leakage functions. Then practitioners can try and distinguish sim-
ulator output from the true leakage. Indeed, the simulator proposed by
Standaert et al. was subsequently broken [LMOT™14]. The work of Stan-
daert, Pereira, and Yu also shows how to construct a stream cipher that
withstands simulatable leakage from a pseudorandom generator that with-
stands simulatable leakage.

Containments between the first three leakage classes are understood. (bLEN C
Indist C hINV.) Simulatable leakage is a natural definition. Ideally, simulat-
able leakage would preserve security as an adversary could use the simulated
leakage (and execute their attack with similar success probability) and therefore
leakage would not harm application security. The goal of this work is to clarify
this intuition.

We consider two versions of simulatable leakage: first where the simulated
leakage must be consistent with only the public system state, and second where

2If the output length of the leakage function is significantly less than the entropy of the
secret state, then bounded length leakage functions retain average min-entropy.



the simulated leakage must be consistent with both the public and private sys-
tem state. We call these classes weakly simulatable (wSIM) and strongly simu-
latable (sSIM) respectively.

Meaningfulness of Weakly Simulatable Leakage Weakly simulatable leak-
age is not always meaningful. As example, consider an adversary trying to
guess a private key K with no public information. The identity function is a
weakly simulatable. A simulator for the leakage can sample a uniform random
key K’. We call this situation leak-and-resample. To prevent this, we assume
it is difficult to sample a key that is consistent with the public information
(Definition B.6)). This is the case in many applications but not all. We call this
setting—borrowing terminology from zero knowledge—witness hiding.

Our contribution: We connect the notion of simulatable leakage to standard
leakage models. A graphical description of our results is in Figure[I[] We show
five results:

e Lemma 1} Strong simulatability implies relaxed HILL entropy. That is,
sSIM C rIndist.

e Lemma [5.IF There are simulatable leakage functions that remove all pseu-
doentropy from private state. That is, wSIM Z rIndist.

e Lemma There are bounded-length leakage functions that are not sim-
ulatable. bLEN ¢ wSIM.

e Lemma Simulatable leakage preserves unpredictability. wSIM C hINV.

e Lemma There are hard-to-invert leakage functions that are not sim-
ulatable. hINV € wSIM.

Discussion: These results show that weakly simulatable leakage is properly
contained in hard-to-invert leakage. This suggests it may be possible to build
cryptographic primitives for weakly simulatable leakage that have eluded hard-
to-invert leakage. Building crypto systems secure against hard-to-invert leakage
been difficult [FHNT12|, suggesting that simulatable leakage is a promising al-
ternative.

This work places simulatable leakage in the context of other memory leakage
classes. The complementary question is how simulatable leakage fits with pre-
viously considered leakage classes in the circuit model. We discuss definitional
considerations for simulatable leakage in the circuit model in Appendix [A] Pro-
viding results in the circuit model is more complicated as one must consider the
implementation of a functionality. We leave this an open problem.

In this work we show that sSIM is contained in rIndist. It seems natural
that simulatable leakage is related to indistinguishability (since it is an indis-
tinguishability based definition). Settling the containment with Indist is an
interesting question.
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Figure 1: Containment between difference leakage notions. The relations be-
tween simulatable leakage are shown in this work. Arrows imply containment
and arrows with slashes imply there is a function in one class not contained in
the other class.

Organization: The remainder of the paper is organized as follows. We begin
by covering preliminaries and definitions of memory leakage classes in Section
In Section [3] we define simulatable leakage and extend it to general applica-
tions (the definition of [SPYT13] is specific to symmetric ciphers). In Section dl
we discuss strong simulatability and pseudoentropy. In Sections[5and [6] we con-
nect weakly simulatable leakage to indistinguishable and hard-to-invert leakage
respectively.

2 Preliminaries

We usually use upper case letters for random variables and lower case letters
for particular outcomes. U, denotes the uniformly distributed random variable
on {0,1}". Unless otherwise noted logarithms are base 2.

Entropy Notions The min-entropy of X is Hoo(X) = —log(max, Pr[X =
z]). Let |W| be the size of the support of W that is |[W| = [{w| Pr[W = w] > 0}|.



Definition 2.1. [DORS08, Section 2.4] The average (conditional) min-entropy
of X given'Y 1is

I:Ioo(X\Y) =_ log(y]gy mg;axPr[X =z|Y =y]).

Distance Notions The statistical distance between random variables X and
Y with the same domain is A(X,Y) = 33 |Pr[X = z] — Pr[Y = z]|. For
a distinguisher D (or a class of distinguishers D) we write the computational
distance between X and Y as 6°(X,Y) = |[E[D(X)] — E[D(Y)]|. We denote by
Ds... the class of randomized circuits which output a single bit and have size
at most sgec-

We use a slightly nonstandard notion of a one-way function is hard on a
particular input distribution (instead of the uniform distribution)

Definition 2.2. Let K be a distribution over space M and let f : M —
{0,1}*. We say that f is (s,e, K)-one-way if for all A of size at most s,
Prok[f(A(f(2))) = f(z)] < e

2.1 Pseudoentropy

In this section, we present notions of pseudoentropy that are used to describe
leakage classes. Pseudoentropy is the computational analogue of min-entropy.
In general, a pseudoentropy notion describes how much entropy a random vari-
able has to computationally bounded adversaries. The most common notions of
pseudoentropy consider indistinguishability from a high entropy random vari-
able and unpredictabilityﬂ

Indistinguishability We use the common notion of HILL entropy [HILL99]
extended to the conditional setting [HLROT].

Definition 2.3. [HLROY Let (K,Y) be a pair of random variables. K has
relaxed HILL entropy at least k conditioned on'Y, denoted H{™ . (K|Y) >k
if for each y € Y there exists distributions Z, giving rise to a joint distribution
(Z,Y), such that Hoo(Z|Y) > k and 6Pent (K,Y),(Z,Y)) < €cnt.

One of the primary uses of HILL entropy is that applying a randomness
extractor [NZ93|] yields pseudorandom bits [BSW03, Lemma 4.2]. There are
many notions of indistinguishability based pseudoentropy [BSWO03 [Sko14]. One
significant drawback of conditional HILL entropy is that revealing one bit can
significantly decrease HILL entropy [KPW13]. Relaxed HILL entropy allows
replacement of the condition as well in the indistinguishability game.

Definition 2.4. [GWT11, [Reyl]] Let (K,Y) be a pair of random variables. K
has relaxed HILL entropy at least k conditioned onY , denoted HFM-T1X (K|Y) >

€ent,Sent

k if there exists a joint distribution (K',Y') such that Hoo(K'|Y") > k and
§Peent (K, Y), (K", Y")) < €ont-

3There are also notions of pseudoentropy that consider compressibility of a random vari-
able. We do not discuss this notion in this work. See [Yao82 [BSWO03| [HLROT].



Relaxed HILL entropy is a weaker notion than HILL entropy (by restricting to
the joint distributions (K’,Y”) where Y’ =Y).
Proposition 2.5. HML-Tx (1Y) > fHILL - (K|Y).

€ent,Sent €ent,Sent

However, it is still useful as applying a randomness extractor still yields
a pseudorandom output [Full5l Theorem 2.2.4]. Furthermore, relaxed HILL
entropy obeys a chain rule unlike traditional HILL entropy [GW11l [Rey11].

Unpredictability One can also consider the unpredictability of a random
variable by computationally bounded adversaries. This is captured by the fol-
lowing definition [HLROT]:

Definition 2.6. Let (K,Y) be a pair of random variables. We say that K has
unpredictability entropy at least k conditioned on'Y, denoted by Hew® .. (K[Y) >

k, if for all joint distributions (Z,Y) such that §P=une (K,Y),(Z,Y)) < €unp,
and for all circuits T of size Synp,

Pr[Z(Y)=2Z] < 27"
HILL entropy is at least as large as unpredictability entropy.
Proposition 2.7. [HLR07, Lemma 8] HI'™(K|Y) > HEF(K|Y).

The work of Hsiao, Lu, and Reyzin shows they can be separated by an arbi-
trary polynomial in the conditional case [HLRO7, Lemmas 2 and 3]. However, it
is possible extract from unpredictability entropy using a randomness extractor
with a reconstruction procedure [HLRO7, Lemma 6].

In our results, we use of the fact that HILL and unpredictability entropy
are unchanged if a polynomial size circuit is applied to the condition. In the
information theoretic setting this is known as the data processing inequality.

Lemma 2.8. Let S be a circuit of size Sgim. Then

Hg;[:isent_ss'i?n (KlS(Y)) > ngg:tl;sent (KlY)
Proof. Let HI™  (K|Y') = k. Suppose for the sake of contradiction that for
all joint distributions Z, S(Y) such that Heo(Z|S(Y)) > k there exists D €
D such that

Sent—Ssim

D((Z7S(Y))7 (K’S(Y )) > €ent-

Let Z',Y be a distribution such that H Hoo(Z'|Y) > k. By the information-
theoretlc data-processing inequality, Hoo(Z'|S(Y)) > k. Thus, there exists a
D eD such that D((Z,S(Y)), (K,S(Y))) > €ens. Fix one such D.
Consider the distinguisher D’(z, y) D(z, S( )) (of size at most Sent). Then
D'(K,Y),(Z',Y)) > D((K,S(Y)),(Z',5(Y)) > €cnt. This is a contradiction
and completes the proof. O

Sent —Ssim

This fact also holds for relaxed HILL entropy and unpredictability entropy.



Lemma 2.9. Let S be a circuit of size Sgim. Then

HHILL-rlx (K|S(Y)) 2 HHILL-rlx (K|Y)

€ent;Sent —Ssim €ent,Sent

Proof. Let HMM-T (K|Y) = k. Suppose for the sake of contradiction that

€ent,Sent

for all join distributions K’,Y” such that Ho(K'|Y’) > k there exists D €
D such that

D((K,S5(Y)),(K',Y")) > €ent-

Let X', Z" be a distribution such that Hoo(X'|Z') > k. By the information-

theoretic data-processing inequality, Hoo (X'|S(Z’)) > k. Thus, there exists a
DeD such that

D((K7 S(Y))7 (X/7 S(Z/))) > €ent-

Fix one such D. Consider the distinguisher D’(k,y) = D(k, S(y)) (of size at
most Sent). Then

D/((Kv Y)’ (X/7 Z/)) 2 D((Kv S(Y))7 (Xla S(Z/))) > €ent-
This is a contradiction and completes the proof. O

Lemma 2.10. Let S be a circuit of size Sgim. Then

HEY (K[|S(Y)) > HZ® . (K]Y).

€ent,Sent —Ssim €ent Sent

Proof. Let HZY, .., (K|Y) = k. For the sake of arriving at a contradiction,
assume that for all joint distributions Z,Y be a joint distribution such that
§Psunp=ssim (K, S(Y)), (Z,S(Y)) < €ent there exists T of size at most Sunp—Ssim
such that Pr[Z(S(Y)) = Z] > 27k,

Consider some distribution Z,Y such that 6P=un» ((K,Y),(Z,Y) < ecnt-
Then also § Psune=ssim (K, S(Y)), (Z,S(Y))) < €ent (by the argument in Lemma 2.9)).
Thus, there exists an Z of size at most Sypnp — Ssim such that Pr[Z(S(Y)) = Z] >
27k, Consider the following inverter Z’ (of size at most sunp): Z'(2) = Z(S(2)).
Then

Pr[Z/(Y) = Z]Pr[Z(S(Y)) = Z] > 27",

This is a contradiction and completes the proof. O

2.2 Leakage Models

In this section we focus on memory leakage models — the models in which our
results focus. We briefly review circuit leakage models in Appendix [A]



Bounded Leakage: This leakage class allows an arbitrary £ with limited
output length [DPO§].

Definition 2.11. Let K be a discrete random wvariable over space x1. The
randomized map L : x1 — {0,1}* is an £-bounded leakage function if for L(x)
takes at most 2° values for any choice x € x1 and any choice of random coins

of L.

For convenience, we refer to this class of leakage as bLEN. Bounded leakage
is a natural definition. If a random variables starts with min-entropy k, we
know that after £ bits of leakage it has remaining min-entropy k& — ¢ [DORSO0S|
Lemma 2.2]. That is, if Hoo (K) > k, then Hoo (K|£(K)) > k—£. Unfortunately,
bounded length leakage is not representative of reality. Many side channels take
values in a universe larger than the key itself.

Indistinguishable Leakage In many applications, the secret state has no
true information conditioned on the public state of the algorithm. For exam-
ple, the secret key of a symmetric cipher has little entropy after a few plain-
text/ciphertext pairs. However, it often has pseudoentropy. Dziembowski and
Pietrzak construct a pseudorandom generator secure against this type of leak-
age [DP08]. Indistinguishability leakage retains high entropy (we refer to this
class of functions as Indist):

Definition 2.12. Let K be a random variable and let £ be a randomized map. L
is a (k, €ent, Sent)-indistinguishable leakage function if HIM = (K|L(K)) > k.

€ent; Sent

We refer to leakage functions that retain relaxed HILL entropy as rIndist.

Hard to invert leakage For a scheme with secret key K, the minimal no-
tion of security is that an adversary should not be able to predict the value of
K. This is model is known as the auxiliary input [DKL0O9] or hard-to-invert
leakage [FHNT12]. We refer to this class of functions as hINV:

Definition 2.13. Let K be a random variable over space x1. The randomized
map L is a (k, €unp, Sunp)-hard-to-invert leakage if He,v, s.., (K|L(K)) > k.

unp

We make no condition in the above definition about K unconditionally. For
K to be unpredictable with £(K) it must have unconditional unpredictability
at least kE| Hard-to-invert leakage seems like the weakest leakage class for which
applications can retain security.

3 Simulatable Leakage

Standaert, Pereira, and Yu [SPY13] introduce a new leakage class designed
to be achievable and verifiable. Simulatable leakage is leakage that can be

4In the unconditional setting, there is a polynomial time circuit that predicts K with
probability 27 Hee(K), That is, Hoo (K) = He? (K).

€unpsSunp



simulated without access to the true secret state. We first present the definition
of Standaert, Pereira, and Yu [SPY13]. This definition is specific to the setting
of a block cipher (denoted BC) in the presence of leakage function L. See
[SPY13] for more information on block ciphers and discussion.

Game sim(q, D, BC, L, S,b).
The challenger selects two random keys k and k* in {0,1}"™. The output of
the game is a bit b’ computed by D based on the challenger responses
to a total of at most ¢ adversarial queries of the following type:

Query Response if b =0 Response if b =1

Enc(x) BCy(x), L(k, ) BCy(x), S(k*,z, BCy(x))
and one query of the following type:

Query Response if b =0 Response if b =1
Gen(z, ) S(z,x, k) S(z,x, k*)

Definition 3.1. [SPY13, Definition 1] A block cipher BC with leakage function
L has (€, Ssim, Ssec) q-simulatable leakages if there is a simulator S, of size Sgim,
for every D, of size Sgec, , we have:

d(sim(q,D,BC, L, S,1),sim(q,D,BC, L, 5,0)) <e.

3.1 Extending Simulatable leakage to general applications

Definition [3.1] is specialized to the setting of symmetric-key cryptography. In
particular, the second type of query exists because the authors argue that sym-
metric keys are often derived from sources that themselves have leakage. It is
not clear how to generalize this type of query to arbitrary leakage settings. In
addition, providing a single key to S as consistent state is limiting, it is not
clear why the simulator should not be allowed to keep state between leakage
queries. Furthermore, the fact that leakage is provided with each output of the
block cipher is not a necessary requirement. There may multiple leakage queries
for each block cipher output or vice versa. Furthermore, the distinguisher does
not have any access to k when trying to decide if the leakage is legitimate. In
different applications, the distinguisher may have partial access to the secret
state k. We present two definitions modeling the two extremes, one where the
distinguisher has full access to the secret and one the secret is completely hid-
den. Our definitions consider two random variables K and Y that represent
the private and public state of the cryptosystem (but we do not include this
distinction in the definitions).

Definition 3.2. Let (K,Y) be a pair of random variables over x1 x x2. The
randomized map L is an (€, Ssim, Ssec)-weakly simulatable leakage function if
there exists a simulator S of size at most Sgip, such that

§P=eee (Y, L(K)), (Y S(V)) < e.

10



Definition 3.3. Let (K,Y) be a pair of random variables over x1 x x2. The
randomized map L is an (€, Ssim, Ssec)-strongly simulatable leakage function if
there exists a simulator S of size at most Sgip, such that

50w (K.Y, L(K)), (K.Y, S(Y))) < e.

We use wSIM and sSIM as shorthand for weakly and strongly simulatable
classes respectively.

Proposition 3.4. If L is (€, Ssim, Ssec)-Strongly simulatable leakage function,
then L is a (€, Ssim, Ssec)-weakly simulatable. That is, wSIM C sSIM.

Notes: These definitions do not model secret key updates. We assume a single
leakage query. Alternatively, we can think of an adversary that prepares all of
their multiple leakage queries simultaneously. This is slightly weaker than the
definition of Standaert et al.

We also assume that Y incorporates all public values of the scheme. This
may include a public-key, ciphertexts, signatures, etc. In the work of Standaert
et al., this is assumed to be the input and output of the block cipher with the
true key.

3.1.1 Meaningfulness of weakly simulatable leakage

Some restriction on Y is necessary to make weakly simulatable leakage mean-
ingful. If Y is empty, the leakage £(K) = K is simulatable by sampling a fresh
secret key K'. However, there is no security remaining in the system. In partic-
ular, in this setting, there is no min-entropy, HILL entropy, or unpredictability
entropy remaining in the key. Indeed, when there is no public state Y, any poly-
nomial time function is simulatable (by sampling a fresh k < K and outputting
f(k)). This gives us the following proposition:

Proposition 3.5. Let K be a random variable over x1 samplable by procedure
Sample of size Ssam and let Y be empty. Let f : x1 — {0,1}* be a function
computable by a circuit of size |f|. Then f is a (0, Ssim, 00)-weakly simulatable
leakage if Ssim > | f] + Ssam.-

It is not just empty Y that presents a problem to weakly simulatable leak-
age. It may be possible to leak the entire secret even when it is information-
theoretically determined by the condition Y. For example, if the public state is
a Diffie-Hellman exchange g%, g°, then the key g% can be leaked (since a fresh
g€ is indistinguishable).

To prevent these leak-and-resample simulators, we assume it is hard to find
k values consistent with the public information. We use the notation of witness
hiding from zero-knowledge.

Definition 3.6. Let K,Y be a joint random variable and let R be a rela-
tion (computable by a circuit of size Spe;) where Pr[R(K,Y) = 1] = 1. The
public state Y s (Syel, Sinv, €rel)-Witness hiding if for all T of size at most sipy,
PI‘[R(I(Y), Y) = 1] < €rel-

11



Note: If it is hard to find keys that are consistent with plaintext/ciphertext
pairs, then the definition of Standaert et al. also has a witness hiding condition.

When discussing weakly simulatable leakage, we consider public information
that is witness hiding of the secret state K. Witness hiding implies unpre-
dictability of Hyy (K|Y) > —log(erer). We first discuss strongly simulatable
leakage and then weakly simulatable leakage. We discuss how to apply simulat-
able leakage to the circuit leakage model in Appendix [A]

4 Strongly Simulatable Leakage

In this section, we show that all strongly simulatable leakages preserve indis-
tinguishability. We use the relaxed notion of HILL entropy. We show that
sSIM C rIndist. In the next section, we show that bLEN ¢ wSIM which implies
that bLEN (and thus rIndist)) are not contained in sSIM.

Lemma 4.1 (sSIM = rIndist). Let K be a distribution over x and let' Y be
some public information. Let HFM I (K|Y) > k and let £ be a (€sim, Ssim, Ssec) -

€ent;Sent
strongly simulatable leakage function. Then HE'Z™*(K|Y, L(K)) > k for ¢ =
€ent + €sim, s = min{SS€C7 Sent — Ssim}'

Proof. Fix £ and let S be a simulator of size at most Se,:. Define the circuit
S’ that on input y outputs y, S(y) and note that S’ is of size Sg;m. Then by
Lemma the simulator does not decrease relaxed HILL entropy,

He s (K1Y, S(YV)) = HEST L (K]S'(Y) 2 k.
Thus, there exists some K’,Y’, Z’ where I:L,O(K’\Y'7 Z') > k such that
§Pent=seim (K, Y, S(Y)), (K',Y', Z"))) < €ent.
By simulatability, we have that
§Psee (K, Y, L(K)), (K, Y, S(Y))) < €sim-

Finally, by the triangle inequality,

§Pmin{ssee sene=ssim ) (K.Y, L(K)), (K/a Y/a Z/))) < €sim + €ent-

5 wSIM and rIndist

In the previous section, we showed that strong simulatability of a leakage
function implied relaxed HILL entropy. However, this does not carry over to
the setting of weak simulatability. In this section we show that simulatable
leakage is incomparable with indistinguishable leakage functions. We show a

12



bounded leakage function that is not simulatable (bLEN ¢ wSIM) and a simu-
latable leakage function that removes all relaxed pseudoentropy from the se-
cret (rIndist ¢ wSIM). Since bounded length leakage functions are contained
in Indist (and rIndist) this also shows that rIndist ¢ wSIM. In this sec-
tion, we assume that the public information is witness hiding of the secret state

(Definition 3.6]).

5.1 wSIM ¢ rIndist

There are simulatable leakage functions that remove all HILL-r1x.

Lemma 5.1 (wSIM ¢ rIndist). Let K = (K1, K3) where K; € {0,1}% and
Ky € {0,1}% be uniformly distributed. Let f be an (€owp, Sowp)-injective one-
way function from {0,1}* — {0,1}*3 computable in size |f|. Let Y = f(K,).
Then Hoo (K|Y) = £5. The function L(K) = Ks is (0, {2, 00)-weakly simulatable
and HEP X (K|Y, L(K)) < —log(1 — €) if Ssec > Sows + {1+ Lo

Proof. We first show that Y, L(K) removes all HILL-rlx from K.

Lemma 5.2. Let K be a random wvariable over {0,1}*,{0,1}% and let f :
{0,1}
— {0,1}*2 be an injective function computable by a circuit of size |f|. Then

HESTE L, (K| f(K)) < —log(1 —e).

Proof. Let K',Z' be a distribution
O (K, F(K)), (K, Z")) < e.
Consider the distinguisher
D(k,z) =1 if and only if f(k) = 2).

Clearly E[D(K, f(K))] = 1. By indistinguishability, E[D(K’, Z’)] > 1 —e. This
means that
E DK'|\Z =22)>1—¢

227

For all z there is a unique k € {0,1}% such that D(k,z) = 1, denote this value
by k.. This means that E,. z Pr[K’ = k,|Z' = z] > 1 — e. We then have the
following:

E maxPr[K'=k|Z2'=2]> E Pr[K=k,|Z' =2]>1—¢
k z< 7'

z 7'

Taking the negative logarithm of each side yields that Ho (K'|Z") < —log(1—¢).
This completes the proof of Lemma O

We now return to the proof of Lemma 5.1l Lemma [5.2] implies that

HHILL—rlx(K|Y7[’(K)) < — 10g(1 — 6).

€,8sec
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Y is a (|f], Sowps €owp), Witness hiding relation of K where the relation is

R(k1, k2,y) = (f(k1) L y). The simulator S for £ computes a uniform sample
from {0, 1}2. This is identically distributed to £(K) and takes {5 size to com-
pute. Since there is a unique k; for each y, Hoo (K|Y) = Hoo (K3|Y) = Hoo (K>).
This completes the proof of Lemma, .11 O

5.2  DLEN ¢ wSIM

We now show a leakage function of bounded length that cannot be simulatedﬂ
We will use a secure signature scheme and leak a valid signature. This leakage
function has been used previously to demonstrate the difficult of constructing
leakage resilient signature schemes [FHNT12]. We need a signature scheme that
is hard to forge and a signature does not determine the secret key completely.
We begin by describing the EU-RMA notion of signatures from Goldwasser,
Micali, and Rivest [GMRSS].

Definition 5.3 (EU-RMA). A signature scheme ¥ = (Gen, Sig, Ver) is
(¢, Ssee, €)-existential unforgeable against random message attacks if for all cir-
cuits A of size Ssec the following holds:

Pr M1, ...,mq < M A o; < Sig(m;, sk)A
(pk,sk)«Gen(-)
(m*,0") < A(ma, ...,mgq, 01, ..., 04, pk)

Am* # m; AVer(pk,m*,0%) =1] <e

Under this definition a signature must not be simulatable. To ensure that the
secret key still has high entropy we need a signature scheme where multiple
private keys exist for each public key. We use a scheme where it is hard to
find a candidate private key for each public key (making the public key witness
hiding). We use Lamport’s one-time secure signature scheme [Lam79] [

Construction 5.4. Let f be a (€ou 1, Sowy)-one-way function mapping {0, 1}*¥° —
{0,1}* for ¢ > 1:

Key Generation: Choose random x;,7;1 + {0,1}*" fori =1,...0. Com-
pute Yip < f(zip) for i € {1,...,0} and b € {0,1}. The public key is
pk = {yip} and the secret key is {x;p}.

Signing: The signature on a k-bit message m = myq, ..., my consists of the k
values T1my, s Thmy, -

Verification: Given z1, ...,z and m = mq,..,my and pk = (s,{yip}), output
1 iff Yim, = f(x:) for all i.

5This also shows that Indist  wSIM and rIndist Z wSIM.

6This scheme was used in the setting of leakage-resilient cryptography by Katz and Vaiku-
natanathan [KV09]. They extend Lamport’s scheme making the function collision resistant
and using error correcting codes. Lamport’s original scheme suffices for our purposes.
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Lemma 5.5. Construction s a (17eowf7sowf)-secu1"e signature scheme.
Furthermore Hoo (SK|PK) > 20k¢ — 20k. Furthermore for any message m,

Hoo (SK|PK, Sigpy (m)) > (k¢ — 20k.

Proof. We omit the proof that the scheme is secure (and that Y = PK is witness
hiding of X). We have the following for the entropy calculations by [DORS0S,
Lemma 2.2], Hy (SK|PK) > 20k¢ — 20k. Similarly, for any m H, (SK|PK,

Sigpr(m)) > 20k — 20k — Ck© > Ck° — 20k. O

Lemma 5.6. Let (Gen,Sig, Ver) be as above for some ¢ > 1, let K = SK|Y =
PK. Then for any message m the function L(K) = Siggy (m) is not simulatable

by any S of size Sseec < Sows With € < €oug. Furthermore, Hoo (SK|PK, L(K)) >
k€ — 20k.

Proof. The lack of a simulator follows from the one-time security of the signature
scheme. The remaining entropy follows from Lemma O

6 wSIM C hINV

In the previous section, we showed that weakly simulatable leakage and indistin-
guishable leakage are incomparable. In this section, we turn to hard-to-invert
leakage. We show that weakly simulatable leakage preserves unpredictability
but there are leakage functions that preserve unpredictability that are not sim-
ulatable. Our results assume Y is witness hiding.

6.1 wSIM C hINV

The ability to predict K given both Y and L(K) is not significantly different
than the ability to predict the witness given just Y.

Lemma 6.1. Let K, Y be a pair of random variables and let R be a (Srely Sinvs €rel) -
witness hiding relation on K,Y. If L be a (€sim,Ssim, Ssec)-weakly simulat-
able leakage for (K,Y). Then HJ (K|Y,L(K)) > —log(ere + €sim) for

;.
Sinv — mln{ssec — Srely Sinv — 5rel}~

Proof. Let S be a simulator of size sg;,, for £. Suppose there exists an inverter
T of size s,, such that Pr[Z(Y, L(K)) = K] > €pe; + €sim. To arrive at a

mnuv
contradiction it suffices to show there exists an inverter Z'(Y) of size s, +

Ssim < Siny and succeeds with probability > €,.;. Define Z'(y) = Z(y, S(y)).
Claim 6.2. Pr[R(Z(Y,S(Y)),Y) = 1] > Pr[R(Z(Y,L(K)), K) = 1] — €5im >

Erel -

Proof. Recall that §Pssec (Y, L(K)), (Y, S(Y))) < €sim- Suppose for contradic-
tion that

Pr[R(Z'(Y,S(Y)),K) = 1] < Pr[R(Z'(Y, L(K)), K) = 1] — €sim.

We present a distinguisher D of size ., + Srel < Ssect
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e On input vy, z.
e Run z + 7'(y, 2).
e Output 1 if and only if R(x,y) = 1.
Then
PH{D(Y, £(K)) = 1] - Pr[D(Y. S(Y)) = 1]
= Pr[R(Z(Y,L(K)),K) = 1] = Pr[R(Z(Y,S(Y)), K) = 1] > €sim-

This is a contradiction. This completes the proof of the claim and the proof of
the lemma. 0

O

6.2 hINV Z wSIM

In the previous section, we saw that simulatable leakage preserves unpredictabil-
ity. In this section, we show this containment is tight.

Lemma 6.3. Let fi : {0,1}* — {0,1}*2 be (s1,¢€1,Up, )-one way and let fo :
{0,1}%2 — {0,1}* be sq, €2, f (U, )-one way. Then for K =Uy,, Y = fa(f1(K)),
L(K) = f1(K) the following hold:

LHPR (K|, L(K)) > —log (eouwg).

2. L is not (|f2|, s2,1 — €2)-weakly simulatable.
Proof. We prove each statement in turn. Suppose Statement I is not true, that
is, there exists an inverter Z’ of size s; — |f1| that inverts fo o f1]|fi. Then
Z(y) =Z'(y, f2(y)) is an inverter for f.

Now suppose that Statement 2 is not true. Then there exists a simulator S
of size sy that simulates fi(K). That is, §Pssec (Y, L(K)), (Y, S(Y)) < 1 — eo.
Consider the following distinguisher D (of size | f2]):

e Input y, 2.
e Output 1 if and only if y = fa(2).

Clearly, E[D(Y,L(K))] = 1. Thus, by indistinguishability, E[D(Y, S(K))] >
1 — (1 —€2) > eq, this is a contradiction. O
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A Extending Simulatable Leakage to the Circuit
Model

A.1 Leakage Classes in the Circuit Model

In this section we provide a brief introduction to the circuit leakage model and
discuss the applicability of simulatable leakage to the circuit leakage model.
The main difference between the circuit and memory leakage model is that
the leakage function leaks on a particular implementation of a cryptographic
primitive. (In the memory leakage model, leakage is only on the private state.)
Most circuit leakage classes assume leakage is “local” to the computation. This
makes the leakage class sensitive to the implementation. C' represent a circuit
with wires C1, ..., Ok (with the first wires representing the inputs and final wires
representing the outputs).

e Probing [ISW03]. Let The adversary specifies a subset £ C C4, ..., C}, (of
bounded size) and sees the values of all wires in £. £ may include some
of the secret input, intermediate values, and output values. However, the
leakage function is not allowed to compute on parts of the computation
simultaneously, the leakage function can only learn the value of individual
wires.

e Computationally Bounded [FRR710|. Faust et al. [FRR"10] hypoth-
esize that leakage can be modeled by low complexity circuits. As an
example, they show how to protect circuits against leakage in AC?. They
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secret share state, security critically relies on the inability of ACY circuits
to compute parity.

e Noisy [CJRR99, [FRR10]. It is not clear how to precisely determine the
computational complexity of a side-channel attack. However, most side-
channel attacks are known to contain significant noise. The work of Faust
et al. [FRR™10| also proposed modeling leakage function as an arbitrary
function £ applied to the secret state with an additive noise term N

Recent work of Duc, Dziembowski, and Faust [DDE14] shows how to simulate
a noisy leakage function using a probing leakage function.

A.2 Adapting Simulatable Leakage to the Circuit Model

We now provide a definition of simulatable leakage that can be used in either
the memory or circuit leakage models. As before, we can define both a weak
and strong version. We present only a weak version for simplicity.

Definition A.1. Let (K,Y) be a pair of random variables over x1 X x2 and
C be a encoding function such that C : x1 — (. The randomized map L is an
(€, Ssim, Ssec, C)-weakly simulatable leakage function if there exists a simulator
S of size at most Sgim such that

§P=wee (Y, LC(K))), (Y, S(Y))) < e.

Notes: Taking the encoding function to be the identity function yields the
memory leakage model. The above definition depends on the encoding function
and the leakage class. As an example, for a fixed leakage function, there may
be a simulator for only some encoding functions. The work of Ishai, Sahai, and
Wagner [ISW03] builds an encoding function where the probing side-channel is
simulatable (security of the encoded circuit is shown through simulation).
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